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Abstract

, This note explores some aspects of qualitative electromagnetic topology

for system design. Sublayers are partitioned into sets for separate treatment
“in the design process. The concept of relative shielding order between pairs

of subsets is introducec} and constraints on this non-negative-integer parameter
are explored. Special'’cases are considered, including that of uniform relative
shielding order between pairs of a set of sublayers designated primary sublayers.
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I. Introduction

Electromagnetic topology considers certain aspects of the interaction of
electromagnetic fields with various objects, especially complex ones. It is
an abstraction which looks at the connectivity or continuity of the object
(especially its conductors) so as to order the electromagnetic interaction pro-
cess according to important electromagnetic properties of parts of the object
[1,27.

Let us divide electromagnetic topology into two areas designated qualita-
tive and quantitative. Quantitative electromagnetic topology is concerned
with the ordering of the electromagnetic equations describing the transport of
electromagnetic signals through a system according to the various topological
entities defined, and using this ordering to express the properties of the
whole in terms of the properties of the topological parts [3,5].

Quatitative e1ectromagnetic topology, on the other hand, is concerned
with the definition and use of appropriate topological entities to construct
electromagnetic designs of systems from a macroscopic viewpoint. It is dis-
crete in the sense that a set of entities (such as surfaces and volumes) are
defined with certain connectivity relationships among these entities. Making
these topological entities coincide with various physical features in a real- .
ized system design allows one to control the electromagnetic propagation through
the system.

There are various possible electromagnetic topologies one can choose for
a system design. One would like to know which were more efficient and effec-
tive for particular applications. This note begins an exploration of such
questions by considering an electromagnetic topology defined to the level of
subtayers and subshields. The concept of relative shielding order is intro-
duced and applied to selected sublayers. Constraining the shielding order
between various sublayers constrains certain aspects of the topology from which
sofutions for and optimization of the topology can be sought.




IT. Hierarchical Topology at Sublayer Level

The basics of a hierarchical electromagnetic topology have been discussed
previously [2,5]. In this formalism space is divided into a set of volumes
with associated boundary surfaces. In a hierarchical topology euclidean space
is divided into a set of nested volumes Vx for x = 1,2,...,>\max which begin
from the outside and work progressively inward (deeper into the system); the
separating boundaries S}\;>\+1 are closed surfaces referred to as shields
(Tabelled by the outer vy and inner Vk+1 Tayers). As illustrated in fig. 2.1A
the individual Tayers need not be connected as a simple volume but can exist in
more than one part; each part is called a sublayer VA’Q for £ = 1,2,...,2max(x).
In this example the layer V3 is composed of two proper sublayers v3,1 and V
while the other Tayers are also each sublayers. Similarly, the shield 52;3 is
composed of two proper subshields 82’1;3’1 and 52,1;352 while the other shields
are also each subshields. Further division of these topological entities into
elementary volumes and elementary surfaces is possible but is not pursued here.
For more discussion of these points see [5].

3,2

Associated with a volume/surface topology there is a dual graph for which
there is a one-to-one correspondence between volumes and vertices and between
surfaces and edges. For our purposes there is a special vertex placed in each
branch (dividing it in two), this vertex being identified with the correspond-
ing surface; the resulting dual graph is then a bipartite graph. For a hier-
archical topology defined down to sublayer level (and no further) this dual
graph is a tree graph [4,5]. For the example electromagnetic topo]dgy in fig.
2.1A the dual bipartite graph is exhibited in fig. 2.1B. A useful feature of
the dual graph is that it clearly exhibits which subshields signals must pass
through in going from one sublayer to another because the path connecting two
vertices in a tree graph is unique (assuming a restriction that any edges may
be traversed at most once).



V;\,Q = sublayer .

S . = subshield
A,S?,l,}\-l-l,ﬁ?,z

7T~ shield
*H+ﬁ%*H**y proper

subshield

S

1,1:2,1

A. Volume/surface topology

A
—_—

B. Dual bipartite graph (a tree)

Fig. 2.1. Sublayers and Subshields in Hierarchical Topology




ITI. Relative Shielding Order

As a simplification, assign a weight a , to each subshield

X,Qi;%+1,22

Sy glia+1.9t+ This weight can be used to represent the effectiveness of the
519 32

shield in appropriate units. For our purposes this may be the (natural)
logarithm of the attenuation, or negative logarithm of the transmission, appro-
~priately defined. One interesting way to define transmission is in a norm
sense of an appropriate block of the interaction matrix belonging to the sub-
shield [5]. Neglecting attenuation through the sublayers then one can define
the weight between any two sublayers as

A (3.1)

%o 3hn e o 2.2

A .
1’7272 P
XZ,QZ

Atl, 0}

1° 1° 2

: xl,zl;

where P ) is the unique path in the dual tree graph going from V, ,
to VA . (or the reverse) and (A,Zi;x+1,%é) is chosen to correspond to each
2°72 '
subshield along this path. Note that if one assumes reciprocity as well as

Tinearity we have

3o subshield weight reciprocity

¢ = a 1.
A+l,2 >\+13’Q’25 >~

a
Ask 2

A (3.2)

A . = A ) relative shielding reciprocity
Al,Ql,kz,Rz XZ,ZZ,Al,Ql

Now Ak 0 iy .p. can be thought of as the relative shielding between sublayers
1’71 rere
(or perhaps a lower bound on the shielding).
Going a step further in simplification, suppose that all subshields have
about the same attenuation and hence about the same "weights." Normalizing

these one can set all the a to 1.0. This gives what can be termed

A,Qi;k+1,%é
the relative shielding order which we designate as



R
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Aoy %n 223 1

2% P
CApRigd,

Kl,zlg

[13]

relative shielding order between VA 3 and Vx

1M1 4

2°72

number of subshields crossed (only once) in going

from V to V along the unique path
R R TL !
P )
SRR
=R . (path reversal symmetry) (3.3)
hoatoihsty

Note that this is a non-negative integer.

0 for (Al,il) = (AZ,RZ)

R .
Mshishosts

\4

2 1 for (ry,2) # (Az,zz)

As an example of relative shielding order one can construct a matrix
corresponding to the example topology in fig. 2.1 in the following table.

v
vo N Vg Vs Vg Vg Vg gy
A0
Vi 0 1 2 2 30
V5 4 1 0 1 1 2
Vs 4 2 1 0 2 1 > Ry 4 r s
, 12413208

Vs 2 1 2 0 3
Vg 4 3 2 1 3 o/

Table 3.1. Relative Shielding Order Among Sublayers
(Corresponding to Fig. 2.1)




‘ IvV. Partitioning Sublayers into Sets

In constructing a topological design for a system one may not wish all
the sublayers to have the same role. Some sublayers may contain sensitive
equipment, others may contain strong sources of electromagnetic interference,
and yet others may have neither ofthe above but are included so as to provide
additional subshields as desired. In this context one may wish to separate
the system topology into different sets of sublayers, and impose different
constraints on each of these sets so as to construct an efficient electromag-
netic topology for a given system.

Define an index v which is used with A(\)> where

Agv) = nth member of vth set of sublayers
{Aﬁl)} = set of primary sublayers
{Aéz)} = set of secondary sublayers
(4.1)
. {Ar(13>} = set of tertiary sublayers
etc
{Aév)} = set of all sublayers

v = 1’2""’vmax

= partition order of the system (topology)

max
n = 1,2,...,nmax(v)
n__(v) =

partition order of the vth set of sublayers
These symbols apply to both proper sublayers and improper sublayers (layers
consisting of a single sublayer).

Like the sublayers and layers, the above sets of volumes completely par-
tition the (euclidean) space in which our system topology is defined. We might
define

no(

max
L A 2 space (4.2)
n=1



where a superscript + indicates that the volume (sublayer in this case) is ‘
augmented by its adjoining boundaries (as in [5])}. Then we have

“max
I AV = an space (euclidean) = universe (4.3)
v=1

For this partitioning of the sublayers one can write the relative shield-
ing order as '

(Vl;Vz) (vl) (vz)
Rn'm = relative shielding order between A, and A (4.4)

which for sublayers in the same subset can be reduced to

(v) = olvs
Rn,m = Rn;m (4.5)
with the special cases
(v) _ plvsv) _
Rn’n Rn;n =0 (4.6)
(vl;vz)
nsm > 1 for vy # v, orn Fm

A motivation for defining primary, secondary, etc. sublayers is that one
may wish to select certain numbers of these and constrain the shielding that
isolates them. Using the concept of relative shielding order let us consider
the primary sublayers. For present purposes Tet us think of primary sublayers
" as the following: '
primary sublayers--sublayers containing sensitive equipment
to be shielded (by keeping undesirable electromagnetic sig-

nals out), or intense electromagnetic sources to be shielded
(by keeping undesirable electromagnetic signals in).

Similarly, let us think of secondary sublayers as:

secondary sublayers--sublayers that are not primary sublayers.




Secondary sublayers in this context are included in the topology to provide
additional subshields separating primary sublayers. It should be noted that
this is not the only way to partition the sublayers into sets. Future notes
may alter and expand these partitions.

Using this concept of primary sublayers, as an example consider the
electromagnetic topology in fig. 2.1 and partition the sublayers as in the
following:

V1 1= Agl) (primary sublayer)
V2 1 = A§2) (secondary sublayer)
y = A(Z) (secondary sublayer)
3,1 7 2
Ve o= il (o blayer)
3,0 = My primary sublayer
(4.7)
Vy 1 = Agl) (primary sublayer)
nax 2 (partition order of the system)
nmax(l) = 3 (number of primary sublayers)
nmax(z) =2 (number of secondary sublayers)

In this example the vertices at the "ends" of the tree-graph interaction
sequence diagram have been chosen as the primary sublayers so as to give in

a certain sense maximum shielding between pairs of primary sublayers. This
gives relative shielding orders for pairs of primary sublayers in the follow-
ing table.

(D)

Ar(11) 4 A<11) Aél) Agl)
A(ll) 0 2 3
e 2 0 3 L)
!\_gl) 3 3 0

Table 4.1. Relative Shielding Order Among Primary Sublayers
(Corresponding to Fig. 2.1)
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V. Constraints on Relative Shielding Order for Sets of Sublayers

For the general case let us define some minimum relative shielding orders.

min

(v)
Rm\i)n

For our exampie

Rm1'n
(1)
Rm1‘n

(2)
Rm1'n

(visv,)
= min Rn-% 2
tad)
or
n#m

minimum relative shielding order between any two distinct
sublayers

=1 for at Teast two distinct sublayers

undefined if only one distinct sublayer

(5.1)

i

Lo ()
min Rn m

nfm

minimum relative shielding order between any two distinct
sublayers in the vth set of sublayers

i

>1 for at Teast two distinct sublayers in the vth set
of sublayers

if only one distinct sublayer in the vth
set of sublayers

undefined

> R for all v if defined

= “min

in fig. 2.1 we have

For the general case let us define some maximum shielding orders

10



(vy3v,)
R = max R_. LI
max v 7‘\) n.m
1772
or
n#m

11

maximum relative shielding order between any two distinct
sublayers

>1 for at least two distinct sublayers

undefined 1f only one distinct sublayer

(5.3)

v) _ (v
max max Rn

)
n#m al

maximum relative shielding order between any two distinct
sublayers in the vth set of sublayers

>1 for at least two distinct sublayers in the vth set
of sublayers

undefined if only one distinct sublayer in the vth
set of sublayers -

(v) . .
Rmax‘z Rmax for all v if defined

In traversing from V1 1 (the outside of the system) into the system one can go

as "deep" as VX Iy crossing kmax - 1 subshields giving
max’

A -1

max shielding order of system (topology)

= maximum relative shielding order from "outside" sublayer
to any other sublayer
(5.4)

Hence we have

Ruax = Mmax =~ 1 (5.5)

since the "outside" sublayer is only one of the sublayers; some maximum path
from another sublayer may be "longer" and at Teast one path (from the "outside"
sublayer) is this "long." For our example we have

11



Rnax
(1)
Ruax = 3
(2) (5.6)
- (2) _
Ruax = 1
Amax " 1=3

Combining these results we have both lower and upper bounds for relative
shielding order as

(Vysv,) (vy) Vs )
- 1°72 1 2
1= Rpin £ Rn;m = Riax for A, 7 A
(5.7)
(v) (v) v) (v) (v)
L < Royin 5-Rn,m S'RmaX'S Rax for A7 Ay

Note that Rﬁv%, since it pertai?s to ?he vth subset of the sublayers, is in
i Va3V
1772

general more constrained than Rn'm which applies to the entire set of sub-

tayers. This property of the Rév% can be used to constrain the minimum and/or
maximum relative shielding orders within one or more subsets of sublayers in
synthesizing appropriate topological designs for systems.

12




VI. Constraints on Combinations of Relative Shielding Orders for Sets of

Sublayers

Now in choosing some subset of the sublayers, and assigning relative
shielding orders between pairs of these sublayers, there is the requirement
of assigning these relative shielding orders in aconsistent manner, i.e., in
a topologically possible manner. The previous section discussed constraints
on individual relative shielding orders. This section considers combinations
of relative shielding orders. (vl) (Vz)
Suppose in the eguivalent dual graph we have two sublayers An and Am
denoted by the notation for elements of sublayer sets. Denote the path connect-
ing these two by

(visve)  (vy5v4) '
P 2 =pp 20 (6.1)

This path is unique because the dual graph is a tree-graph. The relative shield-

(visv,)
ing order Rn'% (2 )repr?se?ts the minimum number of subshields traversed in
v Y
going from An 1 to Am 2 (or reverse); this is precisely the number of sub-

shields traversed on the above path with no subshields being traversed more
than once. )

n
Consider a set of sublayers denoted by Ap 4" for q = 1,2,...,qmax with
q

pl =N |
(6.2)
D =m , n =V
Gmax Ymax 2
so that
(ny) (v,)
ao e !
P1 n
(6.3)
(n )
A qmax A(VZ)
D m
Imax

13



are the ends of the previously defined path in (6.1). Now let us consider a

n.sNn 0 n
set of paths P ? qa+1 connecting A 9 and A a+l for g = 1,2,....9
n_sin
9 q+1)_ Traversing these paths
pq 9pq+1

_ (n;)
1,2,...,qmax—1) traces a path from Apl

-1
max

with associated relative shielding orders R

- 1 in number) 1in order (q

(n, ) (vy) (v,)
q . 1 2
max

to Ap (i.e., Ay to Am

Yrmax

traversed more than once.

(qmax

) with perhaps various edges in the graph

Now since the path in (6.1) is the minimum path we have

Theorem 6.1: Minimum path relative shielding order

(nysng ) Apaxs :
. 1 g . R(nganq+1) (6.0)
pl’pqmax q=1 pq’pq+l
An interesting case has nax ~ 3 (three sublayers) for which we set
PP=n » MY
Pp = U, My =V (6.5)

giving
Corollary: Topological triangle inequality

(vy3v,) . (vysvy)

R
nsm —"nju

(v, v
+ R
u:

m (6.6)

I <

3

In the topological sense this says that the shortest path between two sublayers
is sometimes increased by an intermediate detour to some other subiayer.

Confining our attention to the vth set of sublayers (which might be, say,
the primary sublayers) theorem 6.1 becomes

14




Theorem 6.2: Minimum path relative shielding order for sublayers in the vth

set
Imax-1 .
Ré\))p < Ré‘))p S - (6.7)
177G ax a=1 q’7q*l

In this form all the Gax 1 individual paths have both ends at Aév) sublayers
but may connect to sublayers not in the vth set at intermediate points. Again

for Uax = 3 we now set

Pr=m > Pp=u » Pg=m

(6.8)

nl = ﬂZ = Tl3 =N . ot o o S
giving
Corollary: Topological triangle inequality for sublayers in the vth set

(V) L R0) 4 () |
Rn,m'S Rn,u * Ru,m v (6.9)

Combining the results of (5.7) with the results of this section gives
lower and upper bounds for the sum of the relative shielding orders along
various paths connected in sequence. Substituting from (5.7) into (6.4) gives

Theorem 6.3: Bounds on relative shielding order along a sequence of connected

paths
(nsn ) Ymax”
1°"q (n_sn_.q)
1=R. <R max _ o9 atlh - 1)R
min plqumax =1 anpq+l max max

(ﬂ ) (ﬂq )

for 4, 1y h max - (6.10)
1 qmax

Stated in words, the sum of the relative shie1d1hg ordérs of the sequenéé of
connected paths is no less than the relative shielding order of the minimum
path connecting the end sublayers, and is no greater than the number of these
sequential paths times the maximum relative shielding order in the entire
system topology. This inequality holds for every sequence of such paths in

15



the system topology. Again selecting the case qmag = 3 we have the indices in

(6.5) giving
Corollary: Bounds on relative shielding order among three sublayers

(visv,) (vy3v ) (v 3v )
- 1°72 1°7y u’'m
1= Rmin's Rn;m < Rn;u * Ru;m S'ZRmax
(vl) “2)
for Ay # A (6.11)

If the individual paths are non-trivial so that each relative shielding
order is at least 1 we have

Theorem 6.4: Bounds on relative shielding order along a sequence of non-
trivial connected paths
greater of R(”l;”qmax) -1
g PyoP > Ymax
Ymax

9 )

-1
max (n_sn
RGO e LR (6.12)

£ ‘
Dq,pq+1 max max

q:

Corollary: Bounds on relative shielding order among three distinct sublayers

[ (Vy3v,) }
greater of Rn;m s 2
(vysv,)

vV
nsu ’

;vz)
< 2R (6.13)

u
<
<R sm max

(
+ Ru
Consider now the above results specialized to the case that all the sub-
layers are elements of the vth set which does not 1in general include all of
the sublayers. An important new feature is the fact that Ré:% need not be 1
but may be greater (as in (5.1)). In this case (6.10) becomes

Theorem 6.5: Bounds on relative shielding order along a sequence of connected
paths with all end sublayers in the vth set

16




qmax_1

(v) _ (V) (v) Cyp(v)
1<RYI<R L < R < (q - 1)R
min pl,pqmax gg% pq,pq+1 max max
for ALY # A .  (6.14)
p; TP

Imax
and (6.11) becomes

Cordllary: Bounds on relative shielding order among three sublayers all in

the vth set ‘
(v) (v) (v) (v) (v)
1= Rmin'i Rn,m S'Rn,u * Ru,m-S ZRmax
(v) (v)
for A0 # A (6.15)

If the individual paths are non-trivial (each relative shielding order
being at Teast 1) then we have for sublayers all in the vth set

Theorem 6.6: Bounds on relative shielding order along a sequence of non-
trivial connected paths with all end subJayers in the vth set

{(v) (V)
greater of [Rpl’p , (qmax - 1)Rmin

qmax
g _.-1
max
< R(\)? < (q - 1Y)
. PqiPa+1 max max
q=1 Q9 (6.16)
RV 5 g

Note now that it is quite possible for Ré?ﬁ to be assigned arbitrary positive
integer values by appropriate definition of sublayers not in the vth subset

to provide at Teast as many subshields as desired between each pair in the vth
subset of sublayers. This inclusion of Ré?ﬁ in the lower bound makes it
possible to raise the lower bound. The special case of three sublayers now
becomes

17



Corollary: Bounds on relative shielding order among three distinct sublayers
in the vth set

greater of (Rév% , ZR(Y>]

N min
(v) (v} (v)
< Rn,u + Ru,m.s ZRmax (6.17)

which again gives some design flexibility by appropriate choices in the lower
bound.

Letting the vth set be the primary sublayers in our example (fig. 2.1
and table 4.1) (6.17) is satisfied with

R =2, i -3, /-3

1,2 1,3 2,3
- ( (6.18)
1) _ 1) _

Rmin 2 Rmax-" 3

Note that this example provides three separate instances of satisfying (6.17)
based on the three possible choices of Rét& (=Réf%).

Qur example shows then that it is possible to choose Ré%% > 1, and by
extension as large as we want. An easy way to do this, as in fig. 2.1, is to
place the primary sublayers out at the "ends" of .the tree graph by extending
the paths from such primary sublayers to other primary sublayers to as large

a refative shielding order as desired.

18




VII. Inversion of Electromagnetic Topology

An interesting aspect of electromagnetic topology is its properties under
spatial inversion. Considering our example topology in fig. 2.1, let us choose
a point within some sublayer, say v3}1 as in fig. 7.1A, and perform an inver-
sion to give the topology in fig. 7.1B. While this latter topology may look
different from the former they share some important features so that they may
be considered equivalent. In particular they both have the same dual bipartite
graph (interaction sequence diagram). The two topologies are thus in one-to-one
correspondence with the graph and with each other. Of course, one could have
taken the inversion point in any sublayer to make that sublayer become the out-
side sublayer, giving five possible equivalent topologies for our example. In
general with N sublayers then there are N electromagnetic topological diagrams
equivalent to each other in the above sense.

To illustrate some of the transformations under inversion consider table
7.1. In this table there are some notational features. A superscript is used
to designate volumes and surfaces in the original topology (1) and after inver-
sion (2). Note that, as exhibited by this example, the shielding order of the

system, X - 1, [2,5] is in general not conserved under inversion. Futher-

more, TayZiz (or principal volumes) are not necessarily layers after inversion.
Layers consist of one or more sublayers (unconnected volumes in the same layer);
in the case of two or more sublayers these sublayers are called proper sublayers.
Similarly, shields (or principal surfaces) are not necessarily shields after
inversion. Shields consist of one or more subshields (unconnected closed sur-
faces in the same shield); in the case of two or more subshields these are
called proper subshields.

Note, however, that we have:

Theorem 7.1: Conservation of relative shielding order
Relative shielding order is conserved under inversion of the volume/
surface topology defined to sublayer level.
This result follows from the fact that the inversion of the electromagnetic
topology does not alter the dual graph (interaction sequence diagram). Since
the vertices in this graph are the sublayers and the sublayers and their con-
nections (subshields) to other sublayers are mapped one. to one under inversion,
then the number of subshields on a path (unique) from one sublayer to another
is conserved. This is the relative shielding order.

19



A.

inversion point :

sie) | ;3, :
5(2) at =
1,1:2,2 \‘ \
B. Topology after inversion with respect to point in A3
1)

C. Dual bipartite graph {interaction sequence diagram)

Fig. 7.1. Inversion of Electromagnetic Topology

20



Original Topology

Topology After Inversion

, Layer or Layer or
SubTayer Designation Proper Sublayer Designation Proper Sublayer
(1) (2)
Al Vl,l Layer v3’2 Proper Sublayer
(1) (2)
A2 V2,1 Layer VZ,Z Proper Sublayer
(1) (2)
AS V3,1 Proper Sublayer Vl,l Layer
2
A4 Vé}% Proper Sub]gyer Vg’i Proper Sublayer
(1) (2)
A5 V4’1 Layer V2,1 Proper SubTayer
Shield or Shield or
Subshield Designation Proper Subshield Designation Proper Subshield
+ + (1) ; (2) ‘ald |
Ay (W As 51’1;2’1 Shield 52’2;3,2 Proper Subshield
+ + . .
A2 (7 A3 Sé%%;3,1 Proper Subshield Sg?i;z,z Proper Subshield
+ + (1) ’ . (2) .
A2 (} A4 52’1;3,2 Proper Subshield 82’2;331 Proper Subshield
+ + (1) . (2) .
s (7 AS 83,1;4’1 Shield 31’1;2’1 Proper Subshield
Shielding
Order of
System
max ~ 1

Table 7.1 Transformation of Electromagnetic Topology Under Inversion

21




A special case of interest occurs if the inversion point is located on
one of the subshields. In this case the associated subshield under inversion
extends to infinity, dividing euclidean space in this special sense. This can
be considered a generalization of the inversion procedure for which the dual
graph and conservation of relative shielding order still apply.

22




VIII. Uniform Relative Shielding Order for Primary Sublayers

Now we come to a very interesting application of the relative-shielding-
order concept. In designing the electromagnetic topology for a system one
could try to specify the relative shielding orders between some or all the
pairs of some set of sublayers of particular interest. Denote this set, with-
out loss of generality, as the primary sublayers {Aél)}.

Let us consider the case that the shielding between one primary sublayer
and another is in some sense uniform [4]. While oné can in principal realize
subshields with somewhat arbitrary attenuations, this case illustrates some of

the power of topological concepts while presenting an example of some practical
interest. A basic result is:

Theorem 8.1: Uniform Relative Shielding Order for Primary Sublayers

IT we have:

(1)

1)  Three or more distinct primary sublayers NS i.e.,

n=1,2,...,n

max

with nmax(l) > 3

2)  Uniform relative shielding order among all pairs of the {Aﬁl)}, i.e.,
(1) _ :
R R independent of n,m
n,m

with n,m = 1,2,...,nmax(1) , butn #m
Then:

R = even

and (8.1)
the smallest non-trivial R = 2. ¢

To prove this, note that R > 0 and hence R is a non-negative even or odd
integer. Consider both cases.

Case 1: R = even

A solution exists for this case by exhibition as in fig. 8.1. This

shows a tree graph (the dual graph for e]ectromégnetic topology defined to the

(2)

sublayer level). In this example we take one secondary volume Al as the

23



Fig. 8.1.

2

Uniform Relative Shielding Order for R = Even:

24

as many primary sublayers
and "points" as desired

Star Graph




“center" (a particular vertex) in this special form of tree graph which we
might call a star graph. This graph has nmax(l) "points" corresponding to
paths from the "center" to each primary sublayer. Each such path has an inte-
ger number of subshields and an integer number of sublayers (secondary etc.
subTlayers). The relative shielding order from one primary sublayer to another
is R and from any primary sublayer to the "center" is R/2. If R is even then
R/2 1is an integer and the conditions are satisfied.

Case 2: R = odd

No solution exists for this case as is illustrated in fig. 8.2. Begin
with Agl) and Aél) and connect them by a path with relative shielding order
R = odd. Next connect a path from another primary voTlume Agl) to some sublayer
on the first path denoted Aa which may or may not be one of the end sublayers
of the first path. Note only one such path from Agl) to the first path is
allowed since the graph must be a tree graph and paths between any two sub-

Tayers must be unique. Now the relative shielding order from A<l) to A, (say

1
Ri) plus that from A  to Aél) (say Ré) must give (by our construction of the

first path)

(1) - I [ - )

Ri7p = R{ * Ry =R = odd (8.2)
By the introduction of the path from Ag1> to Aa with relative shielding order
Ré we have

(1) _ 5

R1,3 = Rl + R!

(8.3)

(1) _ o ,

R2’3 - R2 + R
Subtracting

(2) (1) _ o .

"3 Re3= R - R (8.4)
Now since

2Ry = even (8.5)
then
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ﬂ(l) Relative shielding orders:
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Fig. 8.2. Uniform Relative Shielding Order for R = (0dd




= odd - even = odd (8.6)

Hence

Ri - Ré #0 (8.7)
e (1) (1)

1 1

Rij3 - Ry 370 (8.8)
or

(1) , (1)

R1,3 # R2,3 (8.9)
Thus

R§1; 4R or Rglg 4 R (8.10)

and not all three relative shielding orders can be R. Therefore, three primary
sublayers cannot satisfy all relative shielding orders equal to the same odd
integer R and the case of nmax(l) = 3 is impossible.

Can we have nmax(l) > 3 with uniform relative shielding order? Add
sequentially additional primary sublayers Aél) etc. with connecting paths to
the tree graph which do not destroy the tree property. Since the paths among
A1) (1) (1)

1 M and A3 are then not changed (the paths being unique in a tree

graph), then the addition of these additional primary sublayers does not allow
R&}%, R%}%, and Ré}% to be all equal, and hence the relative shielding orders
for four or more primary sublayers cannot all be equal.

Hence, odd R for nmax(l).z 3 is {mpossible. Non-negative even R are
all possible. The smallest non-trivial possible R is 2.

Q.E.D.
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IX. Examples of Uniform Relative Shielding Order

Corresponding to this case of uniform relative shielding order there are
various volume/surface topological diagrams. Figure 9.1A shows the symmetric
case corresponding to the graph in fig. 8.1. Each primary sublayer is individu-
ally surrounded by R/2 subshields. The exterior sublayer Agz) is a secondary
sublayer as are the other sublayers separating the subshields surrounding each
primary volume. The shielding order of this system topology is kmax - 1= R/2.

Now perform an inversion about a point in Agl). This gives the diagram
in fig. 9.1B in which one of the primary sublayers is now the exterior. Pri-
mary sublayers Aél) through Agéix(l) have R/2 subshields surrounding each
separately and one subset of R/2 subshields surrounding all of these together,
these Tatter R/2 subshields being shields as well. The secondary sublayer A%Z)
now assumes an intermediate role in the hierarchical shielding topology. The
shielding order of this system topology is A - 1=R.

max
Note that the latter example corresponds to some practical conditions.

The exterior sublayer {also Tayer) A§1) corresponds to the location of various
important electromagnetic interference sources such as EMP, lightning, radar,
etc. The interior primary sublayers can be used to separately contain strong
interference sources (transmitting equipment, etc.), equipment susceptible to
interference (computers, etc.), and equipment carrying signals that one does

(1)

not wish to be detected in Al (secure communications, etc.).

Since the smallest non-trivial uniform relative shielding order is 2, we
have the interesting and practical case shown in fig. 9.2 with Agl) taken again
as the exterior sublayer (also layer). Primary sublayers Aél) through Aé;;x(l)
have individual subshields around each. These subshields might be realized
by cable shields, box shields, perhaps buffer circuits, as well as filters and
1imiters at penetrations. Another common subshield (also shield) surrounds all
of these. This outer shield might be realized by structural metal (as in an
aircraft skin), bulkheads, conduits, and various penetration protective devices.

2)

In this latter example the secondary sublayer (alsc layer) A< can

1
assume a special role. It, of course, separates subshields so as to give a

uniform relative shielding order for primary sublayers R=2. In addition,

(2)

however, Al is shielded from the other sublayers (the primary sublayers) by

a uniform relative shielding order R=1. So suppose one has some class of
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Fig. 9.1. Example Topolo

gical Diagrams for Uniform Relative Shielding Order:
R = Even
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shielding order
of system

Xmax -1=2

Fig. 9.2. Exterior Primary Sublayer for Smallest Non-Trivial Uniform
Relative Shielding Order: R = 2
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equipment which is fairly insensitive to electromagnetic interference but
requires some shielding. Also this equipment may generate interference; but
say only a modest amount (compared to some other sources). Then some such
equipment might be placed in A%Z) to achieve an efficient shielding design.
Consider the case of the electric power source and distribution in say
an aircraft (not including any sensitive power control circuits). This set of
robust conductors, transformers, etc. may be well suited for such a secondary
sublayer. In transporting the power to any primary sublayer only one sub-
shield (and hence one set of heavy duty filters, etc.) is needed (correspond-
ing to R=1).. If, however, this equipment is placed in another primary sublayer
then two subshields (and hence two sets of filters, etc.) must be traversed by
the power (corresponding to R=2). Thus the use of A&Z) for power generation
and distribution can reduce cost, weight, and complexity, at least in some

circumstances.
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X. Summary

This note has explored some aspects of qualitative electromagnetic
topoiogy. By partitioning sublayers into sets and imposing desired relative
shielding orders, to the extent possible, between pairs of sublayers in vari-
ous of these sets, one can synthesize various specific electromagnetic topoio-
gies appropriate to system design problems. Here some results have been pre-
sented but much extension appears possible.

Given the variety of possible assumptions concerning relative shielding
orders between pairs of sublayers which may contain particular kinds of equip-
ment with variocus electromagnetic interference sources and sensitivities, one
may expect some interesting design concepts to be developed. The discrete
nature of qualitative electromagetic topology (as in integer relative shielding
order) may lead to combinatoric and group theoretic aspects to such designs.
Perhaps this subject can develop into one of topological synthesis.
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