Interaction Notes
Note 434

Planarity Criteria in
Electromagnetic Topology

July 1983

Roger S. Noss
LuTech, Inc.
3516 Breakwater Court
Hayward, CA 94545

ABSTRACT

The principal tool of the electromagnetic topologist is the
interaction sequence diagram (ISD), which is the dual graph of the
electromagnetic topology (EMT) of a system. One of the problems of
working with the ISD is its complex appearance, in part due to multiple
crossings of edges. This paper presents some necessary and sufficient
conditions for a graph to be planar, plus an algorithm to determine the
planarity of any graph from its incidence matrix.  Several topological
invariants of the ISD are defined to aid the discussion of computational

feasibility of the algorithm.
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INTRODUCTION

The principal tool of the electromagnetic topologist is the
interaction sequence diagram (ISD), which is the dual graph of the
electromagnetic topology (EMT) of a system. The EMT is defined in terms
of layers, sublayers, and elementary volumes (see Baum, [1,2,3]).
Sublayers are disjoint from one another, and layers, defined to be
disjoint unions of certain sublayers, are also mutually disjoint. An
elementary volume shares some part of its surface with another elementary
volume. Al1 elementary volumes contained in a sublayer possess this
property, and together their union is the sublayer. If only layers and
sublayers are considered, the ISD is a tree graph. In this way the
complication of cycles in the ISD is deferred to the elementary volume
Tevel. In the following, reference to the ISD means'any subgraph of the
ISD corresponding to the partitioning of a sublayer into elementary

volumes.

One of the prob]ems/of working with the ISD is its complex
appearance, in part due to multiple crossings of edges. In some cases it
is possible to reduce the number of crossings by drawing the graph ,
differently. The appearance of the ISD is least complicated if its edges
are drawn as straight Tine segments with no crossings. An intermediate
step is to eliminate the crossings. A graph which can be drawn in this
way is said to be a planar graph, and such a rendition of the graph is
known as a plane graph. Edges of a simple planar graph can always be
represented by straight Tine segments which meet only at vertices.

This paper presents some necessary and sufficient conditions for a
graph to be planar, plus an algorithm to determine the planarity of any
graph from its incidence matrix. Some definitions are introduced
beforehand to facilitate the presentation of the criteria. Several
topological invariants of the ISD are defined to aid the discussion of
computational feasibility of the algorithm.



DEFINITIONS

This section presents some basic definitions, to raise the apparent
ratio of theorems to definitions in the results which follow. Other
definitions will be introduced as the need arises. Figures illustrating

the terminology are indicated in parentheses.

A graph G consists of a vertex set V(G) of vertices and an edge
set E(G) of edges, represented by unordered pairs of elements of V(G),
called end points (Figure 1). An edge becomes a directed edge (or arc)
by specifying an ordered pair of vertices, called the initial and
terminal vertices (Figure 2a). If every edge in E(G) is an arc then G
is a directed graph, or digraph (Figure 2b). If functions are assigned
to the edges of a graph, then a direction is jmplied. The opposite
direction is indicated by attaching a minus sign. An example of this is
current in an electrical network. In this way endpoints of an edge may
be called initial or terminal vertices arbitrarily, and the distinction

between a graph and a digraph need not be stressed.

Two vertices are adjacent if they are end points of some edge. A
vertex and edge are incident if the vertex is one of the end points of
the edge. A loop is an edge or an arc that is incident with only one
~ vertex (Figure 3). Edges having the same end points are said to be
parallel. A simple graph has no parallel edges and no loops (Figure 4).
Parallel edges are also called multiple edges.

Two graphs are isomorphic if their vertices and edges can be placed

in incidence-preserving one-to-one correspondence (Figure 5). A
geometric graph is a graph whose vertices are selected points in two- or

three-dimensional space and whose edges are nonintersecting simple curves
each of which joins two vertices (or, in the case of a loop, closes on a
single vertex) without containing any other vertices. A geometric

realization of a graph G 1is a geometric graph that is isomorphic to G.



A vertex b

‘\\\—.edge (b,f)

end-points

d
(()gy:)ge \.’.e f
vertex set:
V(G) = {a,b,c,d,e,f}
edge set: ®
£@) = {(a,b), (a,0), (a,d), (a,e), (bse), (b,F), (c,d),(c,f), (d,e))

Figure 1. Vertex set and edge set of a graph.
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™~
k\"directed edge (arc)

(a) A graph containing an arc.

(b) A directed araph (digraph).

Figure 2. Directed edges and graphs.
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Figure 3. Adjacency, incidence, and Toops.
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(a) Parallel edges, arcs, and loops.

(b) A simple graph.

Figure 4. Parallel edges and simple graphs.
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{A,B,C,D,E,F}
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{a,b,c,d,e,f,g,h,i}
{(a,8), (8.0), (C,0), (D,F), (CHF),
(C,E), (B,E), (A,F), (A,E)}

(a) graph Gy -

ViGy) = {AB.C.DLEF)
E(6,) = {a;b,c,d;e,f,g,h,i}
- {(AB), (B,0), (€,F), (B,F), (B,D),

(A,0), (ME), (D,E), (E.F)}

(c) THE ISOMORPHISM:

vertices edges
- , 1-
V(G1)<1—1>V(G2) o E(Gl)<_}>E(GZ)

A E a g
B A b a
C B c b
D C d o
E D e d
F F f e

g f

h i

i h

Figure 5. Isomorphic graphs G1 and G2 .
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A plane graph is a geometric graph in a plane. A planar graph is a
graph that is isomorphic to a plane graph. A plane graph divides the
plane into regions, one of which. is infinite in extent. Using
stereographic projection or inversion, it is possible to redraw a plane
graph so that any desired region is the unbounded one [2].

A1l of the figures depicting graphs in this note are actually
geometric graphs which are geometric realizations of graphs having the
properties illustrated. Although they are all drawn in a plane, only
those figures in which all edges meet only at vertices are plane graphs.

An edge progression is a finite sequence of (not necessarily
distinct) edges such that one end point of the first edge is also an end
point of the second, the remaining end point of the second is also an end
point of the third, and so on (Figure 6). The edge progression is closed
if the "remaining" end point of the first edge is the same vertex as the
"remaining” end point of the last, and open otherwise. A chain (circuit)
progression is an open (closed) edge progression having no repeated edges
(Figure 7), and a chain (circuit) is a set of edges which, if properly
ordered, form a chain (circuit) progression. A tree is a graph which
contains no circuits. In a geometric graph, a chain (circuit) is a set
of edges which form a open (closed) curve. The terms arc, path, and
cycle replace the terms edge, chain, and circuit, respectively, when the
graph is a digraph (Figure 8), but frequently the terms are used
interchangeably, with their precise meaning indicated by the graph under

consideration.

The degree of a vertex is the number of edges with which the vertex
is incident, with loops counted twice. A contraction of a graph is the
removal of a vertex V of degree two, replacing its two incident edges
(Vl,V) and (V,Vz) by one edge (Vl’VZ) (Figure 9). Two graphs are
conformal, or isomorphic to within vertices of degree two , if they are

isomorphic or can be transformed into isomorphic graphs by contractions
(Figure 10). An elementary contraction is the deletion of a vertex )

and an edge (V,W), replacing all other edges (U,V) incident with V
by edges (U,W) (Figure 11).

-11-



edge progression: (A,B), (B,E), (E,C), (C,B), (B,A), (A,D)

= a,e,f,d,a,c.

Fiqure 6. Edae proaression in a araph.
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(a) Chain progression a,b,d,e,q,c.

(b) Circuit progression a,d,f,q,c.

Figure 7. Chain and circuit progressions in a graph.

-13-



(a) arc proaression:

e,g,C,a,e,f

(b) path progression:

g,c,b

(c) cycle progression:

C’aQEDg

Figure 8. Progressions in a digraph.
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Figure 10. Conformal graphs.




elementary
contraction
J/ of W and (V,W)

Figure 11. Elementary contraction of a graph.

-17-



Associated with a graph comprising n vertices and m edges are
several matrices. The adjacency matrix A(G) = (Aij) isan nxn

matrix defined by

_ {1 if vertices i and j are adjacent,
1 L0 otherwise.

The adjacency matrix differs from the "node-node matrix" of electrical
circuit theory only on the diagonal, where 0's replace the non-zero

entries representing self connection (see [4]).

The degree matrix D is a diagonal matrix with

Dii = degree of vertex i, for i=1, ..., n.

There is also an n x m incidence matrix I(G) = (Iij)’ whose entries

are given by

-1 if vertex i is the initial end point of edge j,
I.. = 1 if vertex i is the terminal end point of edge Jj,
0 otherwise.

Unlike the "node-branch" matrix (see [4]), the incidence matrix
distinguishes between initial and terminal vertices.

These matrices are related by the matrix equation
.17 =D - A
In Figure 12a the graph in Figure 6 has been relabelled to construct the

matrices of adjacency (Fiqure 12b), degree (Figure 12c), and incidence
(Figure 12d).
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(a)

Figure 7 after relabelling.

D(G)

1}
S O O O W
O O O w O
O O wWw O ©
o w o o o
N O ©O © ©

(c) Degree matrix.

Figure 12,

=

——~

[ep}

"

[t}
Pt O = = O
QO == O =
Q - O e
bt O = = O
O = O O =

(b) Adjacency matrix.

(d) Incidence matrix.

Matrices of a graph.
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Note that every column of 1(G) contains at most two nonzero
elements since every edge has two (not necessarily distinct) end points.
A matrix is said to have graphic form if every column contains at most

two nonzero elements.

Two topological invariants of a graph are used in this note. A
component of a graph is the largest subset of the vertex set of the graph
with the property that no vertex of that subset is joined by an edge to
any vertex not in that subset. Topologically, a component is a maximal
connected subset of the graph. For any graph G comprising n
vertices, m edges, and p components,

c(G) =m-n+p
and
c*(G) = n - p.

c(G) js called the cycle rank, circuit rank, or cyclomatic number.
c*(G) 1is called the cutset rank, or cocycle rank.

-20-



SOME CRITERIA FOR PLANARITY

Two classes of graphs which have been studied extensively have been
named Kn and Kr e K, is the complete graph on n vertices. It
is the largest posgible s?mp]e graph with n vertices, as its edge set
consists of all possible pairs of vertices. Kg (Figure 13) is the

smallest nonplanar complete graph.

Kp beeal is called the complete m-partite gr‘apl;\:;1 Its vertex set
is partitioned into m disjoint subsets, with the i subset
containing rs vertices. Every vertex in a particular subset is
connected by an edge to every vertex not in that subset, but no two
vertices in the same subset are so joined. Figure 14 shows K3,3, the
smallest nonplanar complete bipartite graph. Note the two subsets of the
six vertices. Each subset contains three vertices. Each vertex has
degree three, because it is joined to every vertex in the complementary

subset.

The existence of these two nonplanar graphs yields one of the most
useful criteria for distinguishing between planar and nonplanar graphs by

inspection:

CRITERION 1: A necessary and sufficient condition for
a graph to be planar is that it contains
no subgraph conformal to K5 or K3 3

Figure 15 presents a sample EMT. The dual graph, an ISD, is shown
in Figure 16. Note that the number of crossings appears to be minimized,
but it is not clear whether or not the graph is planar. Application of
the above criterion establishes that the ISD is nonplanar because of the

heavy lines tracing out K3 3-
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Figure 13. K5, the smallest nonplanar complete graph.
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Figure 14. K3 3 the smallest nonplanar complete bipartite graph.
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Although it contains subgraphs conformal to K5 and Ky 35 the
Peterson graph, shown in Figure 17, can also be reduced to K5 by a
sequence of elementary contractions. This illustrates another criterion

for planarity:

CRITERION 2: A graph is planar if and only if it
contains no subgraphs contractable to
K5 or K3,3 by means of a sequence of
elementary contractions.

A dual graph of a graph G may be defined in several ways. A
planar graph possesses a geometric dual G* such that for each region of
G, including the infinite region, there is a vertex of G*. An edge is
drawn between two vertices of G* 1if the corresponding regions of G
are contiguous (have a common edge as part of their boundary). In this
way edges of G are placed in one-to-one correspondence with edges of
G*. The graph in Figure 6 is an example of a plane graph, shown in
Figure 18a with its geometric dual. The geometric dual of the geometric
dual of -a plane graph is isomorphic to the plane graph (Figure 18b).

Note the correspondence between vertices of degree two and parallel

edges.

A cut-set of a graph is a disconnecting set (set of edges whose
removal disconnects the graph) consisting of all the edges that join a
specified set of vertices with the complementary set of vertices. A
cut-set containing no proper subsets which are also cut-sets is called a
minimal cut-set, proper cut-set, or cocycle. The graph in Figure 6 has
been dissected in Figure 19 to show its fifteen cocycles. |

A graph G has an abstract dual G* if there is a one-to-one
correspondence between edges of G and those of G* with the property

-26-



(a) The Peterson graph.

five
elementary
contractions

(b) K

Figure 17. The Peterson graph.
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(a) A plane graph ( ) and its geometric dual (essee).

(b) The geometric dual (

) and its geometric dual (eess:),

Figure 18. The geométric dual of a plane graph.
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Figure 19. Cocycles of the graph in Figure 12a.
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that a set of edges of G forms a circuit in G if and only if the
corresponding set of edges in G* forms a cut-set in G*. It has been
shown that if G is an abstract dual of G* then G* is an abstract
dual of G. Furthermore, if G is a planar graph with geometric dual
G* then G* 1is an abstract dual of G.

CRITERION 3: A graph is planar if and only if it has
an abstract dual.
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AN ALGORITHM TO DETERMINE PLANARITY

The criteria listed above are useful for visually inspecting small
graphs or large symmetrical graphs, but in general an algorithmic
determination of planarity is desired. By working with the vector space
associated with the incidence matrix one can develop an algebraic
criterion which depends on the proper choice of basis, as described

below.

Let G be a graph with n vertices, m edges, and p components.
Without loss of generality G may be assumed to be a simple connected
graph such that every edge lies on at least one cycle, for the planarity
of a graph is not affected'by the addition or deletion of multiple edges,
Toops, or tree subgraphs, and a disconnected graph is planar if and only
if each of its components is planar. (For an EMT drawn to elementary
volume level, however, this assumption is misleading: it may be true
that even though the decomposition of each sublayer into elementary
volumes results in a dual planar subgraph, the union of all such
subgraphs requires nonplanar connecting edges. The problem arises
because sublayers are pairwise disjoint, but elementary volumes are not,
and the ISD typically consists of only one component.)

The incidence matrix assigns to each edge an initial and terminal
vertex. To associate a cycle ¢ with an m-vector C, an orientation is
assigned to the cycle. As the cycle is traversed according to this
orientation, the directions of the edges may or may not agree with the
direction of travel, and are said to contribute positively or negatively,
accordingly. Then the m-vector C = (Cl, cers Cm) is defined by:

1 if edge i contributes positively to the cycle,

C, = -1 if edge i contributes negatively to the cycle,
‘0 otherwise.
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Figure 20a shows the graph of Fiqgure 12a after contraction of vertex
Vg- This is K4, the complete graph on four vertices. Two cycles and
their associated 6-vectors are given in Figure 20b. Note that the
product of each 6-vector with the incidence matrix (Figure 20c) is zero
(Figure 20d).

Not every m-vector C corresponds to a cycle of G, but it can be
shown that C corresponds to some cycle, or set of cycles, if and only
if C-I(G)T = 0. If Co is the set of all m-vectors representing one or
more cycles, then C, 1is the null space of I1(G), and the dimension of
C, is ¢ = c(G) =m - n + 1, the cycle rank defined above with p = 1.

.The criterion for planarity of G may now be expressed in terms of
the cycle matrix whose ¢ rows correspond to the elements of a basis for
Co> and whose m columns correspond to the edges of G. The graph
formed from the cycle matrix by construction of the basis cycles is

identical to G, since every edge is a cycle edge, and the basis

generates all cycles.

CRITERION 4: A graph is planar if and only if there is
a cycle matrix for it having graphic form.

A basis for C, consists of ¢ m-vectors. Given any basis, all
cycles of G may be obtained by taking all possible combinations of the
original ¢ m-vectors. Thus, there are

£ (e ()

c
cycles from which a basis may be chosen, so at most (2 ; 1) different

cycle matrices must be considered. Thg following table summarizes the

relationship between c, 2C-1, and (2 for small values of c.

C
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cycle 6-vector

{e;-e0-e685) € = (-1,-1,0,0,1,-1)

{92,96,93} Cz (0,'1,1,090971)

the complete graph (b) Two cycles in K4 and
on four vertices. their associated 6-vectors.

]

(c) incidence matrix I(K4)

11 0
0 1-1 0
C, ;10011\ 01 0-1
(d) 1(k,)" = -0
C, 0-1 1 00-1/ 1 0-10
' 1 0 0-1
00 1-

Figure 20. Correspondence between m-vectors and cycles.
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cycle rank # of cycles # of matrices

(c = m-n+l) (2°-1) (2° . 1)
C
2 3
3 35
4 15 1365
5 31 169,911
6 63 6.8 x 10’
7 127 9.0 x 10'°
8 255 4.0 x 10"
9 511 6.1 x 10'°

Once a basis for C, has been found, all other bases may be
derived. The first basis may be determined by the use of a spanning
tree, a tree subgraph of G having n vertices and n-1 edges. For
each edge e of G which is not an edge of T, there is a unique cycle
in G containing e and edges of T. Figure 21 shows a spanning tree
of the graph in Figuke 12a (Figure 21a) and the unique cycles
corresponding to the edges not in the tree (Figure 21b). By taking all
three such edges, a basis for C, is obtained (see Figure 21c).

The search for a spanning tree proceeds by deleting edges from G.
Since every spanning tree of G contains n-1 edges, there are (nTl)
possibilities. The number of spanning trees of G s a topological
invariant x(G) called the complexity of G. Two related matrix
formulas can be computed to obtain k(G):

(1) «(6) J = Adj (D - A),

and
(2) w(6) = 1y det (J+D-A), \
n j
1 |
where J = E '.. .
1 1



Cl = (1,—].,0,],0,1,1) CZ = (19‘190a0915091) C3 = (0,-1,1,0,0,1,1)

(b) Unique circuits induced by non-tree edges.

1.1 01011
(c) cycle matrix = 1-1 0 01 01
0-1 100 11

Figure 21. Spanning tree and cycle matrix of a graph.
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The first formula states that every cofactor of D - A s equal to k(G).
The second formula is a consequence of the first.

For the graph in Figure 12a,

J+D-A-= , so k(G) = 24.

o = o o
—-— O O &~ O
- O &~ O O
o~ O O =
w O = == O

There is an alternative method of obtaining spanning trees and
cycles which may be written down in terms of matrix operations. In 1901
Poincare showed that any square submatrix of the incidence matrix 1(G)
of a graph G has determinant equal to -1, 0, or +1. This fact leads
to the fol1owiﬁg theorem (Biggs 5], p. 30):

Let U be a subset of E(G) containing n-1 edges.
Let I(U) denote an (n-1) x (n-1) submatrix of I(G),
consisting of the intersection of those n-1 columns of
1(G) corresponding to the edges in U and any set of n-1
vows of I(G). Then I(U) is non-singular if and only if
the subgraph of G having edge set U is a spanning tree
of G.

The graph in Figure 12a is shown in Figure 22a, together with its
incidence matrix,iﬁ Figure 22b. The five 4 x 4 submatrices obtained
from the first four columns of I(G) are all singular, since the chain
(el, sy €3, e4) contains a cycle (Figure 22c). However, if the first
column is replaced by the fifth column, then all five of the
corresponding submatrices are nonsingular (Figure 22d), showing that
(65, €35 €4, e5) is a spanning tree."
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For this graph, there are seven cycles from which three may be
chosen to form a cycle basis. The cycles, labelled Cl’ Cz, cens C7,
have been drawn in Figure 23, and the 35 possibilities for bases have
been written out in Figure 24. The four dependent cycles which are
induced (by addition) by each basis are listed below the three cycles
forming the basis. Among the seven trip]ets”which do not span the space,
each edge occurs three times, suggesting that there is no preferred
labelling of the cycles which reduces the number of combinations which
must be considered. Application of Criterion 4 to the cycle matrices
separates the candidates into three classes, denoted in Figure 24 by:

The cycle matrix has graphic form, proving planarity,
Some column of the matrix contains three nonzero elements
(no conclusion),
and (0) Some column of the matrix contains three zeros (not a basis).

Also shown in Figure 24 are the spanning trees which induce the
cycle bases. In this example, all bases which satisfy Criterion 4 for
planarity can be induced by a spanning tree. In generé], however,
neither existence nor uniqueness of a spanning tree generating a given
basis is guaranteed. If it could be proved that only bases induced by
spanning'ttees need to be checked,‘the usefulness of the algorithm would
be increased greatly, since in general, the complexity of a graph is a
much smaller number than the combinatorial numbers listed in the above
table.
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Cl = (1,-1,0,0,1,0,1)

S

- (0,-1,1,0,0,1,1)  ¢3 = (0,0,0,1,-1,1,0)

= (1,0,-1,1,0,0, 0 ‘<::::l

= (1,0,-1,0,1,-

4>

= (0,-1,1,-1,1,0,1) ¢4 = (1,-1,0,1,0,1,1)

Figure 23. Cycles of the graph in Figure 12a.
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CONCLUSIONS

In this note the problem of determining when a graph can be redrawn
as a planar graph was addressed. Several criteria were presented and
illustrated. One particular criterion which relies on matrix
manipulations was discussed in detail. For large graphs, the
computational effort required to resolve the issue is a major obstacle.
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