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PROLOGUE

SOCRATES: Phew! A considerable business still in front of us,
Protarchus, and not exactly an easy one, I should say, to deal with now.
It really looks as though I need fresh tactics. If my objective is to
secure the second prize for reason I must have weapons different from those
of my previous arguments, though possibly some may be the same. Is it to
be, then?

PROTARCHUS: Yes, of course.

SOCRATES: Let us try to be very careful what starting point we take.

PROTARCHUS: Starting point?

SOCRATES: Of all that now exists in the universe let us make a
twofold division, or rather, if you don't mind, a threefold.

PROTARCHUS: On what principle, may I ask?

SOCRATES: We might apply part of what we were saying a while ago.

PROTARCHUS: What part?
SOCRATES: We said, I fancy, that God had revealed two constituents

of things, the unlimited and the 1imit.

PROTARCHUS: Certainly.
SOCRATES: Then let us take these as two of our classes, and as the

third, something arising out of the mixture of them both, though I fear I'm
a ridiculous sort of person with my sortings of things into classes and my
enumerations.

PROTARCHUS: What are you making out, my good sir?

SOCRATES: It appears to me that I now need a fourth kind as well.

PROTARCHUS: Tell me what it is.

SOCRATES: Consider the cause of the mixing of these two things with
each other, and put down that, please, as number four to be added to the

other three.
PROTARCHUS: Are you sure you won't need a fifth to effect separation?

SOCRATES: Possibly, but not, I think, at the moment. But should the
need arise, I expect you will forgive me if I go chasing after a fifth.
PROTARCHUS: Yes, to be sure.

from the dialogue Philebus, by Plato,
translated by R. Hackforth
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I. TINTRODUCTION

In designing or analyzing the response of an electronic system to some
kind of electromagnetic interference such as the nuclear electromagnetic
pulse (EMP), one is overwhelmed by the complexity of the problem. There are
too many individual components with an enormous number of interconnections.
An example of such a complex system is a multiconductor cable network inside
an aircraft.

When an aircraft is in an EMP environment, the cables inside the air-
craft will be excited by an electromagnetic field which penetrates the air-
craft body through a large number of penetrating conductors, small antennas,
apertures, and diffusion through the skin of the aircraft. There are many
parameters which determine the response of a multiconductor cable; these
include polarization, angle of incidence, planarity and spectral contents of
thé incidenf field, number of points 6f entry (POEs), size, shape and loca-
tion of POEs, physical properties of the transmission line and the surround-
ing medium, and the configuration of load impedances. These large number of
variables together with the complexity of the multiconductor cables make it
very difficult to get simple insights into how to control the system perfor-
mance in an electromagnetic environment.

In evaluating the system vulnerability to EMP, it is often desirable to
evaluate upper bounds on the problem rathef than compute the full coupling
and interaction evaluation for the cases of interest so as to determine the
system survivability/vulnerability with high confidence. In most of the
cases the latter may be effectively impossible due t6 system complexity and
lack of complete and correct definition. To deal with this complexity one

needs ways to identify and deal with a set of important variables which, if



controlled, control the system performance. An approach to this problem has
been developed (Ref. 1) which can#be referred to as electromagnetic topoiogy.

Having defined the eTectromagnetic topoiogy and the related interaction
sequence diagram (graph), one can write a general matrix equation (BLT equa-
tion, Ref. 1). The resulting supermatrix equation admits an approximate
solution which shows the dependence of the system performance on system
shielding parameters. One can also formulate a BLT equation for transmission-
line networks within the system (Ref. 2). This equation shows the dependence
of the cable network response on the induced sources, physical configuration
of the cables in the network, and the load configurations. Certain approxi-
mate bounds for the termination voltages and currents can be obtained from
norm concepts (Ref. 3).

In Reference 4, upper bounds were obtained for voltages and currents
at terminations of a multiconductor transmission line excited by a single
aperture, but bounds were not established for physical parameters of the
1ine. For a moderately mismatched termination, the upper bound for the ter-
mination voltage was 10 times the actual maximum voltage.

In this paper, we establish upper and lower bounds on the voltages and
currents at terminations of a multiconductor transmission-line network
excited by an external electromagnetic field. The general matrix equation
(BLT equation) is used as the basis for establishing upper and lower bounds
on the termination voltages and currents. Upper and lower bounds on forward
and backward traveling combined voltage waves are also established. These
bounds are obtained in terms of upper bounds of several parameters, such as
the source, load impedances, characteristic impedance of the line, etc.

Upper bounds on these parameters are established for some special cases.



In Section II, the equations governing the response of a general multi-
conductor transmissfon-]ine network are discussed. In Section III, the upper
and Tower bounds for the combined voltages, voltages, and currents are
obtained in terms of the induced sources, physical properties of the cable
network, and the load configurations. The bounds on the ratio of the maxi-
mum pin current to the bundle current are also discussed. In Sections IV
and V, bounds are obtained for two specal cases of a general multiconductor
transmission-line network, namely, a uniform section of a multiconductor
transmission line and a multiconductor transmission line with a branch. Pro-
cedures for obtaining bounds on parameters of the line such as the
characteristic-impedance matrix, reflection-coefficient matrix, and the
scattering matrix are discussed. Bounds for induced sources are also dis-

cussed for these two cases.



II. GENERAL MULTICONDUCTOR TRANSMISSION-LINE NETWORK EQUATIONS ‘

In this section we will review the multiconductor transmission-line
equations for a general network. The detailed derivation of these equations
is discussed in Reference 2. These equations form a basis for the evaluation
of upper bounds on voltages and currents at terminations of a multiconductor
line network.

2.1 PROPAGATION ON A UNIFORM N-WIRE TRANSMISSION LINE

Let us first consider a single section of an N-wire transmission line.
An N-wire transmission line is one that consists of N conductors and a refer-
ence conductor (or anequivalent one). Figure 2.1 shows per-unit-length equiva-
lent circuit of the 1ine with distributed sources. The equations governing

the voltage and current propagation on an N-wire transmission line are the

generalized multiconductor transmission-line equations: 4
d ¥ - VR Y "(S)" :
d T (2.5) = (7 ()« (o (z,9)) + (T8 z8)) (2.1)
4y = (3 i j(s)! (2.2
L0 (25)) = =3 (D) -+ (T (z.8)) + (185) (2,5)) .2)
where z = position along the line
(fn(z,s)) = current vector at z
(Vn(z,s)) = voltage vector at z
(Vﬁ m(s)) = per-unit-length shunt admittance matrix
(Za m(s)) = per-unit-length series impedance matrix
(fgs)'(z,s)) = per-unit-length shunt current source vector
(Vas) (z,s)) = per-unit-length series voltage source vector

It is noted that all vectors are of dimension N, and all matrices are N xN.
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Figure 2.1. The per-unit-length model of a multi-conductor transmission line.



By algebraic manipulations of Equations 1 and 2 one can obtain an

equation for combined voltages as follows (Ref. 2)
(1 )L aqic (N - (s, = (@5 (2,9)) (3)
n,m’ dz Ch.m n*=*""'q n >7lq

‘ 1 forn=m

n,

(4)

1 =
n,m t 0 forn #m
q = + for forward and backward traveling combined N-vector
waves, respectively
(e, () - (2 (s)) = (T (s1)]® (5)
(Vn(z,s))q = (Vn(z,s)) + Q(zcn m(S)) . (fn(z,s))
-~ ] ] ~ ] (6)
@) (2,501 = (T3 (2s)) + 0@, () - () (2,00
n,m
~ -1 ~
Qe ()= G (1) - (3 ls)) 7
~ - -1
(ch,m(S)) = (ch,m(S)) (8)
(2c (s)) = characteristic-impedance matrix
n,m
(YC (s)) = characteristic-admittance matrix
n,m

Substituting q = +1 and q = -1 in Equation 6, one can obtain the following

relations

(p(z))y = (p(zs)) + @ (1) + (T (z,s)) (9)

(V(zss))_ = (V(2,s)) - (Z (s)) - (1,(2,s)) (10)

N,

10



(W) (2,0 + (7, ()« (FS)(zs))  (211)

(V45 (2,50, .

(W) (z,5)) - Z, D) (i) (z,5))  (2.12)

(75) " (2,5))

(Vn(z,s))+ forward traveling combined voltage vector or wave

1l

backward traveling combined voltage vector or

(V (z,
"(z $)). wave

From Equations 2.9 and 2.10 we can reconstruct voltage and current vectors in terms

of forward and backward waves. These are given by the following relations

(V,(2,8)) = 3 [<Vn<z,s))+ + (T (2,5)) ] (2.13)

L (s - [(\7,,<z,s))+ - <Vn<z,s))_] (2.14)

I(z,
(I (z.9)) .

From the above definitions we can obtain two sets of waves propagating in

opposite directions along z. For all modes we have

exp[—(%‘fC (s))z] + propagating

n,m

exp[(?C (s))z} - propagating
n,m

Equation 2.3 can be integrated to obtain a solution for the combined voltage

vectors to give

(280 = ex0 | -ali, (D) [z = 251 |- (T (209))

+
—
N
)
x
©

_q('nd’m(S)) [z - Zl]% o (V£S)|(Zl’j))qdj'
2.15

11



For a + wave (i.e., a wave propagating in the +z direction), let us assume

that (\~/n(0,s))+ is specified, then Equation 2.15 gives

(T2, = oo -7, (shz - (7000,

(s))[z-2"1}- (Vgs)l(z',s))+dz'
n,m
(2.16)

Similarly for a - wave with (Vn(L,s))_ assumed specified, we have

(V (z,s))_ expg(?cn’m(S))[z - L] g- (V.(L,s))_

Z )
+ f exp’(w?C (s))[z -2'1 -« (vﬁs’ (z',s))_dz'
L l n,m
(2.17)

These results illustrate that the + wave depends only on the left boundary
condition and the - wave depends only on the right boundary condition in a
very compact way. -
2.2 TERMINATION CONDITION OF A SINGLE SECTION OF THE LINE (TUBE)

A transmission line is usually terminated at the two ends z = 0 and

z =L. The termination could be a lumped impedance, a distributed network,

open circuit or short circuit. If sources are included, these conditions can
be represented by a generalized Thévenin equivaﬁent network or a generalized
Norton equivalent network.

Passive terminations can be specified as an impedance matrix

(Z (z,s)) or an admittance matrix (VT (z,s)), where z = 0 or L. The

T
n,m n,m -
terminating conditions can be specified by scattering matrices (Sn m(z,s)),
where z = 0 or L. Consider at z = L (see Fig. 2.2); Tet the incoming waves be
designated by a superscript - and the outgoing waves +. The scattering

matrix is defined by

12
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Incoming and outgoing wave at a junction
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(7)) = 3, (z8)) @ )(s)) (18)

For the case illustrated in Figure 2, one observes that if this termination

is taken as z = L, then

(978 (s)) = (T (Ls))_
i (19)
(@#(s)) = (V_(L.s)),
And if the termination is taken as z = 0, then
(97 (s)) = (T (0,8)),
(20)
(F)(s)) = (V (0,8))
One can then rewrite Equation 18 for z = Q and z = L as
(Vo(Las))_ = (5, o(Las)) « (V (L.s)), (21)
(V(0.5)), = (S, 1(0.8)) = (V,(0,5))_ (22)

which in this terminating case is the same as the definition of a reflection

matrix and these are given by the following relations:

- . SR . -

(S, mLss)) = L(ZTn,m(L’S)) ¥ (ch,m(S))] y -(ZTn’m(L,s)) - (zcn’m(s))J
- 1 - (23)

(Sp,m(0ss)) = _(zTn’m(o,s)) + (ch,m(S))] . _.(zTn,m(o,s)) - (icn’m(s))-
(24)

The scattering matrices in Equations 23 and 24 can also be represented in

terms of the characteristic-admittance matrix and the load-admittance matrix

as

14



~ N N -1 ~ -

(3, a(Lss)) = [(ch,m(S)) : (an,m(L,s))T : [(ch,m(S)) . (YTn,m(L’S))]
(2.25)

~ - . 1-1 ~ -

(3, (058)) = [(ch,m(S)) (i ] [(ch,m(S)) . (an,m(o,s))]
(2.26)

Having defined the general transmission-line equations and termination
conditions for a uniform multiconductor transmission line, we shall now con-
sider multitube multiconductor transmission-line networks. Before deriving
the BLT equation, we shall first discuss the scattering supermatrix for a
general network.

2.3 SCATTERING SUPERMATRIX

The concept of scattering matrices introduced in the previous section
for a terminated tube is extended here for junctions where more than one tube
is connected. Collections and suitable ordering of scattering matrices at all
junctions of the transmission-Tline network form a scattering supermatrix.

a. | Junction scattering supermatrix

Consider the vth junction, Jv’ with tube ends denoted by Jv-r with

]

index r denoting the rth tube. Let this junction be characterized by an impe-

dance matrix

(Zy (s, = (F (s)7? (2.27)

n,m

The junction scattering matrix is defined so that
(Vo(s))y 4 = (B p(s))y + (Tl

where the subscripts + and - refer to the aggregate of respectively outgoing
and incoming waves on the various tubes in the form of combined voltage vectors.

In the supermatrix form partition according to waves on the o8 tube

ends connected to Jv as

15



(@O0 = Gy ofs), )t (HO ()
(2.28)

~

(T (D) 2 (Fy o)) )

n,m r,r
where
@, - G060,

r= 1,2,...,rv

are the voltage and current vectors on the rth tube ends at Jv with current
convention into Jv.
The tube associated with the rth tube end at JV has characteristic

impedance and admittance matrices which can be put in supermatrix form for Jv

as
((ZC (s))r r') = tube-end characteristic-impedance
n,m > v supermatrix for Jv
(2.29)
((7C (s)),. 1) = tube-end characteristic-admittance
n,m Y supermatrix for Jv
where
characteristic-impedance matrix for rth
( (s)) tube end at Jv fer r=r'
z s) L oey S
c r,r';v '
n,m (On,m) forr # r
characteristic-admittance matrix for rth
( (s)) tube end at Jv for r =r'
Y S fo, = .
Ch,m rarosv (0n m) forr# r'
’ (2.30)
g -1
(Y (s)). .., =(Z. (s)) .
Cn,m r,r;v Cn,m r,r;v

The impedance and admittance supermatrices for the tube ends at a given junction

are block diagonal and may be represented in terms of the direct sum @ as

16



(G ) =G (D)) g @ g )y @B (D),
r
\
e (ch,m(s))‘”"”;"
(e (M) =0 (N p, @ (T m(s))z,zgveaé-aa(vcn’m(s))I,v,,,v;v
r
=& (?cn’m(s))r,r;v (2.31)
The scattering supermatrix for Jv is defined by
(o)) = (G Dy ) 2 (TylsD)
((ys)),) = ((V,(,O)(s)),,)v S (B () ) <<f§0)<5>>r>v
= outgoing wave supervector at Jv
(W), 2 ((\7,‘,°’<s)),,>v P UE () ) ((ff,o’(s)),,)v
= incoming wave supervector at J_ (2.32)

By solving Equations 2.28 and 2. 32 we can obtain the junction scattering supermatrix

as (Ref. 2)

]

-1
()00 + (1 )y ) |
\Y) \Y)

n,m'r,r

((gn,m(S))r,r')v [((zn’m(s))r’r,)v . ((Vc

n,m

1 = 1 |
Dy ) = () ) ]

1]
[t |
—
—
—
e
e
<
—
—
~N

o -1
() ) ((Yn,m(s))r,r‘)v]

\Y

: [((1n,m)r’r.)\) - ((Z, m(s,)),,,,,.) DY ) ) ]
2

17



b. Scattering supermatrix

The proper ordering of all the junction scattering matrices into
one large matrix forms the system (or network) scattering supermatrix

((S, m(s)), ). This supermatrix is a collection of the junction scattering

matrices, which themselves are collections of individual tube scattering
matrices. The latter are matrices containing reflection and transmission

coefficients of individual wires within the tubes.

The wave-wave matrix (wu v) gives the structure of the scattering

’

supermatrix since the scattering supermatrix is in general block sparse as

= (0 Wy, forW, ,=0 (2.34)

(5. (s))

n,m U,V)

We form the network elementary scattering matrices as

) | (Sn,m(s))n,r';v for vy = v, =vork
(Sn,m(s))u,v = scattering into W at J
(On,m) = (On,m)u,v for vy # v, or W not
scattering into wu
(2.35)
The wave-wave matrix is defined as
1 for vy TV, =V and wv scattering into Nu at JV
W =
u,v
0 for vy # v, or wv not scattering into W
u (2.36)
The scattering supermatrix is Nw wa in terms of the u,v indices, i.e.,
u,v = 1,2,...,N (2.37)

W

where Nw is equal to twice the number of tubes. The elementary scattering

(s))

matrices (S are N >N, i.e.,

n,m u,v
n = 1,2,...,Nu

(2.38)
m= 1’2""’Nv

18
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R =

where

N = number of conductors (not including reference) on the (2.39)
tube with uth wave

and likewise for Nv'

As a special case, if there are no selftubes (with both ends

connected to the same junction), then

W =0 foru-= 1,2,...,Nw for no selftubes

(2.40)

n,m(s))u,u = (On,m)u,u for n,m = 1,2,...,N, (square)

2.4 DEFfNITIONS OF SOME IMPORTANT SUPERMATRIX AND SUPERVECTOR QUANTITIES
This section takes the results for the combined voltages on a tube and
separates them into wave variables for the network. The resulting equation
for a general combined voltage wave wu is used to relate the combined voltage
waves at both ends of the tube with the sources along the tube. Each term is
generalized to a form appropriate to the transm%ssion-1ine network, i.e.,
supermatrices and supervectors, by aggregating the results for all wu for
u= 1’2""NW‘
Let us identify the two waves on the tube with the two waves of the
transmission-1ine network, say wu and wv.
Consider the + wave; call this wu and set the coordinate and dimension

variable as

Lu = L = length of path for wu
z, = z = wave coordinate for wu
(2.41)
0 < zu.s Lu
Nu = N = number of conductors (less reference) on tube and

dimension of vectors for wu

19



The wave and source conventions are then

(V(2,5)), = (V,(z,5)) + (2cn (), - (T,(z,5s))

(\7n(zu,5))u

combined voltage for wu

(V£S)'(Z’s))+ = (V£S)|(Zu’5)) (7, (s)), (fﬁs)'(zu,s))

~( !
(W) (z080), .

combined voltage source per unit length for wu

= characteristic -impedance matrix for wu

—
N
——
(7.}
S
g
o
——
<
O
—
(7.}
g
S
]
[
1

—
<
—
[7,]
o
S
11
——
=<
o
[7,]
o
L —
1]

propagation matrix for W, (2.42)

The combined voltage vector for the wave wu is given by

(V (z,5)), = exp {-(?cn m(S))uzu} - (V,(0,5)),,

z, ' e
+ fo exp {-(? (s))u[zu - zd]¥ . (Vgs) (z&,s))udzd

Cn,m
(2.43)

Similarly, the combined voltage vector for the wave wv can be defined. 1In
Equation 2.43 we have the combined voltage at any z, in terms of the value

(boundary condition) at z, = 0. Setting z, = L., we introduce the boundary

u
value there as giving

]
—
4
—
wn
~—
~
o
—
o
———
.
\
—
-2
3
—
o
-
wn
~—
~—

' . ~(s)' )

SN | B ONEHON
(2.44)
This evidently relates (Vn(O,s))u which is an outgoing wave from the junction

at z, =0, to (Vn(Lu,s))u which is an incoming wave to the junction at z, =L,

20




e

As a matter of convention, let all the sources be considered as being
present in the tubes instead ofat”thejunctions. If one has a junction with an
equivalent circuit contaihing sources, then the sources can be moved just
across the terminals into the tube, a movement of zero distance.

a. Propagation characteristic supermatrix

Considering the various terms in Equation 2.44, let us first

aggregate all the propagation terms not associated with the sources into a

block diagonal propagation supermatrix as

s u,v
- { (% ! (s ' ... { _(x I
= exp (ch’m(s))lL”@ exp | (ch’;s))sz@ @® exp t-(ch,m(S))NwLNwl
= 25‘ expt-(¥.  (s)) L | (2.45)
u=1l l Cn,m u"u | )

propagation supermatrix
where the elementary matrices (blocks) are given by

exp ;-(?c (S))uLu: forus=v
n,m

(fn,m(s))u,v

(on,m) foru# v
- ‘- - ) (2.46)
1,,v exp ' (ch m(S))uLus
b. Source supervéctor and combined voltage supervector

From Equation 2.44 let us define a source vector for wu in travel-

ing from z, = 0 to z, = Lu as

L
(V,Es)(s))u = JO exp %-(vcn,m(S))u[Pu ) ZG]% ) (V£S) (z)5) 9z (2.47)

The source supervector is then merely
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~ u . ,
(‘VrgS)(S))u)f (fo exp (-(T  (s)),IL, - z)s - (vls) (zl",,s))ud-zl'j)
(2.48)

For completeness we have the aggregate of combined voltage vectors in Equation

2.43 as

((Vn(o,s))u) = combined voltage supervector of outgoing waves

) at the junctions
(2.49)

((Vn(Lu,s))u) = combined voltage supervector of incoming waves
at junctions

2.5 BLT EQUATION

Combining the results of the previous derivations we can write the BLT
equation for the description of the transmission-line network. In Reference 2
the BLT equation was derived for the combined voltage waves leaving the junc-
tions. Here, we shall derive the BLT equation for four variables, namely,
combinéd voltage waves leaving the junctions, combined voltage waves entering
the junctions, the total voltage vectors at the junctions, and the total
current vectors -at the junctions. We begin with the scattering supermatrix

which relates the incoming waves to the outgoing waves as

(7,(0,9)), = (B, (), ) & (Tp(L,.9),) (2.50)

Next, relate the incoming waves at the output ends of the tubes (zu =Lu)
to the same waves at the input end of the same tubes (zu = 0), albeit at differ-

ent junctions in general. Writing Equation 2.44 in supermatrix form we have
" = ((D Y ~(s)
(Vo (Lyos)) ) = (B (D) ) 3 (T, (0,8)) ) + (0337 (s)) ) (2.51)

Combining Equations 2.50 and 2.51 we have
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((V,00,))) = (B, (8D, ) 2 ((Fy (D) ) 5 ((T(0,9)))

n,m

(G, )y ) T (TS0 (2.52)

That is rearranged by use of the supermatrix identity as

(€1 ) = (G nls))y ) 2 (Fy ()

n,mu,v

B ER(CACESII

n,m

= (S ())& (@) (2.53)
This can be rearranged to obtain
-~ | ~ ~ . - 1
(0 055),) = [0y o) = (G ) 2 (o)), ]

(3, (), ) ¢ () (2.54)

This is one form of the BLT equation with unknowns taken as the combined voltage
waves leaving the junctions, Similarly, the BLT equation can be obtained with
unknowns taken as the combined voltage waves entering the junctions. By

‘rearranging Equation 2.51, we obtain

(70,500 = ((Fy (s))y 71t ((Lyas))) = ((Fy ), 07 e (@80
(2.55)
Combining Equations 2.50 and 2.54 we obtain
[(F, )y W78 = (G )y 0] 1 (tLsn)y)
- ((F -1, ,uls)
= ((Fy (D) )70 5 (030 ) (2.56)

By rearranging Equation 2.56, we obtain
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((UpLys)y) = [ Dy ) = (G )y ) ((§n,,,,(s))u,v)]'1 (S s
(2.57)
This is another form of the BLT equation with unknown taken as the combined
voltage waves entering the junctions. From Equations 2.54 and 2.57 we can
derive the BLT equation in terms of the total voltage and total current super-
vectors. Note the order of multiplication of scattering and propagation super-
matrices in Equations 2.54 and 2.57. We shall rearrange Equation 2.54 so that

the order of multiplication of matrices is as that in Equation 2.57. Equation

2.54 can be rearranged to give

((T,(0,8)),) = (3, ()

u,v n,mu,v n,m u,v n,m

~ ~ -1
)2 [0 Wy ) - (Fy )y )t (G (), )]
()(s)),) (2.58)

: ((Vn u
From Equations 2.13 and 2.14, we can write the supervectors for voltages and

currents at the junctions in terms of the combined voltage waves leaving and

entering junctions as

(0 = 3 [T, + (B 0y ) 1 (T8, ] (2.59)
() = 3 (T )y ) 3 [0 - (g )y ) # (TaLss)y)]
n,m s s

(2.60)
where Vgo)(s) and fgo)(s) are voltage and current on the nth conductor in the
tube containing the uth wave at the junction from which the uth wave leaves.

In Equations 2.59 and 2.60 we have introduced a permulation supermatrix
((Pn,m)u,v) in order to sum the appropriate outgoing and incoming waves at the
junctions. The permulation supermatrix has blocks with the following properties:
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(1n m)u v if Wy and Wy are on the same tube and u # v (noting
(P ) - 7 HsY that this is a square matrix)
n.mu,v (0n m)u v 1F W, and wv are not on the same tube or u = v

u,v = 1,2, ,Nw
and

n= 1,2,...,Nu

m = 1,2,...,NV (2.61)
Only one block matrix (Pn m)u v is equal to (ln,m) on any row or column with
respect to indices u or v. Thus ((P_ ) ) is an orthogonal supermatrix.

n,m'u,v
Substituting Equations 2.57 and 2.58 into Equations 2.59 and 2.60 we

obtain
(3,900, = 3 {(G, a0y ) + (P 0y ]
. S
P[00 ) = (o)) (G, ] 2 (G0,
(2.62)
(@) = 3 (G (D)) (G Dy ) = (P )y )]
: 3 . (3 )
[0 W) - (Gl )t (G s, )] (@)
(2.63)

Equations 2.61 and 2.62 are two forms of the BLT equation in terms of the volt-

age and current supervectors at the junctions.
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III. BOUNDS FORSIGNALS ON A MULTICONDUCTOR CABLE NETWORK

Having derived ;he BLT equations for general multiconductor-line networks,
we can now establish upper and lower bounds on combined voltages, voltages,
and currents, using the norm concept discussed in Appendix A. The BLT equa-
tions give voltages, currents, and combined voltages at the junctions. From
these one can find voltages and currents essentially everywhere, including at
the junction terminals and at arbitrary positions on the tubes. However, we
shall T1imit ourselves to the junctions for the purpose of establishing bounds.
3.1 BOUNDS ON COMBINED VOLTAGES, VOLTAGES, AND CURRENTS

Taking the norm of both sides of Equation 2.58 we get

e ) )

n,mu,v

1T 0N = 1, a0,

Using Equation A6 in Equation 3.1, we obtain

IV CsN DI < IS, L))y, I T, )y )
- (Fy sy ) 2 (3 (), M @S s i1 (3.2)
Rearranging Equation 2.58, we can write
[ ) = (Fynls)y ) 5 (G (), )T 5 (5, (s, )7
D (T,00,8)) ) = ((T85)(s)) ) (3.3)

Taking the norm of both sides of Equation 3.3 and using Equation A6, we

obtain
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I ) uy) = (S0 5 (G ), VT 2 (5, () )70
T 0N P12 1S () )]

or

¢V (0,8)) )

||((v‘S (),

TN,y - (B )y ) 1 (G als)), V1 5 (G

n, m usv n,m u,v n,m

(s)), Il

sV
(3.4)

Equations 3.2 and 3.4 give upper and lower bounds on the norm of the combined

voltage supervector for all waves leaving junctions, in terms of the norms of

other quantities, such as combined voltage source waves, scattering supermatrix,

and propagation supermatrix.

Similarly, we can obtain upper and lower bounds on the norm of
combined voltage supervector for waves entering junctions. Taking the norm of

both sides of Equation 2.57 and using Equation A6, we get

IV NP1 < T ) - (T (s)), ) o ((3

nmu v n,m u,v

NS snpl (3.5)
and
H((v‘s (sl

((V (LesH)N = : (3.6)
[{alteD IECCTy g ) = () ) 1 sy s, VI

u,v

Similarly, from Equations 2.62 and 2.63, the upper and lower bounds on the

norms of voltage and current supervectors are given by
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T NP < FITE, pls), )+ (P ), V1] .

n u u,v n,m‘u,v
T, )y = (B (D)) 1 (G n()), VTS 0
(3.7)
A NI < 3T, Dy IS, o)), ) - (P ), I
n 2 n,m u,v n,m u,v n,mu,v
I R I (G O DI RER A S DI S el I T (A OO DY
(3.8)
DN I = 2 NI/t )y J-(F (), VG, (), )]
n m u,v n,m u,v .M u,v
PG, (), )4, )y 1] (3.9)
AL NI 2 F I NI/ 1L, 2, ) -(F (), )G, (), )T o

PG, (8- (P D T 2 (2 () DII]

n,m ‘u,v
n,m (3.10)

Equations 3.7 and 3.8 give upper bounds on the voltages and currents, respec-
tively, and Equations 3.9 and 3.10 give lower bounds on voltages and currents,
respectively.

Before evaluating these upper and lower bounds, we shall illustrate
what these bounds mean. The upper and lower bounds defined in Equations 3.2,
3.4, and 3.5 through 3.10 are upper and lower bounds on the norm of vectors.
In Appendix A, 1, 2, and = norms for vectors and matrices are defined. The

above equations are valid for any norm as long as they are consistent on both
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sides of the‘equations. For the purpose of bounding signal levels, « norm for
vectors is most appropriate, for it gives the magnitude of the largest element
of a vector. For a voltage or current vector at a junction or at any point
along the line, the « norm gives the magnitude of the maximum conductbr voltage
or current (pin voltage or current at terminations). Thus an upper and lower
bound on the « norm of a vector gives, respectively, an upper and lower bound on
the magnitude of the largest element of the vector. The lower bound should not
be confused with the magnitude of the smallest element of the vector.

Since the 2 norm of a matrixis obtained from the knowledge of its
eigenvalues, it is possible to evaluate it from the characteristic properties
of the matrix and, therefore, we shall use this norm for matrices in the
evaluation of upper and lower bounds. Using = and 2 norms and Equations A64
and A94 through A29, we can write upper and lower bounds for combined
voltages, voltages, and currents as follows. |

Using 2 norms on both sides of Equatidn.3.2 and substituting Equa-

tion A63, we get
T 0,D )L, < 1S, pls)y )1,

L Wy ) = CF )y ) 1 (G )y DT, IS s,

(3.11)

Substituting Equation A65 into Equation 3.11 we get

T 0D P, < /g 1G, 1)y VI,

N g = (Fy 80y ) 2 (G (), T, 1A s
(3.12)

Where NS is the dimension (numbers of components) of the source supervector.
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A lower bound on tne combined voltages for all waves leaving

junctions is obtained by using «= norms on both sides of Equation 3.4 as

100,80 Dl 2 TS () i/ (1L . )= (Fpn$),, )20 () )]

n Wl

(), V7M. (3.13)

n,m u,v

Substituting Equations A6 and A98 into Equation 3.13 we get
- ~(s) , . T
10,00, My 2 HCTS (50 it/ PRI LC, ), )= CF (80, ) (B nl0), ) 1

Gy )y 0 M ] (3.14)

where NS is the size of the supermatrices in the demoninator.
An upper bound on the combined voltages for all waves entering

Jjunctions is obtained from Equation 3.5 using Equation A63 as

. . o 4
T L es) ) < DL ) = (Fy )y ) 1 (G () T,

n m u,v n,m U,V

(3.15)

Substituting Equation A65 into Equation 3.15 we get

~ ~ . ~ -1
O DI T IR | (N I R (G S DD I (I S DI b i [

(@) sn) ) | (3.16)

u (o]

Similarly, a lower bound on the combined voltages waves for all waves entering

junctions obtained from Equation 3.6 using Equation A98 as
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Iy

SR o

u(s)
v ((V,>7(s)),)
ARSI I~ (D), IL,O. ~
OO, )y ) = (B als))y ) 2 (8

a8y V1l

TENACIIN
n m uv) " ((fn,m(s))u,v) : ((§n’m(5))u’v)]|I 2

/_II[((l

(3.17)
Similarly, an upper and lower bound on the voltages and currents at the junc-

tions is obtained from Equations 3.7 through 3.10 using Equations A6, A63, A6GH
and A98 as

S (1) o TG, o))y ) + (P )y VI
AT )y ) = (F ()], 2 (B (), DT LI ) )1,
< FASNTCE, i)y )+ (P )y I,

T ) = (B (80 (G () LI (50 L,

,M

(3.18)

O ) 23 1T () I/ L ), 2 =EF D), (3

FLOGS, () e, )y DT

2 H I ) /PRI, ), )= (F o 0, 3G ), 11,

L, (), 4P ), AT ] (3.19)
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NP DM < FTAT 91y Il BT, (93, ) = (R )y VT,

n,m

N ) ) = (B 0], ) 2 (G ), VT LI 0 1,

n;nu v

<3 VR, 1T, (51, ILG, pl$))y,,) = (B oy W1

M, ) - (F (), ) (G (o)), VT UL s )

n,mu,v n.,m U,V
(3.20)
B 1) D 2 3T IIL/IT, ) -(Fy als))y )2, o)), )]
. (% -1, s
PTG, 5Dy )= ), VT ((zcn,m(s))u,v)”“’]
S TROSUOIB
AR T, )y ) = (T () )25, p(s) P
LS, )y, )= (P )y MTHILICE, (), )]
] b b b n’m 3
(3.21)

So far we have derived relations for upper and lower bounds for
combined voltages, voltages, and currents in terms of norms of other parameters,
such as the propagation and scattering supermatrices, the characteristic impe-
dance or admittance supermatrix, and the source supervector. Thus, to establish
upper and lower bounds on combined voltages, voltages, and currents, we have to
first establish bounds on the parameters. To establish bounds on the parameters
and the sources for a general multiconductor cable network is very difficult.
Furthermore, if such baunds could be established on parameters, the resulting
bounds on the voltages and currents may be unrealistic. In order to get rea-
sonable bounds we shall consider some special canonical configurations of a

multiconductor cable network fn Sections IV and V.
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The simplest of these configurations is a uniform section of a multi-
conductor transmission line in a homogeneous medium terminated at both ends
and excited by an external field or voltages and currents at terminations.

To make the transmission line configuration more complex, we can add a branch
to a uniform section of the line. The branched 1ine will serve the purpose of
illustrating the procedure for calculation of bounds for cable networks with
junctions. These two configurations will be considered in Sections IV and V.
3.2 BOUNDS IN TERMS OF BULK CURRENT |

In evaluating the EMP vulnerability of a system, the bounds which are of
most interest are the bounds on pin currents in terms of the bulk current.

The bulk current on a multiconductor transmission line is defined as the
algebraic sum of all the wire currents at a given cross section. This concept
of pin current bounding in terms of the bulk current has tremendous implica-
tions for aircraft testing. If such a bound can be established, then one

only need to measure bulk currents on cables in an aircraft, thereby reducing
the number of measurements by orders of magnitude. In this section we address
the above problem.

Since the 1 norm of a vector is defined as the sum of the magnitudes of
its components, and the bulk current is the algebraic sum of the wire current
in a cable, then for current vector on a multiconductor 1ine at a termination

we have
10, g 2|18, | (3.22)

where (Tgo)(s)) is the current vector for the rth tube at the wth junction,

riv

and IéO)(S)r-v is the bulk current on the rth tube at the vth junction and is
~’ u -~

defined as Iéo)(s) = Igo)(s)

riv - o5 r;v
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Writing Equation 3.22 for currents at all the junctions, we have

N

1((F{0)(s) i f i(0)(s)

Jlz (3.23)
n 1 r‘lvl B

where the right-hand side is the sum of all the bulk currents in all the tubes
at all the junctions.

We shall now express the « norm of the current supervector in
terms of the total bulk current. This can be further decomposed in terms of
bulk currents on tubes at various junctions for specific problems. Substitut-

ing Equation A63 into Equation 3.21 we obtain
el snpn, = et sn i,

/[_m_;u[<<1m)w)-<<fm<s)) )3 (s)), I,

u,v n,m u,v

TS, 50y )Py )y TN (5))y ]
(3.24)

and taking 1 norm of both sides of Equation 2.63 and then substituting Equa-

tions A6 and A94 into the result we get

1@ )l <4 /I T (50 W INLE, n())y ) = (P )y

E]

(o )=l V20 () DTN 0 ) 1l
(3.25)

In Equations 3.24 and 3.25, 2 norms of matrices are used, since these can be
computed from energy conservation. Dividing Equation 3.21 by Equation 3.25

and then substituting Equation 3.23 in the result, we obtain
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G ]

(0
TGABIPIE
| Tgl

2 0TS () Hls NI TC (L )= ((Fy )y ) 2 (G (s, NI,

nmuv

TS, )y, ) = (P 3y VT M, I, () )l

I 5Dy, )15 NG, pl9),,) - (7

n,m

)11l

nmuv

A Te{8! )= ((Fy o))y ) 8 (G a1y IT7HE, 1T )11,

(3.26)

nmuv

Thus Equation 3.26 gives a lower bound on the ratio of the maximum pin current
to the bulk current.

Similarly, dividing Equation 3.20 by Equation 3.24 we obtain

IO sy i
QISR

)11,

nmuv

< NI (D), VIR, (), ) - (P

n,m

e ) = (Fy () ) 2 (G N VT HILIE, (), ),

m v
n,mu, n.m

N ) = (F (900 2 (6 (), VNI (0 ) = (B o) T

(3.27a)
Also, from Equation A64

TGESABININ

(3.27b)
I« 1‘°)<s>> N
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In Equation 3.27 the upper bound is independent of sources. In Equations 3.26
and 3.27 the norms of matrices and their inverses occur in pairs. From Equa-
tion A56, the product of the norm of a matrix and the norm of its inverse is
greater than or equal to 1.

From physical principles and Equation A65 the lower bound on the ratio
of the maximum pin current to the bulk current is 1/NS. Thus, with the result
in Equation A56 in mind, the lower bound in Equation 3.26 is not useful since
it gives a lower bound which is less than 1/NS.

Equation 3.27 gives an upper bound on the ratio of the maximum pin
current to the sum of the magnitudes of all the pin currents. Since we can-
not substitute the 1 norm in the denominator with the bulk current, this
bound is not very useful either. It is obvious from the above discussion
that an upper bound on the ratio of the maximum pin current to the bulk
current cannot be obtained analytically. However, it is seen easily that,
in general, pin current is not bounded with respect to bulk current, since
the bulk current in a cable can be zero while the individual pin currents are
non-zero; for example, a two-wire cable excited in the differential mode has

non-zero pin current and zero bulk current.
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IV. BOUNDS FOR A UNIFORM SECTION OF A MULTICONDUCTOR TRANSMISSION LINE

In this section we shall consider a special case of a general multi-
conductor cable network, a uniform section of a multiconductor transmission
1ine terminated at both ends. Two types of excitations will be considered.

In the first type of excitation, the line is excited by an incident external
field, and in the second type, the line is excited by voltage or current
sources at the terminations.

Consider a multiconductor transmission line formed by N conductors plus
a reference conductor or ground as shown in Figure 3. The line is assumed to
be uniform along its length (z coordinate), bﬁt with arbitrary cross section.
In general, the dielectric surrounding the 1ine is inhomogeneous (e.g., cable
made of insulated conductors having different geometries and dielectric
materials).

The wave traveling in +z direction is denoted by wave wl or simply
wave 1, and the wave traveling in -z direction as w2 or wave 2, as shown in
Figure 3. Then the combined voltage vectors for multiconductor transmission-

line in Figure 3 are given by

) (V,(0,5))4
((v (0,s)),) = ) (91)
(v,(0,s)),
(VN(L ’S))l
((V,(L,s8)),) = (92)
(Vn(L,S))z

where (Vn(o,s))1 and (Vn(O,s))z are the waves leaving junctions at z = 0 and
z = L, respectively, and (Vn(L,s))1 and (Vn(L,s))2 are the waves entering

Junctions at z = L and z = 0, respectively.
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1
——
(Z.  (0,s)) (Z;  (L,s))
Tn,m Tn,m
)
Ground o
z2=0 z=L

Figure 4.1. A multiconductor transmission line over a ground plane,
terminated at both ends.
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The waves leaving and entering junctions are related through scattering

matrices as

]
—
R

(V,(0,8)), (s)) 5 = (V (L.s)), (4.3)

n,m s

]
—
i

(V,(0,5)), (s))y 1+ (U (L,s))y (4.4)

n,m s

where (Sn,m(s))l,z and (Sn,m(s))z,l are scattering matrices of junctions at
z =0and z = L, respectively. The subscripts 1,2 and 2,1 indicate that the
2 wave is scattered into 1 wave and 1 wave is scattered into 2 wave, respec-
tively. Combining Equations 4.3 and 4.4 and writing the scattering matrices

in supermatrix form we have

(V,(0,8)), (0 1.1 SO (¥, (L,s)),
= : (4.5)
(V,(0,5)), (Spm(SVa 1 (0, sy (V,(L,s)),
or
((V,00,5))) = (5, )y ) & (T, (Lys))) (4.6)
where
- (On,m) (gn,m(s))l,z
(CRROINSES I (4.7)
(Sn,m(s))Z,l (On,m)
= scattering supermatrix
u=1,2
v=12

n=m=1,2,...,N

(Sn,m(o’s))l,Z and (Sn,m(L’S))Z,l are the reflection coefficient matrices at

z=0and z = L, respectively, and are given by Equations 2.23 through 2.26.
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From Equation 2.43, we can write the relation between the 1 wave at

z =L in terms of the 1 wave at z = 0 as

-~

(Vo(Lus))g = exp {=(F, (L} + (V,(0,8)),

+ fL exp {-(Y,  (SNIL - 2T « (718 (20,6)) e’
° nsm (4.8)

Note that
; z for u =1

z, =
l L-z foru

]
N

Similarly, the 2 wave at z = L can be expressed in terms of the 2 wave at
z2=0

(V,(L,s)), = exp SO (V,(0,5)),

L .
Ny " ~(S)l u
- exp {-( (s))z"} - (V (z",s)),dz" (4.9)
[0 Xp ch,m s))z N 2",s)),dz

where z" = L - z'. Combining Equations 4.8 and 4.9 we get

(V(L,s))y exp {-(?Cn (sNLy (0, ) (V,(0,9)),

(V. (L.s), (0 ) SRSCAONE (V. (0.5)),

L
~ 1 ~(S)' 1
{- (s))L - }oeoo(v R dz'
fo exp (ch’m s) | z'] a2 S))1 z

+

L e it n ~(S)' n u
Xp {-(YC (s))z"} - (Vn (z ,s))zdz

N
o n»m (4.10)

We can write Equation 4.10 in supermatrii notation as

(T, (Los)),) = ((Fy as))y ) 2 ((F,(0,80)) + ((T(s))) (4.11)

where
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) (PN (0, )
(T SNy ) = ) (4.12) -
(On,m) (Fn,m(s))z,z
(fn,m(S))l,l = (fn,m(s))z,z = (T m(s)) = exp {-(Vcn,m(s))L} (4.13)

JL exp {-(Y (s))[L - 2']} - (V(S)I(Z',S)) dz'
o cn,m n 1

$)(s)) ) = (4.14)

-[L exp {-(Y (s))z"} - (V(S)'(z',s))zdz"
) Cn,m n

Substituting Equations 2.11 and 2.12 into Equation 4.14, we get the source
supervector for the two waves in terms of the voltage and current source

vectors as

(@0,

0 “n.m n,m

L ' - - 1
[“ew -G, N2 LA @+ @ () - (3 (2s)) 1a!

(s)) - (18] (27.5)) Jaz*
(4.15)

L
iy 1 "'( )' " 7
-fo e (7, (N2} - LT e (2

~ ]
where (Iﬁs) (z',s)) is now taken pos.tive in W, (or +z) direction.

1
4.1 NORM OF THE SCATTERING SUPERMATRIX

The scattering supermatrix for a uniform section of a multiconductor
transmission line is given by Equation 4.7, and has its diagonal block matrices
as null matrices and off-diagonal block matrices as the reflection coefficient

matrices at z = 0 and z = L. From Equation 4.7, we can write
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(3, m(s)) )7 2 (B sy )
By (N3 1+ Gy nls)y (0 )
] (On m) (gn,m(s))I,Z : (gn,m(s))l,Z

(G, (1)} 1 - (§n,m(s>)2,1]®[(§n,m(s>){,2 ¢ Gy ()10 .
4,16

The supermatrix in Equation 4.16 is block diagonal and, therefore, its eigen-

values are the eigenvalues of its block matrices. From Equations 4.16 and A73

we have
- + - 1/2
i (Sp,m(s))p 1 = 5y wls))y 4
”((Sn,m(S))u,v)IIZ 1 max - + .
(Sn,m(s))l,Z . (Sn’m(s))l,z
N [CRRC T P ()
u=2,v=1

Thus the 2 norm of the scattering supermatrix of a uniform section of a multi-
conductor line is the larger of the 2 norms of the scattering matrices at the
terminations.

For passive terminations, we can establish an upper bound on the 2 norm of
the scattering supermatrix. If (VCE m(s)) is a real, diagonal matrix with equal
diagonal elements, i.e., the Tines are decoupled and have the same characteristic

admittances, then the 2 norms of the scattering matrices (reflection matrices)

(§n n(s)); , and (§n n(s)), ; satisfy the inequality
||(§n’m(s))||2 <1 for s = juw (4.18)

The proof of Equatipn 4.18 is illustrated in Appendix B. i
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Similarly, we can establish a lower bound on the norm of the inverse of
the scattering supermatrix for passive terminations, under the above assumptijons.

From Equation 4.7 we can write the inverse of the scattering supermatrix

as
-1

(0, ) By .n()7

(5. (s)) )7t=
-1

n,m U,V -
(Sn,m(s))Z,l (On,m)

(4.19)

Since (Sn,m(s))l,z and (Sn m(s))z’1 are square matrices for a uniform section

Then from Equation 4.19

of a line.
(O N R CR E I
-1+ -1
(Sn,m(s))z,l ) (Sn,m(s))z,l (On,m)
7~ (0 By (N + Gy a7

_ 2 -1, 2 -1 x -1% -1
= [(Sn (s))p)q (Sn,m(s))2,1] @D{gsn,m(S))l,z ) (Sn,m(s))l,Z]
(4.20)
From Equations 4.20 and A73 we have
1/2
x S 2 -1
i 0 GnmtsDa)r = Gy nls) 7
“((Sn,m(s))u,v) H2 = | *max . 1+ - -1
(Sn,m(s) 1,2 ° (Sn,m(s)) 1,2
_ P -1
= U=Tac=2 ”(Sn,m(s))u,VHZ (4.21)
u=2,v=1

The 2 norm of the inverse of the scattering supermatrix is greater than or

equal to one for s = jw (see Appendix B).
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4.2 NORM OF THE PROPAGATION SUPERMATRIX

The propagation supermatrix for a uniform section of a multiconductor
transmission line in Equation 4.12 ié block diagonal, with block matrices
equal to the propagation matrix of the line given in Equation 4.13. From

Equation A73, we can write the 2 norm of the scattering supermatrix as

HUT, (D Wy =T ()]

n,m

=llexp{-(7.  (s)ILHI, (4.22)
n,m

Thus the 2 norm of the propagation supermatrix is equal to the 2 norm of the

propagation matrix (fn m(s)) of the line.

~

The propagation matrix (I'_ (s)) is a complex, nonsymmetric matrix in

n,m
general. The calculation of the eigenvalues of the propagation matrix requires
knowledge of the propagation modes, eigenvalues, and eigenvectors of the char-

acteristic propagation matrix (¥ (s)). Since it is difficult to find
c

eigenvectors of the propagation mgéTix without the complete knowledge of the
matrix itself, for the purpose of establishing bounds we shall 1imit our
investigation to a homogeneous medium case. For a multiconductor transmission
line surrounded by a homogeneous medium, the characteristic propagation matrix
is diagonal with equal elements since all the modes propagate with the same
speed. The diagonal elements of the characteristic propagation matrix for a
homogeneous passive case are given by
¥ (s) = a(s) + jB(s) for s = juw (4.23)
n.n a(s) >0

where o and B are the attenuation and phase constants.
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From Equation 4.23, diagonal terms of the matrix (fn m(s)) are given by

fn,n(s)

exp{-[a(s) + jB(s)IL}

exp{-a(s)L} exp{-jB(s)L} for s = ju (4.24)

From Equation 4,24, the 2 norm of the matrix (fn m(s)) can be written as

H(fn,m(S))llz = H(fn’m(S))ll lexp{-a(s)L} exp{-jB(s)L}|

exp{-a(s)L} for s = juw (4.25)

since the magnitude of the second exponential term is equal to one.

From Equation 4.25 we can conclude that

T, w(sNIl, <1 for s = ju (4.26)

and hence

E

Jw (4.27)

n,m(s))u,v)IIZ <1 for s

4.3 NORM OF THE SQURCE SUPERVECTOR
The source supervector is given by Equation 4.15 and, using Equation A62,

its norm can be expressed as

TORUCIN

L ()t - ~fc)!
I A O T R (U RO I C A O VIR S S CRE B

0 n,m n,m

L - ' - -~ '
| -] expt(r, (sD2d - LA (2ns)) - (@ () - (B (220

) n,m n,m

(4.28)
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Using Equations A91 and A6, the norm of the vectors in Equation 4.28 can be

expressed as

4

L ~fc)! -
”fo exp{-(7,  (sNIL-2'T « [V (2hs) + (I, () + (1 (2',9)) 102" |

n,m n,m

IA

L
f lexp{-(¥,  (s))[L-z'1}] LV s (z',s)) +(Z (s)) - (I (z',s))]|kz’
0

n,m Cn,m

A

L
[Newt-G Ntz DI UF Lol + 1, NI, s) e
0o

n,m n,m
(4.29)

L | ~ - '
I A O I (A IO I A S I (S IO I
0

L ~ ' . '
[“lewt-(r, N2 TGS (2o - (2 () + (G18) sn e
0

A

A

L Y . IRy

f llexp{- (¥, (S))Z"ll[H(Vﬁs) (z" s+ Iz, (s))iIH(Iﬁs) z",s))ll 1dz"
o - n,m n,m

(4.30)

For a homogeneous medium, from Equation 4.25 the norm of the propagation

matrix is bounded by (for s = jw)

lexp{-(¥, (s)IL - 2']]] <1 (4.31)

Hexp{-(?C (s))z"|| =1 (4.32)

Substituting Equations 4.29 through 4.32 into Equation 4.28 we get

L wfvs 5
I [ okl @i+ i, i @ e
i(s) ° '
[SUCIRITES
[ o @ran i+ 1, IS @ ) 10
0 ’
. (4.33)

46



e K

L

Note that the two integrals are equal so that we only need one and the norms

can be expressed in terms of the norm of this one as

L ' - - '
TEUCINI Y UO[H(V'(‘S) (sl + 12 (NIl 1(ils) (z',s))||1]dz']

(4.34a)
(sNl, ||<f,‘,s)'<z',_s>)||21dz-]
m

(4.34b)

N L () -
@Sl sn i, sﬁ[{ouuv,ﬁ” @)l + 162

b

- L Ry . Ry
I NP e < [ TG @il + 1 ol 1S @il 1
0

n,m
(4.34c¢)

If the per-unit-length voltage and current source vectors along the line can

be expressed using delta functions as

(o) (o)

max il
LA s szt-n) L (1) (s =

1(s)(ey) -
1 ] (1.°7(s)) (2" -0,

(‘7,(]5)'(2',5)) =
c

= g
where o = 1,2,...,0 ,» then Equations 4.34a through ¢ can be written as

max

c
. ma . - -
TESUCININPE. zlx LIS gl I NI IES) ()]
m

o= n,
(4.34d)
Omax
~ . ~ \ ~ ~
1S NI, < V2 1 LIS (s0) 11+ “‘ch,m(s””Z”“ﬁs) (s))_l1,]
(4.34e)

A

g
. ma . - ~
A NI < T IS @)l 12, (DI ()i,
n,m

o=1 s
(4.34f)

The above equations (4.34a through 4.34f) express the norms of the source

supervector in terms of the norms of the per-unit-length voltage and current
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source vectors on the line and the norms of the characteristic-impedance matrix
of the line. The expressions for the norms of the source supervector can be

simplified for the following three special cases.

a. Sources are delta functions; that is, the sources exist only at a
point along the line (localized sources). In this case the 1, 2, and = norms

of the source supervector in Equation 4.34 reduce to

Hassn i, < 2 H(V,(,S’ (O + 2@, (Dl 1AE) (N1, (4.352)

n,m
I )1l < Z NG (01l + /21 (Dl (T ()11 (3.350)
n,
S N DN, < 1S N1, + 1 cp oo 1S o, @.3se)
b. Sources are uniform along the line. In this case the 1, 2, and «

norms of the source supervector in Equation 4.34 reduce to

NS 0 i< 2 1S sy + 2, ROMNIN TeEOMNIANCERY
n,

1T N < ZLIES D, +vZ Lz, (s, (G (sl

n,m
(4.36b)
s sis)! 5
N Pl LIAE D, + L, sl 1S 01, (a.360)
n’m
c. Sources are sort of uniform; that is, the variation of per-unit-

length sources along the 1ine is small. In this case, it is appropriate to

use the maximum so that we can write the 1, 2, and « norms of the'source

supervector as
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@S sn i,

<AL NG @anlly + 1 (DIl HED )11
(4.37a)
IS N PN, <2 LTS s, + 1GE, s, 1A () 11,1,
o (4.37b)
1 ) Ml < LUTES o) Il + 1, (Dl A (1117 o,
s (4.37¢)

4.4 NORM OF THE MATRIX [((1, o), ) - ((F, n(s)), ) ¢ (3, n(s)), )17

From Equations 4.18 and 4.27 the 2 norms of the scattering and propaga-

tion matrices are less than or equal to one, and, hence, for s = jw

~

1CE m(5)y0) 1 (G nl)y Wl HE (1) VIR, (1), )1l

U,V
<1 (4.38)

Then from Equation A48 we can write

IK(8! ) - (F, a1y ) & (B, () VT,

n,m)u,V u,v n,m u,

< 1 (4.39)

T Uy )y Dl 1S, a1, DI,

for s = jw
Note that since the product of the norms in the denominator of Equation 4.39
is less than or equal to one, we cannot use this upper bound for calculating
upper bound for the norm on the left-hand side of Equation 4.39, for it gives
an infinijtely large bound which is not useful. In order to get a finite bound
in Equation 4.39, tighter bounds for the scattering and the propagation
matrices are required. For a homogeneous medium, the norm of the propagation

matrix is given by Equation 4.25 as

((Fy (s iy = for s = ju (4.30)
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for a lossless case Equation 4.40 reduces to (for s = jw)

T, () I =1 (4.41)

Hence, for a lossless case, from Equation 4.39, we can write

-~

1)) - (F (), ) 2 (B, (), ITTHI, < S S
I LY no S u-y n.m S u-Y ”2 1- ”((Sn,m(s))u,v)HZ

for s = jw (4.42)
The norm of the scattering supermatrix for a uniform section of a multiconduc-
tor transmission line can be calculated from the knowledge of the termination

impedances which we shall consider next.

4.5 NORM OF THE SCATTERING MATRICES AT TERMINATIONS

-~

The scattering or reflection coefficient matrices (S (s))1 5 and

n,m

e

( n,m
by Equations 2.25 and 2.26 in terms of the characteristic-admittance and

(s)), 1 at the terminations of a uniform multiconductor line are given

termination admittance matrices as

~ _ ~ ~ _1 ~ ~

Gon($),z = [0 (D) + (Fp  @sDTT - I0 () - (T (0:))]
(4.43)

-~ _ ~ ~ -1 ~

Gpon($)z, = [0 (D) + (g LsDTT - L () =Ty (Ls))]

(4.44)

where (VT (0,s)) and (VT (L,s)) are the termination-admittance matrices at
n,m n,m

z=0and z =L, respectively. These are related to the termination-impedance

matrices by the following relations:

(V. (0,8)) = (Z; (0,807 (4.45)

(4.46)

—
—
-
wn
~
~
n
—
[T
—
—
—
-
wn
~
~
]
—
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From Equations 4.43 and 4.44, using Equation A6, we can write

< g 5 -1
[N oll < 0T () + Ty (0,517
SIEE, () - (T (0,9)) (4.47)
| ' r, (08 1l
x 5 5 -1
1y (N, ll < NETe (1) + (F (LasnT|
SIEE, () - (B (Ls)I] (4.48)
n,m n,m

For a short- or open-circuit termination (all termination impedances are zero
or infinity) the scattering matrices in Equations 4.43 and 4.44 are equal to,
respectively, - or + the identity matrix. And since the eigenvalues of the
identity matrix are all equal to one, the norm of the reflection-coefficient
matrices is exactly equal to one for short-circuit or open-circuit termination
and, therefore, we will exclude these two cases and assume that the termination
impedances are finite and non-zero.

An estimation of upper bounds for norms of scattering matrices in Equa-
tions 4.47 and 4.48 is quite difficult without a complete knowledge of the
characteristic-admittance and termination-admittance matrices. However, things
can be simplified somewhat if we assume that the termination-admittance matrices
are real and diagonal; the real, diagonal matrix implies resistive diagonal
loads, that is, there are no loads between conductors and each conductor is
terminated to ground in a resistive load. This is not a severe assumption
since in practice diagonal loads are very common for electronic systems con-
nected by mu]ticonductor cables. Further, we assume that the medium is loss-
less, or the losses are small so that the characteristic-admittance matrix is

real.
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For diagonal resistive loads, we have

(Y:  (0,s)) = (6, (0))
Tn,m ( Tnm (4.49)
Y L, = (G L
( Tn,m( s)) = ( Tn,m( ))
where
Gy (0) =0
n,m ifn#m
G L) =0
Tn,m(

and for n =m

"
o

the conductance between nth and ground conductors at z

2]
—
~
(=)
S
]

1]
—

the conductance between nth and ground conductors at z

[op]
_‘
P
—
~—
1l

For a lossless case, the characteristic-admittance matrix is independent

of frequency and can be written as

(Y, (s)) = (Y. ) _ (4.50)

Substituting Equations 4.49 and 4.50 into Equations 4.47 and 4.48, we get

IGomz,ellz = MG )+ (GTn,m(O))T1|'2 1T, )= (e (D]l
(4.51)
) + (GTn,m(L”TIHZ 1T, ) - (6 (O,

1y 2,1l = ITCT RRENCE
(4.52)

oM

Note that if the line is terminated in its characteristic admittance, the
scattering matrix is a null matrix and its norm is zero. Since the termination-
admittance matrices are diagonal, their norms are simply equal to the largest
element, i.e.,

0 _ 0
II(GTn Dl = max GTn,n(L) (4.53)

]
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Thus the 2 norm of the termination-admittance matrix is equal to the reciprocal
of the smallest value of the terminating resistor. ‘The characteristic-admittance
matrix is a diagonally dominant, real symmetric matrix (Ref. 13). The

diagonally dominant property is defined as (Ref. 6)

ivc | = % IVC | - for alln (4.54)
n,n m n,m

n#m
Since (GT )is positive anddiagonal, the matrix sum [(Y ) + (GT )] is

n,m n,m n,m
also diagonally dominant. Then from Equation A37 we can write

5 0y,q-1 o 1
”[”cn,m)+(GTn,m(L))] “rmnm AT E——
n Cn,n Tn,n L m=1 Cn,m Tn,m L
m#n (4.55)

An upper bound for the characteristic-admittance matrix can be obtained

using Equation A38 as

In

(Y. )l
cn m 2

b

N
n Cn,n

< N max I?C I (4.56)
n,m n,m

For a homogeneous case, the characteristic-admittance matrix can be

obtained from the per-unit-length inductance matrix using the relation

y =L !t 4.57
n,m v n,m ( )

where v is the speed of propagation on the transmission line. The self and
mutual terms of the inductance matrix for a multiconductor 1ine can be esti-

mated approximately using the following relations (Ref. 9).
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1]

0.2 en[4 Hn/dn] uH/m
' (4.58)

-
[]

0.2 Qn[Bn’m/Dn’m] pH/m

The parameters in Equation 4.58 are defined as

d the diameter of the conductor

H the distance from a conductor to ground plane

D the distance between two conductors (between centers)

B the distance from the conductor to the image of a second
The relations in Equation 4.58 are valid if the distances between conductors
are greater than or equal to 5 times the radius of conductors.

Similarly, using the procedure described above, we can calculate an upper
bound for the inverse of the reflection coefficient matrices. From Equations

4.43 and 4.44, for diagonal, resistive loads and a lossless case, we can write

(§n’m(5))1}2 = [(Tcn m)-_ (an m(O))]'1 .[(ch m) + (GTn m(o))] (4.59)
A A R C B (L R CA O} (4.60)

Using Equation A6 in Equations 4.59 and 4.60, we can write

1By (N ol I ) = (6 (@I, < ILT, )+ (6 ()],

m
n, n,m n,m n,m n,m
(4.61)

18 (13001, < e - (Grn,m(”)]-l“z ARO[
(4.62)

The norms in Equations 4.61 and 4.62 can be evaluated for diagonal loads using
the relations for the norms of the characteristic-admittance matrix, the load

admittance matrix and the matrix [(?C ) - (GT )]'1,

54



Having defined norms of the scattering and propagation supermatrices
and the source supervector, we can now calculate upper and lower bounds for
combined voltage waves, voltages, and currents using the relations derived
in Section III.

4.6 BOUNDS FOR COMBINED VOLTAGES, VOLTAGES, AND CURRENTS

Substituting Equation 4.39 into 3.12, we obtain an upper bound for the

combined voltage waves leaving junctions (terminations for a uniform section

of line) as

AL, () DI 60 )1l
1 - ||((Pn,m(s))u,v)”2”((5n,m(s) u,v II2

A

1V, (0,80) I (4.63)

[ T

where ((V,(0,5)),), ((W$)(s)) )5 ((F, (D), ) and (3, ,(s)), ) are given
by Equations 4.1, 4.14, 4.12, and 4.7, respectively. Note that NS is the
dimension of the source supervector and is equal to 2N, where N is the number
of conductors in the transmission Tline.

The = norm of the source supervector is given by Equation 4.34 and the 2
norm of the propagation supermatrix is given by Equation 4.25. The calculation
of the norm of the scattering supermatrix was discussed in Section 4.5. Note
that for a lossless case, the 2 norm of the propagation supermatrix is exact'y
equal to one (for s = jw), and use of the inequality (Equation 4.18) in Equa-
tion 4.63 gives an infinitely large bound for the combined voltage waves leav-
ing the termination, which is not useful. Therefore, the knowledge of a
tighter upper bound on the norm of the scattering supermatrix is essential to
obtain a practical bound, and this can be obtained by using relations discussed

in Section 4.5. A lower bound for the combined voltage waves leaving termina-

tions is given by Equation 3.14 as
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(v (0,s)) ).,

SR ) = Gy ) T (G (), LI, o))y, )7,
(4.64)

An upper bound forthe norm of the inverse of the scattering supermatrix can be

obtained from Equations 4.61 and 4.62. Note that, in this case, Ns is the

order of the supermatrices in the denominator and is equal to 2N.

Using Equation A6 in 4.64, we get

1T (0.0 ) Il

n((v(s)(s))u)uw

(), LIS, nls)), V7,
(4.65)

/N—[1+|| (0,115,

Substituting Equations 4.39 and A6 into Equation 3.16, we obtain an
upper bound for the combined voltage waves arriving at the junctions as
/N—u((v(s)(sn e

1V (L ,s) )l < -
nouu 1- (¢ R | Y IC RN E DY | P

(4.66)

where ((Vn(Lu:S))u is given by Equation 4.2 and N_ = 2N.
A lower bound for the combined voltage waves arriving at the junctions

is obtained from Equation 3.17 using Equation A6 as

7(s)
. ((v,>"(s)),)
VL (LyesND I 2 — [t (D), Hj” (4.67)
NI + 1T, (D) IS, () L]

Similarly, substitution of Equation 4.39 into Equations 3.18 and 3.20 gives

an upper bound for voltages and currents at the junctions as
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TRIONPIN

)
Slfrm sy Wl + 1P, Wy I DI, (4.68)
1= IO, )y (G (), I,

N

(0
100 I,

Y, (s) W LIy 51y I+ I

___n,m

1= I((Fy (D), v)|| (G () yy My

TGRSR

nmuv

N|—=

(4.69)
and a Tower bound for voltages and currents is obtained from Equations 3.19

and 3.21 using Equation A6 as

(@00 )1,

7 AUSUOIRII -
S I I OIS NIT nmﬂ) n|munmwnm@+<wnmungb
(4.70)
a1, 2 2HEEE ) P I/ [T TLHIUE, o), DI HE, o5y, )l5]
L )y ) - (B )y VTR (QMVHQ]
n, ’
(4.71)
Since the permutation supermatrix ((Pn,m)u v) is an orthogonal supermatrix, we
have
Py = 1Py )y 27 M= 1 (4.72)
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where ((P_ ) ) is given by the definition in Equation 2.61 as

n,mu,v
( ) ) (On,m)l,l (1n,m)1,2 -
P ) = - 4.73)
oY (ln,m)2,1 (On,m)2,2
Also,
(B a3y ) * (B ), T
S (T B T (R T R (RN DI R I (RO TS b
and (4.74)
H((Pn’m)u’v)_l : ((gn’m(S))u’v)Ilz S‘”(<5n,m)u,v)—1{12”((gn,m(s))u,v)”2
(4.75)
Substituting Equations 4.72 and 4.18 into Equation 4.75 we get
”((Pn,m)u,v)-1 . ((gn,m(s))u,v)llz <1 for's = juw (4.76)

Using Equations A47, 4.72, 4.76, and A6 in Equation'4.74, we obtain

1

IS, (1)) * (P )y VT, <

I (G S R R (R EO I
for s = jw (4.77)
Similarly, we can write
NG, (), ) - (P ) )T, < T
nom nms e L TS R (R E P [
for s = Jw (4.78)
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| Substituting Equation 4.72 into Equations 4.68 and 4.69, and Equations 4.77
and 4.78 into Equations 4.70 and 4.71, we obtain uﬁper and lower bounds for

voltages and currents at the terminations, which are given (for s = jw) by

ANTL + ]1((S JIBIL ISUCIBIE
CRUSIPIE % LA R ALY u (4.79)
- IOE, (), >a| I s))u NP
TGEISESININ
G (A ORI [P R [(CRMEIDN DS )
< 1 n,m
Sl 1= OE, (o)), v>|| TR ITHNIR (4.50)
1@ (s )l
R EUSUCIRIN 0 -1 gy, v‘)'l DSy () ) ] o a1y
ot ML+ (E, (00, ol ||21 '
@@ Il
PR QIRIN R [(CY IR O W[
‘ fN’[1+Il REIP u (3, )y W IIE, (), ),
n,m n’m >
(4.82)

From Equation All we can write
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-1, ~
1P,y I 7EE (G (D), DI,

LR (R I LI (R S B (G B R R (CRIN D I
= Dy (G )y 0T 2 (5 (sh), 172
ol (CCRNE P IPIIR (4.83)

Substituting Equation 4.83 into Equations 4.81 and 4.82 we get

V27 (s)) D e T2 - (S, o (s) ll]

10T 0,s) )l 27 . . (4.84)
/Fr[1+nr (suvllzlls Py
w(s) - g
TCRCBIRIS ~||((vn (sH L1 - [ (S Ja w12
/N;[lf{l((rn,m(s))U,V)HZH((S m(s)) H TH((Z m(s))u,\,)[lz

’

(4.85)
The characteristic-impedance supermatrix for the uniform section of a
line in Equation 4.85 is given by the relation
(e (s))y,0 (O )y,

) = n»m (4.86)

n,m
(on,m)z,l

(e 5Dy = ((icn,m(S))u’V)-l
(Yo ()11 (0, 1o (467
| Cnum
R | A O P

n,m
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where (ZC (s)) and (?C (s)) are the characteristic-impedance and admittance
n,m

matrices of the line.
Thus a lower and an upper bound for the combined voltage waves leaving

n,m

junctions, the combined voltage waves entering junctions, voltages at the

Junctions and currents at the junctions can be calculated using Equations 4.63,

4.65; 4,66, 4.67; 4.79, 4.84; and 4.80, 4.85, respectively.
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V. BOUNDS FOR A MULTICONDUCTOR TRANSMISSION LINE WITH A BRANCH

Having defined upper and lower bounds for voltages and currents at
terminations of a uniform section of a multiconductor transmission line, we
now turn our attention to a somewhat more complicated transmission-line net-
work, a multiconductor 1ine with a branch (T-network). All the branches of
the T-network are terminated at their respective ends. Two types of excita-
tions will be considered. In the first type of excitation, the network is
excited by an incident external field, and in the second type, the line is
excited by voltage or current sources at the terminations.

Consider a multiconductor line T-network as shown in Figure 5.1. The
network topology involves three sections of uniform multiconductor. transmis-
sion lines (tubes), and four junctions denoted by 1, 2, 3, and 4. The three
tubes of the network meet at junction 2. The transmission lines are termin-
ated at their respective ends. Let the number of conductoré in tubes 1, 2,
and 3 be Nys Ny and UEY respectively, and their lengths be denoted by 21, 22,
and 23, respectively. The medium surrounding the network is assumed to be
homogeneous. It is assumed that the junction 2 is to be of zero length, and
there is no direct coupling between branches. The forward and backward
traveling waves on tube 1, tube 2, and tube 3 are denoted by w1 and w2,
w3 and w4, and w5 and w6, respectively. The combined voltage vectors at
different junctions for various tubes are defined as:

Vn(O,s))1 wave leaving the junction
Junction 1

Vn(Lz,s))2 wave arriving at the junction

Tube 1 . (5.1)
Vn(O,s))2 wave leaving the junction

Junction 2

-

Vn(Ll,s))1 wave arriving at the junction
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L3
W W
1 - 3
@ Tube 1 @ Tube 2
(21. (s))] Junction
n,m
W, [\'4
e 2 - | L2 I
Figure 5.1. A multiconductor transmission line with a branch
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(Vn(O,s))3 wave leaving the junction
Junction 2
(Vn(L4,s))4 wave arriving at the junction
Tube 2 (179)
(V (0,s)), wave leaving the junction
Junction 3
(\7n(L3,s))3 wave arriving at the junction
(\7"(0,5))5 wave leaving the junction
Junction 2
(\7n(L6,s))6 wave arriving at the junction
Tube 3 (180)
(Vn(o,s))6 wave leaving the junction
Junction 4
(Vn(Ls,s))5 wave arriving at the junction

where L1 = L2 = 21, L3 = L4 = 22, and L5 = L6 f 23. Having defined the com-
bined voltage waves for different tubes, we can now define the propagatioh
supermatrix, scattering supermatrix, and the source supermatrix for the network.
1. PROPAGATION SUPERMATRIX

For tube 1, the waves leaving and entering junctions are related through

the propagation supermatrix as

(V,(L.5)), Ty nsNq (0 ) (V (0,5)),

(V (L,s)), (0.m) (T ()22 (V,(0,5)),

Ll ~ ) s(s)'y . )

[expt-tz,  (s0ity-2 D - (W (280 e
(o] n,m

+ (181)

L
2 '
- exp{-(y (s)),z"} - (V(S) (z",s)),dz"
Io ch,m 2 n 2
where z" = L, - z!
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where

(Fom(s)q,1 = (T n(s))y 5 = expl-(Tye  (s))ny)

m

(G, (D= (g ()= (e (s)

(71 _(5))

characteristic~propagation matrix for tube 1

Similarly, we can write relations between waves leaving and entering junctions

for tubes 2 and 3 as

(Vp(L305))y (Fpnl$N33 (O ) (7, (0,5)),

(V,(Lgss)), (0 ) (T () g4 (V,(0,5)),

L .
f 3 exp{-(¥, (S))3[L3-2']} . (Vés) (2',5))3dz'
0

n,m

+ (5.5)
L
4 x> ] ~(S)l n
-1 Texp{-(Y. (s)),z"} « (V> (z",s)),dz
fo Cn,m 4 n 4
where
(Fn,m(s))3’3 = (Fn’m(s))4’4 = exP{_WZCn m(s))lz}
(¥ (s)), = (¥ (s)), = (¥ (s))
Cn,m 3 Cn,m 4 ch,m
(72C (s)) = characteristic-propagation matrix for tube 2
n,m
z" = L4 -z
and
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(W (Lg»5)); G PP (I (V(0,));

n,m s

(V (Lg»$))g (0

L '
[ expt-(r,  (sDglLg2'D - (13 (20150502

0 n,m
+ (5.6)
'fLS expl-(7. (s)).2"} « (V)" (z7,s)) dz"
o Cn,m 6 n ? 6
where
(T (N5 5 = (T, 1(s))g ¢ = expl-(F5.  (s))eg}
] E) b} n’m
(e, (N5 (e ()5 = (g (5))

(?3 (s)) = characteristic-propagation matrix for tube 3
" = Lg - 2
Note that (fn’m(s))l’l, (l:n’m(s))3’3 and (l:n’m(s))s’5 are ny xMy, N, xN,
and N4 xng matrices, respectively, aﬁd (?lcn’m(s)), (?ch’m(s)), and
(?3Cn’m(s)) are ny xn, , n, xn, and Ny xMNy matrices, respectively.

The network propagation supermatrix ((Pn’m(s))u’v) and the network source
supervector can be obtained by combining the results above in the following

manner:
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Rt e S =)

(T (Lp»s)),
(V,(Loss)),
(T (Lg05))5
(T (Lgns)),
(V. (Lgss))g
(Vn(Ls,s))s
(T m(s))q 1 (0, ) (0, ) (0 ) (0 ) (0 )
(0 ) (Frm(5))z 2 (0 ) (0, ) (0 ) (0
| o (0 (Fym()3 5 (0, ) (0 ) (0, )
(0w (0, ) CI (Fy m()gq (O 1) (0 )
(On,m) (On,m) (On,m) (On,m) (fn m(s))S 5 (On,m)
(On,m) (On,m) (On,m) (On,m) (On m) (fn ,m
(V(0,5)), (Ws)(s)),
(V. (0,5)), (Ws)(sy),
Ty | [ @, -
(V. (0.5)), (Ws)(s)), '
(T (0,5)); (W) (s)),
(T (0,5)), (78)(s))g
Equation 5.7 can be written in supermatrix notation as
(T, (L3 = (Fy (), ) 5 (F(0,8)),) + () (s))) (5.8)

where
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~—
n

(T m(Ny ) = T 1))y 1 @ (Fy () , @ (T, ()5 5

GD(fn,m(S))4’4 CD(fn,m(s))s,SGD (fn,m(s))ﬁ,ﬁ (5.9)

propagation supermatrix

and
L
1 ~ ) “'(S)‘ ' 1
{- (s)),[Ly-2'7F = (V27 (z', d
Jo exp (ch,m s))4[L;-2 ] n z s))1 2
L2 o(s)"
- {-(F.  (s)),2"} « (V237 (2",5)),dz"
fo exp ch,m s))pz n (z",s) 0dz
L - )
[P emt-(r, (sD4ltg2' D - (01 (2"0)) e
- 0 n,m
(@) = L
-f 4 exp{-(\?C (s))4z”} . (V£S)|(z",s))4dz"

) n,m

L , ~(e)!
[% expt=r, (Dgltgz' T - (005 (205)) g0z
0o

L
-[ 6 exp{-(\?C
0 n,m

source supervector
Lu -z' foru-=2,4,6 (5.10)

5.2  SCATTERING SUPERMATRIX

For convenience in referencing junctions, they are assigned nymbers 1,
2, 3, and 4, as shown in Figure 5.1. For junction 1 wnere tube 1 is terminated
in the impedance (ZT (s))l, the incoming and outgoing waves are related by

n,m
the following relation

(Vo (0,800 4 = (5, 1)) 5 = (Vp(Lqas)), (5.11)
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From Equation 2.26, the scattering matrix (§n m(s))1 » is given by
~ -1 o™
(S,  (s)) = [(Y (s)), + (Y (s)), 1~ « [(Y (s)), - (¥ (s)).]
n,m 1,2 cn,m 1 Tn,m 1 Cn,m 1 Tn,m 1
(5.12)
where
~ . -~ _1
(Y (s)), = (2 (s))
Tn,m 1 Tn,m 1
and
(¥ (s))1 = characteristic-admittance matrix of tube 1

n,m
Similarly, we can write relationships between outgoing and incoming waves at

(5.13)

junction 3 and 3 as
(s))g 5+ (V (Lgs)),

(V,(0.8))y = (5, (s,
(V,(0.8))g = (S, (s 5 = (Vo (Lgas))g (5.14)
Voo (s)),]

e (N1 L, (), - (F;
cn,m n,m (5.15)

(gn,m(s))4,3 - Cn.m
Voo (s))g - (Y3 (s))4]

(5. () 5=L(V. (s)y+ (7 ()17« [(F
n,m 6,5 cn,m 3 Tn,m 3 cn,m n,m (2. 16)
(Fp (), = (F; ()
n,m n,m
v 5 -1
(Y (s)), = (Z (s))
Tn,m 3 Tn,m 3
(VC (s))2 = characteristic-admittance matrix of tube 2
n,m
= characteristic-admittance matrix of tube 3

(Y. (s)), =
Cn,m 3
The outgoing and incoming waves at junction 2 are related in the following

manner:
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(V,(0,5)), (¥ (Lys8))y
(V,(0,8))5 b = (S, (D), ) (V. (Lys8)), (5.17)

(7,(0,8)); (T (Ls))g

where ((§n-m(s)) is the scattering supermatrix of the junction 2.

u,v)2

It is assumed here that junction 2 contains wires only which are inter-
connected; that is, there are no impedances involved at the junction 2. The
procedure for calculating junction scattering supermatrices in general are
discussed in References 10 and 11. Here, we shall illustrate the procedure
for the case shown in Figure 5.1. Further, the junction is considered lossless,
j.e., all the energy incident at the junction is reflected and/or transmitted.

At a junction where there are several tubes interconnected to one
another, the Kirchhoff's current law and the Kirchhoff's voltage law have to
be enforced.

Kirchhoff's current law states that the sum of the currents flowing into
a node is zero. For the case where nlth wire of tube 1 is connected to the

n2th wire of tube 2, and to the n3th wire of tube 3, and these wires are not

connected to any other wires at this junction, we have

(0) (0) (0) ]
(182 (5D g # (D) + (12 (s0), 5 = 0 (5.18)

Equation 5.18 can be put into supermatrix form, i.e.,

P,
tube 1 '+ tube 2 1 tube 3 ! -(0) ,
(00...1...0:0...1...0:00...1...11) ¢ (I, (5)>r,2 = ((0,).) (5.19)
7(0
(i), ,

where (fﬁo)(s)%yl, (fgo)(s))nz, and (Téo)(s))n3 are current vectors at the

junction associated with tubes 1, 2, and 3, respectively.
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In Equation 5.19, all elements in the left vector are zero, unless they
correspond to the conductors which are connected at the node. For Nc connec-
tions at the junction, there are Nc equations similar to Equation 5.19 and

we can define the junction connection supermatrix ((CI )a b) so that
n,m ~°

(130,

NN ISAHEO NN ER(CNN (5.20)

(10, ,

where ((CI )a b) is an Nc XMj supermatrix, and Mj is the total number of
n,m.’
conductors entering the junction. In this case, Mj =N + Ny + N3
Kirchhoff's voltage law requires all voltages associated with each con-

ductor to be the same at the same node. Thus for the above example, we have

0, - ,
(0) (0) (52

- (0 =(0

Yn (S)r,l - Vn3 (S)r,3 =0

If there are M conductors being connected to the same node, there are M-1

equations in Equation 5.21. Equation 5.21 can also be written in supermatrix

form as
: 1 “(0)
00..:1...040...71....0400....0...0 () 1
: E ~(0)
00...0...040...1..0.. 10 0..-1..0..0 : Vo ') 5 ) = (o))
............ R RRERE: IPTRPRRPREPPY o), .
00...0...0 io 1...0...0 50 0...-1....0 (vn (s)),.’3

(5.22)
where (Vﬁo)(s))r’l, (Véo)(s)) 5» and (Vﬁo)(s))r’3 are voltage vectors at the

junctions associated with tubes 1, 2, and 3, respectively. Here, each row
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contains one 1and one-1, and all other values are zero. Note that the subscripts
1, 2, and 3 on voltage and current vectors denote tube numbers, not
waves.

For NC connections there are Mj -NC equations. Let us denote the corres-

di tri ((c, J..)
ponding supermatrix as Vn’m a,b
(V£O)(S>)r,1
. (0 =
(CRNNE @O, , | = (o, (5.23)
(vr$0)(s))r,3

At the junction, the total voltage and current are related to the incident

and reflected voltage waves as

n

(@0(s)) ) = 10T, (s0) ), + (T (s),) ] (5.24)

+(0)
(s ) (s))

1
N st
——
—
-<

)o [((Vn(s))r)+ - ((VnCs))r)_]
(5.25)

rsr'

where (Vn(s)) and (Vn(s)) are outgoing and incoming waves on the rth

r;t+ rs-

tube in the form of combined voltage vectors at the junction, and
((?C (s))r r')2 is the characteristic-admittance matrix of the junction and

n,m
is given by Equation 2.31 as

~ 3 .
((Y (). D= @ (Y. (s)),. . (5.26)
n.m rar'’2 Ch.m r,r;2
where (?C (S))r r._vis the characteristic-admittance matrix of the rth tube,
n,m ’ ’

at the junction 2.

Using Equations 5.20 and 5.25, we get
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SRy,

((Cp Dap) @ (Yo (s)) )y o ((V (D)),
= ((cp D) f (Ve (8D )y 2 ((V (D)) (5.27a)

Premultiply Equation 5.27a by a normalizing nonsingular impedance supermatrix

((Zy )y )

n,m

((Zy m(s))y p) 2 (e ), )t

(s)),. ), s ((V )
n,m n,m D pdz 2 (L8],

and, similarly, from Equations 5.23 and 5.24 we get

CRRERUACIS I CRERGACHR (5.28)
Note that ((C

) and ((C )a b) are supermatrices of size NC XMj and-

)
In’m a.b’ Vo.m - -
(Mj -NC) xMj, while (ch m(s))r,r‘)Z is of size Mj XMj. The vectors
)

((V (s)),), and ((V_(s))

Combining Equations 5.27 and 5.28, we get

are of size Mj.

-((c, ). 4)
v a,b -
. o ' DV (s)),),
(Zy n(s)ap) 2 (€ g p) 3 (e () 1),
((cy, ),y
= n>m ) 2V () )
(T n($Da,p) 2 (€ Dy p) T (O (8D ),

(5.29)

or
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-((c ). )
- v a,b
(o0, = | . mn
(2 ($))gp) 2 (06 Dy ) 2 (T (5D ),
: n.m D (D))
((Z, (s)). ) s ((cC ) s (Y (s) ')
n,m s) a,b In,m a,b) ( Cn,m S )r,r 2 (5.30)

-1
(e, ), )
((Sn,m( ))r,r')2 = § n.m i
CARCINVENICE RN A R
(c, ),
: nom (5.31)
() 5 (€ D) 2 (T (6D, 0,

Note that the normalizing supermatrix ((Z (s))a b) makes the two supermatrices

n,m
in Equation 5.31 unitless and well conditioned. Without the supermatrix

((Z, m(s)), ) the elements of matrix ((CIn m)a’b) . (Y i m(s))r,r')Z will

be small compared to the elements of ((Cv ) b).
. n,m as
For the network of Figure 5.1, the outgoing and incoming combined voltage

waves at the junction 2 are
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(7,(0,5)),

((V(s)) ), = L (V (0,5)), (5.32)
(¥,(0,5)); |
(V,(Lys8))y

(V1) ). = | (V(L,.8)), (5.33)
(7 (Lgrs))g

The scattering supermatrix in Equation 5.31 is of the order Mj xMj.
For convenience in properly ordering variables in the scattering super-
matrix for the network, let us write the scattering supermatrix for junction 2

in terms of its block matrices; then using Equations 5.32 and 5.33 in Equation

5.30 we get,
(Vn(O,S))z (§n,m(5))2,1 (§n,m(5))2,4 (§n,m(5))2,6 (Vn(Ll,S))l
(Vn(O,é))3 = (§n;m(5))3,1 (§n,m(5))3"4 (§n,m(5))3’6 : (Vn(L4,s))4
(Vn(O,S))S (§n,m(5))5’1 (§n’m(5))5,4 (§n’m(5))5,6 (Vn(LG,S))G
' (5.34)

Combining Equations 5.11, 5.13, 5.14, and 5.34, and rearranging the junction
scattering matrices so that the ordering of the components of the incident
and reflected waves is the same as in the propagation supermatrix equation,

we get
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(¥,(0,9)),

(v, (0,5)),
(V,(0,5))5
(V,(0,5)),
(V,(0,8))
(V,(0,5))¢
(On,m) (gn,m(s))l,Z (On,m) (on,m) (0 n,m) (on,m
(85 m(s))p.1 (O ) (0, o) (3, m(s))p.4 (O 1) S,
(Sp.m(s)31 (o ) (0, .m) (S, mfs))3.q (0 o) G
) (on I (9, 1) (. n(s))a 3 (on 0 (0, ) (0,
(Sp,m(s)s,q (0, ) (0. m) Spm($)s5 4 (on m) (Sp.m
(0, ) (0. (0, o) (On,m) (3 n(s)g.5 (0 )
(Vn(Ll,s)1
(V. (Lys),
(v (L3,s 3
(V(Lgss),
(V (Leos)e
(V(Less)g

From Equation 5.35, the scattering supermatrix of the network is
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n,m u,v
(0, ) Sy mlsN g5 (0, ) (0 o) (0 ) (0, )
(gn,m(s))Z,l (On,m) (on,m) -(gn,m(s))2,4 (On,m) (§n,m(s))2 6
- (§n,m(s))3,1 (On,m) (On,m) (§n,m(s))3,4 (On,m) (§n,m(s))3,6
(On,m) (on,m) (gn,m(s))4,3 (on,m) _ (On,m) (On,m)
(gn,m(s))S,l (On,m) (On,m) (§n,m(s))5,4 (On,m) (§n,m(s))5,6
(On,m) (On,m) (on,m) (on,m) (§n,m(s))6,5 (On,m)
(5.36)
The size of the matrix in Equation 5.36 is 2N x2N, where N = nl + nz + n3.
Note that all the block matrices on the diagonal are null matrices.
5.3 NORM OF THE PROPAGATION SUPERMATRIX
The propagation supermatrix given by Equation 5.9 is block-~diagonal,
with block matrices equal to the propagation matrices of the various uniform
sections of the 1ine (tubes). From Equations A73 and 5.9 we can write the
2 norm of the scattering supermatrix as
(o 3Dy )l = max 1y ()], Ll (5.37)
where v is the tube number (r = 1,2,3).
The 2 norm of the propagation matrix of a uniform section of a multi-
conductor line was discussed in Section 4.2. For a homogeneous medium
surrounding the mu1ticonduc£or cable network, from Equation 4.25, we have
(for s = jw)
ll(f’n’m(s))r’rll2 = expl-a (s)e} <1 (5.38)

_Substitution of Equation 5.38 into 5.37 yields
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“((fn,m(s))u,v)llz = mix[exp{-ar(s)lr}].s 1 (5.39)
where the subscript r represents the tube number.
5.4 NORM OF THE SCATTERING SUPERMATRIX

For passive terminations and at all junctions, if all the tubes have
decoupled Tines with equal characteristic admittances the 2 norm of the
scattering supermatrix satisfies the inequaiity

"((gn,m(s))u,v)lIZ <1 (for s = juw) (5.40)

This is due to the fact that reflected power from all junctions is always less
than or equal to incident power for physically realizable systems (power
conservation). The following derivation illustrates the proof for Equation
5.40.

The power-conservation condition can be expressed for lossless tubes
(see Appendix B) as

(V. (L,.s0),) ¢ ((

. a(Less)))" < (T (0,9)),) ¢ (T (0,)))"  (5.41)

where ((fn(o,s))u) and ((fn(Lu,s))u) are the combined current supervectors for

waves leaving and entering junctions, respectively.

The combined current vectors are related to the combined voltage vectors

in the following manner:

((V €0,8)),) = (T Dy ) ((T,(0,5)),) (5.42)
((V,(L,8)),) = ((zcn,m(s))u’v) D (T (L,9)),) (5.43)
((1,(0,5)),) = ((ch,m(S))u’V) : ((V(0,5)),) (5.44)
((T,(L,s)),) = ((?Cn’m(s))u,v) : ((V(L,s)),) (5.45)
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e L

where

((Z

C

(s))y.y) = (T

(s)), )7
n,m n,m : )u,v

characteristic-impedance matrix
of the network (5.46)

The characteristic-impedance matrix for the network is given by

((icn,m(S))”’V) -
<2;n’m<s))1,1 T T (0 ) (0 ) (0 )
T (e (N, (0,0 (0 ) (0 o (0, )
(. (0, ) (icm(s))3,3 (0 ) (0 ) (0
(0, o (0, ) T (e, (Vg (0,0 (0, )
(0, ) (0, ) (0 .m) (0, o) (2Cn’m(s))5,5 (0, )
CH (0, ) (0, ) S (0, o (7e ()g,g
(5.46)

Equation 5.46 can be written as

c (S))u,u (5.47)

6
z - @ (2
(@, (0, = @ (&

n,m

where (ZC (s))
n,m

ciated with the uth wave. If all the branches at the junction are identical

.U is the characteristic-impedance matrix of the tube asso-
and the characteristic-admittance matrices of the branches are real, diagonal
matrices with equal diagonal elements, i.e., the lines in the branches are
decoupled and have the same characteristic admittances, then substitution of
Equations 5.44 and 5.45 into 5.41 yields
~ ~ * ~ ~ *
(VL)) ) 2 V(L ss)) ) < ((V (0,s)) ) 2 (v (0,s)) )

0] - * - ~ * ~
(L)) (L)) < (0,901 )" 1 (T,(0.8)) )  (5.48)
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Equation 5.48 is similar to Equation B5 and, following the procedure of

Appendix B, we can easily prove that

(ROl PE (for s = juw) (5.49)
and
-1 Z
1S, n(s) [, 1 (for s = ju) (5.50)
a. Norm of the junction scattering supermatrix

The 2 norm of the junction scattering supermatrix given in Equation
5.34 is less than or equal to 1. This can easily be proven by following the
procedure described above for the network scattering supermatrix. The 2 norm
of the junction scattering supermatrix of alossless junction isexactly equal to
one. Further, the junction scattering supermatrix of alossless junction isuni-
tary (Ref. 12). The proof of these properties is illustrated in Appendix C.
b. Norm of the scattering supermatrix in terms of its block matrices
An upper and lower bound for the 2 norm of the scattering super-
matrix can be obtained in terms of the 2 norms of its elementary block matrices
using the relation (Eq. A102) in Appendix A. From Equation A102 the 2 norm of

the scattering supermatrix is bounded by the following relation:

N .
NlN Ea)\;”((sn v ”2 __((5 ( ||2< /N_ max ZI/N—\/”(Sn,m)U,V)HZ
iy T

(5.51)

Note that the block matrices in Equation 5.36 are of two kinds: 1) the reflec-
tion coefficient matrices at the terminations, 2) partitioned block matrices
of the junction scattering supermatrix. An upper bound for the reflection

coefficient matrices can be obtained from the knowledge of the termination
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impedance and the characteristic-impedance matrices of the tubes, using the
relations in Section 4.5, The junction scattering supermatrix is obtained
from the knowledge of interconnections at the junction.

In Equation 5.51 we observe that due to the presence of factors
NS and N, the upper and lower bounds for the 2 norm of the scattering
supermatrix may be very loose and may not be very practical, since the upper
bound for the 2 norm of the scattering supermatrix is one.
5.5 NORM OF THE SOURCE SUPERVECTOR

The source supervector is given by Equation 5.10, and using Equation A62

its norm can be expressed as

L
1 >~ 1 7 ! ' Z T ) ! 1 1
Hfo exp{-(chn,m(S))LLl-z ]}-[(vgﬁ) (z ,s))+(ch,m(S))1,1-(I§§ (z',s))1dz"|
L
2 v " by, ) ! n 5 F ) ! n n
I-° ity (NZHLI ) - @ (0 (1) o0z
L
3 ~ ] 7 ! 1 7 T ! ' '
I Seot-tipe (Nl 1oLy (2 S (30,005 (20 la|
L
4 ~ " Iy ! n - T ' n n
H-fo exp-(Tp,  (s))z FL(TSS) (22,s)) '(ch,m(S))Z’z'(Iéﬁ) (2",5)) dz" |
L
5 ~ \ "'( ) ! I 5 ~( ) ' [ '
”Jo exp{-(Y3cn’m(S))[L5-Z ]}-[(V3ﬁ (z ,S))+(ch’m(5))3,3-(13z (z',s))1dz"|
L
6 iyt ] ~( "o 5 T Yoo n
u-fo -y, ()2 3 LS (2 ’S))'(ch,m(S))3’3'(Igz) (2",5)) 1dz"|
" = L, - z' for u = 2,4,6 (5.52)

~ ¢ ~ \
where (Vﬁz) (z',s)) and (Iii) (z',s)) are the per-unit-length voltage and cur-

rent source vectors, respectively, on the rth tube.
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For a homogeneous medium, from Equations 4.31 and 4.32, the norms of the
exponential matrices in Equation 5.52 are less than or equal to one. Follow-
ing the procedure used in the derivation of Equation 4.33, an upper bound for

the norm of the source supervector is obtained as (for s = jw)

L ~ t ~ ~ ]
[rod @l + G, 0 Il 1EE @il T

0 n,m
L
2 N(S) " ‘v( ) "
v , (s)) (133 . 1d
Jo LIS Nl 1, (0411 1G5 sl de
L . Ry
2 @l e G, o0l 1G5 @l e
< Y n,
- L . NRY
T Nl I (), 1SS ()l ez

0 n,m

SIS @ T+ 1E, ()5 511 IS 20 1 22

) %,m

gL ~ 1 ~ - 1 '
(oo @l + 1, 605 4l 1S @ sl ez

(5.53)
I[f the per-unit-length voltage and current source vectors along the tubes can

be expressed as delta functions as

r

i) 5 oy = X uls) :

(V3 (2',s)) = 0221 <Vrfn<s))gr6<z - %)
~(S)l ) = max ~( ) )

(T3, (2'.5)) = 02;1 (Tn(s)), 82" - 2, )

where
Op = 1,2, TR
' max
r=1,2,3

then Equation 5.53 can be written as
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[ROSUCINI

0lmax

Lo ‘5”01”+|chn,m‘5”1,1””‘f§§) (s))oy 1]

max ~
SN G ORI CAR ORISR O

0.=1 n,m

) X [ ~(s) Vo |+ (Z z(s)
oie1 IKVZn (s))a, +|chn m(s))Z,ZIIIKIZn (S))02||]

A

c
2max

L LIS (s))o, Il +INE, (s I I3 1) (s))o, 117

0,=1 n,m

O D (sNogll* KZ, ()55l KIS (s))oy 11 ]

0,~1 n,m

g

3max - ~
LTSS (sNagll+lz, ()5 5l IKISS) (s))oy 11
= m

3 n
(5.54)
Equation 5.54 can be simplified for the following thfee special cases:
a. Sources are delta functions; tﬁat is, the sources exist only at a
point along the tubes (Tocalized sources). In this case Equation 5.54 reduces

to
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/' 1) @+ I
T RECIONER[¢:
”(Véz) (z',s

A

(2 s+ I1(Z

b. Sources are uniform along the line.

reduces to
TOSUOIBI

(s)

Hevin
ol

R

7(s)
(Vs

In

H(Véﬁ)'(s

1) (s))

()" (5))]) 2q + (2

1 ()

DI+ I
DI+ 1HZ,

TURECIONE 1z,

5))” Sl,l + “(ic
()l 2y + IE
(s) 2, + 1(Z,

n

D2y + (2

I 2q + 12,

’

n,

n,m

n,m

n,m

n,m

3

b
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(s)

(), Il IS (20l
(s)
RO 1)

(s))

(s))
m

(s))
m

(s))

(s))
m

1 1“ ” (Z ,S))H

c m(S))l,lll 1K Iln (z",s))]]

)y oIl IS s i

(z',s) ]

2l 1A sl

*(
Ll A ey
Nyl B sl ey
2ol TR ()11,
) oIl 1S (5112,

3l IS 0l 2

3.3 1S sn e,

\QA-.

(5.55)

In this case Equation 5.54

(5.56)



c. Sources are sort of uniform, that is, the variation of per-unit-
1ength sources along the tubes is small. In this case, Equation 5.54 reduces

to

(0 e C N AR (AR ORI IS K CRM [ W
DA sty + 1, (0 (AR @l 2y,
n,

DTS (zos) 1l 2y *+ 1E, (), LA (22,0,

< n,m
[u<v‘5> (25)118, +1(Z, (5D 1T (20D | ]
DS (2 25+ 1T, ()5 g IEE sl 2g]
n,m ’
[u<vg:>‘<z,s>>||z3 #IZ, () 5 g IIESS (20800 11 230 0
n,m

(5.57)

Thus an upper bound for the source supervector can be calculated from Equations
5.53 through 5.57 in terms of the norms of per-unit-length voltage and current
source vectors on the various tubes and the characteristic-impedance matrices
of the various tubes.
5.6 BOUNDS FOR COMBINED VOLTAGES, VOLTAGES, AND CURRENTS

In Sections 5.3 and 5.4, we established that the norms of the scattering
and propagation supermatrices are less than or equal to one. Following the
procedure used in Section 4.6 for the derivation of upper and 1owef bounds for
combined voltages, voltages, and currents, we can write similar relations for

the present network.
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The upper and lower bounds for the combined voltages, voltages, and

currents for a multiconductor transmission Tine with a branch (Fig. 5.1) are

given by the following relations (for s = jw):

a. Combined voltage vector for waves leaving junctions

. IS, () VI ) )
(V0N ), < _m .Y - L
(S

1= CE, (), I, n(s), VI,
”/ ~(S) H
IV, (0,50) )l
AL+ ) ) 11211€C MRIBIRE
b. Combined voltage vector for waves entering junctions

LIRS IR

TGRSR I

nou 1= IE o)), RIS, 1)), )
l|<<v W e
(T (L8 ) 2 -
[1+ [ ((F, p(s) H H<<Sn () V5]
c. Voltage vector at junctions

AL+ (G, (), I ()

(@) <2 —s—
[CV " (s ) =3 T
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n,m(s))u,v)HZH((gn,m(s))u,v)”Z

(5.58)

(5.6Q)

(5.61)

(5.62)



I 0 P11 = I p(s1)y ]

NN, 24—
RCTL + (¢ nﬁﬂ%vﬂbn (3, unmmg

(5.63)
d. Current vector at the junctions
AN (D, Dl L 1y ) QHHIV SNl

md?hgnmms%=;;~"m - =,

1= 1(F, o)y PRI, (1), NI,

(5.64)

Ws)(s)) Yl L1 - (G a1y, ) 115]

10 )1l = (D) e 2

2/—[1+H (Fp )y P (G, s))u,vm ]II((ZCn—m(s))u,v)llz

3’

(5.65)
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VI. CONCLUSIONS.

This note has developed a formulation for the computation of upper and
lower bounds on signals at terminations of a multiconductor cable network.

The BLT equation expresses the characteristics of a multiconductor transmission
line network in a single supermatrix notation. The upper and lower bounds on
signals are obtained by using norms of vectors, matrices, supervectors, and
supermatrices. Various norms and their properties for vectors, matrices,
supervectors, and supermatrices are discussed.

Having developed the general formulation for the computation of upper and
lower bounds on signals at terminations of a general multiconductor cable net-
work, two special cases are considered: 1) a uniform section of a multicon-
ductor transmission line and 2) a multiconductor transmission line with a
branch. For these two cases scattering and propagation supermatrices are
derived and their properties are discussed. The norm of the scattering super-
matrix can be estimated for passive terminations. Expressions for upper and
lTower bounds on signals for these two cases are derived.

A natural extension of this work will be to compare these bounds with
exact calculations for a number of canonical configurations when the parameters
of the cable network, sources, and load configurations are varied. This will
establish the tightness of these bounds. If practically acceptable bounds
result from the algorithm presented in this note, it will have tremendous impli-

cations on testing of electronic systems for EMP survivability/vulnerability.
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APPENDIX A
NORMS OF VECTORS AND MATRICES

In this appendix we will review norms of vectors, supervectors, matrices,
and supermatrices. Of special interest are the norms of vectors and métrices
which are needed to establish lower and uppef bounds on the combined voltage
waves and the voltages and currents in the BLT equations, derived in Section II.

A.1  VECTOR NORMS

The norm of a vector (an) is denoted by H(an)|| and it satisfies the

following properties (Refs. 3,5)

I(a )l 20 with [[(a)]l =0 iff (a ) = (0,)
lata)ll = lal ()l
Iag) + (Il < lGall + Il (A1)
I(a )]l depends continuously on (a,)

where (an),(bn) are N-component complex vectors
o is a complex number

la| = magnitude of

A common type of vector norm is referred to as the p norm defined by
N 1P
I<a ) I p = {ngllanl } for any p > 1 (A2)

This has important special cases
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N
Iy = I lal

N ) 1/2
I ), = {ngl la, | } = ((a,) - (a )12 = |(a)]
(A3)
@), = L lap |

The 2 norm is then the euclidean norm or magnitude. The « norm or maximum
norm represents the magnitude of the maximum component of the vector. The
1 norm represents the sum of the magnitudes of the components of the vector.

From Equation A3, we can write
@)1l 2l (a)ll, 2 @),

or, in general

lall, 2 @)l < (a4)

From Equation A3, we can also write the following relations between, 1, 2, and

o NOrms

(@)l < Nl )],
(@ I, < /NIl (A5)
ICa )l < A&,

A.2  MATRIX NORMS

Norms can also be defined for matrices. The norm of a matrix (An m) is

denoted by |[(A, _)|| and satisfies the following properties:

) = (0 )

(A m)!I 2 0 with (A} )| =0 iff (A n.m

n,m n,m

ey I = lal (A, )1
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. |

1A + B Il < DA DI+ 1B, ] 6

Ay ) = By Wl < 1A, DI 1B, )

n,m
For the above relations to be meaningful, we must have matrices of compatible

order (Ref. 2).

It follows from Equation A6 that if (An m) is a square matrix, we have

TSP TSI

(A7)
q = positive integer

A common way of constructing matrix norms uses the role of matrices in relating

vectors via dot multiplication as in

(by) = (A, )+ (X))
(An m) = NxM complex matrix

(A8)

(Xn) = M-component complex vector

(bn) = N-component complex vector

If we define a matrix norm via
- (A )« (X )|
n,m n
I, I (A9)

= sup
(x)#(0,) (%)

sup = supremum = least upper bound

which makes the matrix norm a least upper bound over all (Xn) in Equation AS8.
The matrix norm in Equation A8 is referred to as an associated matrix norm and
can be thought of as a minimum norm consistent with the chosen vector norm.

We shall use only associated norms in the rest of the discussion.
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For 1 and « vector norms, the corresponding associated matrix norms are

given respectively by (Refs. 3,5).

N
(A, I = max I |A, ol = maximum column
’ lxm<M n=1 ’ magnitude sum
(A10)
max M
1A, g = I |A, ol = maximum row
> l<n<N m=1l ? magnitude sum

These results apply to general complex N xM matrices.

Corresponding to the vector 2 norm, the associated matrix norm is given by

1Ay o1l 5 = DBy 7 - 8, NIYE (A11)

where t represents conjugate transpose. Note that all the eigenvalues of

)+ . (An m) are non-negative since this is a positive semidefinite matrix.

For general complex square (N x N) matrices we can define a spectral

n,m

radius as

spectral radius of (Bn,m)

©
—
—
o0
3
-

3
~—
~—

"

(A12)

©
—
—
o
~—
~—
{}
>
—
—
o

where |>\|maX is defined as an eigenvalue of (Bn,m) with maximum magnitude.
Having defined matrix norms, we shall now derive relations between differ-

ent matrix norms.

A.3  SPECTRAL RADIUS AND ASSOCIATED MATRIX NORMS

For general complex square matrices we have (Ref. 5)

| (A )] (A13)

n,m
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so that the spectral radius is a lower bound for all associated matrix norms

(for square matrices).

From Equations Al3 and All we have _

Ay o) Inax < Amax By T+ (B )3 12 (A14)

If (An m) is real symmetric, then we have

o((Ay ) = (A, )11 5 (A15)
and the eigenvalues of (An m) are all real, since (An m) is real symmetric.

A.4  RELATIONS BETWEEN 1, 2, AND ~ ASSOCIATED MATRIX NORMS

For an N xM matrix we can write:

a. 1 and 2 norms--From Equation A9 we define the 1 norm of a matrix

as

_ -”(An,m) i (Xn)lll
”(An,m)” 1 (le;p) ”(xn) ]rl (Alﬁ)

From Equation Al6 we have

| (A

“(An,m)H 15 n m) . (xn)H 1

CHN

Substituting Equation A5 into Equation Al6 we get

”(A ’m) ° (Xn)HZ
Ay 113 < M =00
1A, 15 1O
<M= TS

<A D (A17)

Similarly, from Equation A9 we define the 2 norm of a matrix as
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IRy ) - O

”(An,m)” 2 = (le:’) “anﬂz (A18)

From Equation Al8 we have

(AL ) = (X))
| (An,m) P n’[?ﬁ(nﬂ]nz 2 (A19)

Substituting Equation A5 into Equation A19 we get

”(An,m) * (Xn)“]_
1B, w 2 < =0,

A, 2l IO

= [IENIIP
<M A DI (A20)
b. 1 and co.norms--From Equation A9 we define the « norm of a matrix
* ||<. R
A « (X
- n,m n oo
”(An,m)“w = (le:‘p) ”’(Xn)”m (AZI)
From Equation A21 we have
A, ) =
1Ay )l < nﬁﬁnTﬂ: (A22)
Substituting Equation A5 into Equation A22 we get
1Ay ) = D11
H e < =100 7T,
ey I 10
< [KEI1
< M A I (A23)

94



Similarly, from Equation Al6 we have

A ) - O

A w1 < =Ty

Substituting Equétion A5 into Equation A24 we get

A, &) = )T
I (A )13 < ="y

g )l NI
< T S

<MIlA, DI,

c. 2 and = norms--From Equation Al9 we have

1A, ) - ()1
A nd 12 < =0T,

Substituting Equation A5 into Equation A26 we get -

A, W) = (X,
1n )l 2 < M =T,

1A, )l ORI,
<M T,

<R (A )l

.Similarly, Equation A22 gives

A, W) = ),

n

|I(An,m)H°° =< H(Xnﬂfm

Substituting Equation A5 into Equation A28 we get
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(A , )« (XI5
L Tl

1Ay ) 1o XL,
= T

<Al (A, DI  (h29)

We can now summarize the relations between 1, 2, and » matrix norms as:

;;- (A 1o < (A DI < VIR, DI, (A30)
Lo, o <ha, oy <Mia, Il | (A31)
Ay Iy <Ay Il <A Iy (A%2)
/—lﬁ Ha, Wl < AL D, < /RIA, DI (A33)
IR G PE TCRY AP TERTH (n34)
Loy, < h <l DI (A35)

where M is the number of columns of (An m)'

A.5 BOUNDS ON THE NORM OF SQUARE MATRICES

The spectral radius of a square matrix (A_ _) is bounded by (Ref. 5)

n,m
((A ) g | | = i( I
o( (A < max A = (A, ) (A36)
n,m n "Fl n,m n,m ©
and the spectral radius of (An m)'1 is such that
1 (a1 - T (& ])
———— 2 min (|A - A |
o((A ) ! n LN gy MM
? m#n

or
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s,

p((An,m)_l PR— l (A37)
min (|A | - 7 |A [)
n n,m m=1 n,m
m#En

Equation A37 gives a bound for the inverse of a square matrix. The norm

of a square matrix is also bounded by the following inequality (Ref. 6)

max [A) ol <I[(A, DIl< N max [A (A38)

|
n,m n,m n,m

A.6 NORM OF DIAGONAL MATRICES

Very often, in dealing with electronic systems, one encounters matrices
which are diagonal. The norms of diagonal matrices are relatively simple to

evaluate. For a diagonal matrix, the associated norm is defined as

1Ay ) = X
Ay Il = G T
1A, X I
= 83% —Tﬁ§§7ﬂ_— (A39)
n

From Equation A39 we observe that for any p norm of the matrix we have

1Ay X1l
A = su n.n A40
”( n,m)” P (Xp) ||(X )” ( )
n
From Equation A40 we observe that
[ ¥l _ |A (A41)
X G, T XAl = max A ]
Hence,
(A )l = maxia, | (hd2)
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Also from the definitions of 1, 2, and = norms for matrices in Equations A1l0

and All, for diagonal matrices we have

By 1y = 1By 11 = 1Ay 1], = mx (A, |

A7 NORMS OF [(1, )+ (A 170 and [(1, ) - (o 77

If |J(A )|] <1, then we have (Ref. 5)

n,m

-1 1
[,[(ln,m) * (An,m)] I = 1 -AH(An,;p[|

To prove Equation A44, let (Bn m) = [(1n m) + (An,m)]-l' Then,
() = 1, )+ (A D1+ (B, )

or
(Bn,m) ) (ln,m) - (An,m) ) (Bn,m)

Taking norﬁs of both sides and using Equation A6, we get
1By < (1, I+ HA, DI B, I

Noting that ||(1_ )| = 1, from Equation A46 we get

n,m

1 .
Gl < T 17 1wl <

or

-1 1
10T, o)+ (A )T < 7= TR, 7T

In Equation A47 if we replace (A_ ) by —(An ), we get

n,m ,m

”[(ln,m) - (An,m):rl”'S 1 —Vﬂ%An m)[[ if “(An,m)”<1

Note that in Equation A48 we have used ||-(An m)[l = H(An m)[[.
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Corollary 1

-1 1
Then [N R (b | e 1A, (A49)
Since from Equation A6

1e3° (A )]

"
™
(45N
o
—
>
=
3
g

n,m

]
—
>

)| (A50)

Corollary 2
If (A )1

-1
n.m ) || < 1, then

) is such that (A exists and || (A

sM n,

-1

[(1 )+ (A )Tt=(A )71 (A51)

n,m
Taking norms of both sides and applying Equations A6 and A47, we get.

1y )71
R TN

1001, )+ (A 17 < (A52)

A.8 CONDITION NUMBER OF A MATRIX

The quantity ||(An 2 A m)'1|| is defined as the condition number of
(A ) and is denoted as K((A_ )) (

n.m n.m Ref. 5). These numbers, defined for vari-

ous matrix norms give a measure of the condition of (A ) and are always

n,m
greater than or equal to 1. This can be seen easily from the following:

k(A ) = A D1 A, D7 (A53)

n,m s

From the property Equation A6, we have

) - (B

n,m)ll = ”(Ar-l,m)””(Bn,m)|| (A54)
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Let (8. )= (A )1 (A55)
Then from Equation A54 we have
-1
T I AL 2 7H 2 (L,

and since ”(ln,m)ll = 1
we have,

(A 11 11 (A )M 2 1 (A56)

Equation A56 is valid for any associated matrix norm,

A.9  NORMS OF SUPERVECTORS

In Section II, we introduced supervectors or divectors whose components

are vectors and are defined in the form
_((an)u) | _ (A57)
with elementary vectors as

(a.)

n‘u
n= 1,2,...,Nu (A58)
u=1,2,...,N

The elements of supervectors are designated as

qsu (A59)

From the definition of vector norms as defined in Equations A2 and A3, the p

norm, 1 norm, 2 norm, and « norm of a supervector can be defined in terms of

its elements as
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NN, 1/p
IHCan) g = {uzl nZ1 la""‘lp} P2t
il = & 5l
Wl = L Lo ang, (A60)
NNy 2 d
[(CRBIPER S AP R
ItCa)) )Ml & = X la, .l
1<ux<N

Note that the norms in Equation A60 satisfy

properties of Equation Al.

The p norm of a supervector can be expressed in terms of the norms of its

elementary vectors as

1 Cad )l = HCH Gl DI

|

p

N
1 la),IIP

u=1

g

P (A61)

That is, the p norm of a supervector is equal to the p norm of a vector whose

elements are the norms of the elementary vectors of the supervector.

From Equation A61, the 1, 2, and « norms of a supervector in terms of the

norms of its elementary vectorsare given by

N
CRRIIFEED RN TCRNP
N o)
ICa) ), = { PRLCRN 2}
I )l = mx Gyl
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From Equation A62 we can write the following property for supervector (same as

Eq. A4 for vectors)
(G ) DIl 2 0 I, 2 1) M, (A63)

or, in general

I ), 20 )y Psa (A64)

Similar to properties of Equation A5 for vectors, we can write the following

relations for supervectors from Equation A63 as
I )y < N I ) DI,
(G ) ) I, < A (@) ), (A65)
1) I < A 1))

where N .
N = J N. (A66)

A.10 NORMS OF BLOCK-DIAGONAL SUPERMATRICES

Block-diagonal supermatrices were introduced in Section II. A block-

diagonal supermatrix is defined as

<An,m)l,l ()

)
(A ). ) = n.m2,2 (A67)
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where (A_ ) are square matrices of size N, xNu. The block-diagonal super-

n,m’u,u
matrix in Equation A67 may be represented in terms of the direct sum @ as

((An,m)u,u) = (An,m)l,l &D(An,m)z,z ®--- O(An,m)N,N
N
= Jzi(An,m)u,u (A68)
Since ((An m)u u) is block diagonal, its 1 and « norms are given by
CS R RN I (R P (A69)
The 2 norm of ((An m)u u) is given by
Ay w2 = D LA 1)y T2 (A Dy 0372 (A70)
Since
t N +
((An,m)u,u) : ((An,m)u,u) = @ (An,m)u;u . (An,m)u,u (A71)

and eigenvalues of

+ . - ad +
((An,m)u,u) . ((An,m)u,u) = eigenvalues of {(A n m)u u - (An,m)u,u}

l<uxN (A72)

Then from Equations A70 and A72, the 2 norm of ((An m)u u) is given by

+ L
”((An mu,u |l2 ) max[xmax (An,m)u,u ) (An,m)u,u}]2
) max ”(An miu, ul|2
u=1,2,...,N (A73)

Thus the 2 norm of a block-diagonal supermatrix is simply the maximum 2 norm of

its block matrices on the diagonal.
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A.11 NORM OF AN EXPONENTIAL FUNCTION OF A SQUARE MATRIX

If the power series

£(2) = E ¢, zX (A74)

A )k (A75)

in an N xN matrix (An m) converges absolutely (Ref. 7).

?

In the scalar case e? is defined by

ez=]_+7_+2i'7_2+3i'7_3+... = Zﬁzk (A76)
: : k=0
Since the power series
I oo 2¥ (A77)
k=0 *° :
converges everywhere, the matrix power series
f% (An m)k (A78)

k=0

converges absolutely for any square matrix (An m). The exponential function

of a matrix can thus be defined for every square matrix (An m) by
(A )
n,m’ _ 1 2, 1 3,..
€ - (ln,m) * (An,m) My (An,m) T3 (An,m) *
.y L k
= kzo R (An’m) (A79)

Using Equation A6 in Equation A79 we can write

)
e ™ 1 1y Ay 11+ Fr IRy 211 57 Iy 3]+

] (A80)

n,m
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Substituting Equation A7 into Equation A80 we get

(A )
n,m 1 2 1 3
le ™™l < ey I+ 1A I+ F Ay, DIZ+ Eica, o113+
. N LN]
= b ogr Ay T =e (A81)
k=0
Therefore,
(A ) (A )]
le ™M <o MM (A82)
Similarly, for an exponential function of (An m)t we can write
(A )t (A )t]|
le ™M e
A )] It]
=g oM for all finite t (A83)
Note that, in general,
{(A_ )+(B )}t (A )t (B. )t
e N,m n,m 4 MM tnm (A84)
unless (An,m) and (Bn,m) commute , that is,
() = By o) = (B ) = (A 1) (A85)

From the above discussion we can conclude that if a function of a square matrix

(A_ ) can be expressed as a convergent infinite series as

n,m

) k
kZO ¢ Ay ) (AS6)

(A ) =
then

¢, W) I < T CHGAL D11 = T je | [TOT (A87)
k=0 ’

A.12 NORM OF FUNCTIONS INVOLVING INTEGRALS

Consider a vector expressed as an integral as

z
(ap2)) = [ (4 (2')) = (by(2')) gz’ (A88)

n,m
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Taking norm of both sides of Equation A88 we get

n,m

Zz
(a1 = |l f (A, o(2")) = (b (z")) dz'|| (A89)

The norm of the integral in Equation A89 satisfies the following inequality

(Ref. 8)

z z
) By 2 = oz a2l < [ 1A (@D () dz

n,m
%o %o
(A90)
Substituting Equation AS0 into Equation A89 we get
z
I(a,(2)]] _;jz Ay oz NG, (2 D] ez (A91)
)

Equation A91 is an important relation which is very useful for many physical
problems which often involve relations of the type in Equation A88.

A.13 NORMS OF SUPERMATRICES

Norms of supermatrices can be expressed in terms of norms of their block
matrices. The 1 and = norms of a supermatrix can be expressed in terms of 1 and

o norms of its block matrices in the following manner:

N
A92
max HAy 1= A o)y Il < e ugl 1Ay g vlle (A92)
)H. bfll ), Wl (A93)
max || (A ) <[ ((A, ) < max (A - A93
e [ (8 )yl 1 )y o mex 3Ry )
where (An,m)u,v is an elementary block matrix (Nu><Nv) of ((An,m)u,v)'
(An,m)u,v in general is rectangular.
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The relations between 1, 2, and « norms of supermatrices, similar to Equa-
tions A30 through A35, can be obtained by following the procedure in Section A.4,

and the resulting relations are:

F;S- 1Ay g 2 < 1CAG ) Mg <RI Dy I, (A94)
e 1Ayl < IR gy DLy < NG IR )y Dl (AS5)
,%S”“An,mh,v)” L= AL Wy < /AR Dy I (A96)
Ny Mo s TR )y T <R )y DL (A7)
/N
ﬁs 1Ayl < AL Dy Il < RO, D T, (A98)
—p}:uuAn,m)u,v)n 1< 0 Dy Dl <N IR Dy Iy (499)

where Ns is the number of columns in the supermatrix, which is equal to the
size of the supermatrix for the rectangular case.
From Equations A92 and A96 we get

N

N
1
;ﬁ:-zac uZl ”(An,m)u,V’,l'S ”((An mlu,v ,,2 _./N mex uzl ”(An,m)u,v I 1
(A100)

Similarly, from Equations A93 and A97 we get

1 o
Loax 3 NGA, . < (A

. L A u.y /N max Z (A )
u,v v=

U ye1 . nemiu,v 1
(A101)

n, m u,v ||2'—
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Substituting Equation A30 into Equation A100 and Equation A34 into A101,

respectively, we get

1

NIS?X/_N—_;,KAH m)U,VHZS'”( n, m u,v ”2< /N_ max Z /N_” n, m u, V”Z (A].OZ)
1 1

/—WE?CE“(AH,N)U,V”ZSH( n, m u,v ”2—‘/—"‘3" Z /N_” n, m ", v”2 (A103)

v v=1l

where N is the number of columns in the u,v block matrix (An m)u v
Equations A102 and A103 give the 2 norm of a supermatrix in terms of the
2 norms of its block matrices, and Equations 92 and 93 give the 1 and « norms

of a supermatrix in terms of 1 and « norms of its block matrices, respectively.
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APPENDIX B
TWO NORM OF THE SCATTERING MATRIX AT A TERMINATION
OF A UNIFORM MULTICONDUCTOR TRANSMISSION LINE
From the power conservation, the reflected power from a passive termina-
tion is always less than or equal to the incident power for physically realiz-
able systems. The power-conservation condition can be expressed in terms of
the combined voltage vectors for waves leaving and entering the termination

(for s = jw) as

*

Re[(V, (s)), « (T (s));1 < Re[(V (s))_ - (T (s))7] (81)

where (Vn(s))+ and (V (s))_ are combined voltage vectors for waves leaving and

entering the termination, respectively, and (Tn(s)) and (Tn(s))_ are combined

+

current vectors for waves leaving and entering the termination (junction). The
* represents a complex conjugate. Currenﬁs are positive into the junction.

Equation Bl can be rearranged to give

*

ReL(1 ()} = (¥ (s)),1 < Re[(T (s)7 + (¥ (s))_] (82)

The combined voltage and current vectors are related through the characteristic-

admittance matrix of the transmission line as

(1,(s)),

[}
~—
—<
~—
w0
S
S
.
~—
<
~—
2]
S
S
+

(B3)

1}
—
-<?

(T,(s)) = (T, (s)) = (¥, (s))_ (84)

n,m

If (VC (s)) is a real, diagonal matrix with equal diagonal elements, i.e.,
n,m
the Tines are decoupled and have same characteristic admittances, then substi-

tution of Equations B3 and B4 into B2 yields (the general case will be discussed

in a future paper)
(V (), = (U (s)),

* ~

« (v (s))

- n -

In

(V (s))

or

IA

(Vo(s)), = (W (s))y < (V (s))_ » (V (s))T (85)
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Note that a minus sign would result on the right-hand side of Equation B5 after

substitution but, since we are interested in magnitude on both sides, it has

been dropped.

The combined voltage vectors for waves leaving and entering the termina-
tion (junction) are related through the scattering matrix (§n m(s)) of the

termination as (for s = juw)

(WD), = (5 (D) = (Vo)) = (T (D). + (5, ()] (86)
Substituting Equation B6 into B5 we obtain
(Tn(s))_+ By (N7 = Gy n(sN™ + (T ()T < (s - (T (s (87)

For any eigenvector (in(s)) of matrix (§n m(s))T -(§n m(s))* with eigenvalues

An, one obtains

* ~ *

(X (D) + 8y (DT =Gy n(sN™ = G(s)™ = 2, (B () - (R (s)™ (88)

H

But according to Equation B7

(s3]« (8 (N7 = By p(sN ™« (RN (B (s)) « (R(sN™ (89
Therefore,

A (X (8)) < (X ()" < (X () « (X () (B10)
or

An <1 (B11)

~

~ *
also A, 20 since (S (s))T « (S (s)) 1is hermitian, positive semidefini te.

n,m n,m

Since Equation B1l1l is true for any eigenvalue, we have

*

A LG (T8 () <1

max "' n,m n,m
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ar

A (S (s))¥% < 1 (B12)

+ ~
max ,m(s)) - (S

n n,m
Hence

16, ()1l <1 (813)

Following the procedure used above, we can show that the 2 norm of the
inverse of the scattering matrix is greater than or equal to one.

From Equation B6, we can write

(Up(s)) = (5 p(sN7He(V (1), = (V (D), + (5, (s (B14)

Substituting Equation B1l4 into Equation B5 we get

(N3 (N (s)]

(B15)

(T(s))y = (U(s))y < (), - (5, oo

For any eigenvector (Vn(s)) of matrix (§n m(s))"lT-(§n m(s))'l* with eigenvalues

M, One obtains

(F0(5)) + Gy (N (8L LN -V (s1)7 = (T, (5)) - (T ()

(B16)
From Equations B15 and B16 we obtain
~ ~ * ~ ~ *
1 (T () « (F ()7 2 (F () + (T (s))
or
By 2 1 : (B17)
Since Equation B17 is true for any eigenvalue, we have
& -1t , (e Y
Amax (S ()7 - (8 ()12 21
or
3 -1
”(Sn,m(s)) ll2 >1 (B18)
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APPENDIX C
TWO NORM OF THE LOSSLESS JUNCTION SCATTERING SUPERMATRIX

From the power conservation condition, the reflected power is equal to
the incident power for a lossless junction (a junction with interconnection of
wires only). For a junction with identical branches, whose characteristic-
admittance matrices are real, diagonal matrices with equal diagonal elements,
i.e., the 1ines in the branches are decoupled and have same characteristic

admittances, the power conservation condition can be expressed as (for s = juw)

(Vo (Lyas)) )y o (U (L,s)) )0 = (V. (0,8)) ), & ((V (0,8)) )5 (c1)

where the subscript v is for the vth junction.
The combined voltage supervector for waves leaving and entering the

junction is related through the scattering supermatrix of the junction as

((V,(0,8)) ), = (S (D), )y = ((V (L,8)),), (C2)

v n,m u,v’v n
where ((§n m(s))u v)v is the scattering supermatrix of the vth junction.
Substituting Equation C2 into Equation C1 we get

((V(L,.8)),), = ((V (L ,8)) )] =

n"u uv n"-u’"‘u

(V(Las)),), 2 (B (s, OT (B, (), )0 ¢ (T (L))

v n,m u,v’'v n,m u,v’v
or .
(AT I N (E IS IS N (N S IR M (R DI
((V (L,»8)),)5 = ((0,),) (c3)

—

(G )0t (G )05 = (4 )y ),

or
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o T _ ~ *_1
(Gpn(s) )y = (Gals)y )y
or
(G SNy )b = (B () V3T o (c4)

Since ((Vn(Lu,s))u) is not zero.

The result in Equation C4 is the definition of a unitary matrix. From

Equation C4 we can write

v

~ -1- o ~ _
(S m{sNy o)y @ (G p(s)y W)y, = (L p)y ) (C5)

Since all the ejgenvalues of the identity matrix are equal to one, from the

definition of the 2 norm of a matrix (Eq. All) we obtain

(S, m(s)), Il =1 (c6)

u,v'v
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EPILOGUE

"Can you do Addition?" the White Queen asked. What's one and one and
one and one and one and one and one and one and one and one?

"I don't know," said Alice. "I lost count."

"She can't do Addition," the Red Queen interrupted. "Can you do
Subtraction? Take nine from eight."

""Nine from eight. I can't, you know," Alice replied very readily,
"but--

"She can't do Subtraction," said the White Queen. "Can you do Division?
Divide a Toaf by a knife--what's the answer to that?"

“T suppose--" Alice was beginning, but the Red Queen answered for her.
"Bread and Butter, of course. Try another Subtraction sum. Take a bone from
a dog; what remains?"

Alice considered. "The bone wouldn't remain, of course, if I took it--
and the dog wouldn't remain; it would come to bite me--and I'm sure I shouldn't
remain!"

"Then you think nothing would remain?" said the Red Queen.

"I think that's the answer."

"Wrong, as usual," said the Red Queen. "T4e dog's temper would remain."
“But I don't see how--" o
"Why, Took here!" the Red Queen cried. "The dog would lose its temper,

wouldn't it?"

"Perhaps it would," Alice replied cautiously.

"Then if the dog went away, its temper would remain!" the Queen
exclaimed triumphantly. '

Alice said, as gravely as she could, "They might go different ways."
Bu% she Fou1dn't help thinking to herself, "What dreadful nonsense we are
talking!"

from Through the Looking Glass,
by Lewis Carroll
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