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Abstract

Scattering matrices play an important role in transmission-Tine network
theory and in electromagnetic topology. Norms of such matrices are used in
bounding system response. Using power considerations, bounds for the 2 norm
of such matrices can be found. Appropriate constraints on the normalizing
admittance (impedance) matrix for the N-waves defining the scattering matrix
are made. A renormalizing procedure is defined for the N-wave variables and
scattering matrix based on a real-power condition. For use with EM topology
a most significant result concerns the minimization of the norm of the scat-
tering matrix leading to a choice of a real conductance times the identity
as the normalizing admittance matrix.
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I. Introduction

In the subject of electromagnetic topology, for the analysis and design
of complex electromagnetic systems, scattering matrices are introduced to
describe the transport of electromagnetic energy through various portions of
the system described in topological terms as Tayers and shields, sublayers and
subshields, and elementary volumes and elementary surfaces [2]. In transmissjon-
1ine network theory scattering matrices also play an important role as can be
seen by their explicit appearance in the BLT equation where scattering matrices
are used to characterize the junctions [1].

In order to simplify the complex scattering equations one can obtain
bounds on the system response through the use of norms [5] in conjunction with
the scattering equations. 1In an EM topological context such norm bounds have
been developed in [2,4]. In a transmission-line context such norm bounds have
been developed in [3]. In these contexts the question has arisen concerning
the 2 norm of scattering matrices connected with sublayers (or layers) in EM
topology and with junctions in transmission-line networks as appropriate.

The basic question here concerns the choice of the admittance (or
impedance) matrices with which to multiply appropriate current vectors (in
complex-frequency domain} before addition to the appropriate voltage vectors
in order to form the combined voltages or N-wave variables for use in defining
the scattering matrices. Some previous results concern the renormalization of
the wave variables for the case of a diagonal resistive admittance (or impedance)
matrix with arbitrary choice of the diagonal conductance (resistance) values
[7,10,12]. This note generalizes this procedure to arbitrary admittance (or
impedance matrices.




I1. Energy Considerations in Normalizing Admittance or Impedance

‘ Keeping this discussion in a general form consider the real power either
entering or leaving some volume in EM topology or junction in transmission-line
network theory. This takes the general form

* *

3L ()™« (3 (G0) + (T (Go))e (T (3u) T2 0

(v_(s))

n

voltage vector, (Tn(s)) = current vector
(2.1)

(7]
il

= Laplace transform variable

jw (w real) for present analysis

Noting that this applies to the normalizing admittance as in fig. 2.1 for the
wave variables as

(T,(3e)) = (¥, () = V() (2.2)

(representing an N-wave propagating to the right in fig. 2.1). Then (2.1) takes

the form
‘ Lo roon® . 4o . 5o
SO G ™« (7, Ge)) -+ (0, (50)
b (T (5 7 Wk ~ K
(Vo (Gu)) = (¥ p(Ge)) » (V (Gw)) ]
>0 (2.3)
One way to visualize this is to temporarily take (Yn m)T as (?n m), for which

case there is only an N-wave to the right.
Noting that only real w are considered in this note suppress this variable
for present purposes. Then (2.3) can be rearranged as

~ * ~ ~
(V) o« (G )« (V) 20
-~ 1w - v - L. .
Gn,m =5 [(Yn,m) + (Yn,m)‘] = Hermitian part of <Yn,m>
(2.4)
+ = T = transpose conjugate = adjoint
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The vectors indicated by a single subscript, and the matrices indicated by two

subscripts, can be of any size, nominally for n,m = 1,2,...,N. In some cases

the vectors and matrices can be supervectors and supermatrices (as in the con-

text of EM topology and the BLT equation for transmission-line network theory).
Now by our construction in (2.4)

= (G )+ = a Hermitian matrix (2.5)

n,m

Expand this in terms of eigenvalues and eignevectors as

*

A~ N ~ -~ ~
(Gn,m) - nzl AB(xn)B(Xn)B

~

(Gn,m) . (xn) = xB(xn)B (right eigenvectors) (2.6)
(;n)g . (én,m) = Xs(zn)g (Teft eigenvectors)

N - 0 for 8 # B'  (orthogonality)

(xn)B '(Xn)s' =

1 for 8 = 8' (orthonormalization)

The eigenvalues may be all distinct, or if any are degenerate the above results
still apply to Hermitian matrices for which a set of N orthonormal eigenvectors
can always be constructed [8,9,11].

Stated another way, every Hermitian matrix is similar to a diagonal matrix
as [8,9,11]

-~ + ~ ~ _ ~

Gy ™o Gy ) By ) = (B, )
Al _ C)

i . .

(An,m) = = (Anln,m)
o 3



S y (2.7)
<Xn,m) = ((Xn)ls(xn>25--~s<xn)N)
((§n)B inserted as columns (B -+ second index)

LKk

(X,)4

Lk
~ .i. (Xn)z ~ * .
(x  )Y' = ({(x_ ), inserted as rows (B - first index)

n,m . n’'p
N' *
(X )y

v o -1
Gy = X )
Additionally it is known that all the eigenvalues of a Hermitian matrix
are real. Furthermore, selecting

(V) = (x))g  for &= 1,2,...,N (2.8)
implies from (2.4)

As.z 0 forB=1,2,...,N (2.9)

i.e., all the eigenvalues are nonnegative. This makes (én,m) a positive semi-
definite matrix. This is another way of saying that we have restricted (?n,m)
to be passive. As used in (2.2) the admittance matrix (?n,m) used to relate
(Vn) and (Tn) might be the characteristic admittance matrix of a multiconductor
transmission Tine (tube) or that used to combine voltage and current variables
into wave variables.

These results for (Vn,m(s)) and for (fn!m(s)) with

() = (T (s (2.10)

are more generally referred to as the p.r. (positive real) properties of such
admittance and impedance matrices [6].




ITI. Renormalization of Voltage Variables

Now write
= ooy 2
CRR NI
~ N ~l ~

xg_z 0 forg=1,2,...,N

so that we can think of (én m) as the principal square root of (én m) which is

then always possible for a non-negative definite Hermitian matrix. Since (gn m)
3

~

is also Hermitian

(3.2)

(Gm) = Gy e Gy )

n,m n,m

Our expression of the passive nature of (Gn m) in (2.4) then takes the

form
~ * ~ -{- ~ ~
(V)" - Gyt * G+ (V) 20
~ ~ T* ~ ~
[T) = (G )T+ Gy - () 20
(3.3)
~ ~ * ~ ~
[+ ()T« [gy )+ (F)120
From which we can readily define a renormalized voltage as
(V) = (G )+ (V) (3.4)
giving
~ * ~
(v) o« (v,) 20

In this form (én m) has been effectively removed or "factored out" by consider-

ing these new “"effective" voltage vectors. Of course, the inner product in (3.5)
must be real and, more generally, non-negative. However, getting to this point

relies on the properties of (G_ ) which is consistent with this inner-product

n,m
result.



IV. The Scattering Matrix

Now let us construct the scattering matrix of our N-port from appropriate
admittance and impedance matrices. This N-port as in fig. 2.1 can be character-
ized by an admittance (Yn,m(s))T or an impedance (Zn,m<s))T so that

This N-port of interest can be a black box, a junction or collection of junc-
tions in transmission-1line network theory, or some volume or collection of
volumes in EM topology.

As discussed in [1] the voltage and current N-vectors can be combined to
form independent wave varjables (N-vectors) of the form

~

(V (D) + (Z p(s)) + (T (s))

n

1

(V (s))s,
(4.2)

1

(W) gyt = (,(5)) = (Zy pls)) + (F(s))

In the context of transmission-Tine network theory these N-waves can be thought
of as propagating on an N-wire {plus reference) transmission line with
(V(S))in representing an incident N-wave and (V(s))Out representing a scattered
(or reflected) N-wave. 1In an EMP topological context these N-wave variables
have the same role except that the reference transmission line(s) can be shrunk
to zero length while the reference admittance matrix (?n’m(s)) can be chosen as
a convenient normalization matrix with, of course, the Timitation that it
should not be singular and should have finite elements (at least for frequencies
of interest), as well as have the usual restriction of passivity.

The scattering matrix of interest is then defined by

~

(V(s)), 4 = (S

out

(s)) « (V (s)), (4.3)

n,m n m

Let us now explore some of the properties of this scattering matrix.




The scattering matrix can be computed from the various impedance and/or

admittance matrices. Following the derivation in [1] we have

There are other forms which can be obtained. Noting that

[(by ) * (1, )] = LB, ) - (1

n,m

dot multiplying on both left and right by [(5n m) + (1n m)]'1 gives

[(By ) = (Ly ]+ LBy ) + (1, )T

n,m

= LBy ) * (1 )37+ L6y ) - (3, 1))

n,m n,

(4.6)

showing an important property of this bilinear form, namely commutativity. This
results because one of the matrices is the identity matrix (or it would also

work for a constant times the identity matrix).

Another general property of this bilinear form is found by placing it in

P |
a form using <bn,m) as



fn,m n,m n,m n,m
_ leE S Y R =l
FBy )+ T, )+ By 7T - By ) e L ) = (B )7
= [ty )+ By )77 By 7h (B, ) - L1, ) = (B )7
= [Ty ) + By 770 L1, ) - (B )7 (4.7)

n,m

Note that by (4.6) this last result can also be reversed in order (i.e., the
terms commute). So (4.4) can be augmented by the following two additional
forms

(Spm(s)) = LZy )y + (V) 1)) = (1, )]

C L N (T () + (1, T

n,m

1
1
~~

—
pus ]
3
~—

ROVIRCANE I

L) * (G (80 ()07 (4.8)

n,m

There are three matrices in these equations: (§n’m(s)), (2n,m(5))T’ and
(Vn,m(s)) (which can also be considered in ferms of their inverses). Note how-
ever that the Tatter two appear as the product <zn,m<s))T . (?n’m(s)) or as the
inverse of this product, i.e., (fn,m(s)) . (?n’m(s))T. This product can also
be determined in terms of (gn,m(s))' Taking the general form

~

S = LBy o)+ (1, 17+ [, ) - (1, )]

: nm
[y ) + ()1 s By ) = L0, ) = (4 )]
By = LGy ) - ()T = L6, ) + (1 )]
o) = [y ) + Gy 01 - L0, ) - 6 17 (4.9)

10




~

Then replacing (bn m) by (Zn,m)T . (Yn,m)’ and noting the general result for

bilinear forms 1nv51ving the identity matrix in (4.6) gives

—~
%]}
~—r
s
—
—
~
o]
-
3
p—
|
3
~
pa
=
»
=3
~—
~—~~
[92]

n,m nsm n)m .
(4.10)
Various other forms are also possible, including the use of (§n m)_l. An inter-
esting form results from taking the inverse of both sides of (4.10) giving

(Z, n(s)) « (V, (s))p = [(1, ) - (5, (s [

)+ (5, ()T

n,m n,

{
[ gt |
—
—

(NI - L, ) = By p(s)]
(4.11)

11



V. Constraint on the Scattering Matrix

linearity and passivity of our general N-port require that the real power
into it be non-negative as expressed by

[V, (30) + (T, Ge)"™ + (U (Gw)” + (T, ()] 2 0 (5.1)

N 1=

Again noting that only real w are considered, suppress this variable for pre-
sent purposes. Substituting from (4.2) as

fl

1 ~
(Vn) 5 [(v ).

(I

1 ~ ~ ~
n) §'(Yn,m) s LV - (V) gued

Then (5.1) becomes

1 " ~
Y {[(Vn)in (Vn)out] (Yn’m) . [(Vn)'ln <Vn)out]
LT+ (m ] (T ) - L), - (Ggelt 20 (5.3)

1 ~ % ~ ‘1- ~ K ~ ~ +
E'{(Vn)in [<Yn,m) * (Yn,m) ] (Vn)1n (Vn)out [(Yn,m) (Yn,m) I (Vn)out
~ R ~ ~ -f- ~ ~ % ~ 'f‘ ~

B (Vn)in [(Yn,m) - n,m) T Vot * (Vn)out ’ [<Yn,m> - (Yn,m) ] '(Vn)in}

=Ept+tq20 (5.4)
These terms are

1 ~ % ~ ~ ~ % ~ ~
p= E'{(Vn in ° <Gn,m) ’ (Vn)in - (Vn)out ' (Gn,m) ’ (Vn)out}
9= %‘{-(Vn)?n : (éﬁ,m) (vn)out * (vnjzut : (éﬁ,m) (vn)in}
12




(B ) =5 LT, )+ (7, )70 | 5.5
= Hermitian part of (Vn,m)
(G o) =7 [0, ) - () D7
= anti-Hermitian part of.(Vn’m) (or skgw Hermitian)
(?n,m> ) (én,m) ¥ (Gﬁ?m)
(én,m) - (én,m)+ ’ (éﬁ,m) - '(éﬁ,m)T
Since (én,m) is Hermitian then both terms comprising p are Hermitian forms

and must be real [9]. Hence

p = real
(5.6)
g = real
Which implies
*
q=4q
~ %k ~ ~ ~ Kk ~ ~
_(Vn)in (Gn,m) : (Vn)out (Vn)out (Gn,m) (vn)in
= (V) (6 y V) (6 V) (5.7)
= (Vplout <Gn,m) ' (Vn)in - (Vn)in'° Gn,m) WVndout A
which is consistent.
Let us now require
1 a0 ~ ~ 1 ,~ (% ~, -~
q=0=- E'(Vn)in ' (Gﬁ,m) '(Vn)out * 5'(Vn)out (Gn,m) ) (Vn)in
(5.8)
so that
_1~* ~ ~ 1~* ~
P = §'(Vn)1n (Gn,m) ' (Vn)in - i'(vn)out (Gn,m) ’ (Vn)out
>0 (5.9)

13



represents a real power relationship for the wave variables (vn)in and (vn)out
with incoming power no less than outgoing power (with equality for a lossless

scattering network }. Note also that

* ~

1~ ~
E'(Vn)in ’ (Gn,m) ' (Vn)in 20
(5.10)
Ly « (@ )-@{@) .20
2 (Vn out n,m n‘out <

since these are separately Hermitian forms and (én m) is positive semi-definite.
Returning to g write this as

= = 1 IY; . . -;- v I i .
q=0=- §'(Vn)in (Gﬁ,m) (Vn)out T2 [(Vn)in (Gn,m) (Vn)out]
I =, S 15 T VR SR
-T2 (Vn)in (Gn,m) (Vn)out T2 (Vn)in (Gn,m) (Vn)out

(5.11)
showing that q is of the form of a term plus its conjugate. Substituting from
(4.3) we have

~ ~

~ %

= . G ! . + . '
0 (Vn)in (Gn,m) (Sn,m n‘in n’in ( n,m

~ K

(Vpdip - <éﬁ,m) ) (gn,m) ’ (vn)in ¥ (vn)in ) <Sn,m)+ ' (ér;,m)—r ’ (gn)in

~ % -
= (vn)in ) <an,m) ) (Vn)in
(5.12)
=~ - WNI . P P -I‘ . ‘:[ .f.
(an,m) = (Gn,m) <Sn,m) * (Sn,m) (hn,m)
= (& )+ (Hermitian)
n,m

The first of (5.12) is then a Hermitian form for (5n m)' Choosing (Vn)in to be
an arbitrary eigenvector of (& ), then the eigenvalues of (& ) are zero.

n,m n,m
Since (an m) is similar to a diagonal matrix with the eigenvalues on the diagonal

[8,9,117 then (3

an m) is similar to a zero matrix and hence is the zero matrix,
H]

i.e.,

14




) (5.13)

Now consider some of the various possible choices allowed for (§n m).
Writing from (4.4)

4

choose (Zn,m)T as

(7, o))y = (2 ) (5.15)
This is evidently possible since (Zn m) is passive by hypothesis and is in
"'series" with another term 5(1n

(5.14) becomes

m) which can be chosen to be passive. Then

(s))

[(2(1, ) + 8() (T, o

2E(s)Y _(s) +0(8%) as 3 -0 (5.16)

This term & is taken small and represents some small impedance in series with
each of the N ports with the N-port taken as characterized by (2n m)‘
Turning to (5.13) insert these results giving

)T +0(8%)

as § + 0 - (5.17)

First, choose & small and real (say a small series resistance) giving

- (R g <. T
(O ) = (B )+ (V) (T, 07+ (@) (5.18)
Second, choose 5 small and imaginary (say a small series inductance as ijé)

giving

15



)" (5.19)

~—
.
—~
—
~—
—
2
=
-
3
e
.
——
[ep]

) - (5.20)

Assuming (Y_ ) is in general non-singular, we must have

n,m

(5.21)

demonstrating that the anti-Hermitian part of (Vn m) must be (0n m) and hence
that

3 . i Y - .o
(Yn,m(Jw)) = (Yn,m(Jw)) (Hermitian) (5.22)
for the real power relationship of (5.8) to hold for the N-wave variables.

With this interesting result we can introduce a common assumption.
Suppose the normalizing admittance (?n m) for the wave variables is reciprocal,
i.e., suppose

) (5.23)

This is appropriate to common N-wire transmission-line characteristic admittances
(or equivalently, impedances) since multiconductor cables are normally con-
structed from reciprocal media. Similarly for N-port passive electrical net-
works these are typically reciprocal being LRC in nature, including transformers.
For this typical case of reciprocity then (5.22} and (5.23) combine to give

~

(Vy pld)) = (F, GeD)™ = (7, ()

Im[(?n’m(jw))] = (0, ) or (¥ (jw)) real (5.24)

n,m n,m

This remarkable result significantly Timits the acceptable (Y (Jw)) An
acceptable example is the characteristic admittance (or 1mpedance) of a TossTess
N-wire transmission 1ine. A purely resistive N-port network also meets this
requirement. Other examples, however, might include Tossless (but dispersive)
waveguides operating in a single TE or TM (non-TEM) propagating mode.

16




VI. Bounds on Scattering-Matrix 2 Norm

From (5.9) and (5.10) we have the real-power relationships for the N-
wave variables (for s = juw)

* ~ *

1,5 > 1 /5 = >
7Vadin (Gn,m) : <Vn)in Z'E'(Vn)out ) (Gn,m) ) (Vn)out >0 (6.1)
and from (4.3) we have the scattering matrix in
V) out (Sn,m) » Vel (6.2)

Referring to section 3 we have a renormalization of the voltage variables using

I = a -f-. a e = a -f.
(o) = (@) = (9 ) s (9 o) = (9, )
(6.3)
(v,) = (gn’m) . (Vn)
where (§n m) is Hermitian (or even real symmetric if reciprocity is assumed)

and is in general bounded and non-singular. Applying this normalization to the
wave variables and scattering matrix define

in nin
(;n)out = (gn,m) ' (-vn)but | (6.4)
(Spom) = (Gymd = (S ) (g, m)“1

.Now (6.1) can be changed as

l ~ % . ~ + . ~
A USRI LI

17



’ (gn,m n‘in

= %'[(én,m) ’ (vn)out]* ) (gn,m) ’ (vn)out‘z 0
(6.5)
1 ~ * ~ 1 ~ * ~
7 (i s )y 22 (v gy (Vn)out 20
and (6.2) becomes
(Spm) * Tdoue = Gun) * Cond = G ™+ o)+ )y
(6.6)
(;n)OUt - <§A,m) ) <;n)in

In this renormalized form both the real-power and scattering equations assume
simple forms. ]
Substituting (6.6) into (6.5) gives

~ * ~ ~ * ~ o ~ ~
%'(Vn)in ’ (Vn)in Z'%'(Vn)in ' (Sﬁ,m)r ' (Sn,m) ' (Vn)in 20 (6.7)
For any eigenvector (En(s))B and eigenvalue ;(8 of the Hermitian, positive, semi- .
o . & + . ~1
definite matrix (Sn,m) (Sn,m) we have
(E)r e (5 )T B ) e (B, = R (B e () (6.8)
n’g n,m n,m n‘g = Xg\tn/g n’g ‘
However, from (6.7) with (v )1 chosen as (En)B
BoyF = oy S + < c
(B)p + (Eg= (B)5 - Byt Gp )+ (), (6.9)
which combines with (6.8) and the positive semi-definiteness to give
0 5,%6_3 1 for all g = 1,2,...,N (6.10)
Now since
&) \ = 1/.2
168500115 = o6 (6.11)

18




then
<1 (6.12)

Thus it is the 2 norm of (58 m) that is bounded by 1, which makes this renormal-
ized scattering matrix a bounded real matrix[6].

Next consider (S ). From (6.4) we have

n,m

1Sy )l < 108, W, B, Do 16, 7,

1

>
O pt

_ _max “(gn,m)[lz (6.13)

>
O "

min

where the X, are the real non-negative eigenvalues of (én m)’ the Hermitian

~

part of (Yn m), introduced in section 2; the XE (positive square root) are the
eigenvalues of (gn,m). Solving for (Sn,m) we have

IS = a —1 . NI . a

(Som) = (9.0 (Spom! = (9 ) (6.14)

from which we obtain another bound

[ty < 16, 115

& N
= X%max “(Sé,m)lfz (6.15)
Bmin
The condition number of a matrix (square) is given by [3]
B = I(b £ -1
K((bn’m)) = ”(bn,m)f’”<bn,m) Il > 1 (6.16)

Using a subscript 2 to indicate the use of the 2 norm we have

19



) B
(G o)) = e
Bmin
(6.17)
32 2
(G ) = T = (G, )T
®min
These bounds can then be summarized as
0 < [ (B, DT 1Sy 1l < 18, 1
< DB, DTZ IS, Ml < TK((E, )T (6.18)
and
0 < K, ((B, NTENE, Iy < HG
< Tesser of {[K((§, NT* IS, D, » 1 (6.19)

20



VII. Lossless Scattering Matrices

In some cases the N-port network of interest may consist of Tossiess
elements such as inductors and capacitors, or even open or short circuits. In
such cases no real power is absorbed by the network. Then (6.1) is replaced
by

*® ~

1 . (G

) . (vn)in N E'(vn)out

) - (V)

0 out = 0 - (7.1)

n,m

Using the same renormalization procedure as in section 6, the difference
occurs at (6.7) and (6.9), the Tatter becoming

£ - I = [ *l Nl T. ~I .
(B0 + (B = (g« Gt G - (B (7.2)
which combines with (6.8) to give
Xg =1 forall 8=1.2,....N | (7.3)
Since (§$ m)Jr . (§% o) is Hermitian and every Hermitian matrix is similar to
a diagonal matrix (as in (2.7)) with the diagonal elements as the eigenvalues
(now all 1), then (55 m)+ . (§ﬁ m) is similar to the identity matrix. However

a similarity transformation of the identity matrix gives the identity matrix,
and hence

< T gt =
(5 7 (5 )= (4, ) (7.4)

,m n,m

This is the property of a unitary matrix [11]. Stated in another form this is
St -1 _ /& T
(Spml — = Sy ) (7.5)
The lossless renormalized scattering matrix then has the 2 norm

1Sy 2l =1 (7.6)

21



For the unrenormalized scattering matrix (§n ) the bound in (6.18)

m
5
becomes for the lossless case

NIZ <, D, < [UE, )12 (7.7)

Comparing this result to (7.6) shows a clear advantage obtained for the bound-
ing process by renormalization.
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VIII. Choice of Admittance Matrix for N-Waves

Now we are entering the home stretch. The previous results can now be
used to tell us something about the optimal choice of the normalizing admittance
(Vn m(s)) for the definition of our wave variables. In transmission-line net-

work theory (Yn ) would seem to be appropriately chosen to be the characteristic

admittance of tﬁz N-wire transmission line(s) involved. However, in EM topology
the choice is somewhat more flexible. In the good-shielding approximation [2]

the various terms in the product of matrices correspond to shields (or subshields)
and Tayers (or sublayers). The volume terms (layers or sublayers) have terms of

the form [4]

(8.1)

—
—t?
~—
1
-y
1
[}
—
fonnt
~—
H
—~
wn
—~
wn
~—
—
L
1
iy

n,m n,m

This form has considerable interest in the context of matrix norms. We
have the results (applied to 2 norms) [3]

l ~
. H(s, s <1
- 168, Dl nam 2
[(1, ) - BT < 1 (8.2)
1S, )l -1,
2 e s, 7N, <
ITCIRES ’
Noting that
H(gn,m)IIZ = [maximum eigenvalue of (§n,m)7L . (§n,m)]l/2
(8.3)
n<§n,m)_1l;2 = [minimum eigenvalue of (§n’m)+ . (§n,m)]—%
Then if
”(gn,m)llz > 1 and/or ”(gn,m)_lllz > 1 (8.4)

which can occur consistent with (6.18), the bounds in (8.2) do not apply.
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In the context of EM topology then we would like to be able to constrain
0< (s, Wl =1 (8.5)

similar to the result for (§A o) in (6.12). Considering the bounds in (6.18)
this can be achieved for arbitrary (§6 m) (consistent with (6.12)) by noting

that

Wiy < (G, N2 (8.6)

X =X, (8.8)

and hence

XB = A independent of 8 = 1,2,...,N (8.9)
Now these eigenvalues apply to the matrix (én m) as displayed in (2.6).
What kind of Hermitian matrix such as this has all eigenvalues the same?
Considering (2.7) we have the result that this matrix is similar to a diagonal
matrix as

~ _1 ~ ~ _ ~ .
O e (T R ¢ S T
= X1, ) (8.10)
However this in turn implies
(&, p(36)) = AGa (1, ;) (8.11)
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so that the Hermitian part of (Vn m(jw)) is now constrained to be a "constant"
’m(jw))
which is Hermitian and should not be the zero matrix in general (since (2.4)

times the identity matrix. This constant is the N eigenvalues of (En

would become trivial). Thus we constrain

o~

AMjw) > 0 (8.12)

at least for frequencies of interest.
In (5.21) we have the result that the anti-Hermitian part of (Vn’m) is
the zero matrix. Hence

(Vy mde)) = G (1, o) (8.13)

Since this is symmetric then the constraint in (8.7) makes (Vn m) satisfy a
LAN
condition of reciprocity, i.e.,

~ ~

(¥, nl30)) = (7 ()T (8.14)

n,m

without having to invoke this as a separate assumption as in (5.23).
There are various possible choices of A(jw) in (8.13). A very simple
choice is

A(3w) =g>0 (8.15)

which is a frequency independent conductance.
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IX. Conclusion

After this exercise in matrix algebra we have some interesting results.
First there is a general renormalization procedure which is generally applicable
based on the Hermitian part of (Y (Jw)), the normalizing admittance, as in
(3.4) and (6.4). Second, from (5 21) we have that ( (Jw)) should be
Hermitian if the real-power relation for the N-waves 1n (5 8) is to apply.
Third, an assumption of reciprocity for (Y (Jw)) g1ves the result that it
should also be real. Fourth, a constralnt that (S (jw)[[2 < 1 for use in
EM topology (in the good-shielding approximation) for a general N-port network
{passive) makes (Vn,m(jw)) a constant times the identity; this constant is
conveniently chosen as a simple frequency-independent conductance which could
be say (50 Q)"l or (100 Q)'l or whatever value seems most appropriate to the

system in question.
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