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ABSTRACT

The Singularity Expansion Method (SEM) enables one to obtain
the natural resonances of an arbitrary scatterer. The implemen-
tation of the method for an arbitrary geometry can be a formidable
problem, however. A recent space-time method due to Cordaro and
Davis has transformed the complicated problem of determining these
resonances into a relatively straightforward algebraic eigenvalue
problem by using finite difference approximations. The matrices
generated tend to be exceptionally large however, and therefore
the search for eigenvalues and eigenvectors becomes gquite complicated.
A modified simultaneous iteration algorithm is presented in this

paper to partially treat this complication. The algorithm enables
one to apply the Cordaro-Davis method to more complicated geometries
than the linear problems previously studied. In particular,

transient pole distributions for the two-dimensional square, perfect
conducting plate are introduced.

The numerical stability of the explicit finite difference
schemes used to represent electromagnetic equations is also
of interest. Two methods, the Fourier and matrix methods, exist to
analyze the stability of these schemes. The applicability of each
of these methods is discussed in this contribution. It is shown
that the methods can provide valuable insight into the appropriate
formulation of a particular difference scheme. Both one- and two-
dimensional discrete hyperbolic equations are anlyzed for various
finite difference grids.
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Chapter 1

INTRODUCTION

The calculation of natural frequencies (poles) and natur-
al modes (free oscillations) of structures is a fundamental
problem of many disciplines. Until recently, the mathemati-
cal study of these parameters has unfortunately been limited
to canonic geometries which lend themselves to eigensolution
by separation of wvariable techniques. The singularity ex-
pansion method (SEM) removes this geometrical restriction by
enabling one to obtain the natural frequencies and natural
modes of an arbitrary object. The SEM also enables one to
determine the response of the object to an arbitrary forcing
function directly from an appropriate expansion of the modal
and pole structure.

The basic theoretical foundations of the SEM were ini-
tially presented using frequency-domain techniques apprlied
to electromagnetic equations by Baum [1]. Baum's develop-
ment was subsequently extended by Marian and Latham [2]; and
rigorous mathematical justification of some of the basic
foundations has recently been presented by Ramm {3]. Ana-
lytic frequency-domain SEM results for the perfect conduct-
ing spherical scatterer were criginally c¢cbtained by Baum

[1], and numerizal freguency-domain results fcr thin, per-



fect conducting cylindrical surfaces were initially present-
ed by Tesche [4].

Interest in time-domain techniques in the SEM has not
been as widespread as frequency-domain methods; however,
several varied contributions have recently been made toward
establishing the versatility of time-domain methods. A
time-domain method analogous to the original frequency-do-
main method may be found in Baum [5]. The applicability of
this method, however, has been somewhat limited due to the
level of difficulty of the describing egquations. Van Blari-
cum and Mittra [6] developed a rather unique method whereby
the natural responses may be obtained using Prony's method
[7] once the transient response of the object is known. An
obvious complication with this method is that the determina-
tion of the transient response can be a non-~-trivial problem.
An alternate time-domain method which sidesteps the compli-
cations of the above methods has been introduced by Cordaro
and Davis [8]. This method , known as time-domain SEM
(TD-SEM}, enables one to find the natural responses directly
from the finite difference representation of the governing
integral equations cast in a matrix eigenvalue form. Unfor-
tunately, the matrices generated tend to be quite large, and
hence the previous work has been limited to one-dimensional

geometries discretized with relatively few unknowns. The



results which have been obtained, however, indicate that the
Cordaro-Davis method is capable of producing a great deal of
information quite efficiently. The intent of this study is
to extend the applicability of TD-SEM, and extend numerical
time-domain technigues in general.

Toward establishing this intent, the following (princi-
pal) set of tasks are defined: (1) determine stability
criteria for various finite difference representations of
electromagnetic equations, (2) develop simple time-domain

xpressions for determining the SEM coupling coefficients
(these are parameters which couple the natural fregquencies
and modes to the incident forcing function), (3) develop an
eigensolution algorithm which will solve the large scale ma-
trices generated by TD-SEM, (4) obtain a pole distribution
for the linear scatterer discretized with a large number cf
unknowns, (5) apply TD-SEM *o the two-dimensional rectangu-
lar plate problem. The outline for establiishing these tasks
is as follows.

The fundamental governing equations of electromagnetics
are developed in integral form in Chapter 2 using dyadic
Green's function theory. The equations are initially devel-
oped in general, and are tren specialized to describe thin,
verfect conducting surfaces. An effcrt has been made to

keep the development brief by leaving several intermediate



steps to the references. This is done since the application
and solution of the final results is the principal intent of
this work and not the mathematical subtleties of the devel-
opment.

The basic concepts of the frequency-domain SEM and the
time-domain method of Cordaro and Davis are presented in
Chapter 3. Numerical solution technigques and stability
techniques for the time-domain equations are also presented.
The stability discussion, as applied to these equations, is
presented for the first time.

A variety of eigensolution methods applicable to the ma-
trices generated by the Cordaro-Davis method are presented
in Chapter 4. The discussion culminates with the develop-
ment of an eigensolution algorithm for large matrices in
block companion form.

The technigues developed in the previous chapters are ap-
plied in Chapters 5 and 6 to two canonic examples. In Chap-
ter 5, the one~dimensional, thin, perfect conducting wire is
considered in both the frequency- and time-domains; current,
electric field, and pole distributions for a large number of
unknowns are presented. In Chapter 6, the two-dimensional
rectangular plate is analyzed in the time~dcmain; time-do-

main pole distributions are introduced for the square plate.
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Chapter II

FUNDAMENTAL INTEGRAL EQUATIONS OF
ELECTROMAGNETICS

2.1 INTRODUCTION

Singular integral equations (or singular integro-differ-
ential equations) represent a powerful and widely used ap-
proach to the solution of both antenna and electromagnetic
scattering problems. A variety of methods may be used to
obtain these equations. Poggio and Miller [9] rigorously
develop the necessary results using the vector Green's theo-
rem [10]. In this formalism, the concept of incident and
scattered fields in conjunction with equivalent sources de-
velops in a natural way. In this chapter, the frequency-do-
main equations are developed from linear system foundations.
Although, perhaps, this approach is less rigorous than the
method of Poggio and Miller, it yields fundamental results
readily, without extensive vector manipulations. The time-
domain representations of these equations are then obtained
by inverse Fourier transform technigues. These general fre-
quency- and time- domain results are finally specialized to

describe thin, perfectly conducting surfaces.
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2.2 MATHEMATICAL FORMALISM

The mathematical formulation of electromagnetic phenomena
is fundamentally dependent on a concise set of equations
known as Maxwell's equations. The complexity of these equa-
tions is highly dependent on the host medium. We will res-
trict our discussion throughout to a homogeneous, linear,
and isotropic medium. For such a medium, Maxwell's equa-
tions may be written in differential form in the freguency-
domain as (a vector will be denoted by a single bar; a fre-

quency-domain quantity will be denoted by a tilde)

rt

v x EC (T;w) = —jmuoHt (T;u) - M (T;w)
Zt — . :t — "_:_ -
v x H riw) = jwe E (rjw) + J (r:w)
( o > b (2_1)
=t - ~t =
% E (r;w) =0 (r;m)/eo
v RS (Tie) =@ (T3w)/u,
Note that the time dependence, exp{jwt}, has been sup-
pressed. The total electric and magnetic field intensities

are denoted by Et(f;w) ard ﬁt(f;w), the total electric and

:t -—
magnetic current densities are denoted by J (r;w) and

14

- .t = ~t =
t(r;w), and the parameters p (r;w), m (r;w), g, Hg, w, and

r denote, respectively, total electric and magnetic charge
densities, electric permittivity, magnetic permeability,

frequency, and observation positicn.
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In the case of scattering by an obstacle, we may decom-

pose the total fields and sources as

B (Fyw) = BT (Tiw) + E° (Fiw) (2-2a)
i (T = 817 (Fyw) + B (Fiw) (2-2b)
' (Fiw) = T° (Fiw) + T (Fiw) (2-2¢)
=t - - ~ _
M~ (r;w) =M (rjw) + M (r;w) (2-24)
55 (Tiw) = 3% (Tiw) + 5 (T3) (2-2e)
&5 (F;w) = 8° (Fjw) + @ (F;w) (2-2£)
=inc inc =g

where E-°¢ gH denote the incident fields which J , M

I

58 , HS are the scattered fields

~5 . . .
p , and m" give rise to, and E

due to the sources J, M, p, and m induced on the scatterer
(for dielectric scattering these sources are interpreted as
effective sources that replace the obstacle). The scattered

fields ES, ﬁs obey, then, the vector Helmholtz equations

~ - b - ~ - = -—
7 x V x ES (r;w) - k“E® (r;w) = —jwuo J (ziw) - Vx M (r;w)
(2-3a)
and
zs = 2 =5 = . == ) = =
Vx Vxh (rjw) -k H (rjw)-= —Jwe M (r;w) + 9V x J (r;w
(2-3b)

where k is the wavenumber, w/(£,H,
The fields which satisfy (2-3) may be found by convolving

the impulse response of (2-2) with the forcing functions
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present. The impulse response is obtained by determining
the dyadic Green's function, ?(E,E';w) (a double bar will

denote a dyadic), which satisfies

2

il
L

VxVxT (5,He) - k2T (5,0 = 6 (5,0 (2-4)

Here, I denotes a unit dyadic, r' denotes the source posi-

tion, and G(E,E') denotes a three-dimensional Dirac delta

distribution. The solution of equation (2-4) is given by

T (5,250 = (T + J% V) G (F,50) (2-5)
k
where é(f,f';w) is the free-space Green's function

e-jk[E -1

Gr [T -t (2-6)

s

The scattered fields E°(7r;w) and B° (T;w) may now be ex-

plicitly represented by

&
"
=

b 1113

(F3w)] dr' (2-7a)

[S¥113

(Fsw) = ¢

511
~

[a}
we

€

~

it

N

(r,r';w) - [—jou

v’

(r,r';w) - [-jue

<I —_—

(F;w)] dr'  (2-7b)

(S]]

(Fyw) + 7 x

24N

=1

(e}

where V' denotes the volume occupied bv the scatterer.

14



We substitute, next, equations (2-7a,b) into equations
(2-2a,b). Using the vector identities éV'xﬁ=V'x(é§)-V'axﬁ,
(v'é)-v'xﬁ=-v'-(v'éxﬁ), and the relation Vé(f,?';w)=
-9'G(r,r';w), we obtain the following space-frequency repre-

sentations for the total electric and magnetic fields:

J [kZT+vv]-F (1) G(F,T" jw)dT’
Vl

- L o) [ i AEDEE,T juds’

k ‘g

Zn

-+

7/

V'

(t') x V'G(r,r';w)dr' r ¢ V' (2-8a)
and

1
Jun

E(Fiw) = BIP%(Ti0) +

J [K2T+VV] -M(Z')G(E,T" ;w)dE"
(o] V'
1

k2

2z . ~ S(ENNA(T Tt '
+ [k I+vV] J noutxJ(r )G(r,r';w)ds

S

+ J j(;') X V'é(;,zﬁw)d;' ré Vv (2-8b)
V!
The integration over the surface, S, denotes integration
over the surface bounding the volume V'.
The space-time representations of the electric and mag-
netic fields may be cbtained by inverse Fourier transforming
the frequency dependence found in expressions (2-8a) and

(2-8b) [9]. They are given by
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3 EtZ.ey o ¢ 2 gimcz..y 4 L [ =L 27 AEsY s
€ 3¢ E-(r;t) = €, 3t E (r;t) + v J '[ > 7 + VY] R dr
\% ¢ at
1 -1 % . M(E'57)
+7 J [—3-—2+VV]-[Jnutx——R’—ds’
o /R ¢ ot s ©
- - ooy | - - For?! - -
+ J M(z';1) x —(-F-%)—+a—a—M(r‘;T) x L"—g—))dr'] de| T ¢ V!
VA R T cR
(2~9a)
T=t-R/c
and
L s b 3 =—inc 1 T 52 (T ;1)
0 - - X
o (r;t) =y H  (rt) + = J [ &5 —=5 + V] == dr'
ot o dt 4m v c2 at2 R
- J [['i ch +vv].[f A IE ST e
4re Rl 1 c2 3t2 s ut R
- - 7! - - Terp! - -
+ J J(E' ;1) x (r3r ) 4 ;T JE ) x & rz))d " ldtl T ¢V
A R cR J (2-9b)
t=t-R/c

where R=|r-r'|, c denotes the speed of light in wvacuum, and
the parameter 1 denotes the time delay associated with a
wave propagating over a scatterer.The notation (3/31)M(r';1)
should be interpreted as (3/3t)M(r';t) evaluated at t=rt.
Expressions (2-9a,b) are known as the space-time electric
and magnetic field integral expressions (EFIE, MFIE); wher-
eas expressions (2-8a,pb) are the space-frequency representa-

tions of the EFIE and MFIE.
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The representations presented are general expressions
which are valid for an arbitrary scatterer positioned in the
previously assumed medium for all T such that rzr'. At the
offending point r=r', the expressions become singular and
hence must be evaluated by considering the limit as r ap-
proaches r' [9,12]. The Cauchy or Hadamard principal value
[13] is typically used for the description of these integ-
rals. The frequency-domain representations of the electric
and magnetic fields become in the Cauchy principal value

sense (a single bar through the integral will denote a

Cauchy integral)

EN(Fiw) = 2B 7 (Tw) + ,,i FP J [k2T+79]-F () G(E, " s0) dE"
“E5 v!'
2 2= - GToINA(T '
_—E'[k I+vv]: x M(r'")G(r,r";w)ds
out
k S
- } M(T') x V G(T,T;w)dT! T eV (2-10a)
v'
and
S (Tyw) = 20 (T;0) + :i FP J [k“T+VV] -M(T')G(T,T" ;w)dr"
o A

|

7!

(') x ¥ G(r,r';w)dr’

(ST}

(2-10b)

\—.,___/
R
(Y]
<
-

17



Note that an interchange of primed to unprimed coordinates
has been made. Similar factors of two appear in the time-
domain representations, and FP denotes 'the finite part of'

These results may be specialized to describe thin, per-
fect conducting surfaces [12]. On such a surface, the ap-
propriate boundary conditions [10] are that the tangential
total electric field is zero, i.e., ﬁx§t=0 (ﬁ defined to be
the outward normal unit vector on S), and that the tangen-
tial total magnetic field is equal to an equivalent surface
current source, 5;, i.e., ﬁx§t=j;. With these boundary con-
ditions, we may immediately write the space-frequency repre-
sentations for the electric and magnetic fields on the sur-
face S as

~ipnec .- AxFP 22 = . ~ e - -
- E : = ——=— < + . 's s !
A x (Ti0) = = L[k I+ v].J (r'50) G (r,r';w) dr (2-11a)

and

js(;;m) =20 x ﬁinc(i;w) - 2ﬁx{ ES(P;m) x VG(T,r';w)ds' (2-11b)
S

Similarly, the space-time representations are given by

3 g-ine (g, A -1t
= 2.2

J(r';1) a5
R
c ot

+ 79] -

(2-12a)
T = t-R/c

18



and

3 = inc =, o '
Js(r,t) =2 nxH (r;t) + o7 X }s [Js(r 3T) X 3
Sy |
+ 27 (Fryr) x ETED e (2-12b)
9T s cR2

T=t-R/¢c

Note that the equivalent magnetic surface current, ﬁs, does
not appear in these expressions. ﬁg is related to the total

electric field by
fi =-axE" (2-13)

which vanishes for perfect conducting surfaces. Note, also,
that for good conductors the effective current source 5 may
be replaced by oEt (o denotes the conductivity of the obsta-
cle), and therefore terms involving nxJ also tend to zero.
As a final remark, we note that the term Zﬁxﬁinc appear-
ing in expression (2-12b) is commonly known as the physical
optics approximation for the current density j;. This ap-
proximation is useful for testing the wvalidity of results

obtained from expressions (2-12a,b) when no results for com-

parison exist.
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Chapter III

FUNDAMENTAL CONCEPTS OF THE SINGULARITY
EXPANSION METHOD

3.1 INTRODUCTION

The motivation for the singularity expansion method (SEM)
is essentially based on experimental observations which have
established that the transient surface currents generated on
structures (scatterers) by arbitrary excitation are primari-
ly in the form of damped sinusoids; the particular shape be-
ing dependent on the form of excitation and the specific
geometry of the structure under consideration. By assuming
that a scatterer can be uniquely specified mathematically by
an associated modal and pole structure, and that the form of
the excitation is known, the SEM enables one to determine
the surface currents directly from an appropriate expansion
of these parameters. Specifically, the expansion was found
to require Knowledge of four parameters [1l]: the natural
freguencies and corresponding natural modes, the structure
of the incident wave, and scalar coefficients that couple
the natural resonances to the incident wave (coupling coef-
ficients). Since the form of the excitation is assumed to
be known, the natural frequencies, natural modes, and cou-
pling coefficients need to ke determined in order to estab-

lish an SEM representation ¢f the problem.

20



Mathematically, the expansion for the space-frequency
surface currents induced by delta function excitation on fi-
nite, perfect conducting objects in free space is given by

[1]

>~ - —m 2 -
ﬁa va(r)(s-sa) ¢+ W(r;s) (3-1a)

(={}]
~
2]
n
~
[l
R

In the time-domain, this representation becomes

s t
U(Ese) = A v (O % + (0 (3-1b)
a

In these equations, s is a complex variable which is related
to the frequency, w, by Im{s}=w, U(r;s), U(r;t) denote the
space-frequency and space-time surface currents, ﬁl denotes
the coupling coefficient associated with the pole S, Sa(}),
;a(;) dencote the natural mode vectors associated with Sy
G(;;s) denotes an entire function and W(E;t) denotes the
corresponding time-transformed function, m, denotes the mul-
tiplicity of the pole s,, and the summations are over all
poles. In Section 3.2.1, we consider space-frequency tech-
niques for obtaining the natural frequencies, and natural
modes. In Section 3.2.2, we present space-frequency techni-
ques for obtaining the coupling coefficients, and briefly
discuss entire functions. In Section 3.3.1, we develop the

Cordaro-Davis method for obtaining the natural responses.
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Available technigues for analyzing the stability of wvarious
finite difference approximation schemes are also discussed
in that section. And in Section 3.3.2, we present transient

matrix methods for determining the coupling coefficients.

3.2 SPACE-FREQUENCY TECHNIQUES

3.2.1 Natural Frequencies and Modes

An arbitrary Fredholm integral equation of the first kind

(e.g., expression (2-1la)) may be cast in the general form

f T(E,5':8) -0(2";8)dr' = T(F18) (3-2)

where ?(E,E';s) denotes a dyadic kernel, ﬁ(f';s) denotes the
desired unknown, and f(f;s) denotes an arbitrary forcing
function.

For simplicity, we will write these integral eguations

using the inner product notation [1]

(F,T'38); U(r';8)> = 1(T;s) (3-2a)

=ik

<

where the appropriate operation between the kernel and unk-
nown will be given above the comma separating these parame-
ters, and the integration is with respect to the common spa-

tial wvariable.
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A natural mode, 3a(f), satisfies equation (3-2a) in the

absence of a forcing function. We may write

. a . “ (3__3)

where s, denotes the corresponding complex natural frequen-
cy.

~

The parameters s, and ;a(;) may be found by discretizing

equation (3-3) using a method of moments [14]

obtain

formalism. We

Y
i

CRENCRNE R (3-4)

where n, m are positive integers, (?ntn(sa)) denotes an n by

m matrix, (;n)a denotes the unknown mode vector of length n,

and (6n) is a zero vector of length n. The magnitude of

both n and m is dependent on how refined the discretization
is.

Equation (3-4) represents a hcmogeneous system of egua-

tions. Such a system has a solution if and only if the ma-
trix (fnxn(sa)) is singular. Hence, the natural frequen-

b
cies, s

o+ Mmay be found by solving

det [Tn’m(sa)] =0 . (3-5)

23



The natural modes may now be found from eguation (3-4) using
the results of egquation (3-5).

Egquation (3-5) is, in general, extremely complicated to
solve. Numerical solution techniques typically use either a
function iteration root searching technique (Section 4.2.1)
or a contour integration [15] (Section 4.2.2) method. The
use of contour integration allows one to locate desired

roots by partitioning the complex plane.

3.2.2 Coupling Coefficients and Entire Functions

The following derivation for obtaining the SEM coupling
coefficients patterns a development due to Baum [5].

Associated with the coupling coefficient, ﬁa, is a cou-
pling wvector, ia(f). The coupling vector is defined to be
the conjugate adjoint of the natural mode, ;](E), and hence

satisfies

<ud(r'); T‘(r,r';sa)> =0 . (3-6)

By applying the method of moments, we have

~
g =
~
Q
.
/N
ke

-n’m(sa)) = (0) . (3-7)

The kernel is now expanded in a Taylor series about

S=s as
a
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T@E,as) = § (s-s ' T, (.79 (3-8a)
,Q
2=0
z 1 o =
= - _ 1 & - -, _
Fg’a(r,r') = 7 ) I'(r,r';s)|, (3-8b)
9s s=s
o
The forcing function is similarly expanded as
TEe) = § (s-s)'1 @ (3-9)
a 2,
2=0
A
- i 9 ~ -
Iz,a(r) = a7 7 e,
9s 18=S

Assuming only a first order pole, we may write the res-

ponse from eguation (3-la) as

[}

(Fis) = fiyu, () (s=s )" + T (F38) (3-10)

where G'(;;s) denotes some analytic function about s=s,.
By substituting (3-9), (3-10) and (3-11) into the basic
'3
equation (3-2a) and matching powers of (s-s,) , we cbtain

<G O(E.E): RS (B> =0 (3-11a)

and

A
=i

(r) . (3-11b)
a

Orerating on (3-12b) from the left by ia(E) yields
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<u, (1) Fl,a(r,r'); r“1m\)0‘(r)> = <u (0); Io,a(r)> (3-12)
since
= =y, F T Ty, f1r T, -
<ua(r), l‘o’a(r,r ); U'(xr';s)>
J' dr! J dr ua(r) 10’a(r,r ) U'(r';s) 0 (3-13)
R3 R3
by equation (3-6). Therefore,
<u (r); I (>
ﬁa == a: —222 ~ (3-14)
= Y. § - _l\. O >
<u, (r); Pl,a(r,r Y3 va(r)>

is the expression for the coupling coefficient at s=s,.

The coupling coefficients relate the incident waveform to
the modal structure of an object. They indicate which modes
are excited and the extent to which they are excited. Baum
[5] has discussed two different, but ultimately equivalent,
types of these coupling coefficients in order to treat two
different philosophical interpretations as to how modes are
activated. In one interpretation, all modes are excited
simultaneously across an object no matter where on the ob-

ject the excitation originated. 1In the other interpreta-
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tion, modes in various regions cannot be excited until the
incident wave has reached those regions. We will not pursue
these types further here.

The entire function, ﬁ, associated with the pole, Sy ¢ is
necessary for equation (3-la) to be mathematically wvalid.
Its form and use are not well understood, however. Typical-
ly, the entire function is omitted by the empiric justifica-
tion of obtaining current distributions directly from a set
of poles which are in good agreement with the distributions
obtained by standard methods [5,16]. The physical signifi-
cance of the inclusion or omission of the entire function

reguires further consideration.

3.3 SPACE-TIME TECHNIQUES

3.3:1 Natural Frequencies, Natural Modes, and Stability
Considerations

In the time-domain, electromagnetic integral equations of

the first kind may be written in general form as

[ ] FEEseen - BEeea - IED (3-15)
R3 Rl

where F(;,}';t-t') denotes a retarded dyadic Green's func-
tion [11}, G(;';t) denotes the desired unknown, and }(;;t)

denotes an arbitrary forcing function.
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For illustrative purposes, we will restrict the discus-
sion in this section to thin, perfect conducting surfaces
for which integral expression (2-12a) is appropriate. The
discussion will also be limited to rectangular (x,y.z) coor-
dinate systems. A similar development applies to other ex-
pressions which may be cast in the form of equation (3-15),
and other coordinate systems.

Since the spatial differential operators appearing in ex-
pression (2-12a) are with respect to the unprimed coordi-

nates, the following variation of this expression is wvalid:

3 inc f 82 _] Es(;'; t-R/c) -
~ b= =. = A - - . _ 1
e i X = E7 7 (r3t) = 4 x [: 2 -tz V?J [ 4TR dr

c 9 5
(3-16)

Here, n is the outward normal on some arbitrary surface S.
The integral over this surface is commonly known as the mag-
netic vector potential. By letting R(;;t) denote this po-

tential, we may write (3-16) as

. = 42 -
i x 2= B (F;e) = a r—l;ﬁ—— - vv} + A(z;t). (3~16a)

The current density, 5;(f;t—R/c), appearing in (3-16) is
typically the unknown which is desired. However, £for nota-
tional purposes, and stability analysis, expression (3-16a)
is also of interest. This will become apparent as we pro-

gress.
28
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In general, when a desired unknown appears buried within
the integrand of an integral equation it is not possible to
determine it analytically. To obtain a numerical solution,
one generally begins by expanding this unknown in some sui-
table set of basis functions. If the function to be expand-
ed is at least piecewise continuous over the region of in-
terest, a suitable basis set would be a pulse expansion for
the spatial variables. 1If the function is also reasonably
well behaved through time, the temporal dependence may also
be expanded as pulses. The function js(E;t-R/c) generally
satisfies these requirements, and hence a pulse expansion in
both space and time is appropriate. It should be noted,
however, that this approximation can become quite poor at
surface edges due to the singular behavior of the current
component parallel to the edge. Special care is required
for such structures (Chapter 6).

The expansion of the current density may be written as

- o, - i
. p}_w Tip Pap(t-poE-R/C)S, () (3-17)

0t~

J (r;t-R/c) =
s .
i

where

PAt\t—pAt—R/c)

0, elsewhere

1, for T in the space segment centered at iAT

{ 1, for t in the time interval centered at pAt+R/c
$, () {
L

0, elsewhere .

29



Here, J denotes the current amplitude coefficients; 1

i,p
denotes a general spatial index, i.e, i may represent one,
two or three integer variables depending on the geometry of
the problem; N denotes a general upper bound for the summa-
tions corresponding to each of integer variables which i
represents; and Ar denotes a general spatial sampling dis-
tance, i.e., Ar= (Ax,Ay,Az).

Expansion (3-17) enables one to write the vector poten-

tial appearing in expression (3-16a) explicitly as
Nk -

h
n -
n'z=l kvz___l pvz_m Jm"n"k',P'

N

it

N

m
A(mA,nA,kA;pAt) Z
m'=1

G|m—m'|,!n—n'|,|k-k'|,(p—p') (3-18)

where

(a+1/2)A (B+1/2)A (8+1/2)4 2 1/2

PAt[”'(“2+V +w)2)c)

y,8,8,n 2 2, 2.1/2 aava

(a=1/2)8 (8=1/2)a (6-1/2)a M *v 4D

m, n, and k being positive integers which are bounded by N,

N and N, respectively, and p is an unbounded integer (by

nl
causality, p may be restricted to positive integers). Neote
that in this expansion we have tacitly assumed that the spa-

tial sampling distance is uniformly equal to some constant,

4, so that the continuous variables, (Xx,y,2), correspond to
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the discrete wvariables, (mA,nA,kA). This is typically, but
not necessarily, done.

The current coefficients appearing in (3-18) are the de-
sired parameters. They may be extracted by approximating
the continuous differential operators appearing in (3-16a)
by central finite difference operators. A thorough discus-
sion of finite difference approximation (FDA) techniques may
be found in Ames [17].

In passing, it is worthwhile to note that it is possible
to establish an analytic equivalence between the finite dif-
ference formulation of a time-domain problem and the basis
set formulation of the equivalent frequency-domain problem
by using inverse transform technigques. This equivalence is
satisfying since it establishes that finite difference tech-
niques are not simply convenient mathematical tools for the
solution of time-domain problems, but are appropriate, phy-
sically meaningful, methods of solution.

By using finite differences, the time derivative of the

vector potential may be written as

—15—3—2 A(Fjr) = —2— 5 [A(r; (p+1)at) + A(r; (p-1)at)
¢ Jt (cAt)
- 2 A(F;pae)l + 0((ar)?) (3-19)

where 0((At)2?) denotes the order of the truncation error in-
troduced in the FDA. The spatial operators may be similarly

differenced (Section 5.3, and Secticons 6.3, 6.4).
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Expression (3-16a) may now be written as (p=1.2,...)
i x A(T; (pH1)AL) = (cAt)? [A x V(V.A(T;pAt))]

-f x A(T; (p-1)At) + 23 x A(T;pAt) + .

3 —q
3_ ginc

3t (T:pAt) + (O(At)z) (3-20)

eo(cAt)zﬁ X
This formulation establishes an explicit or time-marching
finite time-differenced scheme for the vector potential. An
explicit scheme allows one to find future values in terms of
previous results without the need for a matrix inversion.
Note that the values of the vector potential at two previous
times are required.

By substituting expression (3-18) into the difference
equation for the vector potential and manipulating the sum-
mations, we may obtain an explicit expression for the cur-
rent density coefficients, 3143 (general spatial index i).
An explicit expression for these coefficients for the linear
thin-wire problem may be found in Section 5.3. In this sec-
tion, we consider a general expression for these coeffi-
cients which is suitable for an arbitrary geometry. The
formulation willi naturally lead into a discussion of stabil-
ity methods for finite difference schemes.

By translating the continuous temporal and spatial opera-

tors appearing in expression (3-16a) to central finite dif-
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ference operators, and by using expansion (3-18) to repre-
sent the vector potential, the following general representa-
tion for the current density coefficients is obtained (note
that the notation, §p+l’ used to represent all discrete

functions is interpreted as f(mA,nA,kA,(p+l)At)):

T
0= )y B,J' ,+F
p'=-] P PP p+l
or
- -1 NT - -
J' . =B \ -
a+l = B3 p'2=0 By 3 v+ F (3-21)

where Bp' denotes coefficient matrices corresponding to
different times (B__l is a diagonal matrix corresponding to
‘;$+1); Epﬂ_ denotes the forcing function at the (p+1l)-th
time step; and NT denotes an integer which is one fewer than
the number of time steps required for a wave to propagate
across the maximum distance of the structure; in other
words, if, for example, six time steps are required for a
wave to travel this maximum distance, Np would be five since
the summation begins at zero. The prime, E'TH/ indicates a
vector of the current density coefficients of every spatial
point of interest on the structure. And as a finrnal remark,

we note that the rank of the B matrices is dependent on the

particular geometry of the problem being studied. For con-
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venience, we define the rank of these matrices to be some
integer, N.

To obtain the natural freguencies and natural modes, we
are interested in equation (3-21) in the absence of a forc-
ing function, i.e.,

- NT '

Tl * p.z=0 Cor Jp-p' (3-22)
where Cp,=(B_l)—pr,. The solution of this difference egua-
tion may be obtained by z transform technigques. For simple
poles, the solution is given by

=, _ _ptl - _
Jp+l - za va (3-23)

where za=exp§saAt} denotes the transient representation of

the pole, s and ;a denotes a vector spatially describing

al
the natural mode. For poles of multiplicity m,,m,=1l, the

solution is given by

m

m
=, a a p+l = _n
(Jp+l) = (pt+l) z;, va,ma (3-24)

where Jaxn denotes the natural mode vector corresponding to
>

a pole of multiplicity m,. Note that entire functions do

not appear in this development; a pole structure only is the

basis for this method. Pole clusters may attempt to model

an entire function however, and therefore entire functions
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may still be significant although they are not explicitly
represented in the formalism.
By substituting equation (3-23) (assuming first order

poles) into (3-22), we obtain

Ny
- ' -
1- 7 c,22®5 o, (3-25)
p'=0 P o a

This is a homogeneous system of equations. The poles may be

found from

N

. -(p'+1)

det [T - J ¢,z P =0 . (3-26)
pi=p P @

The modes may now be found from (3-25).

There is an alternative to this z transform solution
technique. Any finite difference scheme in the form of
equation (3-22) may be condensed into an equivalent two-lev-
el matrix form [17] by introducing a state vector, Kp for

the p-th time step, such that (T denotes transpose)
=T _ [T =,T -,T _
Kp {%p s Jp—l’ ..... s Jp—Né}’ (3-27)

a state transition matrix, ¢, such that
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[C. € ceernnn. c. |
0 1 Ny
I 0 eeeene. 0
¢ = 0 I - . rY (3-28)
| 0 ...... 0... 10 |
and forming
Kp+l = @Kp (3-29)

A discussion of error propagation, or a stability analy-
sis of finite difference schemes is appropriate at this
time. A discrete finite difference representation of a con-
tinuous problem may yield an unstable (unbounded) solution
when certain relationships between the sampling distances
used for different variables are not satisfied. For hyper-
bolic equations (wave equations, e.g., equation (3-16)) the
relation between the time sampling (At) and spatial sampling
(A, assuming a uniform sampling distance in all directions)
distances are of interest. It has been shown by Courant,
Friedrichs and Lewy (CFL) [17] that the time sampling dis-
tance for these equations can be at most equal to the spa-
tial distance, i.e., At=A. This is the most lax restriction

possible; it can tighten considerably depending on how the
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discretization is implemented. Two methods are available to
analyze the stability of finite difference schemes for li-
near equations. We consider these now.

The state transition matrix appearing in equation (3-29)
contains all the information of the finite difference ap-
proximation (including boundary conditions). A stability
analysis of the difference scheme may be done by examining
the magnitude of the eigenvalues of this matrix. If all the
eigenvalues are less or equal to one in magnitude, errors
will not grow through time and hence the solution will be
bounded. This technique is known as matrix stability analy-
sis. The matrix stability method is useful for testing if a
known CFL condition yields a stable soluticn. It does not
predict, in general, the specific numerical wvalue regquired
for stability. An alternate method may be used to deter-
mine, or at least approximate, this wvalue.

A simple method known as Fourier stability analysis may
be used to determine the stability criterion for an uncom-
pressed difference scheme (e.g., equation (3-20) or (3-22)
instead of equation (3-29)). The method analyzes only the
specific difference equation and hence igncres the irnfluence
of koundary conditions. Since boundary ccnditions can in-
fluence the stability of a scheme, the Fourier method is not

considered as thorough as the matrix method. However, since
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a specific number, whether exact or approximate, for the CFL
condition is readily produced, this method provides useful a
priori information about a particular difference formula-
tion. The matrix method may always be used to confirm the
stability criterion given.

In brief, the Fourier method examines the propagating ef-
fect of a single row of errors along some arbitrary line of
the FDA. This is accomplished by determining an exponential
solution for the difference scheme from discrete separation
of variable techniques. For a stable solution, restrictions
on the exponential solution must be enforced. A one-dimen-
sional example may be found in Section 5.3. Two-dimensional
examples may be found in Sections 6.3, 6.4.

Stability alone does not imply convergence of the FDA to
the true solution. For a thorough discussion on matrix and
Fourier stability methods and convergence regquirements one
should refer to Ames [17].

The stability of physical problems is mathematically de-
scribed by the location of poles in the complex plane. The
stability of the finite difference representation of elec-
tromagnetic expressions is dependent on the magnitude of the
eigenvalues of ~he state transition matrix. Hence, we anti-
cipate some relation to exist between these eigenvalues and

the true poles.
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The relation follows simply by considering the solution
of the difference equation, equation (3-24), applied to the

state transition formulation. For first order poles, we may

write
PR =0 PR (3-30)
or
z, 1‘<a = ¢ 1’<a . (3-31)

This represents an algebraic eigenvalue problem for the ei-
genvalue, z, and the eigenvector, Ra. It can be shown that

the natural mode, Ga, and ﬁa are related to one another by

N N -1
gL = E. T3 T 35T . , GT:[ (3-32)
a [o 4 [o 4 a [o 4

The poles, s,. may be found by solving

Sy = ln(za)/At . (3-33)

3.3.2 Coupling Coefficients

A method has been presented which determines the natural
frequencies and natural modes. To complete the SEM form of

solution we need to determine the coefficients that couple
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the natural frequencies and modes to the incident forcing
function. Two different formulations of these coupling
coefficients are possible in the time-domain. Cordaro [18]
has suggested a method to obtain an exact representation of
the coefficients when a complete set of distinct eigenvalues
(first order poles) is known. This is accomplished by using
eigenvector decomposition technigques. The basic method may
be extended to obtain an approximation to the coefficients
when only a partial set of distinct eigenparameters is
known. An alternate formulation for a partial set of poles
is a time-domain analog of the frequency-domain technigue
previously presented (Section 3.2.2). We will initially
consider Cordaro's method.

Define a state vector, ﬁn, to represent a normal incident

forcing function at the p-th time step as

G = [F, 0, ..... . 0]
D D

Here, Fp and O are 1xN row vectors.

(3-34)

Note that for a delta or impulse excitation only ﬁn is
nonzero. The state current distribution may now be written
explicitly as (a state representation of the forcing func-

tion has been added to equation (3-29))
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. m-1 mei-1
E = 7 o701, (3-35)
m . 1
i=0

where m is some arbitrary time step. By assuming a full set

of distinct eigenvalues, A, and corresponding eigenvectors,

[, we may decompose ¢ as

o = TAT L | (3-36)

Equation (3-35) may now be written as

m-1 .
R =1 J amitlp-l T, . (3-37)

Since only the first N components of the eigenvectors

correspond to the natural modes, we introduce a vector, T_,

to spatially describe only the first N components of the

state current vector Kp (the first N components define J

o)

We may write (assuming an impulse excitation)

= o1 -1 = _
T, = [T, 0, ..., OIPAPTS 770 T (3-38)

Here, I and 0 denote NxN identity and zero matrices.

Next, we let M be defined to be the unnormalized natural
mocde matrix and C be defined to be the unnormalized vector
of coupling coefficients. They are given respectively bv

rTr1, 0, ..., 01% , (3-39)

o =
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C=rT Ty - (3-40)
Combining these results yields
T, =M AP E (3-41)
or equivalently
To=l2 Y, (3-42)

where the pole s, is related to z, by equation (3-33), n,

denotes the coupling coefficients, and ;a denotes the cor-
responding natural modes. Equation (3-42) is the desired
SEM representation.

When only a partial set of eigenvalues is known, the de-
composition of ¢ as given by equation (3-36) is not possible
exactly since the inverse which appears only exists in a
generalized or pseudo inverse sense. Therefore, only a
least squares approximation to the coupling coefficients is
possible in this case.

This complication may be avoided by developing a time-do-
main formulation for the coupling coefficients analogous to

the frequency- domain method (Section 3.2.2). We begin by

replacing F(r,r';s) by a matrix function T(z) defined by

N T
1 »
NT+__ T ] (NT i)

T(z) = |z I - C (3-43)



By following similar power series expansions, we then define

. . % i |
Tl’a(za) in analogy with an (r,r') to be

Np Np=1) (N -1-1)
L (Z) = |z T Z (N-1)C,z, (3-44)

We define, next, the coupling vector, ;a(;), to be the first
block of N elements of the left eigenvector! corresponding
to the a-th eigenvalue of the state transition matrix.

By replacing the frequency-domain inner product opera-
tions by matrix multiplications, we may write the coupling
coefficient at z=z =exp{s, At} as

T I(z,)

n (z,) = 5 — (3-45)
° e ud(Tl,d(ZG)vd)

where f(za) is the forcing function vector evaluated at z,
It should be noted that when each of the sub-matrices of
the state transition matrix are symmetric, the first N rows
of the left and right eigenvectors are identical to a nor-
malization factor. This is not true for the remaining por-

tion of these vectors, however, since it can be shown that

! Let p be the right eigenvector of the transpose of some
matrlx A corresponding to the elgenval % X. Then p satis
fies AT p=Ap. Now consider (Arp) —p A=p~ ) In this case,
p is known as the left eigenvector of the matrix A.
Hence, p is either the right eigenvector associated with
the matrix AT or the left eigenvector associated with the
matrix A corresponding to the eigenvalue ).
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the left eigenvectors have a much more complicated structure
than the right eigenvectors.

The matrix decomposition formulation is recommended when
a full set c¢f distinct eigenparameters is known; the left-
richt eigenvector formulation is recommended when a partial
set is known.

In conclusion, we note that although the TD-SEM formula-
tion for obtaining the natural frequencies and natural modes
is relatively straightforward, a fundamental complication
does underlie the method. Since the size of the transition
matrix is highly dependent on the geometry and the level of
discretization of a particular problem, it is possible, even
for simple geometries, to generate a transition matrix which
surpasses the high speed storage capabilities of the largest
computers. A variety of techniques which attempt to handle
this complication by taking advantage of the form of this

matrix are presented. in Chapter 4.
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Chapter IV

EIGENSOLUTION METHODS FOR THE TRANSITION MATRIX

4.1 INTRODUCTION

The TD-SEM model is a straightforward and efficient meth-
od for determining the SEM parameters for simple geometries
discretized with relatively few unknowns. This is accom-
plished by transforming the pole searching problem into an
algebraic eigenvalue problem (Section 3.3.1). As the number
of unknowns increase, however, the matrix which TD-SEM gen-
erates becomes unmanagably large, thereby making the search
for eigenvalues difficult and complicated.

The matrix ¢, whose eigensolution is sought, is given by
equation (3-28). Some comments are in order about the form
ané properties of this matrix.

$ is known as a sparse matrix since it contains a large
number of zero elements. It is in block upper Hessenburg,
or more specifically, block Frobenius form [19]. A matrix
in Frobenius form possesses no symmetry properties, and
therefore, ¢ unfortunately falls into the class of unsymme-
tric real matrices, or general real matrices. This is in-
deed a complication since the field of eigensolution methods
is both narrowed and complicated for unsymmetric matrices
due to the possibility of obtaining complex eigenvalues and
generalized eigenvectors.
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A matrix in Frobenius form possesses the property that it
is its own companion matrix. 1In other words, the problem of
determining the eigenvalues, X, of ¢ may be done in either
of twc possible forms. First, we may consider the full ma-

trix and solve

det [¢ - AI] = O (4-1)

where I is the identity matrix; alternatively, we may solve

Nptl o Np

det [A I-2 Co - ieeen -C., ] =0. (4-2)
where CO,Cl,...,CNT denote the sub-matrices of the top row
of the transition matrix. The former scheme generally leads
to eigensolution methods, whereas the latter generally leads
to root searching methods. An exception is an application
of Laguerre's root searching method to a matrix in Hessen-
burg form [20].

Laguerre's method and various other root searching meth-
ods are discussed in Section 4.2. Eigensolution methods for
unsymmetric matrices are presented in Section 4.3. A survey
of eigensolutiog methods for symmetric matrices may be found

in [21].
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4.2 ROOT SEARCHING METHODS

We are required to find Xi' i=1,2,..... NP(NT+1), such
that
det [Bi] =0 (43
where
N.+1 N
_ T T
By = [~ T - c -un.- CNT] (4=4)

is an N XN polynomial matrix.

We consider three techniques for obtaining the roots of
equation (4-3). In the first approach, (4-3) is solved di-
rectly. This regquires root searching methods which utilize
function iteration since the explicit coefficients of the
characteristic equation are not known. Muller's method [22]
represents a logical method for solution and is discussed in
Section 4.2.1. An alternate method for obtaining these
roots is to use the complex contour integration method of
Singaraju, Giri, and Baum [15]. This technique is presented
in Section 4.2.2. The third approach is to exploit polyno-
mial matrix reduction methods [23] whereby the polynomial
matrix (4-4) is iteratively reduced into a triangular polyn-
omial matrix. The explicit characteristic equation is then

the product of the diagonal polynomials. A wide selection
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of efficient polynomial zero searching methods may then be
used to find the roots. A polynomial matrix reduction meth-
od is discussed in Section 4.2.3.

An application of Laguerre's method is presented in Sec-
tion 4.2.4. Since this technique does not utilize either
form (4-3) or (4-4) we consider it to be independent of the
methods previously mentioned. However, since the method is
a zero searching method it logically belongs within Section

4.2.

4.2.1 Muller's Method

The following is a brief summary of the work due to Mull-
er [22].

We are interested in determining the wvalues of \ which
satisfy f£(2)=0, for some function f. One begins the process
with the values xi, hi’ ki' f(ki), f(xi_l), and f(xi_z),

where xi, h and ki are some judicious initial guesses, and

il
i is an iterative index; ki+l is then determined by the for-
mula

~2£(x,)5,
- (4-5)

e - . .- . .. . .
i+l z 1
- —f /

gi+(gi 4f(li)5iki[f(ki_2)ki -(Ki_l)6i+f(ki)] 2

where
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§, =1+ ki’ (4-5a)

i
and
g, = £\, K2=E(A, -)E2+E(N,) (k,+5.) (4-5b)
1 1-27 %3 7E A g 0T A ) LK Oy
Then
Aipp T A TRy o (4=3e)
hipp = ki By s (4-5d)
and
OV (4-5e)

are computed. The sign of the square root in the formula
for ki+1 is chosen to make the denominator have the greater
modulus. The formulas are derived by fitting a quadratic of
the form, byi2+b;i+b,, through the following three points
g 200G Oy i-1
cients by, b;, b, satisfy

,E(X )), (xi_z,f(x._z)). The coeffi-

1

.2 _

by Ay + by A, +b, = f(xi)

b A% . 4 b, A + b, = £f(A

o "i-1 1 Mi-1 2 ( i—l)

b A2+ b, A + b, = =55
o M-2 TPy A v By = £(R ) (4=5£)
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The process iteratively continues until some specified
criterion for acceptance of the root estimate is satisfied
or an upper limit on the number of allowed iterations has
been reached.

It is interesting to note that the convergence properties
of Muller's method have never been proven for polynomials
with orders greater than two. Nevertheless it is commonly
used on relatively large polynomials with excellent results.

For our purpose, equation (4-3) denotes the function f
discussed above. In general, only one determinant evalua-
tion is required for each estimate at ;. Excellent results
({eight to ten digit agreement with known solutions) were ob-
tained using this technique for systems which possessed ap-
proximately 110 roots. For higher order systems, however,
fewer and fewer of the predicted roots had any relation to
the actual roots. In particular, for a system which was
known to have 225 roots, only 4 of the predicted roots had
any relation to the actual roots. This breakdown is attri-
buted to decreased separation in the roots of large systems
({since by stability, all the eigenvalues must fall within
the unit circle in the complex plane), coupled with the num-
erical roundoff errors associated with evaluating egquation

(3-3).
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4.2.2 Contour Integration

The following brief summary is based on the work of Sin-
garaju, Giri, and Baum [15].

If a function f£()\) is meromorphic? in a simply-connected
domain D containing a Jordan contour C, and g(\) is some
analytic function within D, we may write using the residue

theorem

N
Zii Jc Tt s =izi 50, ) (4-6)
where Xoiis the i-th zero of £()\) in C, No is the total
number of zero's within C, and the prime denotes differenti-
ation.
Since g(\) is an arbitrary analytic function, we let
g(M=\x , k=0,1,....,N;. The zero's of £()\) in C may then be

obtained from the non-linear system

A, A, F oo, + A = C1.

0l 02 ON 1

o
2 2 2
+ + e =

Aol AOO +>\0N I2

. . & . o . (4_7)
A]‘(\;O + Ago + ceenes + Ago = IN

1 2 No 0

2 A meromorphic function is a function which may be repre-
sented as the quotient of two entire functions and which
possesses poles only in the finite complex plane.
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where

J [ kEo) i -
I = - JC A T6)) di k 0,1,2,...,N (4-8)

This rather unique technique has been shown to be quite
effective for obtaining the natural frequencies from the
space-frequency formulation of the linear, thin-wire prob-
lem. In this formulation, the function £(}) mentioned above
correspeonds to det[Z(sa)], where S, denotes the natural fre-
quencies, and Z2(¢) denotes the moment method impedance ma-
trix. 1If, for example, twenty unknowns are used for the
discretization, then the evaluation of this determinate is
basically equivalent to the evaluation of a twentieth degree
polynomial. Numerically, this evaluation should nct present
many complications; whence, the evaluation of the contour
integral (4-8) and the subsequent solution of the non-linear
system (4-7) should be numerically quite stable.

The situation is a bit more complicated for the TD-SEM
formulation of this problem. The determinate of equation
(4-4) now denotes the functicn f()) above. For a similar
twenty unknown discretization, f()) now corresponds to the
evaluation of approximately a four hundredth degree poliyno-
mial. This represents a serious accuracy problem numerical-

ly. It was feared complications similar to those observed
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with Muller's method would develop with this method when the
determinate of equation (4-4) was evaluated prior to the
integration, and therefore the method was not further pur-
sued in this context. By interchanging the determinate and
integral operations, however, it may be possible to avoid
the numerical errors associated with the determinate evalua-
tion. The interchange may effectively result in a 'numeri-
cal smoothing' which will give meaning to the evaluation of
the determinate even for large scale problems. Confirmation

of this conjecture is delayed to a future study.

4.2.3 Polynomial Matrix Reduction

A matrix of polynomials may be triangularized by using
similar elimination methods to those associated with the re-
duction of standard matrices [23]. A simple example is the

most efficient way to describe the method.

Example 4.1

We consider the matrix

where
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— - -—

11 12 11 12 (4-9a)

By performing elementary operations, this matrix may be re-
duced to triangular form to yield the explicit characteris-

tic equation

4 .3 2
¥ -3 . +c. ) -r%(c. +c, +C. C. -C. C. )
0y 013 1o 117 032 093 015 Oy

+ 1 (C c, +C c, -C C, -C C ) + (C c, -C c )

O11 122 O22 111 Q12 1p1 112 o1 Lo 111 ti2 l;;
(4-10)
Any of a wide variety of polynomial zero searching methods t
may now be used to determine the roots.
This example establishes the basic technigue. In theory

it may be applied to a matrix of arbitrary size. Unfortu-
nately, in practice the method numerically breaks down due
to piling of the coefficients of the eliminated polynomials
cn the diagonal polynomials. This results in a wide dynamic
range in the diagonal coefficients which causes simultaneous
overspill and underspill. This was observed for systems
with only 56 roocts. A scophisticated machine based scaling
system [24] could have partially controlled this dynamic

range difficuity; however, it was feared it would simply
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postpone the breakdown to a slightly larger system and was

therefore not pursued.

4.2.4 Laguerre's Method

An application of Laguerre's method suitable to the ei-
genvalue problem has been developed by Parlett [20]. The
following brief summary is based on his work.

Let A be an approximation to a root of the polynomial
p()), where p()\) is of degree n. Laguerre's method requires
p()), p'()\), and p''()) (prime denotes a derivative with re-

spect to the argument) to obtain a better approximation. By

defining
2
_p') _('A))T - pM)pt (M) _
s; ) = EE?XT and s, (A) = 2. (4-11)

(p())?2

Parlett derives

A, .= A, - — n (4-12)

S?t((n;l)fnsz—Si))l/Z

where the square root which maximizes the absolute value of
the denominator is chosen and n denotes the degree of the
polynomial p(l) (for the details of this expression one

should refer to Parlett [201).
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Several convergence properties have been proven for La-
guerre's method. A listing may be found in Kelly [25].

Although the formulas given seem applicable only for po-
lynomials, they may be used on a matrix in Hessenburg form
by using Hyman's method [20] to recursively yield the re-
quired derivatives directly from this matrix. Unfortunate-
ly, ¢ is in block upper Hessenburg form and not standard up-
per Hessenburg form. To use Hyman's method a transformation
to standard upper Hessenburg form (Section 4.3.1) would be
required. Such a transformation generally destroys the
sparse properties of a matrix, thereby making use of Laguer-
re's method in this context unfeasible for determining the
required eigenvalues.

In summary, the direct root searching methods tested
which exploit the form of equation (4-3) (i.e., Muller's
method, and the polynomial matrix method) were found to be
useful only for relatively small systems due to root crowd-
ing and errors associated with the numerical process (in
particular, the determinant evaluation). The contour inte-
gration technigque may prove useful for large systems if the
integration can numerically smooth the required determinate;
the feasiblity of this requires further consideration. Par-
lett's application of Laguerre's method is an excellent one

fcr solving large sparse matrices in Hessenburg form. To
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use this method on the transition matrix a transformation
would be required. More powerful methods exist when such a

transformation must be made.

4.3 MATRIX EIGENVALUE METHODS

Matrix eigenvalue methods typically fall in either of two
catagories: similarity transform methods or wvector itera-
tive methods. Although only the latter explicitly classi-
fies the methods as iterative, similarity transform methods
are iterative as well. Indeed, by Galois theory [26], the
roots of any polynomial whose order is greater than four
must necessarily be found iteratively. We will initially
consider similarity transform methods and then conclude with

vector iterative, or power, methods.

4.3.1 Similarity Transform Methods

Let P be a general matrix of order n. A similarity

transformation (to create a similar matrix P,)

P, = Q7! rq (4-13)
where Q is any non-singular matrix of the same order as P,
preserves the eigenvalues of the matrix P. A judicious
choice of Q enables one to change the fcrm of P so that its

eigenvalues may be readily found, i.e., triangularize P.
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Typically, the triangularization process requires several
steps since only a few elements of P are operated on with
each similarity transformation.

The most common triangularization routines available are
the LR [27] and QR [28] algorithms. Both of these methods
are relatively inefficient for fully populated, or dense ma-
trices (few zero elements). However, when a matrix exhibits
a certain pattern of zero's they become quite efficient.

The desirable pattern of zero elements for general matrices
is that which is associated with an upper Hessenburg matrix.
To effectively use the QR or LR algorithms, then, one must
initially transform the general matrix of interest to upper
Hessenburg form. This reduction is accomplished by using
either orthogonal transformations which require approximate-
ly 5n2%/3 multiplications, or elementary stabilized transfor-
mations which require approximately 5n3/6 multiplications

[29].

4.3.1.1 The LR Transformation
Let P, be the matrix obtained from the (k-1l)-th transfor-

mation. Py may be factored, or decomposed, as

P e X (4-14)
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where Lk is a lower triangular matrix with unit diagonal
elements and Rk is an upper triangular matrix. The updated

iterate is then obtained by forming (k=1,2,...)

Prt1 = R Lxe (4-15)

Combining (4-14) and (4-15) yields

Pt = M P Iy (4-16)

which establishes the similarity transform form and hence
the preservation of the eigenvalues at each iteration. The
(k+1)-th transformation may be stepped back to the original

matrix P by writing

Pk+l = Lk Lk—l ... Ll P Ll eeo. L L (4-17)

It can be proven that the eigenvalues of smallest moduli
tend to converge first and that the rate of convergence is
dependent on the ratio of the moduli of neighboring eigenva-
lues [27]. By introducing origin shifts the convergence rate
can be improved [19].

Approximately 2 to 3 LR transformations are required per
eigenvalue. As eigenvalues are found, the amount of re-
gquired computation steadily decreases due to smaller matric-

es which must be operated on. Approximately n® multiplica-
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tions are required for the first few transformations, but
only 3n® to 4n3® multiplications (including the upper Hessen-
burg transformation) are regquired to obtain a full set of n
eigenvalues.

A thorough theoretical discussion of the LR algorithm may
be found in [19]; computational aspects may be found in
[30].

The use of an orthogonal factorization introduces favora-
ble stability and accuracy properties throughout the entire
triangularization process [19]. Such a decomposition leads

to the QR transformation.

4.3.1.2 The QR Transformation

When the lower triangular matrix used in the LR algorithm
is replaced by an orthogonal matrix we obtain the most basic
form of the QR algorithm. Letting Qk be the k-th iterate

orthogonal matrix we may write the basic steps as

HJ
I

k- % R (4-18)

and

(4-19)

|
O
b
"
5 )
O
o2
|
QO
o2
w’ﬂ
O
o2

Pl TR Q=
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The convergence properties of the QR method are similar
to the LR in that convergence is toward the eigenvalues of
least moduli, and approximately 1 to 2 double QR transforma-
tions [19] are required per eigenvalue. The orthogonal de-
composition does require more computation, however. Approx-
imately 5n2 multiplications are required for the first few
double transformations; the entire process requires approxi-
mately 4n® multiplications (including the upper Hessenburg
transformation).

Although slightly more computation is required, the QR
method is preferred over the LR due to its superior stabili-

ty and accuracy properties for obtaining both single and

multiple real and complex eigenvalues. This is the case
when the original matrix is real. A version of both of
these algorithms exists for complex matrices [19,30]. In

practice, the complex LR algorithm has been preferred to the
complex QR since it is somewhat simplier in content but com-
parable in stability and accuracy.

The LR and QR algorithms represent the most accurate and
efficient methods available for obtaining a full set of ei-
genvalues from a dense matrix which has been transformed to
upper Hessenburg form. A full set of corresponding eigen-
vectors may be obtained by accumulating the transformations

used in the LR or QR reductions (this increases the number
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of required multiplications by approximately a factor of
two); a partial set may be obtained by using an inverse it-
eration method [19]. To use the LR or QR methods, however,
matrices must generally be stored in full storage mode since
similarity transformations typically destroy any sparse
properties. Hence, these methods are only useful on matric-
es with orders less than a few hundred. The size of the
transition matrix generated by TD-SEM can easily be on the
order of thousands and therefore excludes itself from full
eigensolution by these techniques. Only partial eigensolu-

tion by iterative eigenvector methods remain.

4.3.2 Iterative Eigenvector Methods

Iterative eigenvector, or power, methods may be used to
find either a full, or more commonly, a partial set of ei-
genvalues and eigenvectors. Since only matrix multiplica-
tions, in general, are regquired by these methods any sparse
properties of the original matrix may be taken advantage of.
Iterative eigenvector methods may be divided into two class-
es: single vector and multiple vector methods. Both methods
begin with an initial estimate or guess at an eigenvector
which, hopefully, will iteratively converge to an actual ei-
genvector of the system. The correspconding eigenvalue is

consequently found.
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4.3.2.1 Single Vector Power Methods

The standard and inverse power methods represent the two
single vector methods commonly used in practice. We will
initially consider the standard method.

Let P be an unsymmetric matrix of order n with n indepen-
dent eigenvectors. An arbitrary vector u‘’’ (where (o) de-
notes the iteration number) may be expressed as a linear

combination of these wvectors, i.e.,

(@ 3 +C 3 (4-20)

= Clql + C2q2 + ... 295

where &i, c i=l,2,....,n, dencte the eigenvectors and ar-

'y

bitrary coefficients respectively. Postmultipling P by uto?

yields
n n
aD= p5@ o y C,Pq. =) Ar.C.q (4-21)
. 1 1 . T 11
i=1 i=1
where xi denotes the eigenvaiue corresponding to &i' If the
eigenvalues can be ordered as !xl|>|k2|20000002|kn|, then
u‘l’ should represent an approximation to the eigenvector g,

corresponding to the dominant eigenvalue \;. This approxi-
mation will iteratively improve by forming

) _ pk 5O _ kg 3. + 2%

- k. -
10191 T A0, + . A CG (4-22)
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since for a large enough Xk, |x1|k>>|xz|k.The ratio A1 |/|X2]|
determines how gquickly the scheme will converge to some spe-
cified degree of accuracy. Convergence will be gquite rapid
if there exists good separation between these eigenvalues.
Convergence will be very slow if this ratio is close to uni-
ty. A variety of modifications exist to speed convergence
under various circumstances [19].

_The inverse power method requires more computation than
the standard power method, but allows one to approximate ei-
genvalues and eigenvectors other than the dominant ones. We
begin the method with some scalar a, and some initial vector

u'®’, and consider the iterative system (k=0,1,2,...)

=(tl) -1 = (k)

(P - al) (4-23)

where I is an identity matrix. Note that this is the stan-
dard power method applied to the matrix (P-al)~! which pos-
esses the eigenvalues, 1/(xi-a), i=1,2,...,n. The method
converges %o 1/(Xj-a), where Xj is the eigenvalue closest to
.

From the convergence properties of the standard power
method, we note the following properties of the inverse
method. When ¢ 1s zero, convergence is toward the least do-
minant eigenvalue of ?. When the value of o is close to an
eigenvalue, convergence will be guite rapid, »ut when 2 is a

poor eigenvalue estimate, convergence may be quite slow.
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In practice, the inverse observed in eguation (4-23) is
rarely explicitly determined. A decomposition or Gaussian
elimination is used on the matrix (P-«l) which requires ap-
proximately n3/3 multiplications. Another n? multiplica-

= (k)

tions are required to determine each new u (eigenvector
iterate). The standard power method does not necessitate a
decomposition and is therefore more efficient than the in-
verse method for the same number of iterations. The number
of iterations required for the inverse method, however, will
be significantly smaller when a good guess at an eigenvalue
is known. Typically, the two methods are used in conjunc-
tion with one another. The standard method determines a
good initial guess which is then refined by the inverse
method.

Once a single eigenvalue and eigenvector is known it may
be filtered out of the original matrix by either purifica-
tion or deflation (29]. The power methods akove may then be
used on this filtered matrix to find another eigenvalue and
eigenvector. These may then be filtered out, and so on.

The state transition matrix is not only very sparse, but
possesses a full set of eigenvalues whose moduli are less
than unity. These two properties exclude the use of single
vector power methceds fcor the following two reasons: first,

the purification or deflation processes which are required
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to find several eigenvalues possess the unfortunate property
that they destroy sparsity in general; second, the ratio of
the moduli of neighboring eigenvalues is generally so close
to unity that convergence is impractical in a reasonable am-
ount of time. Experimental verification of these two com-
plications has established that single vector power methods
do not constitute a feasible method of solution for the

large scale state transition matrix.

4.3.2.2 Multiple Vector Power Methods

Multiple vector methods are power methods which iterate
with several vectors simultaneously. The name simultaneous
iteration (S.I.) has been given to these methods.

Bauer [31] introduced the first S.I. concept, called
'Bi-Iteration'. This method solved the algebraic eigenvalue
problem Pu=\u for an arbitrary matrix P of order n. The
idea of the method was to iterate with two sets of vectors,
ﬁl,ﬁz,....,ﬁs and ql,az, ...... ,&S (ssn) applied to P and pt
(H denotes Hermitian transpose) respectively. By maintain-
ing ﬁi and aj biorthonormal (G?§j=dij, where §;; is the Kro-
necker delta), it can be shown [31l] that under certain con-
ditions the u; converge to the right eigenvectors, and the ij

converge to the left eigenvectors corresponding to the ei-

genvalues Xi, kj.
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Since the initial development of bi-iteration, emphasis
has been placed on developing simplified versions with im-
proved convergence properties. Rutishauser [32] developed
an efficient computer implementable version for symmetric
and positive definite matrices; an ALGOL listing may be
found in Wilkinson [30]. Clint and Jennings [33] introduced
a modification for unsymmetric matrices which improved con-
vergence by using an 'interaction analysis'. An unsymmetric
method which utilized an interaction analysis and required
only one set of iteration vectors was subsequently developed
by Jennings and Stewart [34]. The following discussion is
an extension of the latter contribution.

Jennings and Stewart restrict the left and right itera-
tion vectors to only the right set. For this set, the fol-

lowing iteration sequence is appropriate (k=1,2,..... ):

i) v. =PU

k k-1
. H
1) G = U Y
111) H_= Uﬁ_l v,
v) 6D = H_

V) DAy = A O
vi) W =V A

vii) U, is W, normalized. (4=24)
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We introduce the following geometrical argument to

justify this seguence of operations. Let

V. =P U (4-25)

where U1 contains an approximation to a subset of the ei-
genvectors of P. ¥ may be decomposed into the sum of a

projected matrix and an orthogonal matrix,

~ yProi. o Vortho.

kT Vk K
ortho.
= O DY) TV
. .ortho.
= BhP T V% (4-26)

where E., Tk, and Dk are to be determined. Combining (4-25)

and (4-26) yields

PU_, = ET,D, + virtho‘
= 58, T, + vﬁrth°' (4-27)
if and only if
8,7, = T, D, (4-28)
or
DkAk - Akek (4-29)
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where AkéT;l. Equation (4-29) defines an eigenvalue problem
for Dk7 the eigenvalues of Dy are given by the matrix Ok,
while the eigenvectors of D, are given by the matrix A,. D,

is found by solving the linear system

H _ . H
Uk—l Vk = (Uk_l Uk-l) Dk (4-30)

The updated iterate is then

TV A T Uy (B )+ VRO A (4-31)
where U, is a normalized W,. Note that in the iteration cy-
cle an approximation which ignores the contribution of the
second term on the right of equation (4-31) is made. This
approximation is reasonable since the second term tends to
zero as the number of iterations becomes large (due to A,
approaching a span of the projection space).

This sequence of steps is appropriate for a right eigen-
vector or Vi, projection scheme. A similar sequence may be
developed for a Uk—l projection scheme. In the latter case
convergence is toward the reciprocal eigenvalues.

A few comments are in order a2bout the sequence of steps
in the iteration cycle. U, represents the initial guess to
a dcminant block of eigenvectors which may be with real num-
bers. The entire process proceeds in real arithmetic until
the 'interaction matrix', D possesses complex eigenvalues;

k ,
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the process then becomes complex. When this transition is
made, G, becomes a positive definite Hermitian matrix for
which a modified Cholesky decomposition has been developed
to minimize the operations required for the solution of step
iv.

If Uk contains s approximations to s eigenvectors (s<n,
where n again is the order of the original matrix P), then
the matrix ek contains s approximations to s eigenvalues.

It can be shown [34] that the rate of convergence of the
above sequence is dependent on the ratio |X1|/IXS+JJ and not
on the ratio |[A;|/|X2| which governs the single vector meth-
ods. Convergence is toward the dominant eigenvalues.

For certain geometries (Section 5.3.2) the eigenvalues
associated with the state transition matrix exibit a well
defined series of annular rings. Within each of these rings
the eigenvalues are of comparable moduli. Between rings
there is a significant jump in moduli. Since the conver-
gence rate of the simultaneous iteration scheme above is de-
pendent on the ratio of neighboring blocks of eigenvalues
instead of the ratio of neighboring eigenvalues, and since
the scheme requires only matrix multiplications which pre-
serve sparsity, simultaneous iteration represents a reascn-
able method for obtaining a partial set of eigenvalues and
eigenvectors for ¢. Theoretically, rings may be found one

by one until a desired set is collected.
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A complication with this method is the number of
multiplications required per iteration. For a real arith-

metic cycle approximately [29]

necs + % n52 + % 53 (4-32)
multiplications are required. Here, c denotes the average
number of nonzero elements in each row of the matrix whose
eigensolution is sought, n denotes the order of this matrix,
and s denotes the number of eigenvalues desired. For a com-
plex cycle this number increases approximately by a factor
of four.

As the order of the matrix whose eigenvalues are sought
increases, the separation between neighboring blocks of ei-
genvalues typically decreases, and therefore, more itera-
tions are required to obtain a specified degree of accuracy.
It can be shown that the approximate number of required it-

erations (k) to obtain a certain degree of accuracy is

k = lne/ln|>\l/>\s+l| (4-33)
where s denotes the block size, and £ denotes the accuracy
desired, .i.e., 0.0001,0.001, etc.. Figure 5.9 (Section

5.3.2) illustrates size of the state transition matrix vs.

execution time required on an IBM 3032 computer for a parti-
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cular subset of eigenvalues. Figure 5.10 illustrates sto-
rage requirements for both the QR and S.I. methods.

A significant reduction in the number of multiplications
required per iteration may be accomplished by taking advan-
tage of the form of the eigenvectors associated with the
transition matrix. For simplicity, equation (3-32) is re-

—

peated here as

-1
-1 . Np_p Ne~*or -T
Ky =Mz vy sz vy eeen, vyl (4-34)

where z, denotes a particular eigenvalue, and ;a denotes a
vector spatially describing the natural mode. Since the en-
tire state vector i& can be constructed once these two par-
ameters are known, it should be possible tec carry out the
simultaneous iteration cycle with only a subset of the state
vector. Under certain conditions this is possible and has
been given the name 'sub' iteration.

The sub iteration modification may only be used after the
proper form of the entire state vector has appeared. This
can typically take several iterations since the vectors are
constructed from the top down. A sophisticated computer
program which incorporates this idea has shown that the de-
sired form cannot be forced in general, it must appear na-
turally. Once the form appears, however, the use of sub it-

eration for the remaining iterations will drastically reduce
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the execution time. Random sparse storage techniques [29]
were used in this algorithm to store the state transition

matrix.

Of all methods tested, simultaneous iteration with the
sub iteration modification represents the only feasible
method for the partial eigensolution of the large scale
state transition matrix. The amount of computation time re-
quired using this scheme can admittedly become excessive as
the system size becomes very great. However, it should be
realized that even if it were possible to place these large
matrices in the high speed store of the largest computers so
that the efficient QR or LR algorithms could be used to find
both the eigenvalues and eigenvectors, the amount of compu-
tation time would be at least as great if not greater than
the time required by S.I.. This may be established simply
by considering the total number of operations each scheme
requires. The time required by the QR and LR methods would
be for a full set of eigenparameters as opposed to the par-

tial set given by £.1., however.
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Chapter V

WIRE-STRUCTURE ANALYSIS

5.1 INTRODUCTION

Wire structures may be analyzed either as scatterers or
antennas. When an incident wave propagating in space ex-
cites a response on the wire, we consider the structure to
be a scatterer. When the wire is excited from small regions
on the structure itself, it is considered an antenna.

In this chapter, we will consider both fregquency- and
time- domain numerical solution technigques. The discussions
will be restricted to thin, perfect conducting wires situat-
ed in one-dimensional or linear geometries. Frequency-do-
main methods are presented in Section 5.2. By applying the
widely used moment method [14] to the EFIE for thin, perfect
conducting surfaces, the current and electric field distri-
butions along the antenna are obtained. A discussion of ex-
citation models is presented in Section 5.2.1; and a discus-
sion ¢of the applicability of the thin-wire kernel
approximation is presented in Section 5.2.2. 1In Section
5.3, time-domain technigques are discussed. By using finite
difference approximations, we obtain the transient current
distribution associated with the antenna mode of operation;

and by applying the TD-SEM methcd, we present the SEM pole
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distribution associated with the scattering mode. The ef-
fect of varying the time-sampling distance used in the fi-
nite difference approximation on the pole locations is pre-
sented in Section 5.3.2.1. 1In Section 5.3.3 , the effect of
segment to segment (unknown to unknown) coupling through the
kernel of the EFIE on the pole locations is discussed.
Extensive studies on approximate analytic solution tech-
niques of linear wire structures have been given by King
[35]. Numerical solution techniques have been given by Har-
rington [14], Poggio and Mayes [36], Thiele [37], and Mittra
[38]. These provide excellent discussions of methods for
obtaining most any desired antenna or scattering parameter
other than the pole structure. A complete discussion and
several references for obtaining the natural responses of
objects in both the frequency- and time-domains may be found

in Chapter 3.

5.2 SPACE-FREQUENCY TECHNIQUES

The appropriate expression which describes thin, perfect
conducting structures is (2-lla). For one-dimensional prob-
lems with geometries similar to the geometry depicted in

Figure 5.1, this expression may be written in terms of an

unknown current, Iz, and magnetic vector potential, Az, as
~inc 1 AR T
-E T (asz,0)= Joc [E'+ ;1 A (2,z30) (5-1)
o) azJ
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Figure 5.1: Wire geometry.
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where

~ - ' —jk-R
A (a,z,w)= ZL“J J Iz(z de de 'dz" (5-1a)
“H 0 4TR
with
1/2
R = ((z-z")2+2a2%-2a%0s6") (5-1b)

Expression (5-1) was originally presented by Pocklington
in 1897. Various alternate forms of the expression are pos-
sible by manipulating the position of the operator,
[k2+32/3z2]. For numerical work, this operator is often
preferred outside the integral so that integration of a more
highly singular kernel is avoided. We will only consider
the Pocklington form in this chapter.

The vector potential Az may be written in terms of a

-~

Green's function, G, as

H
A e zw= [6z,2 T, e (5-2)
-H
where
t 1 zrﬁe—ij
G(z,2"5u0)= 5= | TR de' (5-3)
0
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is commonly known as the exact kernel for the thin-wire
problem. A computationally simpler kernel may be used under
certain conditions. This kernel is defined to be the ap-

proximate thin-wire kernel, Gh(z,z'), and is given by

- v 1 e-ija 5.4
G (z,2") = 7= 5% (5-4)
a
where
5 1/2
R, = [(z-z‘)'+a2] (5-4a)

King [39] has noted that the results obtained for a tubular
antenna are nearly identical for either this kernel or the
exact one. It should be pointed out, however, that it is
possible to obtain numerically unstable results using the
approximate kernel (Section 5.2.2).

King [35] has analytically shown that the current distri-
bution on a linear antenna is sinusocidal in form. There-~
fore, the use of the method of moments (MoM) [14] with a
subsectional basis set of piecewise sinusoids is a sensible
approach for obtaining numerical solutions for expression
(5-1). A brief outline of how the choice of this basis set
in conjunction with the MoM may be used for the discretiza-

tion follows.
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We let the structure of interest be uniformly divided
into (N+1) pieces each of length A. The current distribu-
tion may then be approximated as

N

Iz = § IS (5-5)
n=1

where

i sin(k(A-lz'-zn|)) ‘ -
s_ = T |z'-2_|<a (5-5a)

0 otherwise

denotes the piecewise sinusoids, and the constants fn are to
be determined. By substituting this approximation into
equation (5-2), we may write a discrete version of expres-

sion (5-1), after several straightforward manipulations, as

N - .
-E = ) IL_(S) (5-6)
where the operator ﬂop(sn) is given by

k

Ezgi:gzaiz[a(z—(zn+A))+G(z—(zn—A))-2cos(kA)G(z—zn)]. (5-6a)

Here, the arguments of the function G replace (z-z') in
either equation (5-1b) or (5-4a) depending on whether the

exact or approximate kernel is used.
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Following the MoM formalism, we introduce a

such that

function, W

pulse testing

wo= PA(Z-Zm) (5-7)
where
P (z-z) = 1 |z—zm|<A/2 (5-7a)
A m
0 otherwise.
Equation (5-6) may now be written as
~4 N . ~
o ~ELNS> =7 I<w L (S)> (m=1,2,...,N) (5-8)
m, 2z n m, oOp 10
n=1
where
<Wm,L0P(sn)> =
mA+A /2
k - ~ ~
jmeosin(kA) [G(z-(zr+A))+G(z—(zn—A))—2 cos(ka) G (z—zn)]dz (5-8a)
mA-A/2
and <wm,—éinc> is similarly defined. Equation (5-8) has the

matrix representation
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— - = ~in
<w1’L0p(Sl)> <w1’L0p(SN)> I <y -E, S

- : - = : (5-9)

T - L] - . . L] . . T _~in
<WN,L0p(Sl)> <WN,L0p(SN)> IN <wN - S

-~

The matrix with components <wh,Lop(Sn)> is known as an impe-
dance matrix 2, and the vector with components <wm,;§2c > is
known as a voltage vector G. Using this notation, the cur-

rent coefficients I, may be found by forming
1 =271 (5-10)

assuming a non-singular impedance matrix.
All frequency-domain results in this chapter will be

based on this model.

5.2.1 Excitation Models

The impedance matrix is invariant to the form of excita-
tion; only the voltage vector reflects this. In the antenna
mode, the excitation may be modeled in a variety of ways.

The simplest is the delta function [37] generator model
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which introduces a single entry of unity into the voltage
vector; its position in the vector corresponds to the posi-
tion of the excitation on the antenna. An alternate, and
more rigorous, method of excitation modeling is the use of
equivalent magnetic sources. This leads to magnetic frill
[37] generators and belt [40] generators. The voltage vec-
tor reflects this form of excitation in the form of a dis-
tribution with unit area. Results induced by these diffe-
rent models are nearly identical everywhere over the
structure except directly at the point where the excitation
is originating. This point is somewhat critical to the ove-
rall analysis, however, since impedance and admittance char-
acteristics are dependent on the magnitude of the current at
this point. It has been found [40] that the magnetic source
generator models yield impedance and admittance values in
better agreement with experimental measurements than delta
generator models. Figure 5.2 compares a delta generator
with a magnetic belt generator for a half-wavelength antenna
using the exact kernel. Numerically, the results differ
only at and near the feed point; graphically the difference

is indistinguishable.
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5.2.2 Thin-Wire Kernel Approximation

Equation (5-4) denotes the thin-wire kernel approximation
which is analytically valid for wires that are only a small
fraction of a wavelength in diameter. A numerical complica-
tion can arise using this kernel even when the wire is elec-
trically and hence the approximation analytically wvalid.
When the sampling distance between unknowns is on the order
of the radius of the structure, non-physical current oscil-
lations may appear both at the end points and the feed
point. Use of the exact kernel in such cases avoids this
complication. Figure 5.3 compares the effect of the exact
and approximate kernels on the current distribution of a 1l
meter antenna. A belt generator was used for the excita-

tion.

5.2.3 Electric Field Distribution

Once the current coefficients are obtained from equation
(5-10), the scattered tangential electric field distribution

may be found by evaluating

~ N -~ I3 - -
Ey(a,z3w)=_30] ] I [e3kR) + & 3KRy _ ocos(ra) e IRR3) (5-11)
sin(kd) n=1 ° R R R
1 2 3
where
R = [(z-(zn+A))2+a2 1/2 (5-11a)
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R, = [(z—(zn-A))2+a‘]}/2 (5-11b)

R, = [(z-2 )2+a2]l/2. (5-11c)
3 n
Note that the approximate thin-wire kernel has been used.

Figure 5.4 shows éi(z) for a 1 meter antenna. A delta gen-

erator at the origin was used for the excitation.

5.3 SPACE-TIME TECHNIQUES

For one~-dimensional structures corresponding to Figure
5.1, expression (2-12a) may be written as

H

2 2 I (git=|z-2'|/c)
2 inc 1 1 e 2 z <! '
—-— E (z3t) =— [ =5 —9~-—— ] dz (5-12)
3t Tz €6 c2 Btz 822 4 Ra

-H
where the approximate thin-wire kernel (equation (5-4)) has
been used, and the current density appearing in expression
(2-12a) has been replaced by the total current.
The discretization of this expression will follow the
technique developed in Section 3.3.1. We assume (from ex-

pansion (3-17)) that the current distribution may be approx-

imated as

N ©
I'Gz's0= [ ] I, _, P, (ct-p'At) P, (z'-n'4) (5-13)
n'=1 p=-o % °f
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where N denoctes the number of unknowns used in the discreti-
zation. With this expansion, the discrete vector potential

is given by

A (nA;pAt) =
i (|n-n' [+1/2)4
( (5-14)
rg: E I+ P (c (PAt)—D'(CAt‘)-In-—n’ IA) ___di___ 1/2
n'=1 p'e—w P O ’ 4m(a+z2)

(|n—n'|-l/2)A

Note that the time pulse has been pulled out of the integ-

ral. This is valid only for very thin, linear structures.
By letting G, denote the integral appearing in (5-14),

and picking p'=p-|n-n'| (note that this assumes the choice

cAt=4), we may write the vector potential as

N
A_(nd;pat) = )

n'=1

Gy

Lt.p=lo—n'| ln-a' (5-13)

where

_
¢ =11n {:(a+l/2)A + ((ar1/2)%22 + aH1/2

L =L
" (a-1/2)8 + ((a-1/2)%a% + a2y1/?

(5-15a)

By transforming the continuous differential operators ap-
pearing in expression (5-12) to central finite difference
operators, we obtain the following explicit scheme for the

unknown current coefficients:
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I 2l 2 glnein] +1 + 1 -1 +
n,p+l 0 ot Tz ? n+l,p n-1,p n,p-1
1 N+1 —
— + -1
+ G0 n'Z—O G|n—n'| In'+1,p—|n—n'| In'-l,p—|n—n'| n',p+1—|n—n'|
n'#n -
(n=1,2, ..., N
S ST TN (5-16)
n',p-l |nn|} lp=1, 2, ......
where G; is the self patch kernel, and I-l' IN+1' IN+2' Io

are defined to be zero.

We now consider the choice cAt=4 by performing a Fourier
stability analysis (Section 3.3.1) on the homogeneous dif-
ferential equation for the vector potential. The vector po-
tential is analyzed for simplicity; the stability require-
ment for the current equation is anticipated to be similar
due to integral relation between the two. The following
discussion outlines the technique.

We begin with the one-dimensional wave equation for the

vector potential

2 2
—12— 3—2 A = A (5-17)
c” 3t

which in explicit differenced form becomes

A = r2 Az + Az -2 Az J
zn,p+l n+l,p n-1,p n,Dp
n=1,2, ..., N
+2 A - A } (5-18)
n,p n,p-1 p=1, 2, ......
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where r2=(cAt/A)2, and A, =A,(nA;pAt). Discrete separa-
n,p
tion of variable techniques then leads us to a solution of

the form

A = P exp (jand) (5-19)
Zn,p

where w=exp{sAt} (s is arbitrary and may be complex), and a

is an arbitrary real number. Clearly, for this solution to

remain bounded for all p, the magnitude of w must be bounded
above by unity. By substituting this general solution into

the basic equation (5-18), we obtain the following gquadratic
equation in w:

w? - 2 (1-2r’sin’(@a/2))w + 1 = 0 (5-20)

From this equation, the magnitude of w is less or equal to
unity for r<l. Therefore, the choice cAt=A may yield a sta-
ble solution for the current coefficient difference egquation
(equation (5-16)). Certainty cannot be ascertained for the
following two reasons: first, any appropriate boundary con-
ditions have not keen included in the analysis; and second,
a difference equation for the vector potential has been con-
sidered rather than a difference equation for the current
coefficients. The matrix stability method (Section 3.3.1)
must be applied to the current difference scheme for this

criterion to be numerically rigorous.
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5.3.1 Transient Current Response

Figure 5.5 depicts the transient current response ob-
tained from equation (5-16) on one of two feed segments for
a 1 meter dipole antenna. The mathematical representation

of the excitation used on each of these segements is given
by

E
70 exp [—gz (t—tmax)z] (5-21)

where E; is the free-space impedance 120w, tmax is the time

when the magnitude of the pulse peaks, and g is the compres-
sion factor of the pulse. The parameter t,,, was chosen to

be 0.5 light meters (LM), and g was chosen so that the mag-

nitude of the pulse at t=0 and t=1 LM was 0.0001/(60w)

volts/meter.

5.3.2 TD-SEM Pole Distribution

The TD-SEM technique developed in Section 3.3.1 may be
applied to the difference scheme of equation (5-16). The
eigenvalues of the state transition matrix ¢ may be found by
the methods given in Chapter 4. The order of & for this
problem is N(N+1), where N represents the number of unk-
nowns. For Ns18 full eigensolution by the QR transformation
(Section 4.3.1.2) is recommended. For larger values of N,
partial eigensolution by simultaneous iteration (Section

4.2.2.2) is recommended. Figure 5.6 shows the pole distri-

91



Z6

0.05

” | 1 [} L) 1 LY L
3
ol -
moT‘ -
& 1)
14
Ll
(D
T \/\ =
m
o
ol
: i
8 U
Q : — ' | a —
0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00
LIGHT-METERS
Figure 5.5: Transient current distribution on one of two feed

segments of a 1 meter antenna with a radius of
0.00754 meters. The number of unknowns was 22.



bution obtained by TD-SEM (QR solution) for a 1 meter scat-
terer with a radius of 0.005 meters discretized with 18 unk-
nowns such that A=1/(N+1)=1/19. The results have been sca-
led by 1/(wc), and a comparison with the frequency-domain
results of Singaraju, Giri and Baum [15] has been made. The
results shown reflect only the second guadrant of poles
since the complex conjugates may be obtained by symmetry.

A few remarks on the structure of the eigenvalues associ-
ated with this problem for the choice cAt=A should be made.
From stability, all eigenvalues must fall within the unit
circle in the complex plane. Complex eigenvalues appear in
groups of four which graphically define a square. Several
groups of nearly identical moduli form annular rings. Real
or purely imaginary eigenvalues appear in pairs of egual mo-
duli but differing sign. The eigenvalues of interest are
those with positive real components. Those with negative
real components are conjectured to correspond to false poles
which have no true physicazl meaning (this conjecture is dis-
cussed in Section 5.3.2.1). The layering structure of the
poles corresponds to the annular ring structure of the ei-
genvalues. For an even number of unknowns, ZN of the eigen-
values in the outermost annular ring correspond to the sig-
nificant pocles contained within the first layer, while 2N-2

eigenvalues correspond to the poles of the second layer.
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Further layers which are well defined have successively 4
fewer eigenvalues than the preceeding layer. For an odd
number of unknowns a factor of 2 must be added to the num-
bers above. Figure 5.7 depicts the eigenvalue structure for
18 unknowns. The quadrant which is blocked off denotes the
eigenvalues of interest.

Figure 5.8 shows the first layer pole distribution for 32
unknowns as found by simultaneous iteration techniques with
the sub iteration modification. It should be noted that the
simultaneous iteration algorithm listed in Appendix A may be
used to find more layers than just the first. Additional
layers may be fcund on a single computer execution or multi-
ple, independent executions.

Figure 5.9 compares execution time requirements (on an
IBM 3032 computer using FORTRAN H EXTENDED (OPT=2)) with the
order of the state transition matrix for: full eigensolution
by the QR algorithm (eigenvalues only), QR algorithm (both
eigenvalues and eigenvectors), and first layer eigenvalues
and eigenvectors by simultaneous iteration (assuming complex
iteration cycles) with and without the sub iteration modifi-
cation. IBM double precision was found to be necessary when
the QR algorithm was used; IBM single precision was suffi-
cient for the simultanecus iteration method. The curves in

Figure 5.9 reflect these precision requirements.
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Figure 5.10 compares storage requirements with the tran-
sition matrix order for the cases above. The IBM douple
precision storage requirement for the QR algorithm, eigenva-
lues only, is 8n2 (where n denotes the order of ¢). This
requirement becomes 8n2+16n2 when both the eigenvalues and
all eigenvectors are desired. The single precision storage
requirement of simultaneous iteration is 4(4k2+(3+2N)k
+2nk+3((2N-1)N)), where k denotes the number of eigenvectors
sought, and N denotes the number of unknowns (for Figure

5.10, k=2N was chosen; this defines the first layer).

5.3.2.1 Effect of Varying the Time Sampling Distance
The pole structure presented in Figures 5.6 and 5.7 is

for the choice cAt=A. When cAt is chosen to be less than A,
complications arise. Since each time step is smaller, more
time steps are required for a wave to travel the length of
the structure. This causes the size of the state transition
matrix to increase, and thereby possess a larger number of
eigenvalues. The relation of these extra eigenvalues to the
true poles of the system is of interest. It has been found
that the additional eigenvalues add additional 'poles' which
may be divided into two types. The first type are complex
poles with imaginary components which are conjectured to be

of greater magnitude than the 'true system poles'; the sec-
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ond type are purely real poles which are conjectured to ex-
tend further down the real axis than the true poles. Both
of these conjectures and an elimination technigue for the
'spurious' poles are discussed in the following paragraphs.
The angle associated with the polar representation of ei-
genvalues which possess positive real and imaginary compo-
nents is at most w/2 radians (by symmetry, we may similarly
consider the conjugate of these eigenvalues). The imaginary
component of the poles corresponding to these eigenvalues,
then, have a magnitude which is at most 1/(2cAt) radians
(recalling that the poles are scaled by 1/(mc)). When the
stability condition cAt=A is valid, this maximum becomes
1/(2A) radians. Since all thin-wire pole distributions ob-
tained by frequency-domain technigques are bounded by 1/(24)
radians, it is sensible to bound time-domain methods by that
value as well. Hence, we conjecture that the true system
poles obtained by TD-SEM are bounded on the imaginary axis
by 1/(2A) for arbitrary choice of cAt (note that this res-
triction eliminates the poles corresponding to eigenvalues
with negative real components). This technique generates a
simple criterion from which spurious poles off the real axis
may be eliminated. We consider, next, the spurious poles

which are situated on the real axis.
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The second type of additional poles are not as simple to
remove. No well defined method has been developed. These
poles do not disturb the well defined layering structure
since they appear past it. TD-SEM generates true poles past
the layering structure (Figure 5.6) however, and therefore
an ambiguity exists. One possikle restriction would be to
retain only those poles within the range 0 to approximately
-1/(2A) on the real axis. Although this criterion is admit-
tedly strict, it may be effectively used for arbitrary
choices of caAt.

To conclude this section, it should be noted that the
left half plane pole structure obtained from an unstable al-
gorithm has very little similarity with the pole structure
obtained from a stable algorithm. Hence, one should be cer-
tain that a particular scheme is stable if the results ob-

tained are to be considered meaningful and accurate.

5.3.3 Pole shift by Xernel Decoupling

It was suspected a priori that a relation may exist bet-
ween the sub- matrices of the transition matrix and the par-
ticular layering structure of the poles. In other words,
the first few sub-matrices may contribute the poles of the
first layer, the next few the poles of the second layer, and

so on. To test this conjucture, the effect of zeroing the
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kernel Glmﬂﬁ| of equation (5-16) for various values of the
difference |n-n'| was considered. This effectively removes
element to element coupling and thereby zeros sub-matrices.
Figure 5.11 depicts the movement of the pole distribution
for a 1 meter antenna with a radius of 0.00S5 meters discre-
tized with 10 unknowns (N=10). All layers tend to shift to-
ward the imaginary axis (approaching a transmission line) as
elements are zeroed from the extreme outer sub-matrices in-
ward. Unfortunately, no relation bhetween the block sub-ma-
trices and particular layers can be infered from this form
of movement. Specifically, the results shown in Figure 5.11
may be interpreted as follows: full set denotes no decou-
pling, the level 1 set has the kernel evaluated at
|n-n'|=N+1 set equal to zero, the level 2 set has the evalu-
ation at |n-n'|=N+1 and N equal to zero, the level 3 set has
the evaluation at |n-n'|=N+1l, N, and N-1 equal to zero, and

the level 7 set is similarly defined.
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Chapter VI

TRANSIENT ANALYSIS OF THIN, PERFECT CONDUCTING
RECTANGULAR PLATES

6.1 INTRODUCTION

The rectangular plate falls within the c¢lass of struc-
tures known as open structures with edges. Structures with
edges, and in particular corners, are difficult to analyze
due to the singular behavior of the current component paral-
lal to an edge, and the ambiguity of the current magnitude
in a corner. These complications have generally restricted
exact analytic solutions to infinite half-plane problems.

In particular, we cite an exact, frequency-domain solution
for the current density generated on an infinite half-plane
by an edge on incident plane wave which may be found in Born
and Wolf [41]; the transformed, time-domain result, may sub-
sequently be found in Davis, et al [42].

Since the realm cf problems which are solvable by analyt-
ic methods is quite narrow, interest has turned toward the
numerical analysis of finite open structures. The advent of
the method of moments [14] stimulated the frequency-domain
study of these structures; while recent interest in tran-
sient methods was primarily stimulated by a study due to

Bennett, et al [43]. In Bennett's study, both transient
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numerical and experimental results for several canonic open
structures were presented. Some of the techniques developed
in this chapter are based on the latter contribution.

The study of the SEM parameters for open structures has
been limited to rectangular geometries. A treatise on ob-
taining these parameters for rectangular apertures and
structures using frequency-domain techniques has been pre-
sented by Pearson [44].

In this chapter, the transient numerical solution of the
thin, perfect conducting rectangular plate problem is stu-
died. In Section 6.2, the basic mathematical formulation of
the problem using finite difference technigques is presented.
The basic difference formulation is then applied to a 'stan-
dard' gridding scheme in Section 6.3, and a 'shifted' grid-
ding scheme in Section 6.4. The shifted, or cffset, scheme
was initially introduced for the solution of rectangular
problems in the frequency-domain by Glisson and Wilton [45].
Stability analysis and current distributions for each of
these schemes are presented in the appropriate sections. 1In
Section 6.5, the TD-SEM pole distribution for the sguare

plate is introduced.
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6.2 MATHEMATICAL EFORMALISM

The electric field integral expression (2-12a) is the ap-
propriate expression for describing thin, perfect conducting
structures. For the geometry shown in Figure 6.1, this ex-
pression may be written, in vector potential notation, as

the following coupled set:

2 2 2
S0 3c By =y g AN - G AN+ o)
c” 9t 9x y
(6-1)
. 2 2 2
€ aa—t y = -15 32 & -« 32 &+ aaax A%
y ¢” 3t 3y 7

inc inc
g By ).

The following representation of E™ will be used for all

where A=(A*,aY,0), and E ¢ =(E}i{nc ,E

results presented in this chapter:

E' (Tse) = 6 E_ exp (—g2((t-tmax) + k-T/0)2) (6-2)
where

6 = x cosBcos¢ + § cosfsiné - z sin6, (6-2a)

k =x sinfcosé + y sinBsing + z cosf, (6-2b)

T = xx + yy + z2z. (6~2c¢)
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Figure 6.1: Plate geometry.
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The value of E; was chosen to be the free space impedance,
120m, tmax was chosen to be 2.45 light meters (LM), and g
was chosen so that the magnitude of ﬁinc at t=0 and t=4.9 LM
would be 0.0001 volts/meter.

From expansion (3-17), the X and y components of the vec-

tor potential may be explicitly represented as

X,y =X,Y
= J G
m,n,p m'z=l nél pzm o,d,p ° |o-do|,|n-o| , (p-P) (6-3)
where
. ) 2. 2.1/2
(ats) A (BHs)A P (8-(u+v®) /c)
c _ _At dudv (6-3a)
@:8,6 br(uiwH /2
(a=35)a  (B-19)A
X,y _p XY .
and Amﬂ%p =A (mA, nA; pAt).

Unfortunately, the integral which appears may not be
evaluated exactly due to the presence of the time pulse.
Numerical integration or linear interpolation represent the
possible methods of evaluation. 1In Figure 6.2, the physical
interpretation of how the time pulse activates various annu-
lar regions which contribute to the integral is shown (cau-
sality allows us to only consider zero or positive values of
the time difference p-p'). From this figure, the following

linear interpolation formula may be derived:
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Figure 6.2: Annular propagation of active regions due to
the time difference (p-p').



Gy,8,8 ° [P,[(8-Int(D))at] + (P,[(8-1-Int(D))At]

- PA[(G—Int(D))At])(D—Int(D))] G'a,B, (6-4)
where
b= (o + 8972/ eary (6-4a)
Int(D) denotes 'integer part of', and
(att5)a  (BH9)A

(a~ig)A  (B-32)A

By letting a=(a«+1/2), b=(a-1/2), c=(B+1/2), and d=(B-1/2),

we may evaluate this integral as

1/ 1/
2,..2,7/2 2,.2.772
G, 4= iL.[aAln[(stisiiéill )(d+(d2+b2)l/ .
a, ﬂ d+(d“+a") /2 e+ (cTHpT) /2
1 1 1 1
+ 295 [(a+(c2+32)1/2)(a+(d2+az)l;2)(c+(c2+a2)l/2 (c+(c2+b2)l/2)]
2
i (22 72 prald) 2 aralrady 12 a2
1 ]_/
+ 8A 1n [(a+(C2+az) /2 p(d24b2) 2 (652

2, 2

1,01 .
at(a2+a2) 12 b2ty /2

Over the self patch region (m=m',n=n') the anti-derivative

reduces to

' 2 4 -
G w87 in (L +V2) . (6-5b)
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A simple rectangular rule approximation may alternatively
be used to evaluate integral (6-5) over all patches other

than the self patch without introducing considerable error,

i.e.,
[ B#0
J 41r(a2+82) /2
-f;ln(1+ﬁ ) a=g=0 .

Use of linear interpolation and approximation (6-6) is
the recommended means for the evaluation of equation (6-3a).
Numerical integration or use of equation (6-5a) have been
found to introduce only slight amplitude shifts in the final
results, and therefore their use is unjustified unless pre-
cise results are sought. The interpretation of precise is
ambiguous, however, due to the vast number of models which
may be applied to a particular problem, and hence the vast

number of slightly different results which may be obtained.
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6.3 STANDARD GRIDDING SCHEME

Figure 6.3 depicts a standard gridding scheme for a rec-
tangular plate. The patches as shown are square due to the
choice of a uniform sampling distance in both the x and y
directions; this is typically, but not necessarily, done.
Two complications are associated with this simple, commonly
used, model. First, since the two current density compo-
nents lie directly on top of one another, a smooth transi-
tion between components is not possible; and second, boun-
dary conditions on the current density must be explicitly
enforced.

For the standard grid, the following explicit finite dif-
ference scheme for the x component of the vector potential

is appropriate:

. = %X x 24

+ A -
m,n,p+l m+l,n,p m-1l,n,p m,n,p
r2 y y y
+ L (a + A° - - A7
7 (An+1,n+1,p m-1,n-1,p ~ “m+l,n+l,p ~ “m-1,n+1,p’
. =0,1 104
X X 2 3 inc |® > >
+ A - = =
m,n,p-1 ZAm,n,p + (r eo) T Ex n=0,1 , N
p=1,2,
(6-7)

where r2=(cAt/A)2. A’ may be similarly defined. An expli-
cit difference scheme for the current density is obtained by
substituting expansion (6-3) into the above difference equa-

tion and manipulating the indices of the summations.
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Figure 6.3: Standard gridding scheme.
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An approximate stability criterion for the vector poten-
tial scheme may be obtained by the Fourier stability method

(Sections 3.3.1, 5.3). Let

A a

= X mP exp {j(amA + BnA)} (6-8)
Ay ay

where a_. ay are arbitrary coefficients, w=exp{sAt} (s is
arbitrary and generally complex), and «, B are arbitrary
real constants. By substituting the expression for a* into
equation (6-7) and the expression for a” into a similar

equation, we obtain

a_ 2—4rzsin2(aA/2) rzsin(aA)sin(BA)-' -'ax-
w? = w 2 2 .2
a r sin(ad)sin(BA) 2-4r"sin” (BA/2) a
y L Yy _
-1 O-| a
X
+
0 —I.J a * (6-9)
y

This matrix equation may be reduced to the following gquartic

equation in w:

o + (EHO)w S + (EC-BD+2)w? + (E+C)w + 1 = 0 (6-10)

where

4rlsin®(an/2) - 2 (6-10a)

o]
1]

o]
il

rzsin(aA)sin(BA) (6-10b)
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4r2sin?(80/2) (6-10¢)

(9]
f

(=}
]

rzsin(BA)sin(aA) . (6-10d)

For any choice of real «, B, |w|S1l for r£l. Therefore, the
choice cAt=4 may lead to a stable solution. Certainty can-
not be obtained since boundary conditions cannot be included
in the analysis. The matrix stability method must be used
to verify this criterion for the current density coefficient
difference formulation with arbitrary boundary conditions.
The enforcement of boundary conditions is an integral
part of using the standard gridding scheme effectively.
Figure 6.4 shows the current density component corresponding
to the direction of polarization of the incident wave on the
center patch of a one meter square plate discretized with
four unknowns in each direction when no boundary conditions
are enforced and choosing cat=0.7A. The result is highly
oscillatory yet stable. Figure 6.5 depicts the effect of
enforcing components of the current perpendicular to the
edges to be zerc. 1In Figure 6.6 an attempt has been made to

enforce the form of the singular behavior of the current

116



LTT

TER

p—
=
S—

X
J7 aMPs/M

10

1.28

.42

— —— T ]
o~
p
ol -
i
&D U
| -
o \} U
o } 4 } 1 i - |
‘U.UO 6.25 12.50 18.75 z5.00 31.25 37.50 43.75 b5

Figure 6.4:

LIGHT-METERS

Current density component corresponding to the
direction of incident polarization calculated
on the center patch of a 1 meter square plate.
No boundary conditions have been enforced. A
standard gridding scheme has been used with 16
patches for each current component. The pulse
width was 4.9 light meters, and the choice
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components parallel to an edge. This was accomplished by
assuming a reciprocal square root of distance singularity as
the edge is approached [42]. Hence, the value V3 was chosen
as the extrapolation constant for the parallel current com-
ponents 34/2 from the edge, i.e., the parallel component at
position A/2 from the edge is v3 times the parallel current
component evaluated at 3A/2 from the edge.

In Figure 6.6 a comparison has been made with a current
density distribution obtained from the theoretical model
used by Bennett [43]. Bennett's model and the model used
here differ only in the extrapolation constant used for the
current density component parallel to an edge. 1In the model
used by Bennett, an extrapolation constant of 3 was used in-
stead of ¥3. The factor of 3 was found to occasionally
yvield unstable results, whereas v3 was found to always yield
stable results. Hence, the latter was prefered. The two
curves agree quite closely within the twelve light meter
frame which is shown. In should be noted that Bennett's mo-
del has been shown [43] to yield results quite similar to
experimental measurements.

The use of either 3 or ¥3 as an extrapolation %technigque
is somewhat unsatisfying since it does not permit a time
fluctuation of the particular form which is being forced.

The half plane problem which can be solved analytically
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Yields a reciprocal square root behavior for the current
density which includes both a spatial and a time dependence
under the root [42]. We would anticipate a similar depen-
dence for the plate, and hence any extrapolation should re-
flect this. Further study is regquired.

Although theoretical results similar to experimental mea-
surements may be obtained from a standard gridding scheme,
it is difficult to know a priori when satisfactory results
have been obtained due to the modifications which are re-
quired. In an effort to avoid these modifications (i.e.,
create a more natural model), we consider an offset or

shifted gridding scheme.

6.4 SHIFTED GRIDDING SCHEME

Figure 6.7 depicts a shifted gridding scheme. Three de-
sirable properties about this formulation are as follows:
current is allowed to make a smooth transition between com-
ponents, zero boundary conditions on the current are impli-
citly enforced, and it is not necessary to step off the
structure for any finite difference evaluations.

The explicit difference representation of the x component

of the vector potential is given by
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Figure 6.7: Shifted gridded scheme.
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X _.2,.x x X

. = + -
Am’n—ﬁi,p-{-l r (Am-lsn-l/Z’p Am-l,nJi,P 2Am,n—lisp)
2.,y y y y
+ + - -
r (Am'i'l’isnsp Am—%’n_lsp Am-{-li’n_]_’p Am—;i!n’p)
2 3 i n=0,1,...M
+ A* - 2A* L + (r"e ) — gine n=0,1,...,N+1| .
m,n-%,p-1 m,n-%,p o’ Bt "x
p=1,2,....
(6-11)
A similar equation may be developed for 2 . an explicit

scheme for the current density coefficients may be obtained
by substituting equation (6-3) into the above equation and
manipulating the indices of the summations.

A preliminary stability criterion for the vector poten-
tial scheme may be found by the Fourier stability method.

By letting

A axwp exp {j(amA + B(n-})A)}

(6-12)
Ay awa exp {j(a(m-)A + Bna)}

and substituting into the difference scheme (6-11), we ob-
tain the following quartic equation in w (similar to the un-

shifted development):
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m4 + (E+C)w3 + (EC-BD+2)w2 + (EH+C)w + 1 =0 (6-13)

where

4rzsin2(aA/2) -2

=1
]

2 (1eemd0b IBA_~Fab_ 384,

o
[

(6-13a)
2 .2
4r-sin“(BAS2) - 2

(@]
L]

D = r2(1+e—JBAeJaA—e_JBA—eJaA).

For any choice of real «, B, |w|Sl for r2<(l/2) or
cAts(v2/2)A. This result may be éstablished analyically by
assuming four solutions of the form exp{*j6;}, exp{+jb,} and
noting that the product of all the roots must be unity, or
it may be established numerically.

The basic result may be extended to accommodate three-di-
mensional problems with different spatial sampling distances
in each of the three spatial directions, i.e., we have AXx,
Ay, Az instead of simply A. The stability requirement for

shifted schemes, in general, is then

1 1 1 1
(a2 2 ax2 T a2 Y o2 - (6-14)

The validity of these expressions for the analogous cur-
rent density difference formulation must be confirmed by the
matrix stability method.
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Figure 6.8 shows the unstable result obtained by choosing
cAt=A. By choosing cAtg(v2/2)A, however, we obtain the sta-
ble curves shown in Figure 6.9. A comparision of these
curves with the curve generated by the standard gridding
scheme has been made. Note that the amplitude of the curves
obtained from the two schemes differ slightly. This is pri-
marily due to the different techniques used to enforce the

zero boundary condition in each scheme.

6.5 TD-SEM POLE DISTRIBUTION

In this section, we present pole distributions obtained
by TD-SEM (Section 3.3.1) using the shifted gridding scheme
on a one meter square plate. Figure 6.10 shows the distri-
bution for a total of 2 unknowns (4=1/2) for each current
component, Figure 6.11 shows the distribution for a total of
6 unknowns (4=1/3), and Figure 6.12 shows the distribution
for a total of 12 unknowns (4=1/4). The choice cAt=0.7A was
made throughout.

As was discussed in Section 5.3.2.1, an ambiguity exists
in the validity of all the 'poles' TD-SEM yields when cAt is
chosen less than A due to an increase in the order of the
transition matrix. A filtering scheme to remove poles which
were conjectured to be a ccnsequence of the numerical pro-

ceedure was discussed in that section. For Figures 6.10-12
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a similar, but slightly different, filtering scheme was
used. The scaled poles corresponding to the eigenvalues
with positive real components were restricted to a maximum
magnitude on the imaginary axis of 1/(2A) radians; the sca-
led poles corresponding to the eigenvalues with negative
real components were restricted to the range 1/(2A) to 1/A
radians. A line has been drawn on these figures to separate
the two regions since the true physical meaning of the poles
corresponding to eigenvalues with negative real components
is not clear for rectangular geometries (although it was
conjectured that these poles have no meaning for the wire
problem). A sensible method to test the wvalidity of the
poles in both regions is to reduce the value of cAt below
the initial choice of 0.7A and note shifts in the pole posi-
tions. For true poles, we suspect very little shift. It
was experimentally observed that the lower set shifted only
slightly, but the upper set experienced a considerable
shift. Hence from this argument, we conjecture that only
the lower set represents true system poles.

The lower pole cluster agrees reasonably well with the
frequency-domain results. The lowest order pole from Figure
6.12 (12 unknowns) is explicitly -0.284+3j0.715; this pole
was found by frequency-domain methods to be -0.272+j0.675.
The time-domain result should approach this (up to the simi-

larity of the models used in each domain) as the number of
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unknowns is increased. Figure 6.13 compares selected
time~-domain poles with available frequency-domain poles.

It is interesting to note that double poles were observed
for the square plate, and a fill in of poles occured as the
number of unknowns increased. Both of these can be justi-
fied by considering the poles of an infinite rectangular
waveguide.

The simultaneous iteration method presented in Chapter 4
may be used to obtain the natural frequencies and modes for
the rectangular plate. Care is required in its implementa-
tion, however, due to the absence of the well defined layer-

ing structure which appeared with the wire problem.
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Chapter VII

CONCLUSIONS

In this thesis, the fundamental integral equations of
electromagnetic theory and the theoretical foundations of
both the frequency-domain SEM and the time-domain SEM method
of Cordaro and Davis were developed. It was observed from
the development of TD-SEM that special sparse eigensolution
routines were required to determine the eigenvalues of the
transition matrix due to the excessive high speed storage
requirements associated with certain problems. A modified
simultaneous iteration algorithm was developed to satisfy
this eigensolution requirement. The algorithm may be used
to obtain partial pole solutions for a variety of geome-
tries, and was explicitly shown to be effective on the
thin-wire problem for an arbitrary number of unknowns.

Root searching methods which take advantage of the com-
panion form of the transition matrix, such as Muller's meth-
od and the polynomial matrix reduction method of Woolivich,
were found to be effective methods for obtaining the natural
frequencies only for linear geometries discretized with re-
latively few unknowns. The contour integration technique of
Singaraju, Giri, and Baum, which also takes advantage of

this companion form, was not explicitly tested in this stu-
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dy; however, the method may prove to be effective for prob-
lems discretized with a large number of unknowns provided
the required integration operation can benefically be used
to numerically smooth the determinate evaluation. Further
study 1s reguired to establish the utility of this method.

Time-domain techniques which provide convenient matrix
methods for obtaining the SEM coupling coefficients have
been developed. The time~domain form of these coefficients
is much simpler than the equivalent frequency- domain form.

The effect of altering the sub-sectional coupling between
unknowns in the numerical formulation of the thin-wire prob-
lem was also investigated. No relation between the specific
layering structure of the poles and sub-matrices of the
transition matrix was observed. This was unfortunate since
it was hoped that if only a particular subset of the pole
distribution was desired, then sub-matrices which did nct
influence this subset could be removed from the transition
matrix and thereby vield a lower order problem.

A shifted gridding scheme was applied to the rectangular
plate problem to obtain transient solutions. This scheme
was found to represent a more natural discretization for the
problem than the unshifted or standard gridding scheme which
is typically used. The shifted scheme was then used in con-

junction with TD-SEM to obtain pole distributions for the
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square, perfect conducting plate. The results obtained were
found to be gquite similar to available frequency-domain re-
sults.

Fourier and matrix stability methods were applied to the
finite difference representations of electromagnetic equa-
tions. These methods were found to provide accurate insight
into the required relation between the time and spatial sam-
pling distances that will yield a numerically stable solu-
tion for an arbitrary difference formulation.

The physical significance of the additional poles gener-
ated by choosing the time sampling distance smaller than the
spatial sampling distance or the spatial sampling distance
to be different in different directions remains an open
guestion. These additional poles are conjectured to be
false poles for which an elimination procedure has been pre-

sented.
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