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ABSTRACT

The results of a numerical study undertaken to determine the-
singularity expansion paprameters of a closed, thin-walled cylinder
are presented and discussed. The behavior of the SEM parameters
is explained in terms of manifesting physical phenomena. The
expansion parameters of the closed cylinder are compared to those of
approximating structures, namely, the open cylinder and prolate
spheroid. The propensity to radiate is observed to decrease when
the caps and cylinder wall resonate more-~or-less independently.
Radiation due to torsional charge flow paths causes greater damping
of the natural modes in the case of nonconstant azimuthal variation
as opposed to that of constant variation; furthermore, the torsional
radiation mechanism appears to dominate over endcap effects. Support
is provided for the conjecture due to Wilton that the infinite
families of nearly periodic poles lying near the frequency axis of
the thin-wire loop are related to the interior resonances for closed -
strucutres. These families for the open cylinder are observed to
track toward purely imaginary cavity resonances as the tube ends
are closed. Selected SEM data are presented in support of these and
other conclusions.
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CHAPTER 1
_ INTRODUCTION .

This}work considers the Singularity Expansion Method (SEM)
characterization of electromagnetic scattering by a thin-walled,
closed cylinder. The cylinder, itself, can be very thiﬁ, such as
“ftreated by conventional "thin-wire" theory, or fairly thick with
a length/diameter ratio approaching unity!r The data obtaiﬁed
through the work reported here will ultimately be used to estimate
complex resonances of the induced surface current on the object
for time-harmonic excitations.

Work in the resonant behavior of cylindrical structures
was first reported by Abraham [1] in the late nineteenth
century. He used a prolate spheroid to model a cylinder, and
computed the resonances of a spheroid with eccentricity one.

Page and Adams [2],.in 1938, and in work continuing in 1944 [3-4],
modeled a thin cylinder as a prolate spheroid, with eccentricities
ranging from unity to infinity. Their analytic investigation
yvielded resonant frequencies and currents.

The Singularity Expansion Method (SEM) was introduéed by
Baum in 1971, [5]. SEM was originally postulated for the
prediction of transient gcattering responses, however, it has
equal utility in frequency-domain applications. Following Baum}é
postulation of SEM, Tesche [6] used the Singularity Expansion

Method representation for current on a thin wire to determine the

the frequency-dependent admittance of a center-driven, wire antenna.



Subsequently, Marin [7], in a numerical investigation, calculated
the resonant frequencies and induced charges on a prolate spheroid
to obtain the time response of the current and induced charge on a
prolate spheroid. More recently, Melson and Pearson [8] have
obtained, through a numerical exercise, the SEM representation of
both thin and thick open.cylinders.

Becauselit is the prototypical shape for a wide variety of
missile structures, the thick, capped cylindér is an important
object to study. The shape of appropriate cylinder models range
from moderately thin, to moderately thick—sufficiently that the
azimuthal variation of currents becomes significant. Once the
azimuthal variation becomes significant, thin wire models become
unacceptable, and models such as the one reported here become
desirable. A missile can be modeled as a coaxial cylinder pair,
where the cylinders have nearly equal radii. A cylinder with a
suitably large diameter hole on either end, is a satisfactory model
for such a structure. Since a scatterer can be thought of as a
distributed network, it is possible to describe the scattering
process by an equivalent circuit using synthesis techniques to
synthesize (perhaps approximately) the appropriate complex trans-
fer function of the scatterer. This work is a first step toward
that synthesis, in that the synthesis requires the SEM descriptors.

The computational model used in this work takes account of
azimuthal variation via, the more general, body of revolution
approach of Mautz and Harrington [9], and of Glisson and Wilton [10].
As in the body of revolution sélution of Glisson and Wiltom, an
electric field integral equation modeled the structufe, and a Method
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of Moments expansion that was employed to solve it, as well as a
discussion of the numerical procedure's validations. The third
chapter contains selected results and their physical interpretations.

In Chapter 4, conclusions are drawn from the study.



CHAPTER 2
DESCRIPTION OF FORMULATION

2.1 Introduction

An electric field, integral equation was used to characterize
scattering by a perfectly conducting, closed cylinder. The Method
of Moments procedure, employing subsectional bases and collocation
testing, was used to solve the integral equation. The Body of
Revolution technique of Glisson and Wilton [10] was implemented
to reduce the two dimensional character of the problem to a
single dimensional one. Symmetry was exploited to further decrease
the number of unknowns, and to permit the determination of both
the so-called "even" and "odd" poles. This chapter reports details
of the applied numerical formulation. This formulation follows
previous work by others [10] in most respects and no claim to
originality is made in connection with the present work. It is

provided here for the sake of completeness.

2.2 Formulation of the Integral Lquations
The ensuing material follows directly from the Body of
Revolution approach of Glisson and Wilton [10], where their,
arbitrary body is particularized to a perfectly conducting,
closed cylinder. Comnsider the cylindgr shown in Figure 1. The
body is formed by rotating a planar arc, the generating curve, about
the z-~axis of the body of revolution., The t-coordinate, depicted
in Figure 1, follows the generating curve on the body surface, S.
The perfectly conducting body is immersed in an infinite-
extent, homogeneous medium, having constitutive parameters (u,t).
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Since the cylinder is assumed perfectly conducting, boundary conditions
require that the total electric field tangential to the body surface

vanish, hence:

t " = -
-(n x B%%%(r)) = 4 x Einc(r), res (2.1)
where Escat is the scattered electric field, Einc is the incident

inc 4+ Escat - F

electric field, B %, the total electric field present,

and A = $ x t is the outward normal to the body surface. Via the
equivalence principle, the material body is replaced by a current J
in free spaée, flowing along the cylinder's original surface. This
equivalent current is the sum of currents flowing on the interior

and exterior walls of the cylinder shell in the original problem.

Now, the scattered electric field may be expressed as

BB @) = -sE () - v ! (2.2)

where the potentials are defined as:

R = £ ” FGEY) G@,5)ds (2.3a)
s
5(F) = Z% ” o (F) 6(F,F")as’ (2.3b)
S.
and where
G(r,r') = exp(-sR/c)/R (2.4a)

lThe formulation of eqs. (2,2) through (2.5), where the variable .
s = ¢ + jw has been introduced, follows directly from the Laplace
transform of the time dependent form of Maxwell's equations.
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R = |r-r'| = [p% + p*2 - 20p" cos($=') + (z-z')?]* (2.4b)
The charge and current are related in the continuity equation:
p (¥) = ~div_ J(x)/s = -V_+J(@)/s (2.5)

The combination of (2.1) through (2.5), enables one to write an
electric field integral equation that is enforceable on the body
surface; thus obtaining the electric currents:

& x BEF) = & x {(%)” @) 6(z,r')ds’ (2.6)

8

~(4mse) V ” v; e J(r") G(E,E')ds'}ras

s

Equation (2.6) can be written in operator form as

=inc _ : =
Et (t) = Bll(jt> + B12(I¢) (2.7a)
~inc = =
Et (t) = B12(Jt) + B22(J¢) (2.7b)

where Bij is the appiopriate integro-differential operator, and is
identifiable from (2.6). It is-more straightforward to obtain
expressions for the incident electric field using the arc
coordinates (£,9) rather than the more obvious cylindrical
coordinates (p,$,2). After the complete expressions for the
operators in (2.7) are written, the operator§ are then partitioned
into Eylindrical coordinate sgystem operators.

It is desirable to express all of the quantities of (2.7) in
terms of local arc coordinates (£,3) on the body surface. An
orthogonal triad of unit vectors (A,%,f) can be associated with

each coordinate point (£,9), where i, §, and £ are defined as follows:
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il = cosycoso¢® + cosysing$ - siny 2 (2.8a)

= ~sino & + cos ¢ ¥ (2.8b)
2 =sinycosd® + sinysin¢§ + cosy 2 (2.8¢)

Y is the angle between the tangent to the generating curve t, and
the z-axis; defined to be positive if t points away from the z-axis,
and negative if t points toward the z~axis. In this coordinate

system, the surface divergence becomes

L

' '« T = .‘9__ J __1__3.__ T
VS J o BET (p'Jt) + T (J¢)) (2.9)

Expansion of (2.6) and comparison to (2.7) yields expressions for

the Bij:
Bll(jt) = %% ” jt [sinysiny'cos(¢-¢') + cosycosy'] GdS'
E .
.._l_.?_ _]_.__3__ LI '
T 4mse ot ” o' ot! (p Jt) ¢ ds (2.10a)

12(5 ) -% H jq)siny sin(¢-¢') Gds'

¢
s
h lmlse % ” 51_'%5? (3, Gas' (2.10b)
B, () =2 || T siny'sin(¢~¢"') Gds’
21t 4 o
s
1 3 1 3 - .
" 4mspe 36 ” o7 57 (1) 6dS (2.10c)
s
12




322(3¢) = Z_}[‘T ” 3¢cos(¢>—¢') G ds'
S

13 13 - ,
~ Zrepe 3% ” o 5T Uy € 48T (2.109)
S

A moment method scheme, also like that of Glisson and Wilton,
was formulated to numerically solve (2.7). The generating arc is
épproximated by a sequence of linear segments, as shown in
Figure 2, where the generating curve is assumed to lie in the
¢ =0 plane. Rotation aboﬁt the z-axis, of this segmented, generating
arc, yields an approximation to the cylinder surface. The points .
to, tl, ces s tn+l specify the end points of the linear segments
that approximate the generating arc.

The unknown electric currents that are induced on the surface of
the cylinder, can now be approximated by pulse functions in the t-
direction, and are expanded in Fourier series in the d¢-direction.

The electric current expansion is given by

j(t' 6! ;_E_ °§ Ig jﬂm'l Pn(t') ejm¢)' (2 1)
? 2T ol oy t 1 ‘

o« N+1 '
o DL e e
m=-o n=1

-

The charge contribution that comes from the derivative of Jt, with

respect to t, can be approximated by

® w1 | T o Fmnl

d .- 1
T, (001 = = R e ™ (22
=00 =] lt -t l 2
: n n~1' )
and it is assumed that
-m’o = '-m,n+l -

]
p Jt =p Jt 0 | (2.13)
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Figure 2. Segmentation of the generatrix for moment method
numerical computatioms.
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In the preceding,

‘ tn—lzf- t' < tn+;§
. P;(t') = (2.14a)

1,

0, otherwise

1 t < t' < ¢t
’ n~-1 — —

PhCe") = (2.14b)

0, otherwise

e -t ol =00 2+ (z -2 212 (2.15)

In fact, jt(t', 0') is a generic representation of the current
expansion, In (p5,$,Z) coordinates, Et(t',¢') on the end cap,

specializes to:

jt(t'sqb') = p'jp(¢"z') (2.16a)

and on the cylinder sidewall by:
J (t'59") =3 (¢',2") (2.16b)

The first advantagekof the expansion scheme (2.11) is that the

Fourier éombonents decouple, thus one can solve fog an individaal ’
order of azimuthal variation. The expansion in (2.11) incorporates
the "staggered zoning" scheme for the current and charge expansions.

This staggered zoning method has been propounded by Wilton et. al.

[10]. The staggered pulses basis approach has proven well suited
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for use in numerical problems involving edges and two non-zero
components of current. Details and features of this scheme are

presented and discussed in [10] and [13].

The testing funcitons are defined as
q - a9
Tlm(t) Glm(t) (2.17a)
d = &9
sz(t) = Szm(t) (2.17b)
where
(1 s t=t
q =
Glm(t) 3 (2.18a)
| 0 , otherwise
(1 t=t
E q-;i
q =
62m(t) (2.18b)
0 , otherwise

Testing equation (2.7a)

with (2.17a) and equation (2.7b) with (2.17b)

yields
=inc _ Qi = qn =
E o (tq) = Bllm(Jtm) + BlZm(J¢m) (2.19a)
~inc _ pant = qn ,=
om (tq) = BZlm(Jtm) + BZZm(J¢m) (2.19b)
The generalized impedance matrix, that consists of the Bijm’

can be written explicitly.

The subscript m refers to the Fourier

coefficient, and the g and n superscripts refer to field and

observation points respectively.

For convenience in writing these

expressions, two frequently used integrals will be denoted as follows
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t

2
o = 1 '

K(tl’tz’tq’m) f Gm(tq,t Ydt (2.20a)

. tl

Eo

P . = ' t 1 :
K (tl,tz,tq,m) J Gm(tq,t Yp'dt (2.20b)
t1 '

where Gm is defined by equation (2.4a). Auxiliary "weight"

functions that arise from testing in the t~direction are introduced:

(At

]

xS(Atq,Yq) G+l sin Yq+l + Atq sin yq)/2 (2.21a)

Xc(Atq,Yq) (Atq+l cos Yq+1 + Atq cos yq)/z (2.21b)

The operators in (2.7) can now be expressed as:

pdn  _ su

1lm = 3n Sin Y4 XS(Atq,'yq)[K(tn ot 3 tq,nr*l)

s

+ K<tn_1/29tn; tq »m=1)]

»+-§F sin Yo+l Xs<Atq’Yq)[K(tn,tn+%; tq,m+1)

+ K(tn’tn+%; tq,m-l)]
+ 25 cos v, XC(Atq,Yq) K (tn_%,tn; tq,m)

+ g €08 Yo xc(Atq, Yq) K (tn,tn%; tq,m)

1 o
" Fmeehr (Kt 1ot

- %P . '
4mselt ; tq+%’m) K (tn—l’tn’ tq—%fm)]
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1

4rselt

- xP
— tq%,m) Ko(t ot .3 tq_%,m)]

p
[x (tn’t n’ nt

n+l;

(2.22a)

n
B3 = It x Ge v IR (e e s e m)

p .
LS CIP tq,m-l)]

Aﬁse [K(tn l’tn; t

eite™ ~ K(E 105 £y ,m)](2.22b)

qn ~jsu . . . _ .
By = BT Atq sin Yn[K(tn_%,tn, tq—lg’m'*-l) K(tn_li,tn, tq-zg’m‘l)l

_ dsu . - .
o At sin Yn_*_l[K(tn,tn_*_;s, tq_;i,m-f-l) K(tn,tn_i.;i, tq_;i,m-l)]
JmAt
- —— .
4msp , eAL K(tn--l’tn’ tq-%’m)
g% n
ijtCL
4ﬂSpq_%€Atn+1 K(tn,tn+l; tq_%,m) (2.22¢)

suldt
qn q p p
BZZm 7 {K (t RN tq 1amtl) + K (t LA 1:q %’m-l)]

m2At

—_— .
+ 4nqu_%€ K(tn_l,tn, tq+%,m) (2.22d)

Now, if (2.7) is particularized to (F,3,Z) coordinates,

c ¢ .c
t ¢ and J¢ each have two components: Ez and Ep, E¢ and
g JC and Jp, and J¢ and .I¢ respectively. Secript ¢ denotes

quantities on the endcap, while ¢ denotes quantities on the

sidewall. Splitting (2.7) into cap and sidewall components yields:




E§<D> = 850 )+ A‘"'g(J 4y + A°$(J )y + A%$(J o) (2.23a)
E;(z) = cg(J ) + Acg(Jc) + Acg(Jq)) + A $(J$) (2.23b)
¢
Eg(p) = A%(J‘;) + A%B(Jg) + AEQ’(J;) + A%(J;) (2.23c)

DO

% 2 & . ¢ .

(J ) + A® (J )y + AS (J¢) + AS (J¢)

E, (2) (2.23d)
where the upper superscript of the operafor indicates the current
location (cap or sidewall) and direction ($,9,%Z), and the lower
superscript indicates the field location and direction. Recall

from the definition of y that y=0 on the sidewall, and that y=-p/2

on the cylinder cap. The natural modes on the structure can be
partitioned into two symmetry classes-—one associated with a magnetic
symmetry plane and the other with an electric image plane. Symmetry
allows a significant reduction in the number of unknowns to be

found in this problem. Using these symmetry properties and the
previous definitions, the operators in Eq.(2.23) can be identified
from Eq,(2.22), This identification obtains the following sikteen
submatrix forms resulting from each of four field components

computed from the four current source components:

cz saul
czqn _ z .+t . - .
Am = T4m [K (Zn-lé’znlzi’ qum) * K (zn_%szn_'_;/zs qum)]
- [K+(Z Z; Z m) + K (Z Z 3 Z m) ]
4mseh n-1°"n’ “q+s’ n-1""n’ “q+%’
z
C K2 .2 3 Z ) FRZ 22 3 2, em)]
n’ n+l’ Tgq+s’ n’ n+l’ “q+s’

1@



+ - -
- K@ 45252 ,,m) +K(Z

q-% 120} Zqip ™

+ K @2 s Zguip™ FK @2 s 20 yem)]

(2.24a)
&8
Cgan _ 1 + _ - - _
Am h QWSEAQ [K (pn—l’pn’ Zq-[-lxzsm) + K (pn—l’pn’ zq'*';’i’m)]
+ = 't sz .m) FR( sz m]
ZHTSEAD Pn2Pn+1’ q+s’ Pn*Po41’? g+’
P ikt ; Z ) + K ( s Z m) ]
T Pn-12Pn3 gy’
- k¥ sz . .m) FR( s Z . ,m)]  (2.24b)
47Ts€Ap PnPat1’ q-%’ Pn2Pn41? q-%’ .
Aggqn _ ._Ig_ [K+(Z 7z 7z ) ;'_ K- 7 7«7 )] (2 24 )
m T 7 4mse n-1°%n’ “q#5°" G q-%°" s £8C
&2 3
czdn + . - - )
Am ~ 7 4mse (X (pn—l’pn’ zq-{-lé’m) + K (pn—l’pn’ ZCH‘I'E,m)]

1 gt . i )
+ 4Tse [x (pn—l’pns Zq_;i,m) +K (pn—l’pn’ Zq—;ﬁ’m)] (2.244)

GBan a + - -
A = - 7moen K (zn_l,zn,pq%,m) + K (Zn_l,Zn,pq%,m)]
¥ K@ .2 s m) ¥ R(Z__..Z_; m ]
hrsed ) n-1’%n} Pq-y° n-1Zn’ Pq-1y?
+ 4ﬂs€A K" (252 413 pq+%,m) + K (2,52 45 pq+%,m)]
- awseA [K (252 0415 p 1sm) +K (Z 52 413 p 1,m)] (2.24e)
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n p K (pn—%’pn+%; pqsm+1)
+ K (0, 40P, Pgomrtl)

+ K+(pn;%’pn+%; pq,mrl)

LR SN CINPWTIPE pqm1)]

1 + .
-‘ZEEEZ; {[K (pn-l’pn’ pq+%’m)A

R (P 1905 Ppem]
<+
- [K (pn-l’pn; pq_%fm)

+ K-(Pn_lspn;Pq_%sm)]}

1 +
¥ Gmsen, {[K (CpPrt1’ Poag™
+ K (pn’pn+1; pq+%,m)]

+
- [K (pn’pn+l; pq_%sm)

+ K (P sP .93 pq_%,m)]} (2.24£)

B _ gsu [ ok
Am = s {[K (Zn-l’zn; Qq9m+1)

- p— . .
+ K (zn-l’zn’ Dq9m+1)]
o+

- &7z 205 0 omeD)

—-— p- . _
+ K (Zn-l’zn’ pq9m ;)]}

4kt .
{[K (Zn-l’zn’ pq+%’m)

= 4mse

K (Zn_ls Zn; pq+%9m)]

e

+

- [K (Zn-l’zn; pq_%’m)

¥ K-(Zn-l’zn; Qq_%,m)]} (2.24¢g)
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Cg jsuA '
coan ) ok ) = o- .
Am = 8n {;K (pn-l’pn’ pqsﬂﬁi) + K (pn_l,pn, pq,m+1)]

- [Kp+(pn_l,pn; Dqsm-l) ¥ Kp_(pn_l,pn; o ,m—l)]}

q

. B . Ik .
LTSE {[K (pn-l’pn’ pq+%’m) + K (pn-l’pn’ Dq+%am)]

+i

-+ -
- [K(p _15P,5 pq_l,m) K (p,_150,3 pq_%,m)]} (2.24h)

2

“im

fan _ + i I ;
Am = =~ Zmse [K (zn—l’zn’ Oq_%sm) + K (Zn-l,zn’ Qq_%,m)]
_dm et . T i
+ inse [K (Zn,Zn+l, Zq_%,m) + K (Zn,Zn+l, Zq_%,m)] (2.241)'
c$ Jsuh :
cpan z + . - - .
Am = - g {[K (pn—%’pn+%’ qu%’m+l) + K (pn—%’pn+%’ Zq_%,m+l)}
+ - -
- [K (On_%:pn+%, qu%9m“l) + K (pn_%spn+%, Zq_%,m—l)]
sma_ .
- 4WS€aAp {K (pn-l’pn; Zq_%sm) + K (pn—l’pn’ zq_%’m)
- K¢ 52, ,m) FK( ;2 ,m)]
pn’pn+l’ q_%’m pnapn+ls q-%’
(2.243)
c$ sual
c qn z + L3 . s = -
Am = & { K (Zn_l,zn, Zq_%,m+l) + K (Zn_l,zn, Zq_%,m+l)]

+ - -
+ [K (zn-l’zn’ A _%,mﬁl) + K (Zn_l,Z ;s Z _%,mrl)]}

q n’ “q
mzAz + -
* e K (g2 Zgm) TR 0025 2 5™ 5 gur)
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A%$qn Squ [Kp+
m 8m

. I P .
(P, 1Py Zq_;ﬁ,mﬂ) + K (P, _19P,s Zq_%,m+1)

p . _ T S . -
+ K (pn-l’pn’ Zq_%,m 1) + K (pn-l’pn’ Z ,,m 1]

q-%
mzAz + - -
+ 4,n,s€a [K <pn_l’pn; Zq-;i’m) + K (pn_l,pn; Zq_%sm)] (2.241)
8$qn ij a - -
T TR {[K (Zoa1Zn3 Pguap™ + K (2 15205 0gpm]
2 .

+1

—[K(Z VA

n n+1’ pq 1 ’m) K (zn Zn—!—l’ pq ’m)]}

(2.24m)

jsua + - -
Aﬁgqn - "“stn {[K (Poty2Prgs Pqoap™L) + R (R 40P 15 0 1omtl)]
- [K (pn—%’pn+%; pq_%,m-l) + K—(pn—%’pn+%; pq_%,m-l)]}

. - -
4mseo (<" Opa1Pn3 Pgaae™ + K (B 150,35 0 yom)]

jm. + , . - - .
4ﬂS€Qq N [K (pn’pn+l’ pq_%sm) + K (pn’pn+l’ pq_%sm)] (2.24n)
-

A&%Qn SuApa { +
m

oy (K (2 _152 3 pq_;ﬁ,mﬂ) + KR (2 523 pq_;é,m+l)]
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In the preceding equations, Zj and pj can be interpreted as

tj = (Zj,pj). The + and - superscripts indicate integrals on

the upper half-cylinder and on the image half~cylinder, respectively.

The upper signs refer to the electric image plane, while the

Lower signs indicate the magnetic image plane. The singularity

that occurs in the self-case, that is, when the source and !
observation point coincide, is dealt with in two fashions. In

cZ c Cc
CZ [ C AL .
the case of A7, A7, A7, $, the singularity was treated as

by Melson, [8]; in the case of the other operators, the singularity

was handled as in Glisson and Wilton [10].

2.3 SEM Characterization
For subsequent interpretative purposes, Eq,(2.19) is written

in dyadic operator form

< F(;,f's); J(x) > = tan{ (r,s)} res (2.25)

<§;§>==HF-§ds (2.26)

The operator statement of the integral equation (2.25) constitutes

a complete electromagnetic description of the given scatterer.

Consequently, the operator G has associated with it, all of the SEM
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poles for the structure. Equation (2.25) exhibits the complete

decoupling of the Fourier harmonic modes; hence, it allows the

determination of each harmonic, current mode independently. This

fact is of paramount importance in the SEM parameter determination
because decoupling naturally partitions the SEM data into disjoint

| sets, each associated with a particular harmonic mode: m=0,1,2,... .

Only a finite collection data is desired for only a few modes.

The SEM representation for the surface current on the closed
cylinder proceeds from (2.25). The integral equations (2.25)
possess homogeneous solutions of a collection of complex frequencies
(smi) for which G is singular—the complex natural rescnances, or

poles, associated with the mth harmonic. Viz.,

= — —' . - - -
< Fm(r,r ’smi) ; Jmi(r) > 0 (2.27)

The associated homogeneous solutions Emi(r) of (2.27) are termed
the natural modes. Clearly, the modes and poles are associated
through the indices mi, The determination and physical interpretation
of these quantities is the primary purpose of this work. The
numerical procedure applied to (2.25) is discussed in Section 2.

In the frequency domain, the SEM expansion for the induced

surface current J is, as described by Tesche [6],

J(xr,s) = rzl z B s "mi Jmi(E) (1/(s=s_y) + /s ) (2.28a)

where Bmi is the SEM normalization constant defined by

(2.28b)

and where Nt is an SEM coupling coefficient defined by
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- - —in -
n, =<3 (s ) E c(r,smi) > (2.28¢)

Solutions to Eq. (2.27), which is itself a harmonic~by-harmonic,
tensor statement of Eq. (2.7), are also solutions to Eq.(2.7).
Poles and natural modes of Eq.(2.27) are, therefore, poles and
natural modes of Eq.(2.7).

The integral equation (2.19) can be approximated by a square
system of algebraic equations through application of the numerical

technique described in Section 2.2,

[z (s D1 13 (s D7 = [V_(s )] (2.29)

where [Zm(s)] and [Vm(s)} are the response and source vectors
respectively. To solve for the natural resonant frequencies, that

is, where the incident E-field is zero, Eq.(2.29) becomes:

(208,101 [35;1 = 0 (2.30)

yielding Shi’ These s, i are numerical approximations to the
resonant frequencies. TFor (2.30) to have a non-trivial solution,
the determinant of [Zm(s)] must vanish at these frequencies.

Therefore to determine the natural resonances of the current for

the closed cylinder, the equation

det[Zm(smi)] =0 (2.31)

must be solved. When the equation above was constructed
(see Section 2), symmetry was invoked, not only to reduce the number
of unknowns in the problem, but also to allow location of both

1

"even" and '"odd" poles for a given harmonic mode. Solving the
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‘ BOR pr‘ob'l‘em of a whole cyiinder yields. only the even poles, those
corresponding to an electric image plane. Notice, that Eq.(2.28)
requires the SEM parameters belonging to both kinds of poles. Use
of symmetry planes to obtain both classes of poles has been
discussed by Baum in [1_4].

Considerable knowledge about the location and nature of
the natural frequenéies can be inferréd from (2.31); frdm the
analogy to circuit theory, as Tesche [6] points out; and from the
location of the natural frequencies of the open cylinder. Because
the time domain current is real, the poles must either occur in
conjugate pairs or be real. From circuit theory, it is observed
that the resonances must lie in the left-half of the s-plane, since
the time behavior of the current is as exp(st), and since, an

. exponentially growing current is not physically‘possible on a passive
scatterer. Furthermore, closed cylinder poles should lie "near"
corresponding open cylinder poles—at least for the large aspect
ratio cylinders (;ecall: large aspect ratio implies thin cylinder):
for thin cylinders any endcap effects should be small.,

Since the natural resonances of the current are determined
from the zeros of the determinant of the impedance matrix, a
zero finding procedure such as Muller's method [15] was implemented.
An exhaustive search method such as the contour method of Singaraju
et, al, [16], was undesirable, and unneccessary for the brunt of
the computations in this application. Such a search procedure
would have required vastly more computer'time than whaf was, in
fact, used. The exhaustive search procedure was unneccessary
because the Muller method search always either conﬁerged to a pole

L
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or terminated itself upon reaching the imaginary axis. In the
initial stages of the computations, the contour method was, in fact,
employed. The data obtained corroborated that the closed cylinder
poles correspond to those of the open cylinder (obtained by Melson
[8]) on a one-to-one basis. Iterative search based on the presumption
of one-to-one correspondence was used subsequently and none of the
several hundred iterations conducted converged to a pole location
contradicting this presumption.

The current existing for a zero forecing funtion at a singular

point s

oi® has been called a current natural mode [Jmi]; a current

natural mode is a solution to Eq.(2.30). Therefore, to obtain the
current natural mode, the homogeneous solution of (2.29) must be
found. This homogeneous solution, [Jtmi(t)}, is, in general, a
complex quantity having an arbitrary magnitude. To be consistent
with the natural modes for the open cylinder that were reported

by Melson, those current natural modes having no azimuthal ”
variation, are normalized on a peak value basis, while the higher
order modes have been normalized with respect to the magnitude of
the symmetric product cf a mode with itself.

The symmetric product is defined in (2.26) as
<§’-;E>= jj—F- « G ds (2.32)
where S is the surface of thé closed cylinder. Again, as in the

formulation, it is expedient to use (£,$) coordinates for awhile.

The two components of current can be defined as

Jtmi(¢,t) == Jtmi(t) cosmd (2.33a)
) _ ;_ .
J¢mi(@,t) == J¢mi(t) sinmd {(2.33b)
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Substituting (2.33a) and (2.33b) into (2.32), and specializing
the surface integration to the body of a closed cylinder,

equation (2.32) becomes
t

= .= -1 ° 2 2
< Jmi : Jmi > = p J [Jtmi(t) - J¢mi(t)]p dt - (2.34)
-t

(o]

Equation (2.34) written in cylindrical coordinates, is

(as-h)
- = _ 2
(a s-h)
(]
h
a 2 R ¥
+ = J [szi(z) J¢mi(z)]dz
L (ah)
£ 2 12
+ 3 [mei(pz) Jd)mi(pz)]pz dpz (2.35)
(ash)
This simplifies to
h
3 . T - & 2 - 12
STni 3 9mi T %7 j [T i (B = Ty (2142
-h
a
+2 c[JJZ()—J2 (P14 (2.36)
- omi ‘P mi P .
a

Now, letting Z =2hz and p = 2hf, and using the definition of aspect

ratio,
o =hfa =h/2a (2.37)

where h is the half-length, L is the length, and a is the outer

radius, of the cylinder, Eq.(2.36) can be rewritten as:
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0.5
<3 . ;3. >=28 J [J%2_ _(zL) - szi(CL)]dZ;

mi mi ‘IT zmi 0]
~0.5
(2.38)
jz JFOUTUET L, (@e))®
+ J : - £ 3,,(8) |dE
The surface area, S of the cylinder sidewall is
§ = 2maL =7L?/a (2.39)
Substitution of (2.39) into (2.38) gives,
095
. - 1 2 2
R ISR CO R ST
-0.5
Zoc.a.O ,
20 I (inmi(EL}) ,
-7 9| 3 - chbmi dg (2.40)
Choosing
0.5
1 2 2
5o7 J (32,4 EL) + T3 @) g
"005
(2.41)
20a 2
2 o (Emei(EL)) . _
-z J‘ [ E +£Jmi(EL) dg = 1
The normalized currents can now be calculated via:
ngi(;m = ngmi(;L) /|u| (2.42a)
a0 c .
pmei(EL) = prpmi(gL)/{H[ (2.42b)
ac _ .-C
u¢mi(§L) = ﬂJ¢mi(CL)/[H[ : (2.42¢)
aC c
Toma (BL) = Woo; BLY/[H] (2.424)
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where

0.5
2 2
By = J (950 (BL) + Jgp; (G 1de
0
BoTier L @
- 20 j E + J¢mi(§L) dg . (2.43)
5

To complete the SEM description, the normalization constant
must be computed. Recall, from Eq.(2.38b) that the normalization

constant's definition is

B =<I @ 3= EGEEs ) 53 G > (2.44)

The factor involving the derivative of the impedance matrix, with
respect to the complex frequency s, is the only factor in (2.44) still
unspecified. This factor may be computed analytically by differ-
entiating each of the equations in (2.24) with respect to s. Once

this derivative is computed, the normalization can be found.

2.4 Validation of the Computer Code

Throughout its development, the computer code that generated
the data reported herein, was tested against Glisson and Wilton's
BOR code. In the testing, corresponding matrix elements were
required to agree within three significant figures. The BOR code
was adapted to work with complex frequencies, and again three
significant figures of concurrence was required. The derivative
of the impedance matrix, ﬁsed in the calculation of the normalization
constants, was checked against a contour integration method of

Umanshankar and Wilton [17]. The normalization constants
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in this report were calculated by numerically

evaluating the analytically obtained derivatives. The contour

method finds the derivative by numerical evaluation of Cauchy's

integral formula for derivatives. The two methods of calculating

the derivative again agreed to more than three éignificant figures.1
Looking ghead to Chapter 3, actual data validation is secured.

A look at some of the results reported in chapter 3 is warranted.

Melson [8] calculated the location on the imaginary axis of some

of the cylindrical waveguide resonances. Melson found a series of

opeﬁ cylinder poles, that although they had distinctly non-zero real

parts, were nonetheless clearly indentifiable as corresponding to his

calculated waveguide resomnances. In agreement with intuition, it

will be observed in the present work, that as the cylinder ends are

progressively closed, the cylinder pole tracks toward the purely,

imaginary waveguide resonance. The closed cylinder pole was observed

to approximate the corresponding waveguide resonance to a degree

limited principally by the numerical error in the pole search.

1The contour method, being iterative, requires a sequence of matrix
evaluations. In practice, the contour method converged with only
two evaluations. The time necessary to evaluate the matrix twice
is only slightly more than that needed to compute the analytic
derivative. The contour method requires minimal programming, while
a great effort is needed to both program and validate the analytic
derivative computation.
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CHAPTER 3
INTERPRETATION OF RESULTS

3.1 Introduction

In this chapter we preseht SEM parameters for various thicknesses
of closed cylinders. Natural frequencies and representative natural
modes are given in the cases of zeroth and first order azimuthal
variations. Representative natural modes are discussed. Physical
interpretation of the data is also undertaken. The data preseﬁtéd
was- obtained through implementation of the problem formulation
presented in Chapter 2. All of the poles presented occur in the
‘second quandrant, conjugates of these poles are themselves natural
resonances of the structure. Furthermore, the singularity expansion
given in (2.28) spans both positive and negative values of the
modal index m. The poles associated with -m are identical to those
associated with +m, since ekp(+jm¢) simply characterizes geometrically
degenerate azimuthal variations,

It was observed in the construction and wvalidation of the
computer code, that the calculations were particularly sensitive
to the computed value of the edge current at the so-called self
zoﬁe, At this zone, current is turning the sidewall-cap edge, and
electric field is being métched at the edge. This self matrix
element is the largest element matrix; Errérs in the caicﬁlation
of this matrix element were particularly prone to induce significanﬁ
errors in the pble lécations. Such sensitivity of the pole
location to numerical errors in other individual matrix elements is

not observed.
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Using a technique that determines pole multiplicity suggested
by Marin [7], sample poles were shown to be simple (multiplicity
one). It is well known that the poles must have finite ofder; but
their simpleness was assumed on the basis of heuristic arguments.

It is known that topologically similar structures such as the sphere
and prolate spheroid have simple poles. 1f a polé is simple, the
determinant of the impedance matrix is zero, and the determinant

of the impedance matrix derivative is nonzero. The impedance
matrix derivative is calculated in the normalization constant
computation, so the pole multiplicity was checked as an adjunct to

the normalization constant determination.

3.2 Zeroth Order Azimuthal Variation

Figure 3 shows ﬁatural resonance trajectories as the aspect
ratio varies for two structures in the casérof zeroth—;£der
azimuthal variation. Recall, from Chapter 2, that aspect ratio is
the length-to~diameter ratio. Figure 3a shows the pole trajectories
for the capped cylinder as the aspect ratio progresses through the
values: 100, 50, 20, 10, 5, and 3.3333, while Figure 3b shows
comparable data fqr the open cylinder. The data given are the
resonances lying nearest the jw axis for the individual aspect
ratios. Additioﬁal resonances for the structures lie &eeper into
the left~half plane, these éoles represent mo?e:strongiy damped
resonances. Being more strongly déﬁped; tﬁéée:fésénaﬁ;es é;e of
much less practical significance in the SEﬁ expansion than their

less damped counterparts.
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Figure 3. Pole trajectories for zeroth-order harmonic variation with aspect ratios ranging

from 100 to 3.3333: (a) closed cylinder, (b) open cylinder. Ticks on the trajectories

indicate aspect ratio evaluatioms at: 100, 50, 20, 10, 5, 3.3333.




As Melson observed with the open cylinder and Teschg with the
thin wire, the zeroth-order poles tend to move downward and outward
as the cylinder thickens. This pﬁenomenon corresponds to a decrease
in resonant frequency and an increase in the damping factor as thé
cylinder becomes thicker. Said differently, the quality factor (Q)
for the m=0 modes decreases with decreasing aspect ratio (thicker

cylinders). The Q is defined [18] as

Q = _I_S_L . (3'1)

20
where s = -0+ jw is the complex resonance. TFurther similarities
between the two data sets are immediately evident. For the first
few resonances of each aspect ratio, the closed cylinder pole
trajectories very nearly track the corresponding open-cylinder
pole trajectories., This nearness of the open and closed cylinder
resonances also persists among all the thin (large aspect ratio)
cylinders' natural frequencies. The departures between trajectories
for the two structures—i.e. the differences in the Q's for the
structures—appear only for the higher frequency resonances of
relatively thick structures. The distinguishing feature between
the geometries in this circumstance is a significant electrical
silze of the caps on the closed structure.

For a radiating structure, a lower ¢ indicates a greater
propensity for the given resonant modé to radiate. We may draw
from this fact some heuristic inferences about the radiation
mechanisms that produce changes in Q. The principle mechanism is
the acceleration of charge, as current flows between the cylinder

and caps—i,e. z~directed current on the wall and p-directed current
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on the caps exchange charge between the respective surfaces.
Conseqnently, a large'current magnitude at the‘cylinder cap junctions
implies avstrong propensity to radiate. bFor the seventh resonance
(nominally) and higher, the Q of the.structure does not vary.mono-
tonically with aspect ratio. We observe from Figure 3a that the
pole trajectories begin to bend back toward the jw axis as the aspect
ratio decreases, and that for the eleventh and twelth resonances, the
traJectory inflects a second time, and migrates outward again. This
behavior»is markedly like the behavior of the resonances of the
L-wire, studied by Umashankar and Wilton; f19i1. In'their study,

pole trajectories were plotted as a function.of the ratio of

lengths of the arms ofrthe L~wire with the‘poles normalized to the
length of the 1onger arm. This representation is analogous to

the one for the capped—cylinder used here (after all, an L-shaped
generatrixldescribes the capped cylinder). |

The L—wire data 1ndicate an inward inflection of pole traJectories

as the length of the shorter arm approaches that of a resonant wire.
Essentially the same phenomenon is manifested by the capped cylinder
through the.present data. Figure 4 shows the longitudinal.natural
mode current profile for, respectively, the sixth (4a) and ninth (4b)
resonances of the capped cylinder, whose aspect ratio is 3.3333.
The:sixth“pole‘forwthis structure is the final one on the sixth
trajectory in Figﬁre 3a;—a trajectory‘aloné.which Q decreases
nonotonically—-while the ninth resonance lies at the end of a
'trajectory on which the Q first minimizes and then begins to
increase. We observe that the caps are nearly resonant for the

 latter case (Figure 4b) since their radial currents appear to attain
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Figure 4. Current natural modes for the zeroth harmonic mode, aspect

ratio 3.3333: (a) sixth current natural mode, (b) ninth natural mode.
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the vertical lines and the ends of the graph show the current that £lows
on the caps.
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a local minimum at the rims. In contrast, the current mode for the

sixth resonance manifests large current densities flowing around the

rims. Thus the greater propensity to radiate associated with the

" ninth mode, and its Q is concomitantly lower. The iﬁward inflection

of the ninth pole trajectory can be explained as a decreasing

propensity to radiate as the caps and the cylinder wall resonate

more-or-less independently and the current across the rim is small.
The data given in Figure 3a are poles arising from zeros of

the Bll operator in (2.7), The closed cylindér has a second éet

of zeroth-order modes, since in the m=0 case, the Jt and J¢

components of current decouple. The operators B,., and B,, of (2.7)

11 - 22

have respective sets of singularities, that are independent of one
another. The poles due to zeros of B11 are the ones reported herein.
They correspond to resbnances in longitudinal current. The resonances
associated with zeros of B are counterpart to fhé m=0 resonances

22

of a loop structure as, for example, Umashankar presents in [20].

These loop resonances cannot be excited by a time harmonic
excitation because of their azithumal invariance, therefore, they

are not addressed further.

3.3 Comparison with Prolate SpHe:oid Mode Zero Poles

It is interesting to compare the resonances of the capped
cylinder with a closely related structure often used to model
cylinders, namely, the prolate spheroid. We éonsider spheroids
whiﬁh inscribe the cylinder. Figure 5 shows pole trajectories
for the closed cylinder, prolate spheroid, and open cylinder. The
prolate sphercid pole trajectories are graphed from natural

resonances calculated by Marin [7]. The aspect ratios for which
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Figure 5. Pole trajectories for zeroth harmonic mode variation: {(a) prolate spheroid,

(b) closed cylinder, (c) open cylinder. Aspect ratios common to the three sets of trajectories
. are highlighted.




Marin determined poles were 10, 5, 2, and 1. The common range

of aspect-ratio (10 ;— 5) is highlighted in each graph of Figure
5. As stated in Chapter 1, the prolate spheroid has been used for
nearly a century to model cylindricaliantennas and scatterers.
Poles for the‘three structures shown in Figure 5, have interesting
similarities. Whereas'the pole trajectories for both the prolate
spheroid‘and the closed cylinder exhibit some migration away from
and then toward the imaginary axis with decreasing aspect ratio;
the open cylinder does not display this behavior. This alternate
migrati&n, hoyever, occurs in a less pronounced fashion for the
the prolate spheroid than it does for the closed cylinder, and
.its onset is ﬁigher in frequency. For the poles shown, the prolate
spheroid poles move inward only for the extreme aspect ratios of

2 and 1.

The difference in degree of the poles trajectory migration
between the closed cylinder and the prolate spheroid and absence of
such a phenomenon in the open cylinder is explained by the extent
to which charges on each structure accelerate. The power flux
density radiated from a scatterer is proportional to a fattor
of charge aéceleration on the structure. Charges on the open
cylinde:kaccelerate principally as they approach the cylinder ends,
whére the currentsvanish; charges on the proiate spheroid accelerate
steadily over the whole structure as the current conforms to the
, spheroid's cﬁrvature; charges on the closed cylinder, by comparison,
accelerate abruptly as they approach thebcap—sidewallledge and

somewhat less so at the cap centers.
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In reference to Figure 6, the natural mode for the dominant
resonance of aspect‘ratio 3.33334 it is seen that the current
density has a slope discontinuity near the cap-sidewall edge. This
slope discontinuity is proportional to a factor of charge acceleration
in the power flux density. Computations of the quality factur of each
structure,'reveal that at the dominant resonance, the three structures
have nearly equal Q's;.at all other resonances, however, the prolate
spheroid has a Q as much as fiftyvpchEnt higher than that of the
oﬁen cylinder. The open cylinder, meanwhile has a qﬁality factor
fen percent in excess of the closed cylinder’'s. Though the prolate
spheroid continuously sheds energy because of torsional radiation,
it is still a better resonator than either cylinder.

Other comparisons between the pole distributions of the three
structures are possible. Page and Adams [3] contend that the
prolate spheroid more accurately models the capped cylinder if the
spheroid is somewhat thicker and lénger than the corresponding
capped éylinder. Although the first few pole trajectories of each
structure lie close to one another, it does not appear that
thickening and lengthening the prolate spheroid will induce better
agreement with the poles of the closed cylinder for these
trajectories. Apparently, Page and Adams' statement must be qualified

to apply to the first resonance of the structures only,

3.4 First Order Azimuthal Variation
Figure 7a shows pole trajectories for the first four poles of
each aspect ratio (100, 50, 20, 10, 5, 3.3333) in the case of first

order azimuthal variation, Figure 7b shows comparable data for an
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open cylinder. Corresponding poles in the open and closed cases
occur in close proximity to one another, hence, the pole trajectories
in the open and closed cases are nearly parallel. Both sets of
poles are decreasingly damped as the aspect ratio decreases. This
trend is opposite to that of the zeroth order poles. Since this
pheﬁoﬁenon has been observed by Melson in the geometrically simpler
open cylinder, this reversal of pole trajéctory progression is
accomplished only by the presence of azimuthally varying current
densities. These azimuthally varying currents coptribﬁte to the
torsional radiation via charge acceleration due to variation in

the azimuthal direction. This torsional radiation effect'is strong
enough so that the Q increases as aspect ratio decreases. For the
sample data presented, effects of the endcaps are not as

pronounced as in the mode zero case, and the torsional radiation
mechanism appears to dominate over endcap effects. The closed

cylinder, however, is a lower Q structure than the open cylinder.

3.5 Interior Resonances

The basis of this work's formulatiomn, the electric field
integral Equation 2.2, does not discriminate between interior
and exterior excitations. 1In each case of azimuthal vafiation, a
collection of interior resonances occur. These interior resonances
occur in layers emerging for increasimgly thinner cylinders as
the frequenéy increases. These natural resonances are analogous
to poles of the circular loop that belong t§ the sé-called Type 1II
portion of eigensets [21] (the exterior resonances discussed in

previous sections are members of the Type II portion of eigensets).
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These interior resonances are characterized as being purely
imaginary. The location of these interior resonances (as opposed
to the exterior resonances) can be determimedréﬁélytically using
waveguide theory. The pole locations are obtained by modeling

the cylinder as a cylindrical cavity of length L, capped by perfect
magnetic or electric conducting sheets. A collection of these

interior resonances is calculated and presented by Melson [8];

some of these calculated pole locations are listed in the table.

MODE CAVITY CLOSED CYLINDER OPEN CYLINDER
POLE POLE POLE
™y, 45.20 ~.000034 + 35.20 ~.031 + j5.42
™g1, 35.48 .00026 -+ j5.48 ~.084 + 355.78
™), 48.19 : 019+ 38.22 -.018 + j8.34
TE;; 54.03  -.00023 + §4.02 ~.056 + j4.02
TE| |, 14.39 -.0025 4 §4.33 -.22 + 34.30
TE, 16,56 .00034 + §6.55 ~.025 + §6.55

The table presents a few selected interior resonances in the
open cylinder case, the closed cylinder case, and the corresponding
exact cavityrpole. Becauge the tube héép;pen ends, it radiates
energy, consequently, the open cylinder interior resonances have
appreciable real parts and hence are not purelyrosciilatory.

Wilton has conjectured that the open cylinder poles would migrate
to the corresponding waveguide resonance if the cylinder were
capped by perfectly conducting material. TIndeed, the closed

cylinder, since it confines interior excitations within an electric
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perfectly conducting shell, has poles with much smaller real parts,
that arise principally from numerical inaccuracies in the pole
search procedure. Near the imaginary axis, the poles are weakly
defined by (2.31) and both contour searching and Muller's method
encouﬁter difficulty in searching for a pole there. To observe
the open and closed cylinder Type II1 poles coalesce, a hole was
opened in both endcaps. The hole radius ranged through 1/4, 1/2,
and 3/4 of the cylinder outer radius. Figure 8 shows the poles
tracking a smooth path from the open cylinder case to the closed

cylinder case.
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Figure 8. Pole trajectories of selected interior resonances showing
the migration of the poles as the cylinder endcaps are closed. A solid
dot designates the location of the purely imaginary cavity resonance

for each mode. The pole locations correspond to the poles of a cylinder
with aspect ratio 3.3333, these locations are marked with an x. The
ratio of inner to outer radius of the endcaps ranges through the values
1.0, 0.75, 0.50, 0.25, and 0.00, moving. from left to right on the graph.
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CHAPTER 4
CONCLUSIONS

A representative group of Singularity Expansion Method
parameters for a closed perfectly cylinder are presented herein.
The comple;ertabulation of the data obtained in this work is
ﬁresented in a companion report [12].

Oné sigﬁificant contribution of this work is the collection
of the parameters themselves, particularly the natural resonances.
" ' The capped cylinder, although a structure of much practical
significance, had not had its natural frequencies computed‘and
catalogued. Attempts to determine such data inevitably depended
upon significant geometrical simplifications, such as use of
prolate spheroids or tubes, as approximating structures.
Availability of non-zeroth order natural frequencies allows
additional accuracy of the SEM expansion as well as affording
greatér insight into the scatterihg properties of the capped
cylinder. Poles lying nearer the vertical axis contribute more
strongly to the SEM description; since mode oné pole trajectories
 are contradirected from those of mode zero, conceivably mode one
poles could contribute significéntly to the SEM descriptiom.
Competition for dominance in £he SEM description could extend
to even higher order modes. It is exéected, however, that the
coupling coéfficients will diminish appreciably for nonzeroth order
natural modes, thus weakening higher harmonic order pole influences.
Melson reminds fhat this issue should be remembered whenever coupling

coefficients are calculated., Although coupling coefficient
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computation is beyond the scope of this work, it willvbé an

inevitable and enlightening exercise in thié data’'s apblication:

Ha

The discussion in Chapter 3 on the torsional effects
experienced by charges on the capped cylinder are'intrinsiéally
qualitative and preliﬁinary; Further investigation;of this
phenomenon will likely augment and supplant the physicél
interpretation of the data presented here. Although accurately
plotting current streamlines associated with the present data
would be helpful, as Mélson suggests for the open cylinder, and as
Howard [21] has done for the sphere, it is anticipated that such
work for the capped cylinder will be more difficult than for these
other structures. This difficulty is foreseen for the saﬁe reaégn
that the cylinder has elluded analytical solution, namely, that the
capped cylindgr does not conform to a separable geometry. Thrbugh

numerical techniques in the geometrical thecry of diffraction these

difficulties may be resolved.

Since the capped cylinder formulation used hefe allows the
possibility of holes in the cylinder endcaps, modeling of coaxiél
structures should be possible, Further work would naturally include
equivalent circuit synthesis for such a coaxial structure. It
would also be interesting to calculate additional mode one poles,
in an effort to detect effects on pole distribution directly
attributable to the presence of endcaps on the tube. Investigation
and analysis of higher harmonic natural modes would also be

interesting, since little is known about these modes.
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