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Abstract

: Scatter1ng matrices of subshields and their norms have been used to
ehtethe internal signals of an enclosed volume to the electromagnetic

{tirce environment. Both the line and aperture penetrations are included in
hescﬂﬁer1ng matrix formulation. Experimental and analytical methods are
mmned for the estimates of the scattering matrices. These methods can, in
n,be employed to analyze the overall shielding performance and to

‘ﬁms1ze the subshield requirements of a system. An illustrative example is
in the discussion.

- CLEARED FOR PUBLIC RELEASE

| OASD/PA | (b Jot §3
AEQC 83-66S
AECHD/ A 83-10]

AR/ PR 23 (023>

mved for public release; Distribution un11m1ted

165 s

]
Ry Toram g
R ‘
DARPNPR N

i

B .‘Cﬂ

I Bk S Pt o]

i
il
M
1431
b
i
i,

e

L SR RAT R I



ACKNOWLEDGEMENTS

We wish to thank Dr. K.S.H. Lee of Dikewood, Lt. D. Andersh and
Major J. Shuster of AFWL for their suggestions and interest in this probiem.

PREFACE

"Now Yahweh came down to see the town and the tower that the sons of man
had built. 'So they are all a single people with a single language!' said
Yahweh. 'This is but the start of their undertakings! There will be nothing
too hard for them to do. Come, let us go down and confuse their language on
the spot so that they can no longer understand one another.' Yahweh scattered
them thence over the whole face of the earth, and they stopped building the
town. It was named Babel therefore, because there Yahweh confused the language
of the whole earth. It was from there that Yahweh scattered them over the
whole face of the earth."

(Genesis 11:5-9)
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I. INTRODUCTION
®
It is an extremely complicated problem to analyze the overail
shielding performance or to synthesize the shielding allocation reguirement
for an aeronautical system, since there are a Targe number of sensitive
internal electronic components to be protected against electromagnetic
interferences, such as those of nuclear electromagnetic pulse (NEMP) and
lightning. One approach to analyze and synthesize such a problem has
been developed in Reference 1 using the concept of electromagnetic
topology and interaction sequence diagram, which eventually evolves into
a supermatrix equation. Under certain practical assumptions, this super-
matrix equation can be approximately solved, and the internal signals and
their upperbounds are found to be related to the external electromagnetic
environment and the shielding properties of shields. That is to say, with
this approach the complicated problem is reduced to one of evaluating a
set of environment and shield variables.

However, there are questions that remain to be answered regarding

the approach. The electromagnetic penetration through a shield can be

' categorized as either a line or an aperture penetration (the diffusion
penetration is less important and will not be included in this discussion).
When the interaction sequence diagram is constructed, all the line and
aperture penetration paths are modeled as "edges" with associated combined
voltage waves (see Ref. 1). While the combined voltage waves can be easily
defined along a line penetration path, there is no clear way to incorporate
the field quantities along the aperture penetration path in the combined
voltage formulation. One purpose of this report is to resolve this difficulty.

In order to use the above approach for shielding analysis and synthesis
purposes, the environment and shield variables have to be calculated or
measured in a way according to their definitions described by this approach.
Unfortunately, most of the existing military standards for measuring the
shielding performance do not satisfy these definitions. For example, each
shielding variable in the approach is defined to be nearly independent of
adjacent shields, whereas the shielding effectiveness measured according to
MIL-STD-285 (see Ref. 2) varies a lot with the structure inside the shield.




Another purpose of this report is thus to establish certain rules for the

preparation of future military standards to measure the shielding
performance of an enclosure.

Section II of-this report will summarize the approach of Reference 1
and give a method to resolve the difficulty in characterizing the aperture
penetration. Section III will present an illustrative example. Section
IV will explain how the shield and environment variables can be experiment-
ally determined. Section V will demonstrate how the results in Sections
11-1V can be used in the shielding design procedure for hardening an
aeronautical system. Section VI will give recommendations for future
developments to bring the supermatrix-norm approach to maturity.




II. BASIC CONSIDERATION

In a typical aeronautic system there are many electronic componenis,
which are connected by wires or cables, exposed to electromagnetic inter-
ferences, either arriving from the outside (EMP, lightning) or are syster
generated (EMC, SGEMP). These interferences may camage or upset the
components. To reduce the vulnerability one may try to reduce the electro-
magnetic coupling to the connecting wires and/or to 1imit the propagation
of the interferences to the compdnents-(and/or, of course, to increase the
components' damage or upset threshold). These protection schemes can be
implemented with hardening fixes on surfaces separating one layer (or sub-
layer) from the other. In this section, certain parameters (or variables)
characterizing the shielding surfaces will be defined, and the relationship
of these parameters to the overall shielding performance will be discussed.

1. GENERAL DISCUSSION

In Reference 1, a supermatrix equation has been given for calculating
the signal responses inside an aeronautic system due to an electromagnetic
interference. The first step in the derivation of the supermatrix equation
is to construct a topological diagram for the electronic system(for example,
see Fig. 2.la) and then to draw a corresponding interaction sequence diagram
(see Fig. 2.1b). The interaction paths in the diagram include all the
important penetration paths through apertures and along conducting wires.
The vertices and edges of the interaction sequence diagram are similar to
the junctions and tubes of a transmission-line network (Reference 3). Thus,
a supermatrix equation similar to that obtained in Reference 3 for the
transmission-line network can be obtained. That is, one has the following
equation (with the tubes shrinking to zero length),

[T )y )= (G g IO ()

(1, )y ) O () (2.1)
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Figure 2.1.(a) A topological diagram, and (b) its corresponding inter-
action sequence diagram.

* For more partition exampies, see Figure 3.1.




Here u and v, which can be further partitioned to correspond to the levels of
the hierarchical topology (see Reference 1), are indices for the waves

(wu, wv) on the edge (or tube) of the interaction sequence diagram (each

edge has two waves propagating in opposite directions), and n, m are indices
for the individual wire or penetration path inside the edges, and "~" is to
indicate complex frequency-domain quantities, and "G)" means gereralized dot
multiplication as defined by Equation 3.4 of Reference 1. A short description
concerning how Equation 2.1 is derived is given in Appendix A. Also,

-
—
—
~——
~—

It

= identity supermatrix

n,m’u,v

((En,m)u,v) = interaction supermatrix (2.2)
= (0 o) = (Sp oy )

((gn,m)u,v) = scattering supermatrix with <Sn,m)u,v scatters wv wave

into wu wave

= source supervector

—
—
e
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n
(Vn)u = combined voltage vector of wave wu
= (u(#) 5 . (i)
= (T @ e (1) (2.3)
n,m
(Vs )u = combined voltage source vector for Nu
n
- v+ 5 . (70F)
= @, 2y (1, (2.)
(2C )u = normalization impedance matrix for Nu
n,m
(V£+))u’ (Té+))u = true voltage and current vectors on the surface

containing wu with "+" indicating the current is
positive in the propagating direction of wu
(see Figure 2.2)
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Figure 2.2. Sign conventions for the real voltages and currents used in
the definitions of (a) the combined voltage, and (b) the
combined source voltage.
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= voltage source vector and current source
vectorsfor'wu, with "+" indicating that the
voltage is positive when it increases with the
propagating direction of wu and the current is
positive when it flows into the edge (see Fig. 2.2).

After solving for ((Vn)u) from Equation il,the “true" voltage and

current can be obtained from the two combined voltage waves propagating
through it.

To carry out the above calculation for a complex system is tedious
and time-consuming. A more important practical approach is to introduce
reasonable assumptions and approximations so that the eguations can be
simplified and the signal upperbounds inside the system can be estimated.
In Reference 1, the good shielding approximation is used.

2. GOOD SHIELDING APPROXIMATION AND SIGNAL UPPERBOUNDS

Based on the structure of the identity and scatfering supermatrices,
the interaction supermatrix is block tridiagnal at the layer level of
partition. That is, one has with indices A, n for layers,

(I, ),y = (I

n,mu,v (0

n’m)a,B)A,n = n,m)u,B)A,n , for |a-n | 2 2, (2.5)

and with

U <> a,4, V<> 8,7

When the combined voltage source vector ((VS )a)k is nonzero only in the
outermost layer (A=1), Equation 2.1 can be s81ved under the good shielding
approximation. The good shielding approximation is imposed by assuming that
the off-diagonal blocks of the interaction supermatrix are small in the norm
sense (for a description of the norm concept, see References 4 and 5)
compared to those of diagonal blocks. Physically, the good shielding
approximation thus uses the assumption that the combined voltages of an
outer layer are not influenced by those of its inner layers. The solution

js, with the step by step procedure working from the bottom of the super-
matrix equation,

11



>
?
—
)
oy
St
—
-
—

~ _l ~
n,m)a,s)l,}\ © ((In,m)a,s))\,k-l ©

-1 ~
nola,gan © (gl ©

R
—
1
—
S’
N
-
—
—i

~ -1 .
O (I wy,ghict, a1 © (G g ghie1, a2 ©

O (V) )5
A-1, % -1 -~
= (-1) ((In,m)a,B)A,A © ((In,m)a,B))\, A-1 ORLILIIEEE ©
© ((Tn,m)a,s)éfz ® ((Tn,m)a,s)z,l 0)
O (7)),
- A-1,0% -1 ~
= COT U plo,ghn © (Unplg ghy, aq @ ©

~ _1 -~
O (I wa,gla,2 @ UL 1)y o)y ©

~

-1 ~ ~
O (T o)1 © (Bypegin @ (g ),

12




When the source vector is nonzero in an inner layer or in more than one
layer, the complete solution can still be obtained using the above solu-

tion by applying superpositions and topological inversions {see Reference
6).

ilhen there are decoupled sublayers within a layer the above approxi-
mate result can be carried one step further. In this case, one need only
include interaction matrices associated with the paths connected between
the interested sublayers in Equation 2.6 (see Reference 1).

From Equation 2.6, one can calculate the signal upperbounds using the
norm concepts as follows.

N A-2 - - -
!l(<vn)a)x” S{A'ZO I ((In,m)a,B)kEk‘,k-Xx] ﬂ((ln,m)a,s)k—k',A—k‘-l”}

(2.7)

LR P O I [ CH A PYRY [ (AR M

Various vector and its induced natural matrix norms can be used, depending
on what the quantity of interest is. For example, if the current or
voltage upperbound on an individual wire is desired, one should use the
maximum norm (HS81der norm with p - «); if the maximum energy transferred
to a volume is desired, one should use the Euclidean norm (p=2) (see the
last formula of Equation 2.8). If the quantity is intended for assessing
a black box by comparing with a "black box failure norm", then the l-norm
(]\Ill) should be used (see Reference 7). For the maximum (]| |[) and
Enclidean (|| ||, ) norms, one needs only to consider the 2-norms for the terms
on the right-hand side of Equation 2.7 because l‘((Vn)a>A}LnSH((Vn>a>x}}2’
unless the maximum norms give a tighter upperbound and are easier to
calculate.

The properties of matrix and vector norms can be found in References 4
and 5. Some useful properties for the following discussion are given below.

(I I T S T £ S RGN | R C =

(RIS RN O F Ry O
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1 (g )l = max T 1A ]
n m ’
(A ) llp= Tofta, 0T + (8, I}

Y (2.8)
p
I, = {zlv P

' n

= max {;vn]}, for p + =
n

where "+' represents the conjugate transpose and p{} means the spectral
radius. Certain norm relations derived from the above eguation, which are
particularly useful for the scattering supermatrix considerations can be
found in Reference 8.

Having derived Equations 2.6 and 2.7, one can quantitatively consider
the influence of each block matrix on the signal response. The diagonal
block matrices (the inverse matrices) contain the information on the
reflection coefficients of the shields. The off-diagonal block matrices
bear the signatures of the transmission coefficients of the shields and are
the main quantities to reduce internal signals. Since the off-diagonal
block matrices are essentially constructed from the transmission coeffi-
cients of various POEs, the first step is to evaluate the various POE trans-
mission coefficients. For a Tine POE the evaluation of the transmission
(reflection) coefficient is straightforward. For an aperture POE the
evaluation of its transmission coefficients requires further consideration.

3. SCATTERING MATRIX FOR APERTURE PENETRATION

One way to bypass the difficulty of evaluating the scattering matrix
elements associated with aperture penetrations is to neglect the less
important field-to-field interaction. In doing this, all the edges in the
interaction sequence diagram, except those belonging to the outermost layer,
are the conducting wires. The more important field-to-wire (which will be
considered only for the outermost shield) and wire-to-wire interactions
through an aperture can be taken into account by introducing additional
sources on the wires in the inner layer. The effect of these

14




additional sources can be shown to be equivalent to the introduction of
appropriate scattering (transmission) matrices. To elaborate this point
further consider the two interaction mechanisms separately.

a. Wire-to-wire interaction through aperture--First, consider

Figure 2.3a in which the subshield has an aperture in it and the wires
interact through the aperture. To calculate the aperture transmission
coefficient, consider Figure 2.3b, the equivalent circuit of Figure 2.3a for
the inner wire when the inner wire has only the outgoing wave. From Figure
2.3b one has

&(+) & ~{+)
Y + 7 Iy
c _ R A WL
Boosatla gl g t+)
oy A c . a; A
o A
& {(+) & >(+)
2 7 v 7 T
) g3l St hael S
7 + 7 SO S 5ol
CB;):*-I LB;HI Q A+ TC 22 al
(2.9)
2 7, 7 o ,,vg““)
- By Atl o A+l
7 v 7 5 7 7 1"
Casatl Lgsatl Lo:;k Carn Cosn ¥
~ ~ ~ ~(+)
2 ZL 41 ZL . ZC . Is
+ Bs M+ a3 A 8,A+l( )x+1
o o o o o~ +
Z + 7 Z + 7 AN
Caratl  Laiatl Fasa Casa o3 A

For the transmission coefficient upperbound, the quantity of interest, one has

S, . | < max {2V, 2T | (2.10)
Bsas A+l A SaL,a 0 T,
after using the condition that i and i have small imaginary parts,
) c
B; A+l aj A

and
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. P
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Note; The indices n,m have been omitted, because only one wire in
each layer is assumed. ’
(b) 7(+)
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~at T —
~ ~ +) ~
7 yl 7
Lo s %5 A oy a
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YA I v Z
Las s+l At B Ml 8t
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5m = magnetic flux linking wire
ée = electric charge deposited on wire

Figure 2.3. (a) Schematic drawing of wires interacting through an aperture,
and (b) its equivalent circuit for the inner wire when the
inner wire allows only outgoing waves.
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(2.10a)

With Equation 2.10, one can essentially treat the wire-to-wire aperture
interaction as the line penetration. When the wires are not involved in the
"real" line penetration, Equation 2.10 gives the estimate of the transmission
coefficient for the wire-to-wire interaction. In the case that the wires
interact through more than one aperture and also through the real line
penetration, one should combine all penetration effects together. The
transmission coefficient upperbound for this case is

" (L) ~(1) “(4)
15 <5t I+ £ max 12]7 R |
B, ap A+1, A B, oy A+l A i sx+1’x Sx+1,x

(2.11)

where the superscript (L) indicates that the quantity is for the line
penetration and (i) is the index for the apertures. As for the reflection
coefficients in the subshield scattering matrix, under the good shielding
approximation and the condition that the wires are outside the exclusion
regions, their values should not be changed appreciably by the aperture. An
exclusion region is designated for the purpose of good shielding practice and
does not allow wires residing in it. The Upperbound estimate using Equation
2.11 can be used to obtain the appropriate scattering matrix and its norm when
more than one wire on either and/or both sides of the shield are involved in
the interaction process.

The above transmission coefficient derivation is to be used for a wave
definition so that the magnitude (or norm) of the combined voltage of the
incoming wave in the outer layer is not smaller than that of the outgoing
wave, This will further be clarified in Appendix B where an alternative
definition of the transmission matrix is given.

b. Field-to-wire interaction through aperture--To treat the field-to-

wire interaction through an aperture consider the geometry depicted in

17



Figure 2.4a. In this figure, there is an aperture in shield 81;2. The field
in the outer layer (Vl) will induce equivalent sources on the internal wire ‘
(Figure 2.4b). The effect of the equivalent sources can, in turn, be

expressed in terms of an appropriate transmission coefficient.

In order to fit into the general interaction supermatrix formulation, the
transmission coefficient has to be calculated as the ratio of the combined
voltages of the internal outgoing wave to the external incoming wave. The
combined voltage for the external electric and magnetic fields is yet to be
defined. For an electrically small aperture, the eleciric and magnetic field
interactions with an internal wire are independent of each other. Although
the choice of a normalization impedance for the combined voltage definition is
artifical in this case, the natural choice is the free space wave impedance.
Zy = i ey =120 = = 377a.  With the normalization impedance of Z, and the
introduction of a length normalization factor "a", an "imaginary” wire can be
created for the electric and magnetic fields. The wire configuration is shown
in Figure 2.5a. This is analogous to a plane wave incident at an angle. A
possible alternative is given in Figure 2.5b. This, on the other hand,
simulates a plane wave propagating parallel to the surface. Both

~d

configurations give a combined voltage of a[fsc+ Z, ﬁgc] for the incoming

waves at the shield, and will give the same internal signal responses. -This
imaginary wire can further be assumed to be non-interacting with other
external wires. The effect of the interaction between the field and other
external wires is taken care of by introducing appropriate sources on other
external wires.

From Figure 2.4b and the above combined voltage definition, the
transmission coefficient for the field-to-wire aperture interaction can be
estimated as follows (take x = 1J.

§B,a;2,l = (2.12)

18
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5152
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Note: The indices n,m have been omitted, because there is only one

wire 1in VZ'
sC
= 1 51;2
iL Eéf) gét)Z Ze
B:2 ~KZ\JF Bs 2
| ~ |
N -
J(f) 7(+)
Vs2 IB 3 2
v (f) - o(f) o =< N
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5 R () e P 5(F)
Z I( = [aE_ T (where I''/=s50¢‘'"/)
Cg:2 S, 52,1 sc Sy e
Esc’ gsc = short-circuited electric, magnetic fields '
when the aperture is covered with conductor
5éf) = magnetic flux linking wire due to Hsc
iéf) = electric charge depoisited on wire due to Esc
Figure 2.4. (a) Schematic drawing of a field interacting with a wire

through an aperture, and (b) its equivalent circuit for the
inner wire when the inner wire allows only outgoing waves.
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Figure 2.5. Two examples of the "imaginary" wiré configurations created
for the electric and magnetic fields.
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Here, the index a« has been assigned for the incoming wave on the "imaginary"
field wire, and the superscript (f) for gquantities corresponding to field
interaction. To proceed further in the estimate of the transmission
coefficient upperbound, one takes g;c and ﬁ;c so that

laz H | la E |
07 sc_ <1 . 5C - <l (2.12b)
|a[g +ZH}\ la[E +ZH]I
sC 0 sC c

These conditions are not required if the scattering matrix is defined by using

~ ~

both a[ESC + ZOHSC}and a[ESC - ZOHSC1 for the external combined voltages, as

described in Appendix B. One then has

& ~(f ~(f

|55 aiz,1 | < max {2 VS(231‘; 2115(2311} (2.13)
where

Géz)l ) V(f) / (s Zo g;c]

a Bl (2.13b)
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Equation 2.13 can give a transmission coefficient upperbound for the

field-to-wire aperture interaction when the wires are placed immediately
outside the exclusion regions. Again, for iTgf)lthe upperbound depends on the
size of the internal wire. A "maximum" upperbound can be obtained by using a

bowl instead of a wire for the internal circuit. Equation 2.13 can be used
for calculating the scattering matrix and its norm when there is more than one

wire and more than one aperture involved in the interaction process. In the
case that the internal wire goes in both directions away from the aperture,
the single wire should be treated as two wires, similar to that given in
Appendix B where an alternative transmission coefficient definition for the
aperture penetration is given,

4. SOURCE VECTORS

It is appropriate at this point to discuss the configuration for the
outermost layer, especially the source vectors. For field penetration through
an aperture, the circuits for the "imaginary" wire are given in Figure 2.5.
Similar circuits can also be obtained for a wire exposed to a source
environment. The wire acts as an antenna on which voltages and/or currents
can be induced. To the connected shield and internal wires the effect of the
antenna can be represented by either a Thevenin or Norton eguivalent circuit

(see Figure 2.6). With the introduction of an appropriate normalization
impedance, the circuit can be easily incorporated into the supermatrix
formulation for estimation of the associated source vectors and scattering
matrix elements.

The circuit elements in the equivalent circuits of Figure 2.6 can be
analytically or experimentally determined. Their values will depend on the
source environment and the wire structure. The techniques for their
determination and the results for certain special antenna structures can be
found in several books and papers (for example, see Reference 9).
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Figure2.6. (a) Thevenin and (b) Norton equivalent circuits for a protruded
wire exposed to an electromagnetic source.
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III. AN ILLUSTRATIVE EXAMPLE

An illustrative example will be given in this section to demonstrate
how the basic ideas described in Section II can be used. The topological
diagram of the example is depicted in Figure3.la. This example has a
relative shielding order of 2 (see Reference 6), and is therefore relatively
simple. Nevertheless, the demonstration can be easily extended to a more
complicated system. The exterior layer (Vl) in the example corresponds to
the Tocation of various important electromagnetic interference sources,
such as EMP, lightning, etc. The innermost layer (V3) contains sensitive
and critical electronics. Of course, the innermost layer can also include
strong interference sources (such as transmitting equipment) and equip-
ment carrying signals that are not intended to be detected in the exterior
tayer. In this case, a topological inversion can be applied to transform
the innermost layer to exterior and vice versa, so that a similar topo-
Jogical diagram can be obtained. For this reason, only the case with an
electromagnetic interference source in the exterior layer need be discussed.

1. GENERAL SOLUTION

From Figure3.la, it is observed that both shields allow aperture and
line penetrations. From the Tocations of the penetration point it is
observed that the aperture penetrations are important only through field-
wire interation for the outer shield, and through wire-to-wire interaction
for the inner shield. A corresponding interaction sequence diagram is
given in Figure 3.1bwhich shows that there are either w0 or one tubes in
each layer and two combined voltage waves propagating on each tube. Except
for the outermost tube which includes two wires, one real wire and one
imaginary wire to represent the external electric and magnetic field pene-
tration, each tube has only one wire. Using the sign convention, symbol
definitions and formuTas of Section II, one has’

(b @ () = ((E),)

where (3.1)
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Figure 3.1.(a) The topological diagram, and (b) its corresponding inter-
action sequence diagram for the simple illustrative example.
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<«En,m)u,6)k,n> = <«1n,m)a,8)k,n> B «(gn,m)u,s)k,n>

/((H“ﬁﬂa,8>1,1 Kln,m)a,s)l,Z «In,m)a,8)1,3
= T (K3 ) T
B Kln,m)a,8>2,1 an,m)a,e)z,Z «In,m)a,e)l,B (3.2)
«In,m)a,8)3,l «In,m)a,8)3,2 «In,m)a,6)3,3
0 -[3 ! 5
1 -L 11]1’2 0 | 0 0 0 0 : 0 0
1 i
0 1 0 -[322]1 2; 0 0 0 0 E 0 0
- I ~ 1
‘L51132,1 0 1 0 E 0 -[51]2’4 0 0 E 0 0
I ~ t
S S SRR N
'. :
< < s
[81]31 S,13 , 0 0 ; 1 -S4 0 0} 0 0
H ¥
0 0 0 0 ) 1 0 -1 0 0
14 H
1
0 0 0 0 i-1 0 1 6! o0 0
1 1]
1 1 ~
0 0 0 0 E 0 0 '56,5 1 i 0 '56,8
_______________________________
: :
i 1 ~
0 0 0 0 i 0 0 0 0 E '58,7 1
]
m=1 m=2 m=1 m=2
v=1 v=2 v=3 v=4 v=5 v=6 v=7 v=8
c'=1 c'=2 g'=1 @'=2 o'=l o¢'=2 o'=1 ¢'=2
e e —— | —————— e e e
n'=3,2"'=1,1t'=1 p'=1 p'=3 p'=1
_ ) ————————
n=1 2'=1,7'=1 2'=1,7'=1
n=2 n=3

where o,B <> 0,0'3 T,T'3;2,2" ;1,1
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and

«vs )a>1 N [vs ]1
n 1 ~ y ~
v =/ 0 , =
I IR
-:____ 0
[Vsl]z 0 (0-5)
v, 2,

where, 1in order to have the simple representation of Equations 3.2, 3.3
and 3.4, the n,m indices (inside the square brackets) are used only for
the wires in the outermost layer, and the indices outside the square
brackets and those unbracketed variables are referred to the waves, i.e.,
in

DXX]*, [Z\X,X:;*’*’ [Kxj*s*s A*s*s A*

X,x, are respectively referred to the wire index (n or m)inthe outermost

layer and the wave index (uor v). The corresponding partitioned indices

according to the Tevels of the hierachical topology are given in Figure

3.1b. Here, the zero-tube-length assumption has been used, and hence the

layer propagation matrices are identity matrices. For a tighter bound

estimate, one should include suitable delay and/or decay factors in the
above formulation.

2. GOOD SHIELDING APPROXIMATION AND SIGNAL UPPERBOUND

After imposing the good shielding assumption, the approximate
solution to Equation 3.1 is explicitly given by
~ s -1 ~ ¥ -1
«vn)a>3 - «In,m)a,8)3,3 © «In,m)u,8)3,2 C) «In,m)a,B)Z,Z
(3.6)
~ ~ v-1 ~ ~
© «In,m)q,8>2,1(> «In,m)a,s)l,ICD Gsn,m)a,B)I,ICD «Vs )a)l

n

from which the norm relationship suitable for bounding the internal signal
is
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As mentioned in Section II, there are varjous methods to obtain bounds
for the norms in the above equation. The most straightforward method is to
consider the 2-norms for the terms on the right-hand side of Equation 3.7.
From this consideration, one has

_ _ (G, )y a)s ol (G, Dy oo ol
I ((V )a <] <(Vn)a) I, < n.,m’e,8/3,24" 2 n,m’a, 8 , 1102
& )3 . e 1 _]I((Sn m)a 8)3 3H 2 1-] ( n m a B)Z ?_]l 2
| (Gamdeshals (3.9)
fal A v )
H (Sn g 8) 1” ) ( Sn 0,)1“ 2

To obtain Equ. 3.8, (f) = (1) - (5), M(S)A W < 1, and the first equation of

Equ. 2.8 have been used. u(S)A A"Z < 1 is true under certain restrictive

‘ conditions, such as when (Zc)k is a diagonal matrix with equal positive real
elements, and is a consequence of the conservation of energy (Refs. 4,8).

More general conditions will be worked out in the future,

With the interaction (scattering) supermatrix given in Equation 3.2,
Equation 3.8 becomes

L . — - IS5 4l
max{|Ve]s[Vgl} S Aigl? + [Tl < T ' (3.9)
5,613156 513

fﬁ[§133,112'+t[§233,112
1-max{|S

3.403154 31}

maxt | [3,,1; 515108,,01 , 13103430, 115108550, 413

- - - S BRI
1-max{ |51,y 0131055211 2131051135 1151055005 113 ( s Juhll

The upperbound given above becomes infinity when any one of the reflection
. coefficients (i.e., those with |u-v|=1)equals £1. For this situation alterna-
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tive bounding procedures should be employed on il(fn m)a B)K k'll|in
Equation 3.7. One such procedure is to first perform the matrix inversion

before bounding the norm. For the example considered here, this procedure
gives

- = 2/25 s /05,1, (15+105,0, I
max{ |T[3{Vg]} /1V7|2+IV8_Z{ A | 7,5{ | }3,1| : \[S,15 1
155,81 155,71 1-155 41 1S5 5 (3.10)
4 -
X g 2 < = (Ve )4l
Lmaxt L5111y 1102115105901 2 19520,113 Wil 2

In obtaining the above equation, the following relation has also been used
(see Reference 8)

(A e SR, DIl (3.11)

where N is the number of columns of the square matrix (An m)‘

Equation 3.10 clearly shows that the most effective approach to
reduce the internal signal upperbound is to decrease the transmission
coefficients |[§1]3’1|, |[§2]3,1[ and }57’5!. These transmission coeffi-
cients and the other reflection coefficients have all been defined in

Section II. More specifically,

[§7 5| transmission coefficient at SZ 3 due to both w1re—to~wire
aperture penetration and line penetrat1on ({S [)

1[51}3,11, f[82]3’1[ = transmission coefficients at 51_2 due to

field-to-wire aperture and Tine penetrations, and

AT 115+ 15,05, 1%
(3.13)

//[S(L)] + max {4 4 U
? 3lf X 1"21! e 1!
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Here, the subscripts of VS, %s’ véf) and ?éf) are referred to layers (see

Equations 2.10 and 2.13).

[[gll]l,zl’ [[§22]1,2| = reflection coefficients at the termination
junction in V. (see Figures 2.5 and 2.6) for the "imaginary"
1
field wire and the real wire, respectively.

[5..] ., 105..] = reflection coefficients at S, ., for the
11-2,1 22°2,1 , ) 1;2
wires (one real wire and one imaginary wire) in Vl’

| 53,4|f,{§§;5l = ref]ect?on Foeffi;jents at 51;2 and 52;3, respec-
... tively, for the wire in Vo

| 57,81’ l§8,7l = reflection coefficients at 52;3 and the termination
junction for the wire in Vj.

Experimental methods leading to the determination of these shielding
coefficients will be discussed in Section IV.

For the discussion of the source vector in Equations 3.9 and 3.10 the
wire arrangement in Figures 2.5a and 2.6b will be used. Thus,

I (Vg )g)qll 5 = (?[Esc-+zo ﬁsc]>
n

L Isc
(3.14)
(é['Esc'+zo Hsc{)
7.1
C “sc 5
- 5 - 1/2
S I 2ol 1P+ 1, T
where ZC is the normalization impedance for the real wire. For the
~imaginary wire one also has, '
[511]2’1 = -1, [511]1,2 = 0. (3.]5)
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IV. DETERMINATION OF INTERACTION (SCATTERING) SUPERMATRIX ELEMENTS
FOR LINE AND APERTURE PENETRATIONS

In Sections II and III, it was concluded that an internal signal
upperbound can be estimated once the scattering matrices of the shields,
the termination junctions, and the source environment are known. In this
section, methods for the determination of the scattering matrix elements
will be discussed.

1. SCATTERING MATRIX FOR LINE PENETRATION

The scattering matrix for the line penetration through a shield is
defined through the combined voltages via (see Equation 2.2 and Figure 4.1la)

~{ + ~ ~(+
@), -z ), - (Y ),

n,mOL 0.
5(+) - L) )
(O Dghart (Ze Dghye1(Un Dghy 4y (4.1)
. : e < (+)
(TR TID N I ) Pt @, ), -G,

N ~ 5 = Eits:
(5, m)a b, (G ml g, b1, 201 ) ar 0 Ighin Ty Dgh

where, if one uses the wave indices (see Figure 4.1)

((sn,m)akx)k,x ((Sn,m%xg BJA,A-+] ‘//(Sn,m)u+1,u (Sn,m)u+1,v-+1

~

S

oun

((Sn,m)e,a)x+],x(( n,m)B, 3)A+1,A+] \\( n,m)v,u (Sn,m)v,v-+1

The definition of the combined voltages clearly requires the knowledge

of the characteristic impedance matrix (ic ) of the wires. For a multiwire
n,m
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Figure 4.1. (a) Schematic drawing of a wire bundle penetrating through a

shield, and (b) experimental setup to estimate the associated
scattering matrix.
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case, the determination of (Z

c ) might be difficult, if not impossible.

However, at this moment, the agéﬂmption that (E } is known will be made.

o
From Equation 4.1, one can see that there arg,TNA+Nl+1)2 scattering
matrix coefficients to be determined if there are NA and NA+1 wires,
respectively. If certain voltage and/or current sources are applied to
the wire systems and voltage and current responses are measured on all the
wires, then (N A*—NA*_])equations can be obtained for the scattering matrix
coefficients. That is to say, in order to completely determine the scatter-
ing matrix, one needs to perform (N A*—N A+1) independent such tests. One
way to accomplish this is to apply the source to one wire for each test
(see Figure 4.1b). The number of independent experiments can be reduced,
if one has certain a priori knowledge about the shields. For example, if
the shield is symmetric and satisfies reciprocity, the required experiments

can be cut by one-half.

The above description is for the multiwire case. In the case that there
is only one wire on each side, Equation 4.1 takes the following form

(see Figure 4.1a)

Vé+3 AT icu A fé+{ A

Vé+% it 2CB; A+1fé+2ck+l ) <4'2)

§aLa; A §a',8';k,h+1 Y;+z A+ ECQ ;A f§+z

§B,a;x+1,x gs,s';m,m Vé+;) I Zce;xﬂ Té+-,) A+
where, if one uses the wave indices,

ga';x;k,k ga',th,k+] §u-F1,u ~u+1,v+T

gB,a;Aﬂ,)\ §8, BH A+, A+] ] gv,u g\/,\,Mr}
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. The scattering matrix can be determined from the experiments shown inFig. 4.2a
and solving a set of linear algebraic equations. In the case that the wires
can be disconnected, the process of solving the linear equations can be awided
by performing a somewhat different experiment. Such experiments are shown in
Figure 4 2b, From the experiment in Figure 4 2b,one immediately has

= S

il

= 4,
u+1l,u o' ya3A A (4.3)

oy n L )
B3 M1 eg i Th =0

w1
(7224

Vou BsajAtl,A =

and from the experiment in Figure 4.2c,

i+ _ 3 7(+)

) ) MR S M
Su+1,v+1' N X T -

SL 1(+)

B Al TCpnan B Mg L5 58 g

s

w1 58,8 a1 T A(4) (4.4)

v(+) '*'z ’iCl(+) fo

These experimental setups of Figures 4.2b and 4.2c canalso be extended to
multiwire cases.
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repeat experiment
with source

Aiatl C :
v v driving right-hand
A A+l side wire
source
probe
tin : + + Y ﬂ L
v ?
Vs oo Lo Ve
oy A° DA By a+l’ B 5 A+l
Note: The indices n,m have
been omitted, because
only one wire in each
layer is assumed.
(b)
()
° P4 g
["] By A+l "B 5 A+l
CIVEEO S 1
IOL s A° VOL ;A
disconnected disconnected
Z
B 3 A+l
—
(c) Z
a3A (4)
TORIC
l—-] IB 3 AT’ VB 3 A+l
O i
! ;A7 Vo ;
) (+)disconnected
disconnected Vo
" Figure 4.2. (a) Schematic drawing of the experimental setup for the estimate

of the scattering matrix for the single wire line penetration;
(b) & (c) an alternative version of (&) when the wires can be
disconnected.
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2. SCATTERING (REFLECTION) MATRIX FOR TERMINATION JUNCTION

A termination junction can be considered as a shield which does not
allow signal penetrating into the next layer. The discussion in Part 1 of
this section is thus applicable to a junction. In this case, one will
simply have, instead of Equation 4.1 (see Figure 4.3).

n,m (4.5)
= ((gn,m)a'ﬂx)x,x [((vé+))a)xi_((zcn’m)a)k ((Tﬁ+)%x)xJ
where, if the wave indices are used,
((gn,m)u',a)k,x = (gn,m)u+-1,u

The reflection matrix can be determined by performing experiments similar
to those of Figures 4.l and4.2, with the wires in the (A+1) layer discarded.

When the loading impedance is known, this refiection matrix can also
be calculated analytically

~

(S

n,m)u-*1,u = (( n,m)al,a)x,x (4.6)

This equation is particularly useful for the estimate of the reflection
matrix elements associated with small antennas at the outermost layer where

the input impedances (ZL ) of the antennas are known.
n,m

37



RPN u 15132335
—_——
3(+) gl+)
((In )a)w ((Vn )c«,)k
+
¢ >
NA wires ) R +
Z. )
C u —
n,m
2 'r_~ ; +
((z i )
A )
Cn,m a’A
‘-*—*
wa';k A wu+1 A NZ?,T;SZ,;3;P\
Ya

Figure 4.3, Schematic drawing of a terminating junction.
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‘ 3. SCATTERING MATRIX FOR WIRE-TO-WIRE APERTURE PENETRATIONS

When the shield of Figure 4.7a has apertures the scattering supermatrix
derived for the line penetration has to be modified. From the consideration
of Section II, it was shown that only the off-diagonal blocks need modifica-
tion, namely, the transmission matrices. For upperbound estimates one only

needs two experimental setups for each aperture to determine the maximum
\V(+) /f(+)| and |f(+) /V(+)l (see Equation 2.10). The results

s>\+ oA S>\+1 o5 A )
from %hese experiments can then be used for all the scattering matrix

elements associated with wires interacting through an aperture.

The experiments shown in Figured4.4 can be performed by using wires not
associated with the system, thereby avoiding the necessity of shorting and/or
disconnecting the wires in the system. The experiments are also arranged
with the wires immediately outside the exclusion regions to obtain the maximum
allowable interaction. The exclusion regions should be at least one maximum
aperture linear dimension away from the aperture. The effect of the aperture
on the current and voltage on the excitation wire can be neglected.

‘ Using the experimental results thus obtained, one can calculate the

upperbounds of the scattering matrix elements according to Equation?2.11l.

() 2 (+) o
The quantities [VS( )/Ié;il and II( )/V(f)] can also be analytically

A+l Shep @A
estimated, provided that the maximum electric (ae) and magnetic (am)

polarizabilities and known. 1In Figure 4.4, if the exclusion regions are
hemispheres (with radius R of the exclusion region > maximum Jinear
aperture dimension), these quantities are approximately (Reference 9),

2se o
i) Al e S
o ! s T T wmereg (4.7)
AR IR TCO BT e
oy 7 Tasal = oz

where r is the radius of the wire in the (A+1)-layer in the experimental
setup and should be greater than those of the wires in the actual system
‘ involving in the aperture interaction process. An alternative analytical
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Figure 4.4,

Experimental setups for the estimate of the scattering matrix
elements associated with the wires involved in the wire-to-wire
(a) magnetic field, and (b) electric field aperture penetrations.
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estimate can also be obtained based on the maximum electric and magnetic

fluxes penetrating an aperture. The estimate is given by

S+, )

I A N A/R

| S+l & U | (4.8)
w_ﬁ;il/ N R WieS ]

where A is the area of the aperture and Am is the maximum magnetic flux (5m)
penetration factor defined via Am = @m/(uoHsc) (for a circular aperature
with radius = R/2,Am = R2/4). The first equation in Equation 4.8 can be
used as the approximate result for the case when bowls are used in the

electric field interaction experiment.
4. SCATTERING MATRIX FOR FIELD-TO-WIRE APERTURE PENETRATIONS

In Section II, it was shown that the field-to-wire interaction through
an aperture (which is important only in the outermost shield) can be treated
by introducing an additional imaginary wire in the outer layer. Because of
the introduction of this wire, additional scattering matrix elements have to
be included. The upperbound of the additional scattering matrix elements
can be estimated by Equation 2.13.

Equation 2.13 is similar to Equation Z.10. Most arguments raised in Part 3
of this section are thus applicable here. The experiment setups in Figure 4.5
can be used for the determination of the upperbound estimates of 1§8,a;2,1[
in Equation 2.13. The sources required in the experiments are uniform electric
and/or magnetic fields near the aperture when the aperture is covered with
conductor. This can be accomplished by performing the experiments in a
special FINES simulator (see Reference 10).

Formulas similar to Equations 4.7and 4.8 can be obtained for this type
of interaction as, with a = R,

2 s
%%

~(f) ~
1271, / [RE ¥
e scl | Rzin[ZR/roj
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Figure 4.5. Experimental setups for the estimate of the scattering matrix
elements associated with the wires involved in the field-to-
-~ wire (a) magnetic field, and, (b) electric field aperture

penetrations.
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S}Joo.m

- (F) Al
‘VSZ /R ZH ] = ZOWRZ (4.9)
and
| g;) / [RELI| = |s e, MR
(4.10)
T 7 RFIL = |5 5 Ay / [RZ])

In the discussion of Parts 3 and 4 of this section, possible resonances of
the cavity formed by two adjacent shields are neglected (i.e., shield-to-shield
interaction for the field is neglected). One way to include the resonance

effect is to perform the experiments with both shields present.
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V. USE OF EXPERIMENTAL RESULTS IN SHIELD DESIGN PROCEDURES

Having related the signal responses to the electromagnetic sources in
terms of norms of shield scattering matrices and having established methods
to estimate these norms, one can then use the process to analyze and synthe-
size (or design) shields in a system. Here, only the design (or, synthesis)
aspect will be addressed. ‘

There are two kinds of system shielding design one may encounter. One
is for a system still on the drawing board, and the other is for an existing
system requiring shielding improvement (i.e., hardening). For an existing
system, one might not have the freedom of changing the layer configuration
and the only possibility of hardening the system may be to alter the shield
characteristics by implementing hardening fixes at the shields. This section
will address how the results of previous sections can be used in the shielding
design for an existing system. The discussion will also be useful in the
shielding design of a new system.

1. GENERAL PROCEDURE

In Reference 1, a shielding design procedure has been laid down. The
procedure is duplicated below with minor medifications and additions.

a. Consider some elementary topology defined to at least sublayer
level (e.g., Figure 2.1)

b. 1Identify the sources in each sublayer corresponding to electro-
magnetic environments of interest.

c. Identify the allowable maximum signal levels in each sublayer of
concern associated with each electromagnetic environment.

d. Identify the paths P associated with each pair of source sub-
layers (b) and response sublayer {c) of concern.

e. Allocate "shielding"along each path Pn such that the sources (b)
produce no more response than allowed in sublayers (c).
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i.

Partition the shielding along each Pn among the corresponding
subshields encountered on Pn. This gives maximum allowable
values to the norms of each corresponding subshield transmission
and reflection matrices.

For each subshield consider all paths Pn that pass through it.
Choose the tranmission and reflection matrix norms to be the

least values of those concern for all Pn in (f).

Pefform,expefﬁmentS'to select subshield hardening approaches
satisfying the transmission and reflection matrix norm requirements
established in (g).

Write specifications for subshield hardening requirements.

2. EXAMPLE

To demonstrate how to use the above shielding design procedure, consider
the example of Section III. For simplicity, each subshield in the example is
assumed to have only one line and one aperture penetration. The relationship

between the sources and responses is then given in Equation 3.10.The shield-

ing design procedure proceeds as follows

a.

The topological and interaction sequence diagrams are shown in
Figure 3.1.

The sources (EMP, lightning, etc.) exist only in V], and are
assumed to be not greater than 104 V,i.e.,

R SR RSN S E S

< 10% (Volts) (5.1)

The signal responses of concern are in V3. The maximum allowable

combined voltage is assumed to be 100 mV, i.e.,

N < 100 (mv) (5.2)
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d. There is only one path (Each shield along the path has two

penetrations).

e. From Steps b and ¢, the shields along the path must reduce the

signal Tevels by at least 5 orders of magnitude (104-+10'1, 100 dB).

f. There are various ways to satisfy the overall shielding requirement
established in Step e. Take l[§22]],2 | = 0.5 in Equation 3.10which is
determined mainly by the structure of the protrude wire (or antenna),
and |§8,7i$] which is determined by the loading impedance. Then,
one possible way to satisfy the overall shielding requirement is
to have

| BSp23p,0 1< 1

“fE§133,1‘2+l[§233,1|2

< At 1%+ max {4[Q(f) %3 4|1 (F)} 42 } < 107" (5.3)
¢ "3t 52,1 2.1
It should be emphasized that, except v, ?S “(f) and 1§ )

where indices are referredto layers, all the outermost indices

for the variables are referred to waves. If it turns out this set

of values is difficult to achieve with available hardening fixes,other
sets of values may work

g. This step should be skipped, since there is only one path.

h. Perform experiments with various hardening fixes (such as, filters,
arrestors along the wires, and wire meshes at the aperture) to select
the ones satisfying the requirements established in Step f.

i. MWrite specifications for the proven hardening approach.
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VI. FUTURE DEVELOPMENT

The bounding methodology presented here suffers from several restric-
tive features and thus leaves ground for improvement. This leads to the
following suggestions for future developments.

1. OPTIMIZATION OF NORMALIZATION IMPEDANCES

The normalization impedances are required in the definition of the
combined voltages which in turn are the basic quantities in the discussion.
For the internal wires, the natural quantities to use for the normalization
impedances are their characteristic impedances. These characteristic
impedances contain the information about how the wires interact among them-
selves. For a complicated system, the determination of the characteristic
impedances could be nearly impossible. On the other hand, for the external
wires in V] the use of the normalization impedances to construct the combined
voltages is completely artificial. If too large or too small a normalization
impedance is used, the norm will give an inaccurate conclusion (for example,

if ZC is infinitely large for the source vector of Equation 3.14, then the
source vector information for the field coupling through the aperture will

be Tost).

For the above reasons, one inevitable question would be "what are the
optimal normalization impedances one should use to make the bounding methodo-
logy simple and accurate?" For an order-of-magnitude estimate, the use of
a diagonal normalization matrix with the diagonal elements in the order of
1005 could be a reasonable choice. However, its validity or the choice of
other values so that a tighter bound can be obtained requires further consider-
ations.

2. OPTIMATION OF LENGTH PARAMETER IN CHARACTERIZATION OF FIELD
APERTURE PENETRATION

In Section II, it was seen that the length parameter "a" is required in
the definition of combined voltages for the field-to-wire interaction through
an aperture. This length parameter is artificial. 1In the case where there

is only aperture interaction through the outermost shield, the use of an
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arbitrary "a" should be acceptable. On the other hand, in the case where the
shield allows both line and aperture penetrations, an inadequate "a" value
might give an inaccurate emphasis on the aperture penetration. A reasonable
value for this length parameter might be the linear dimension of the
aperture. This conjecture requires further consideration.

3. LAYER(SUBLAYER)-LAYER(SUBLAYER) INTERACTION

The zero-tube-length approximation has been used to simplify the
scattering matrix formulation. By doing so, the layer-layer interaction and
the propagation behavior between layers are excluded from the formulation.
The exclusion might result in loose upperbound estimates and inaccurate
resonant phenomena. The formulation to inciude the layer-layer interaction
and the propagation behavior between layers requires further consideration.

4, DIFFUSION PENETRATION

When the part of a shield that allows for diffusion penetration covers
only an electrically small region, the diffusion penetration can be treated as
an aperture penetration. When the region is electrically large, an
alternative approach needs to be sought.

5. TIME-DOMAIN CONSIDERATION

The signal bounding has been discussed in the complex frequency domain,
or for CW signals. For a transient electromagnetic interference such as EMP
or lightning, the time-domain consideration is also needed. In principle, it
can be obtained from the frequency-domain consideration. For example, in the
time-domain the matrices in Equations 2.6 and 2.7 resulting from the good
shielding approximation will become convoluftion operators. For a more general
case, there may be even nonlinear time-domain operators.
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APPENDIX A
DERIVATION OF SUPERMATRIX EQUATION

An aeronautic system can be described by a topological diagram which can
in turn be used to construct a corresponding interaction sequence diagram (see
Figure 2.1). An interaction sequence diagram consists of vertices and
edges. The vertices represent surfaces and layers (volumes) in the
topological diagram, and the edges indicate how the electromagnetic signals
transport. On the edges, there are voltages and currents which satisfy the
familiar transmission-line equations. The voltages and currents are coupled
in the transmission-tine equations. This complexity can be avoided by
introducing the following combined voltages (see Figure A.la),

_ ol > S+
Vody = (Vé ))u * (ch,m)u - (I ))u
(A.1)
~ ~ + ~ ~ +
(W), = (0, - Z - (1),

With the combined voltages as the dependent variables, the transmission-line
equations become uncoupled and are given as

d v -
HE; (Vn)u = '(Y

(A.2)

-~ ~ ~

d - ¢ yte
dz; Oy = O Jy w )y + 00 07

where (; ) is the propagation matrix, (§n )temp and (g, )temp are
Cn,m u Sn u sn v

distributed combined voltage source vectors given by (see Figure A.lb)

o ytemp _ o (#), ; ((+),
(vsn)uemp- (Vg "+ 2 n’m) s Ty
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\Y
wu ———e— -
.
2’U
i, i),
(Vn)u - (v£+))u * (ZCn m)U ) (T£+))U
IO N -
(i), = (18, - . ), (i,
(b)
NV ~———
W, —
A
) 2,
7(+) 5(+)
I Vv
( Sn )U ( Sn )U

Sn u n u Cn,m sn u
g ytemp ~(+) = ~(+)
Sn s sn u ( Cn,m)” ( sn )u
Z. ), = (Z. )
Cn,m u Cn ,M v

Figure A.1. Sign conventions for the real voltages and currents used for
(a? the combined voltage definition, and (b) a temporary

combined source voltage definition.
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(A.3)

The superscript "temp" is to indicate these are temporary definitions and a
different combined voltage source vector will be defined later. Equation A.Z,
clearly, indicates that the combined voltages of the two oppositively
propagating waves still satisfy different differential equations. To unify
these two equations, one introduces another coordinate system z, = 2u-zu for
the second equation of Equation A.2 (see Figure A.2a). MWith this new set of
coordinate systems which has z = 0 and z = £u (z can be either z, or z,, and
zu is the length of the edge) indicating respectively, the initiating and
terminating points of the wave, Equation A.Z2 becomes

a%(\?n) = (v, ), (V) (V) (A.4)

u n,m n

Here "u" represents either wave on the edge and

(A.5)

~ t

with (V§+) )u being positive when it increases with the wave propagating
n -

direction and (I§+)')

u being positive when it flows into the edge
n

(Figure A.2b).
Equation A.4 can be solved to relate the combined voltages at the wave
terminating points (at z, = zu) to those at the wave initiating points

(at z, = 0). Under the assumption of short edge length (i.e., under the
condition that {]((YC )U)H i[(zu)H<< 1), the relation is simply
n,m

H]

AR (AR (A.6)
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v
wU
zuzg> . zu=2u=£v
7 =g (““\\ =(Q(+)) (f("’)) - _(f(*)) 7 =0
vV 'V n U v? n u n vy
(vn)u (V1'(1+))u * (ZCn m)U ’ (Tlg-l-))u
(), = @) - Z )y (it
= 0y sy - G,
(b) y
u
2,70 B 7,294,
© " O
z,7%, oy _(+) z,=0
(Ién))u CHON
- (i£+))v - —(v§+))v
n n
~ (+ =(+)
(g )y = 0D, + (e - (57,
5 S (+ ~(+
(0 )y = -0+ 2y - (00,
T N H(+
- (Vsn o ¥ (ch’m)v (Isn))v

Figure A.2. Sign conventions for the coordinate systems, real voltages
and currents used in the definitions of (a) the combined
voltages, and (b) the combined source voltage.
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Y
: 1

-~

where ((Vs )u) is the combined voltage source supervector which is the
n

integral of the corresponding distributed quantity along the edge.

Fquation A.6 describes how the combined voltages vary along the edges.
One still needs another eguation to describe how the combined voltages behave
at the vertices. At a vertex, incident waves are scattered. The scattered
waves are related to the incident waves through a scattering matrix (see
Reference 11). Since the incident and scattered waves at a vertex are,
respectively, the terminating and initiating combined voltages on the edges
connecting to the vertex, the relationship is given by

Equations A.6 and A.7 can then be combined to give

-

[y ) = (Spndy,e)] © ()) PN,
u

With the abbreviated symbol ((V_) ) for ((Gﬂ)

nlu ) , this equation is

Y (zy) = (0)

duplicated as Equation 2.1 of Section II. u
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APPENDIX B
TRANSMISSION COEFFICIENTS (MATRIX) FOR APERTURE PENETRATION

To quantify the wire-to-wire interaction through an aperture, the source
quantities one needs to know are the voltage and current on the wire in the
outer layer. To define the transmission coefficients for such an interaction
mechanism, appropriate source reference guantities constructed from this
voltage and current have to be used. In Section II, the transmission
coefficients have been defined using only the combined voltage

iz, i
s A
of the incoming wave (with respect to the point where the wire penetrates or
js attached to the shield, see Figure 2.3a) on the wire in the outer layer as
the reference quantity. In this appendix, alternative reference quantities
will be used for the definition.

Consider Figure B.la, where the internal wire is extended in both
directions away from the aperture with arbitrary loads. This is a more
general configuration than that of Figqure 2.3 a. The equivalent circuit for
the internal wire of Figure B.la is given in Figure B.1lb. An alternative
transmission matrix using the combined voltages of both waves as reference
guantities will now be defined. The transmission matrix is given via

S(+) L5 (8 = = () .5 T+
V1,2 * Zc2 115 T1,152,1 11,2521 Vi1 *t ch .1
ONEEON AV - “(+4) 1 (+)
V2.0 * Zc2I2;2 T2.1;52,1 T2,2;2,1 Vis1 - Ze 1.1
] OB
Ry 1. 132 c, ‘1;2
+ 1’192’2 0 . ( ) 2 (B.l)
. ) s A
0 Ry i V2.2 - Zc2 I3.2

Here, instead of S, T and R are used to distinguish them from the definition
of Section II, and to specifically indicate the transmission and reflection
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(a)

i =7 =7 s

YA c c c L
Ly 131 2;1 1 [i} 2:1

i Z =7 =7 [:] 4
Li2 c1,2 C252 2 Ly.o

)
(b)
7(+)
151 )
~ 7 7

- (+) -

Z, [ vl;l Z
1;1 2:1

; i(*) F () 7(+) ;

z [3 s i % 7
L1;2 1.2 52 2:2 L2;2

+ - + +
OO
—atlh raYis — .
T§+% 7?17/ ()
’ 52 2:2

1;2

Figure B.1. (a) Schematic drawing of wires interacting through an aperture,

and (b) its equivalent circuit for the inner wire.
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guantities and A =1, «, 8 =1, 2 are arbitrarily assigned. In order to fit
the above definition into the overall scattering matrix formulation, clearly,
additional "artificial" wires connecting to the aperture "node" have to be
introduced. With Equation B.1, the transmission and reflection coefficients
can be calculated. For example, %2,1;2,1 can be obtained by solving the
circuit of Figure B.lb by taking

i = f and i = i
;e 2 Thi G
That is, one has,
T T
- 1,1;2,1 '1,2;2,1
(1) = - -
T9.152,1 T2,2;2,1
Z v, +1 7 v o+ 1 {
Cop Sp1 kpi2 Sp1 €2 Sp1 0 Loo Sp
7. o+ 7 7+
Y Lo G
(B.2)
7 v, +1 i Z v, +1 i
¢ Sp1 t1p2 Sp1 C Sp1 L1 Spn
7 +1z 7 +z
L. % Li;2 ¢
and
7 - 7 -7
: I S S 2 (5.3)
1,1;2,2 i + i > T2,232,2 i + i :
L c L c
2:2 2 1:2 2

Various natural matrix norms can be calculated for the transmission
matrix (T). For example,
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and,

. -icz 552,1 ' Z~L3;2 isz,ll +~ Z~C2 Sp1 Z~Lj;z 2,1
lzLj;Z * Zc2
2 e for iLj;Z = =, j=1,2
2 ;ZJ ,'Mri%;2=0,j=152
max) 2 JSZ,ll ;2 {52,1‘ , for iL1;2 0, iLz;z = =
& ~s2,1+ 1 2,1 e -552,1 ! 152,1‘ ;52,1 * 752,1‘
(equal when 552’1/;S2,1 is real), for iLj}Z = icz 1,2
9 = maxs %icz Jszil ; ZiElgz Ts%’l , for iL =7
7, +1, 7, Z, 1;2 2;2
1;2 2 ;2 ©2
2 %ZJ ,'mri%;2=w, j=1, 2
2 ~52,1 , for iLj;Z =0, =1, 2
max ~52’1 ; {52,1 %, for iLj;Z = Ecz i=1, 2
58




The above consideration, of course, can be used for the wire-to-wire
aperture penetration configuration discussed in Subsection II.3.a, i.e.,
Figure 2.3. For that configuration (taking A =1, 8 =2, o= 1),
Equation B.1 reduces to

() L5 ¥ = +) L5 T(#) : ) 5 ()
Vas2 T Tc, Ta2 " To,ns2,0 M1t T Tl T aien TSt Ze, M1
(B.6)
Then, one has, in the norm (magnitude, for a scalar) sense,
(+) o5 () < |t () L5 T(+)
lvz;z fro, ozt T2, VIT Y fe, il
- ) 5 1)
* T2,2;2,1’ ‘ V1;1 - ch I1;1
- - S L5 ()
< sz,1;2,1 * Tz,z;z,l‘ R Tl
e tol¥) L5 1(+) i(+) _ 5 r(+)
if lvl;l R B I BN AR
S max)?2 ;s : { 01-1 + ic fgfi (B.7)
2,1 52,1 ; 1
which agrees with Equation 2.10 where a transmission coefficient was defined
using only
~(+) ~ ~
V1;1 * ch I1;1

as the reference source duantity.

So far, the discussion in this appendix deals with the wire-to-wire
aperture penetration problem. The same procedure can be used for the
field-to-wire_aperture penetration problem so that, instead of just

~

al}sc + ZoHsc , both a[ESC + ZoHsc}Can be used for the transmission matrix

definition. That is, similar to Equation B.1, one has
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) L5 N\ ~ ~ i\
2 * 2, 1152 T1152,1 M1,252,1 al:Esc * Lgfse
4 L5 () . - - 2]
v2;2 * ZCZIZ;Z T2,1;2,1 T2,2;2,1 a|: sc ZoHsc
. (+) 5 3(#)
W7o
Ry 4. 152 c, “1:2
SR, 0 . 2 (5.8)
" ) 5 T(+)
0 Rp2:2,2 Y2;2 7 Lo, 1252

With Equation B.8, one can proceed as before to obtain relations the same as

Equations B.Z2 through B.7, except that \;S and {s have to be changed to
2,1 2,1

\;(f) and %(f) .

52,1 52,1
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GLOSSARY

Indices (appeared as subscripts)

uor v wave index

Aor Tayer (volume) index

L or & sublayer index

Tor T' elementary layer index

por yuf layer-part index (= 1, 2, 3)
¢ or ¢ dual-wave index (= 1, 2)
norm wire (POE) index

woe (a3a) = (o31525150)

Superscripts
(+) for true quantities (to be in contrast with combined
quantities)
(L) for "1ine" penetrations
(f) for "field" aperture penetrations
(i) aperture jndex

General matrix/vector symbols

() matrix/vector symbol
O] generalized dot product
. dot product
((An,m>u,v) supermatrix whose element An,m;u,v is associated with n-wire
of u-wave and m-wire of v-wave
((é ) supervector whose element B . 1is associated with n-wire of
nou U-wave nsu

((1_ ) ) identity supermatrix

nym’u,v
((0, m)y,y) 2zero supermatrix
()1 inverse of a matrix
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( )+ conjugate transpose of a matrix

p{( )} spectral radius of a matrix
W natural matrix/vector norm
i( )||p p-norm, p=1,2,...., ©

Symbols associated with EM topology and interaction

VA . f-sublayer in A-layer
L

Sx 4l surface separating 2-sublayer in A-layer from &'-sublayer in
27 TS (A1) - layer

wu u-wave
neu combined voltage on n-wire of u-wave
3 -
o) 7(+) i }
AT A true voltage, current on n-wire of u-wave
nsu® “nsu
VS combined source voltage on n-wire of u-wave
nsu
~(+ 2(+) .
VS s Is true source voltage, source current on n-wire of u-wave
nsu nsu
Y scattering coefficient which scatters combined voltage on m-
e wire of v-wave into n-wire of u-wave
I interaction matrix element = 1 - S
n,miu,Vv superma € n nymiusy
En'u excitation supervector element, with
H < ~ ~
E =
({E) ), ((Sn,m)u’v)()((vsn)u)
(ZC = lu V( . )u normalization impedance matrix for wires on an
n,M U,V ’ n,m edge containing u- and v-wave; *y,v = Kronecker
delta function, =1 for u=v, =0 for ufv.
a normalization length used in field-to-wire aperture
interaction
T(+) “(+) . .
IS . vs true equivalent current source, vo]ta%e source on a wire
Al Al in (x+1) - layer due to wire-to-wire {field-to-wire]

“(F)  =(F) aperture interaction, superscripts "+" have been
] neglected for simplicity for the field-to-wire interaction
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i

~

Y
Sarl,at Sakln

S(f “(f
AU
A1, A1, a

gﬂ, Qe
[;(f) ;(f)]

m ® e
“m> %

sc” "sc* %c? Vsc
Voc’ Isc

in® 2L
R
Yo
A

normalized equivalent current source, voltage
source on a wire in (A+1) - Tayer due to
interaction through an aperture from wire
[field] in A-layer, see Figures 2.3, 2.4 for
definition

magnetic flux linkage, electric charge deposited
on wire due to wire-to-wire [field-to-wire]
aperture interaction

magnetic, electric polarizability
short~circuited electric field, magnetic field,
surface charge density, surface current density
open-circuited voltage, short-circuited current
input impedance, loading impedance

radius of exclusion region or volume

wire radius

effective aperture area

~ ~

magnetic flux penetration factor = m/(uOHSC)

63



