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Abstract

This note applies time-domain norm concepts to bound the failure of a
black box to multiport excitation in terms of the failure responses to single
port excitation. Appropriate assumptions concerning the nature of the black
box response are made and discussed.
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I. Introduction

In characterizing the interaction of electromagnetic fields with complex
systems one can make the problem more tractable if, instead of trying to obtain
the actual signals at various positions in the system, one settles for something
Tess detailed, in particular, bounds on these signals. Recently several notes
have addressed this approach [4,5,6,7], from the points of view of both
transmission-1ine network theory and the scattering equations encountered in
(quantitative) electromagnetic topology.

It is becoming clear that the concept of norms plays a central role in
bounding the electromagnetic response of complex systems [2,8]. The general
interaction equations [3,4] are conveniently cast in forms involving super-
matrices which appropriate norms can reduce to scalars.

The electromagnetic signals of concern propagate “down" to the circuit
level where various undesirable effects can occur. These effects are usually
divided into two sets designated upset and (permanent) damage. In this note
we take some set of such circuits which are physically grouped together into
what are often termed "black boxes" which are in turn typically interconnected
by signal transmission lines (wires, waveguides, etc.).

Characterizing such a black box as an N-port network the N signals
(considered independent) are cast in the form of voltages and currents, or
equivalent voltages and currents for cases that the signa]é are-in'the form of .

more general electromagnetic waves (modes). In this form black-box terminals
are put in a form compatible with the equivalent voltages and currents pre-
sented to them by the rest of the system in the format of transmission-line
network theory or electromagnetic topology.




g

I1. Black-Box Characteristics

For our purposes the common "black box" 1is considered to be a network
with N input ports as indicated in fiqure 2.1. There are also M internal
"failure ports" [1]. These are indexed as

n=1,2,...,N (input ports)
(2.1)

m=1,2,...,M (failure ports)

The N input ports are assumed to be known a priori. However, the number of
failure ports (M) may be a priori unknown as may be the location of any or all
of the individual failure ports. )

. A failure port is defined as any port (with two terminals) inside the
black box where some signal at this port can cause failure. This is inter-
preted in the sense of any change in the black box function or capability to
function resulting from some signal there. This includes any transient upset
{change of logic state) as well as permanent damage attributable to the signal
driving the failure port.

Let the input signals be
F(t) = a f (t) (2.2)

where fn(t) is some appropriately normalized waveform and anis an arbitrary
(real) amplitude. Here the Fn(t) can be interpreted as voltages, currents,
or some linear combination of the two (such as combined voltages [3]). Let
the response at the mth failure port be given by

G (t) =

. (t) (2.3)

ne~-1=
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n
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where g n(t) is the response due to fn(t) from each nth input port. Of
course this type of response assumes linearity, at least for times of interest.
Stated in vector/matrix form the input is (Fn(t)) giving a response

(t) + (a) (2.4)
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Fig. 2.1. Black box representation




Now fn(t) might be any kind of waveform, including a & function such as

f(t) = 6(t - t) (2.5)

If tn is allowed to vary then gm,n(t) may vary as a function of tn in a com-
plex way if the system is not time invariant. If it is time invariant then
fn(t - tn) produces gm,n(t - tn) and the two are related by a convolution
operator. Perhaps we might better assume a certain set of piecewise time-
invariant states so that fn(t - tn) produces géf%(t - tn) during system state
7. Waveforms are not "allowed" to cross state boundaries (particular times).
This can be stated by (for causal functions)

g he) = 1T o f (o)
(67 (0) = (g - (a)
= (1{(e) o £ (1) - (a)
= (1) o [a, F(0)])

o]
H

= convolution with respect to time

t .
x(t) o y(t) f x(t -t y(t)dt"

y(t) o x(t)

Thus far we have not specified whether fn(t) and gm,n(t) represent volt-
ages or currents or some linear combination of the two. For present purposes
this is unnecessary. However, for the fn(t) one will eventually have to choose
some form to perform the experiments involving sequential single-port excita-
tion. The remaining input ports will then have to be properiy terminated as
indicated in table 2.1.



Table 2.1. Terminations at input ports for different kinds of
single-waveform excitation

Input-Port Waveform fh(t) : Input-Port Termination for n' # n o
voltage V short circuit

current [ open circuit

combined voltage V + ZI impedance Z taken as a frequency-
(incoming wave) independent resistance (assures
(measure both V and I at only outgoing waves)

nth input port)




‘ II1. Failure Norms

—

-voltage; whichever it is may not be important for present purposes.

Let us define some failure measure as a norm 3

> T => failure at mth failure port

| l6 (t)]]
i < T => non-failure at mth failure port

m
Let us take system failure as

system failure <=> at least one failure-port failure

system non-failure <=> no fajlures at any failure bort

Now we need some measure of Gm(t) to determine if failure occurs at the
; mth failure port. Remember Gm(t) could be a voltage, current, or combined

(3.1)

(3.2)

[t will be further assumed that such a system failure, whether upset or perma-

nent damage, will be observable, even if the particular failure port or ports
“v which fail are not observable. This observation might take the form of a check
of system logic states and/or functional performance after the test of interest.

Some questions are:

What is an appropriate norm?
Do all failure ports have the same norm?

Fortunately, if there are such a norm or norms, these answers are not essential

since all norms (vector norms) have certain properties [8]

foG(t) [1= o] (L) ]]

N = scalar

= 0 iff G(t) = 0 or has zero "measure" per the
particular norm

: 6(t) |

> 0 otherwise



Examples of norms might be

la(e) |l = j |G(t)|dt

=00

fatoll, = |[ Awar] (3.)
la(t)]], = mixle(m

More generally the p norm is

1/
le(t) ] =}f 6(t)|Pat] (3.5)

$

Here integration is actually over times for which G(t) is significant. In

p

particular integration needs to be Timited to times in the tth time-invariant
state of the black box. Note that only real G(t) are considered since we are
dealing with physical time-domain signals.

If energy is the failure mechanism then the 2 norm might be appropriate.

However, suppose the failure mechanism is peak voltage. Then the failure
mechanism may not be bipolar,

e.g., failure requires +1 volit or -10 volts

This difficulty can be overcome by defining the experiment so that both Gm(t)
and -Gm(t) are produced (different tests) from (Fn(t)) and -(Fn(t)) with
failure in either polarity defining failure-port failure. Such norms then
apply to bipolar experiments. Of course, if Gm(t) has equal positive and
negative peaks only one test is needed. This might be the case if the Fn(t)
were sinusoids (of a common-frequency) making the Gm(t) sinusoids. Practically
this would require siowly and smoothly turning the exciting sinusoids on and
off. Damped sinusoids are more problematical.

Let us define a special kind ofnorm as a time-invariant norm iff

la(t - tz)|| # function of t, (3.6)




Of course this is only meant to apply within a time-invariant state of the
system. Note that the above p norms are all time invariant.

The p norms in (3.4) and (3.5) have the property that if the integration
is truncated one obtains a lesser value for the norm since the integrands are
positive semi-definite. Stated another way, we can define

t
le(o. . = ‘f ety Pael T
Pty " s |
= monotone non-decreasing function of t (3.7)

which also applies to (3.4) by restricting -= < t < te. If we have a failure
at the mth failure port we can define a time of failure by

6, (e =T (3.8)
p.ts
m

since

lep(t)il, =1 (3.9)
if failure occurs (from {(3.1)). Thus tfm can be interpreted as a failure time
for the mth failure port.

" In section 2 transfer convolution functions were defined relating Gm(t)
to the fn(t). This involves fundamentally the assumption of linearity. For
our failure norms to apply it is only necessary for a failure port (and the
signal transport to it) to be linear for times up to Tfa After this time
the failure port will have failed, which by assumptic. is detected as a box
failure. Stated another way t > te, is irrelevant and linearity for such
times is not needed to insure the result. Even more generally define

te = min t . (3.10)
l<m<M 'm

giving the first failure at any failure port, which of course gives black box
failure. Times greater than this tf are unimportant and linearity is not
required for such times.

Thus we do not need a completely linear system for our results to hold.
Define this lesser required kind of linearity as linearity to failure.




Iv. Single-Port Tests

Suppose now that we apply Fn(t) at the nth input with all other inputs
zero and terminated per table 2.1. Noting that

n
—
ot
~—
i

f (t) -
"n'n (4.1)

'n
;\
o+
=
n

0 forn' # n

vary a_ (real) until a failure occurs at some (perhaps unknown) mth failure
port. Determine the maximum (positive) a, and minimum (negative) a, for fail-

ure. Define

A = min[a , =a ] (4.2)
n Mmax Mmin
> 0 so no failure occurs without an input
so that
An = minimum ]an] causing failure anywhere within the black box
(4.3)
Note then that for all Gm(t) under the above condition
-@®
I6,(8) 11 = llaygn (0]
= i | ™ R - .
= ]anl ””gm,n(t)’l < T for all m with equality for

at least one failure port
(giving the black-box failure)

(4.4)
with fajlure norm (and Fm per (3.1)) being that appropriate for each mth
failure port.

The point is that for all a, individually with

0<lal <Al . n=12,.N (4.5)

there is no black-box failure. Furthermore each case of

lan} < A with ai =0 foralln' #n (4.6)
gives
16,(t)]] <1, for allm=1,2,....M

which is the requirement for no system failure.
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' V. Bounds on Failure under Multi-Port Excitation
- Now let there be signals on all N input ports. The failure port signals
are
(6,(t)) = (g 1(1)) + (ap) (5.1)
with failure norms
N
le (01l = | 3 g, a(0)a,
n=1
)
< néllanl oy (eI (5.2)

This last result is interpretable as the 1 norm of a vector whose elements are
fajlure norms of the signals from each nth input port, i.e.,

le, ()11 < [Clayl gy (01D (5.3)

with

(F (t)) = (a f (1)) | (5.4)

Qur task here is to find conditions under which the black box will not
experience a failure. This is based on

L]

‘ 2T for any m 1,2,...,M => box failure

16, ()] | (5.5)
l < Ty for allm=1,2,...,M -> box non-failure
Non-failure of the box is then assured if
I(la,] 19y, n(t)H)[[1 < T for all m = 1,2,...,M (5.6)

From the single-input-port tests {(section 4) one has

A lgg o(t) =T, forallm=1,2,...,Mwith equality for at
> least one m and for all n = 1,2,...,N ( )
5.7

An >0 for all n = 1,2,...,N

11
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g (t)i] <4+ for all m
m,n n n

1,2,...,M
1,2,....N (5.8)

Replacing Hgm,n(t)ll by /A, only increases the sum (1 norm) in (5.6) so that

requiring
la |
=1l <1, (5.9)
n
or 'a l
)l <1 (5.10)
n

[«1]

also assures non-failure. Consider the N component vector (Kﬂ). Then
n

a .
Iz 11; <1 = box non-failure (5.11)
n

This is then a bound on multi-port excitation (the set {an} of input-port
excitations) to assure non-failure in terms of the results of single-port
excitations (the levels Ianl = An for black-box failure due to single port
excitation). Note that the index m does not appear in (5.11) so that the
location (m) of a fai;ure in the black box is not needed in determining this
bound. Note that ||( K%)” for all An > 0 is a valid norm for arbitrary (an).
One might call this norm a weighted 1 norm. (Similarly one could define a
weighted p norm.)

Note that the above norm is a tight one since for

all a, = 0 except for n = n' (5.12)

this norm in (5.11) reduces to

la, !
n 1
,_A._',- <1 (5.13)
n
which is exactly the result from an experiment concerning non-failure for
single-port excitation at the n'th input port.
A looser but simpler bound can also be obtained. Write

12
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a
n = —1. .
&) = T 1w - (a) (5.14)
n n
so that
a, .
(a) = (A1, ) - (K) (5.15)
n
el < 181, D LG | (5.16)
Now for diagonal matrices for any associated matrix norm (see [6])
”(Anln,m)|| = m:x |An| = mﬁx AL (5.17)
Also we have
4 1
TGO < TG 1, DG (5.18)
n n
with
1 1 . -1
(1. )| = max = = [min A_] (5.19)
An n,m n An n N
Combining these results
[min A] ll ll< [Ca )l < [max A T -A—”— I (5.20)
n n
This result holds for all norms and all possible sets {a }.
Replacing H ][1 in (5.11) by the larger quant1ty [m1n A ] H( n)H
gives the looser cond1t1on
H(an)Hl <min A => box non-failure (5.21)

n

This is then a sufficient condition for box non-failure. This bound is tight
only in the sense that for at least one n = n' (given by mgn An) Iaa.l 2 A,
(with other a, = 0) gives a box failure condition.

13



Note that if

max |fn(t)| =1 (normalized waveform) (5.22)
t
then N
I(a)ll; = I peak signal magnituces (5.23)
n 1 n:]_ .

14




VI. Summary

By defining appropriate norms (failure norms) of time-domain signals
we have obtained bounds on black-box failure for multi-port drive in terms
of the failure results for single-port drive. This shows the potential impor-
tance of time-domain norms for electromagnetic interaction problems.

Linearity is a basic consideration in this bounding process. However,
in this type of time-domain problem complete linearity is not required. This
can be replaced by a concept of linear to failure, whether failure includes
upset and/or permanent damage.

The kinds of applicable exciting waveforms are quite arbitrary as indi-
cated by the fn(t). These could be damped sinusoids or any other type of
interesting canonical waveforms. It is not even necessary that all the fn(t)
be of the same type for these results to hold. Furthermore, the fn(t) need
not all begin at the same time, the delay between them still falling within
the bounding procedure of the time-domain norms defined in time-invariant
form.

The bounding results for box non-failure are expressed in a relatively
tight form in (5.11) and in a somewhat looser form in (5.21). These are
expressed in terms of a 1 norm of the exciting input-port waveform amplitudes,
either normalized to the various single-port failure levels (as in (5.11)) or
to the smallest single-port failure level (as in (5.21)).
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