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P 7 | ABSTRACT

The aim of this note is to define the problems associated with
applying graph theory to interaction sequence diagrams used in
electromagnetic topology. Because few applications have been developed,
i the optimal Tabelling scheme has yet to emerge. As a result, operations
 on the graph are difficult to record concisely. This note contains
‘ criteria to guide the design of labelling schemes. Some specific schemes
! are presented and illustrated for a sample topology, and satisfaction of

the criteria is discussed. . '
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INTRODUCTION

Although electromagnetic topology (EMT) 4is a new concept, its
theoretical development has already become overburdened with indices.
Baum [1,2,3] has described_the subdivision of Euclidean space into
components of interest, namely shields and subshields (surfaces), layers
and sublayers (volumes), etc., and has suggested one method of labelling
them. The same labels apply to the dual graph, in which volumes are
represented by points, and surfaces between volumes as Tines connecting
the points. In this scheme, a given hierarchical level is identified
with a volume called a layer. A Tayer is subscripted once to identify
its hierarchical Tevel. Non-intersecting subsets of a layer, called
sublayers, receive two indices. The first index is the layer index. A1l
of a Tayer's sublayers are numbered consecutively to supply the second
integer of the pair.

Further decomposition of sublayers into subsets called elementary
volumes follows the same pattern with a third subscript. Shields and
subshields are tagged similarly, but require two such sets of indices to
show enclosed and enclosing volumes. A sample EMT, to sublayer level, is
shown in Figure 1 along with its dual graph in Figure 2, Tlabelled

according to the scheme described above.

Rather than dealing with these previously used labels, this note
defines some characteristics of a well-labelled dual graph and presents a

few alternative schemes which possess some of these traits.
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Figure 1. A sample electromagnetic topology to sublayer level.

-6-




. Figure 2. Dual graph of Figure 1.




CHARACTERISTICS OF AN IDEAL LABELLING SCHEME
An ideal Tabelling scheme should meet the following criteria:

1) Labels shoulq be compatible yith syqndarq termino1ogy.
Representing an EMT by its dual gféph invites the introduction of results
from graph theory. For ease of application, the EMT graph labels must be
clearly related to, if not the same as, standard graph theory notation.
This requires identification of each vertex and edge, and adherence to
the concepts of adjacency and non-adjacency of edges and vertices. (Two
vertices are adjacent if they are the end points of some edge. Two edges

are adjacent if some vertex is an end point of both.)

2}  The dual graph'is said to be a directed graph ("digraph") if
each edge is oriented by distinguishing a starting vertex from an ending
vertex. A digraph is hierarchical if there exists a partial orderinghOf
the vertices. A tree is a graph containing no closed loops (cycles).
Figure 3 illustrates these terms. Labels should indicate direction for
digraphs, and ordering for hierarchical graphs, but if no ordering is
assumed then the additional structure imposed by this requirement should
be removable. That is, the label attached to a point of the graph should
indicate which 1ayer(s)‘ené1ose and are enclosed by it, as well as which
Tayers are at the same hierarchical level (if the graph is hierarchical).
Labels for vertices which neither precede nor follow each other should

reflect this fact.
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(a) directed graph.
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(b) hierarchical graph

N

(c) tree graph.

Figure 3. A directed graph, a hierarchical graph, and
a tree graph,



3) Labels should be flexible enough to absorb changes in the EMT,

including

a) insertion of a subshield or sublayer,

b) deletion of a subshield or sub1ayef,

c) linking of sublayers (by a wire, hole, etc.),
d) frequency-dependent changes,

and e} distinction between "inside" and "outside" of subshields.

Flexibility is the most stringent requirement, because the classification
of a graph as a tree, digraph, hierarchical graph, etc., is changed when

the topology is altered.

4) Labels contain information about the distance between two

vertices. Baum has used the term "vrelative shielding order" for the
number of intervening subshields between two sublayers. Thus Tabels
should generate the distance matrix, D = (dij)’ where d1.j might be
defined as the minimum number of edges between vertices i and Jj , or as

some generalization which satisfies the conditions of a metric.

5) Labels should admit an operation representing inversion with
respect to a "pivot layer" or "pivotal sublayer". Inversion is a distance-
preserving operation which uses reciprocity to consider the pivotal sublayer
as the source of electromagnetic excitation. The operation may be visual-
ized as reaching insjde the topological diagram and pulling the pivotal
subTayer to the outside, turning part of the diagram "inside-out" in the

process. The corresponding operation on the dual graph consists of choosing
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a new base point, or suspending the graph by the pivotal vertex. If the
graph is hierarchical, this raises the pivotal vertex to the top of the
hierarchy and partitions the vertices into two subsets, those for which
the hierarchy is preserved and those for which the higrarchy is rgversed.
The latter is an order set, and the new label set can be generatéd by

reversing the order on that set.

6) Labels should suggest how to apply concepts from relevant
fields of mathematics, including graph theory, abstract algebra, algebraic

topology, matrix theory, differential geometry, and analysis.

This is a lot to ask of a labelling scheme. A reasonabie compromise
is to allow two or more gchemes to collectively satisfy the above require-
ments. The schemes presented in the following section have been designed
to satisfy criteria 2, 4 and 5 for hijerarchical graphs, while still

observing the guidelines 1 & 6.
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ALTERNATIVE LABELLING SCHEMES

The emphas1s of th1s note is on h1erarch1ca1 tree digraphs, so some
of the cons1derat1ons 1n cr1ter10n 3 are noi addressed The f0110w1ng
notation will be used throughout Un1ess o1herw1se spec1f1ed X» is a
partialiy ordered set which may be represen1ed as a tree graph. V(X),'or
just V if the set X is understood, is the set of labels representing
the vertices of X, called the vertex set of X. Similarly, E(X), or
just E, is the edge set of X. A partial ordering f<g 1is read "f
precedes g" or "g follows f". Several schemes attach more than one
character to a vertex One of these should remain fixed dur1ng

inversion, and is referred to as the identifier of the vertex.

In graph theory, the standard way of T1abelling a graph is by
specifying the vertex set and edge set. If there are p vertices, then
there will be at most q = ( ) p(p-1)/2 edges. If the graph is a
tree, then q = p-1. The vertices are arbitrarily labelled from the

vertex set
V = {vl, Vos wees vp},

and the edge set is defined by

A

E={ €13 €ps eus eq}

{Ve & s Ve s s vees Vi < b
T3 7 T igdo
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whére vertex Vik is connected by edge ek to vertex vjk. Figure 4
shows the standard labels applied to Figure 2, as well as the sets V

and E. The order of Vik and ij is important for a digraph and is
implicitly assumed to be fixed. There are cases in which thjs assumption
hinders the analysis: Figure 5a shows a partially-directed graph
possessing some directed edges and some undirected edges, requiring the
introduction of extra edges (see Figure 5b), which create artificial
cycles in the graph. The acceptability of this depends on the

application of the graph.

If X 1ds partially ordered (and thus has the property that no
vertex vy appears twice in the second position of the elements of the
edge set), then inspection of the elements of E will reveal a unique
vertex v; which appears in the first position of a pair but not in the
second position of any other pair. From this fact the tree can be
reconstructed and thus admits an inversion operation. This method is

sufficiently general to satisfy criteria 1, 2, and 6, but distances

cannot be conveniently calculated without first reconstructing the graph.

Another scheme of attaching labels to a graph containing p points
is to select elements of a group G generated by p-1 elements, Vis Voo

Y which satisfy the relations

p-1°

and
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{V1’ Yoo V3s Voo V5o Vs}
E(X) = {el, €5, €4, €4, es}

- {V6V1’ V1Var V1V3s V3Vgo V3V5}

Figure 4. Standard Tabelling scheme, vertex set V(X),
and edge set E(X).
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(a) A partially-directed graph.

(b) Extra edges introduced.

Figure 5. The problems of partially-directed graphs.
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The set (1) identifies G with p copies of the cyclic group ZZ' The .

second set abelianizes G. This scheme will be named the "pZ, scheme".

To understand the concept of groups, géneratorég and relatjons,
consider a group G generated by two elements, a and b. This is a
free group (because it is free from relations) containing infinitely many
elements, including

1, a, a_l, b, b*l, a2, ab, ba, aba, ba'153a_2b, etc.

For this example, the relation (1) becomes:

2 -1
or a=a

il
-

(la) a

and

2 -1

i
p—t
=]
-3
o

it
o

(1b) b
Including relations (la) and (1b) reduces the elements of G to the form
1, a, b, ab, ba, aba, bab, abab, baba, etc.

The group still has infinitely many elements, however.

Applying the relation (2) to the generators a and b yields:

(2) ab = ba.
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Now G 1is a finite group:

G {1, a, b, ab }.

i

The element abab, for instance, has been reduced to abba by relation

(2), then further reduced to 1 by relations (la) and (1b).

For the EMT in Figure 1, the five generators Vis Vos eees Vg

yield a group G containing 16 elements:

G = {1, Vl, Vz, V3, V4, V5, V1V2, V1V3, V1V4,

ViVgs VoVas VoVg, VoV, VaVg, VaVp, v4v5}

Figure 6 illustrates the selection of V(X) from G. The identity
element of G 1is assigned to the unbounded region of Figure 1,
representing the source of electromagnetic excitation. This region
corresponds to the base point at the top of the tree. There is one layer
containing all sublayers in the EMT. The corresponding point is labelled
by vy, a generator of G. Two sublayers enclosed by this Tayer are
identified with the group elements ViV and ViV3s showing their
relationship to Vi Finally, e1ements Viv3Vs andhrv1v3v5r are
selfected from G to represent the two elementary volumes within V1V3,
again showing the hierarchical dependence. This scheme may be continued
by assigning to each vertex a generator of G multiplied by the

generator of every preceding vertex.
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\\\V1V3V5

ViV3Vg

Figure 6. The p22 labelling scheme.
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Criterion 1 is not easily satisfied (without first reconstructing
the graph from the sets V 7and 'E, which tékes time)} unless the
abeljanization relations are removed. In that case, X can be
jdentified with the standard vertex set V by keeping only the rightmost
multiplicands of each element, and writing Vi for the source element
1. The edge set E may be obtained by keeping the two rightmost
multiplicands of each element, remembering to write an edge VpVi for
each element v; which consists of only one generator. Thus

applications of graph theory may be incorporated into this scheme.

By their selection from the group G, the Tlabels clearly exhibit the
hierarchical structure of the EMT: layer f precedes layer g if and
only if every generator of f is also present in g (f and g are
assumed to be reduced to simplest form by application of the set of
relations (1)). The distance between layers f and g is the number of
generators in their (reduced) product. This generates the distance
matrix D. The multiplication table of-the set X and the matrix D

are shown in Table I.

Inversion with respect to a pivot Tayer f is accomplished by

1. f since

multiplying the label of each vertex by £t (note that f~
G 1is abelian), then reducing. This operation preserves distances, but

the distance matrix is changed by a similarity transformation.

Figure 7 shows the result of inverting with respect to vertex VqiVs3
The original Tabels are used in Fiqure 7a, then multiplied by Viv3 and
reduced to yield Figure 7b. Note that the order of the generators is

ambiguous because G 1is abelian. Table II reveals that the distance

~-19-



TABLE 1

Multiplication Table and Distance Matrix for Figure 6

vy ViVo | ViVs - V1V3Vq V1VaVg 1
V4 1 Vo Vg VaVyq VaVg Vi
ViV Vo 1 VoVs VoVaVy VoVaVg ViVo
Vivs V3 Vo3 1 Vg Vg ViVs
ViV3Val Vavg | VoV3Va Vg 1 VaVs ViVaVy
ViV3Vp| V3Vg | VoV3Vs Vg VgVsg 1 V1VaVg .
13 vy ViVvo ViV3 ViV3Va. ViV3Vp 1

Distance Matrix for Figure 6

-20-




Y1V3
v1v3v4//i::::::: Vi WV1V3Vs
1

Vivo

(a) Before relabelling.

1
\Y
vy ///i:::::::[::;::::\\\ Vg
V3Vy V3Va

(b) After relabelling by group multiplication.

Figure 7. Inversion of electromagnetic topology of
Figure 6 with respect to vertex ViV3s
using the p22 scheme.
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TABLE I1

Transformation of Distance Matrix for Figures 6 and 7

Before: D

After:
[0 0 0 00
01 0000
9 10000
A DA =
g 0010
0 0 0 0 1
0 0t 00

[0
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2 2 1]
33 2
1 1 2
02 3
2 03
3 3 ¢
1 22 1] foo1 00 0]
2 3 3 2 0100-00
011 2 0000C 1
120 3 000100
120 3 0000T1 0
2330/ (100000
133 2
1 33 2
0 2 21
2 0 2 1
2 2 0 1
111 0
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matrix for the post-inversion graph is related to the matrix D for the

1

pre-inversion graph by a similarity transformation D -~ A" DA , where

A is the 6x6 identity matrix I6 with rows rearranged according to the

permutation (316), s0 A'% is 16 with columns permuted b¥7(316)- (The

permutation (316) app1iédjt0:tﬁe'sequence [1,2;3,4,5,6] bfoducés the
sequence [3,2,6,4,5,17.)

The set X is partitioned into three subsets relative to a pivot

element f :
(a) X<(f) = {elements which precede f }
(b) X>(f) = {elements which follow f }
(c) X (f) = {elements which neither precede nor follow f }

After inverting with respect to f the sets X< and X0 vanish, and
X = X> . As can be observed from the example, the permutation of 16
described above reverses the identifiers of elements in Xe while
1eavinglfixed the identifiers in X> and Xo . Thus, although this
scheme fails criterion 5, there is an algorjthm to recover the original

jdentifiers of the vertices.

A variation of the ”p22 scheme" removes both sets of relations and
redefines inversion with respect to a pivot element f to be f'lg. The
same remarks apply concerning satisfaction of the criteria, because the
two schemgs are essentially the same: the p22 scheme defined f = f'l

1

to all multiplication by f instead of f ~ in the inversion operation.
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The only difference is now G 1is a free group on p-1 generators,

a much larger group. This "free group scheme" has the advantage that

the ordering of generators in each label is correct after each 1nversioh,
whereas multiplication in the pZ, scheme changes the order of sbme

labels, so that closer inspection is required to identify predecessors.

The natural correspondence between the group G given in the pZ2
scheme and the corners of the p-cube defines an embedding of the graph X
along certain edges of the cube. A corner is identified by an ordered
p-tuple (bl,...,bp), where each bi is either 0 or 1 . A label f

assigns values to the bi's as follows:

1 if Vs is present in the label f ,

0 if vy is not present.

Here the identity element 1 (base point of the tree) has been changed
to vp. If the cube is suspended by the base point, vertical height
corresponds to hierarchical Tevel, and inversion corresponds to
suspending the cube by the pivot vertex. Although simple to describe,
this embedding is not very useful, because the 3-cube allows graphs with

only three vertices, and higher-dimensional cubes are not easy to

visualize.

-24-
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CONCLUSION

Graph theory plays an important‘ro1e 1n‘deséribing e1ectromagnetic
topology. To make full use of the concepts of the theory, a systematic
method of Tabelling graphs must be employed. In this note some criteria
were developed to aid in the design of Tabelling schemes. Using these
criteria, various methods of Tabelling graphs were introduced.
Satisfaction of the criteria was discussed. Much work remains to be

done, particularly in the area of flexibility of the labels.
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