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Abstract

This note considers the singularity expansion description of a thin
finite length cylinder parallel to a lossy ground using the well known
"reflection coefficient approximation”. An E-field type integrodifferen-
tial equation, with ground scattered radiation scaled by the appropriate
Fresnel reflection coefficient is used to characterize the scattering
system. Trajectories of the system natural resonances are studied as the
scatterer geometry and ground plane parameters are varied. Mode vectors
associated with the scattering system are shown to be relatively indepen-
dent of scatterer geometry and ground parameters. Angles of the incident
wave that produce maximum coupling to the cylinder are shown to be pre-
dictable by a simple "standing wave analogy".
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I. INTRODUCTION

Previous investigators have studied the interactions of thin cylin-
ders in free space [1], and thin cylinders over perfectly conducting
ground [2] with an electromagnetic step plane wave. This study will
present in an approximate manner the interaction of a thin cylinder over
a finitely conducting ground with an electromagnetic step plane wave.
Analysis will be conducted using the Singularity Expansion Method (SEM).

Current induced by the incident field on the cylinder surface is
approximated by an axially directed filamentary current on the cylinder
axis. Boundary conditions are applied only to the axial component of the
incident electromagnetic field on the wire axis. The above "thin-wire"
assumptions are valid provided the length of the cylinder is much greater
than its radius, and the cylinder is many radii away from the ground
plane [3].

The scattered field reflected from the ground plane is scaled by the
complex Fresnel reflection coefficient for the appropriate angle of inci-
dence and polarization involved. Since the Fresnel reflection coefficient
is strictly valid only for plane wave incidance, the scattered field must
approximate a plane wave at the free-space lossy-ground interface. In a
study by Sarkar and Strait [4] it was shown that the above method, termed
“reflection method" gave results in the real frequency domain within 10%
of the exact Sommerfeld formulation for a horizontal electric dipole as
long as the dipole was at least (O.ZSA/VEE) from the ground plane. Speed

of computation is an inherent advantage when using the reflection method. (
16



II. THEORY

Integro-Difterential Equation

The system defined by Figure 1 is composed of a thin cylinder over
an imperfectly conducting ground plane and the incident electromagnetic
radiation. As shown, the cylinder is of length £, radius a, and height h
above the ground plane. The imperfectly conducting nonmagnetic, u = uy»
ground plane is characterized by its conductivity o, and permittivity,
€ = EpEy- The incident plane wave is vertically polarized and propagates
at an angle 6 with respect to the normal.

Currents will be induced on the cylinder by the incident field and
by reflection of the incident field from the ground plane. These induced
currents will reradiate in the presence of the imperfectly conducting
ground producing a primary and secondary scattered field. Primary scat-
tered radiation is that part of the current induced field which propa-
gates directly from the scatterer surface to observation point. Secondary
scattered radiation reflects from the ground plane before reaching the ob-
servation point, and therefore must be scaled by the complex Fresnel re-
flection coefficient for the appropriate angle of incidence and polariza-
tion involved. The total scattered field consist of the sum of the pri-
mary and scaled secondary parts.

The primary scattered electric field is related to the currents that
produced it through a magnetic vector potential and a': ropriate differen-

tial operators. This relation may be written as
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g

-uosﬁp + y(v - Kp)/SEO (2.1)

primary scattered electric field

£
where AP = —l—ﬂ f?(?' ) [ S— PY (2.2)
()

primary magnetic vector potential
K(r',s) = surface current density

V=u,~——+u, S +y %E'= vector operator

T o= ﬁx X' + ﬁy y' 4+ Gz z' = source vector

= direct distance from source point to
observation point

7]
n

Q

+

jw = complex frequency variable

s/c, C

<
it

speed of 1ight in free space.

Use of the complex frequency variable s in the above equations implies
that the Maxwell equations have been Laplace transformed.

Secondary scattered electric radiation may also be written in terms

of a magnetic vector potential as

E°

-uosﬂs + v(v - KS)/SEO (2.3)

secondary scattered electric field

19



2n |77 |®
where  A° = 1—/ R(r',s) =——— =IE ds' (2.4)
)

secondary magnetic vector potential

|F-7'|% = distance from source point to
around plane to observation point.
A11 other terms in (2.3) and (2.4) have been previously defined.
With surface currents on the cylinder approximated by a z-directed
filamentary current on the cylinder axis, the primary and secondary mag-

netic vector potentials of (2.2) and (2.4) reduce to

: 4 -YIF-F'IP

p_1_ /” - ,

Az  Iw I(z',s) IF—F'IP dz (2.5)
-er‘ r' |s

Ai = ——;//. I(z',s) &— e dz* (2.6)

Locate the observation point on the cylinder surface, then

[(z-2')? + a%7% (2.7)

]
-~
n

|- |P

and [r-r | [(z-2')% + (2h+a)2]* (2.8)

"2
An expression for the primary scattered electric field in terms of the

unknown induced currents may be formed by substituting (2.5) into (2.1),

the result is

p = _ ] 9 ] 1 e
EZ (Z,S) ( uOS+S—e— 3—2-2-) v I(Z 95) r
0

0
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ﬂ

A similar expression for secondary scattered electric radiation may be

formed by substituting (2.2) into (2.3) with the result

2
£5 (225) = (gt 5= 5 f 1) @
0

3Z

dz' (2.10)

As stated, the total scattered field consists of the sum of the primary

and scaled secondary parts, that is

1

EP(z,5) - RVES(2,5)

(cugs+ — )—fr(z,s)

£ -er
./f I(z' ,s) E dz'
A T2

The complex Fresnel reflection coefficient for vertical polarization,

tot
Ez (z,s)

dz* (2.11)

v _l_.ﬁ__
Rv('“os 2

-brd

e. (Rt) is used in (2.11) to scale the z-directed secondary electric

field, and is defined as

v (eR+X) s1nw - [(e +X) - cos p]z
v

R

: (2.12)
(eR+X) siny + [(e +X) - cos p]z
where X = 120n0/y, v = s/c.

This expression utilizes Jordon's [5] definition of the plane wave
reflection coefficient for vertical polarization. As pointed out by a

previous investigator [6], the minus sign in (2.11) comes from Jordon's

assumed positive directions of electric fields for the incident and reflec-

ted waves [5]. Note that ¢ in (2.12) is the angle formed by the

21




secondary scattered incident ray and the ground plane. It is a function
of source and field point position as depicted by Figure 2.

In Figure 2 is shown the vertically polarized total incident and
transmitted electromagnetic excitation. At the free-space lossy ground
interface the tangential components of the total incident field must
equal the tangential components of the transmitted field. This condition
is equivalent to requiring normal wave impedances to be continuous at the

interface [7], thus

. ) g
Z;=—f-=*2§=—§atx=-h (2.13)
H H
Y Y

where

i . . . .
Zx = x-directed wave impedance in free space region

. ~y(-x sine.+z cose.)
E. = E;(s) sino. [e 1 1

N

. e-Y(x sine; + z cose,) (2.14)

= total z-directed incident electric field
. . -y(-x sine.+z coss.)
i_ i i i
Hy = Eg(s)/ng [e

. -y({x sine, + z coss.; )
re ] (2.15)

= total y-directed incident megnetic field

Zi = x-directed wave impedance in Tossy region
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-72(-x sine +z coset)

EL = Ec(s) sino, e (2.16)
= z-directed transmitted electric field

H; i Eg(S)/nz e-yz(-x sinet+z coset) 2.17)
= y-directed transmitted magnetic field

n = intrinsic impedance of free space

n, = intrinsic impedance of conducting earth

Yo = complex propagation number of conducting earth

and T is the reflection coefficient to be determined. Note that the total
incident field consists of the direct electromagnetic excitation plus its
reflection from the ground plane. The principal of direction cosines has
been used in the development of (2.14) through (2.17). Substituting the

field expressions into (2.13), and simplifying the result, gives

-yZhs1nei ny S1n6; - n, sine,

T=e¢e (2.18)

ﬁ] sinei + h2 sinet
Through the application of Snell's law of refraction (2.18) may be written

~yzhsine (e X) sino - [(eR+X)-cosze]%

T'=¢e 7 _L
(eR+X) sing + [(eR+X)-cos 6]

-y2hsine
= e R, (2.19)
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Equation (2.19) differs from (2.12) only by the exponential factor and
angular dependence of Rv" The total z-directed incident electric field
may now be obtained by substituting (2.19) into (2.14) with the result

-y{(~x sine+z cose)

- El(s) sine [e - R®

v

;
F_Z

-y(2h sine+x sine+z coso)
e ] (2.20)
To insure uniqueness the total z-directed scattered electric field
must cancel the total z-directed incident electric field on the cylinder

axis, therefore

E;J - - E§°t(z,s)J (2.21)

X=0 X=0

Evaluating the z-directed scattered and incident fields on the cylinder
axis rather than on the surface is an appropriate thin wire assumption.
Using (2.11) and (2.20) in (2.21) and applying the above discussed thin

wire assumption, (2.21) becomes

; -yZ COSO o -y(z cos8+2hsing)
E (s) sino [e - R e

0 v

L -yr
0 3z A "
£ -yr
o 1 3% ] L oye &
- V(uos- ?‘—2) '4? I(Z ,S) r dz (2.22)
0 3z 2
()
Define
-yr

p . e | .

F(z,z',s) = - = primary Green's function (2.23)
1
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-‘er

FS(z,2',s) = & = secondary Green's function (2.24)
where 1

ry = [(z-2')7 + 2’

ry = [(z-2')% + (2h+a)?]%
and since

2 2

1 1 3 3 2

s—(-4me s) (u s - ——) = (55 - ¥") (2.25)

4n 0 (o} se, 322 322

the integro-differential equation to be solved for the unknown induced

currents is

(—4neos) Eg(s) sine [e

9 L2
9
= (-
oz o
£
2
R f
9z A

-YZ COS6

I(z',s) F>(z,z',s) dz'

-y(z cose+2h sing)

)
Rv e

2) U/F I(z',s) FP(z,z',s) dz'

(2.26)

Application of the Method of Moments,

The purpose of this section is to reduce the integro-differential

equation, (2.26), to a form suitable for numerical solution.

The tech-

nique by which this may be accomplished is known as the method of mo-

ments [8].

Generally, the method of moments may be used to solve an inhomoge-

neous equatinn

L(f) = ¢

26
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where L is a linear operator, g is known, and f is to be determined. The

unknown f is expanded in a series of functions as

f = qnfn - (2.28)
n

where -the fn are called basis functions and the @, are constants. Using

the linearity of L and (2.28), (2.27) may be written

D o L(F) = g : (2.29)

n

Next a set of testing functions is defined, Wys Wos W3 ooy and the inner

product of (2.29) with each W formed, yielding

:E:an<wm, L(fn)> = < .g> . (2.30)
n
n=1, 2, 3, ...

m=1, 2, 3, ...
Equation (2.30) is a matrix equation which may be solved using standard
numerical techniques.
For the problem at hand, a geometric interpretation of the method
of moments may be forwarded. Let the thin wire be broken into segments,
with the induced current on each segment assumed to be constant. See Fig-

ure 3. This is equivalent to expanding the current in a set of pulse

functions as

I{(z',s) =Z a (s) I (z') (2.31)

n
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where

an(s) = unknown coefficient of constant current

th subsection.

1 for 2" < z < z"+]
and I (z') = (2.32)
0 elsewhere n = 2, 3, ... N-1

in the n

At wire ends the boundary condition of zero current may be satisfied by

defining
I(o) = 1(&) =0 (2.33)

Actually, this condition is automatically met by allowing the two end
subsections to extend past the end of the scatterer. Using a pulse
function expansion of the unknown induced current allows the integration

in (2.26) to be approximated by a sum of integrations over N segments.

Thus,

; _ -yZ CO0S8 0 -y(z cos6+2h sine)
(-4neos) Eo(s) sine [e - R, e
zn+1 )
2 2
=> an(s)/ (= - ¥°) FP(z,2',s) dz’ (2.34)
- n 9z

z

zn+1
2
2 1
Rs E an(s) / (3—2~ - v) Fs(z,z',s) dz
" zn °Z

where

>4

= £/(N-1) = length of a zone (2.35)
29



N = number of subsections or zones

"= (n-3/2)a n=1, 2, ... N+

N
n

subsection ends.

A set of testing functions may now be defined as

1 2=z
6(z-zm) = (2.36)
0 z#zm
where z, = (m-1)a m=1,2, ... N\ . (2.37)

Now by forming the inner product of (2.34) with each of the delta func-
tions of (2.36), and approximating the differentiation in (2.34) by

finite differences, that is

QEE - [F(z+az) - 2F(z) + F{( :
5 = 5 - z-4z)] (2.38)
dz (az)

the integro-differential equation becomes

-YZ_ COS6 6 -y(zm cos6+2h sine)

] . m
(-4neos) Eo(s) sine [e - R, e ]

S
1 ' .
DITACE f[/ P (2y02'05) = (FaB2)P (02" 5)
n Zn

n+
7 1

Y ' ‘ 1/ S )
* Pz sz ,s) dz'] - R, [ j/. F2 (24752 »S)
n
z

2A2

-(ya°+2) Fs(zm,z',s) + Fs(zm_1,z',s) dz']}

n=2, 3, ... N-1

3
]
o\

2, 3, ... N-1. (2.39)
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Equation (2.39) is a set of linear algebraic equations, and may be

placed in the form of a matrix equation,
V(s) = Z(s) T(s), (2.40)

where a single bar represents a column matrix or vector and double bars

indicate a square matrix. Define the matrices as
V(s) = the source vector = [v. 1,
where

v_ = the matrix elements of V(s)

-Yz,, €OS6 -y(zm cos6+2h sing)

= (-4neos) E;(s) sine [e

(2.41)

T(s) = the response vector = [in]
where

i = the matrix elements of I(s)
=@ unknown coefficients of constant
current in the nth zone (2.42)

n=2,3, ... N-1;

NI
—
2]
~
0

the impedance matrix = [zmn],

where

N
]

o the matrix elements of iks)
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N
[

mn A2

zn+'|
L {[] FP(z,4752"s8) - (v2a%+2) FP(z..2" )
2" n+l

4

z
p ‘- 17 _ p¥ S '
F (zm_1,z ,s) dz'] R, {/r F (zm+],z »S)
n
z

(v282+2) F3(z_,2',8) + F3(z. 1,2',s) dz']}
m m-1
n=2,3, ... N~1
(2.43)
m=2’ 3’ oo N“

The unwieldy appearance of (2.43) may be improved by defining two

functions zn+1
p = P ' '
Hm,n(zm’s) -./r F (zm,z ,S) dz (2.44)
n
z
Zn+1
S — S ' '
Hm,n(zm’s) —‘/; F (zm,z ,S) dz (2.45)
z
1
~v[(z,~2")% + a%]"
with FP(z ,z',s) = £ (2.46)
m [(zm_za)z + az]”z
(2,2 + (2hta)?1%
Fs(zm,Z',s) =& (2.47)

[(zm-z')2 + (2h+a)27]71/2

Now (2.43) may be redefined as

mn AZ {Hm,n(2m+1’s) - (v%a +2)Hm,n(zm’s)
p oV s 22 .\.s
+ Hm,n(zm-1’s) Ry [Hm,n(zm+1’s) - (v“a +2)Hm,n(zm,s)
S n=2,3, ... N-1
¥ Hm,n(zm-l’s)]} =2,3, ... N-1 (2.48)

32



Alternate Formulation for the Secondary scattered Electric Field

As pointed out by-Shumpert [9], an alternate formulation for the
secondary scattered electric.field is derivable by using the exact
expression for the electric field produced by a constant current element.

"'sing (2.11) in (2.21) gives
gi o gP - RVES
E, Ez(z,s) RVEZ(z,s) (2.49)

where Eg(z,s) and RgEz(z,s) are the primary and scaled secondary scattered
electric fields on the cylinder surface respectively, due to the unknown
induced current. Since the wire scatterer has been segmented as shown

in Figure 2-3, and the current induced on each segment assumed constant,
it follows that the secondary scattered electric field will be merely

the sum of the fields caused by each individual constant current element.
The exact electric field due to a constant current element has been given
by Harrington [7]. Applying the principles discussed above, and using
Harrington's expression for a constant current element, the secondary

scattered electric field may be written

s ZyA 5{1: “YTn 1 1 2
Ez(z,s) R on € [(—?— * _h§_) COS ¥y
n=2 "mn Y mn
T ¥ e S L S N PR (2.50)
2 'mn r2 r3 mn
mn ¥ mn
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where
Z = (u/e )% ="120
o ‘o'’ T m
A= L£/(N-1)

Pun = {(2h)2 + [A(m-n)]z}%

cosy, . = (m-n)A/rmn

sinwmn 2h/rmn

m=2, 3, ... N-1

n=2,3, ... N-1 .
From (2.9) we have
Z N‘]
Proa - _0 p
Ez(Z »$) P %n [Hm,n(zm+1’s)
Tyl n=2

2,2 p p
- (Pt W (zs) + WD (2 0.0 ]
m=2,3, ... N-l . (2.51)

Using these expressions for the scattered fields in (2.49) the matrix

elements of (2.48) may be redefined as

=1 P 2,2 p
Zm,n - 22 [Hm,n(zn+1’s) - (ya™+2) Hm,n(zn’s)
' -Yr
p Y mn 1 1 2
* Hm,n(zn--l’s):| - Ry2dy e [(—— +'_7§_) €05 Yin
"on YTmn

1, v 1 1 . 2

+ 2(rmn + r2 + 3 ) sin ¢mn] (2.52)
mn rn
m=2, 3, ... N-1

n=2,3, ... N-1
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The obvious utility of the alternate expression for zon is that an inte-
gration has been replaced by an algebraic expression, and thus numerical

evaluation time reduced.

Application of the Singularity Expansion Method -

The Singularity Expansion Method (SEM) formalized by Baum [10-11],
and applied by many others, allows one to treat a distributed system,
such as the one at hand, in a manner similar to that used in classical
circuit theory. 1In circuit theory the time domain response of a Tinear
circuit excited by an arbitrary waveform may be determined by knowledge
of the Tocation of any singularities of the response function as well as
the corresponding residues [1]. In the case of a distributed system
there are an in%inite number of singularities, and associated with each
is a natural modal current distribution. For any arbitrary excitation,
i.e., incident electromagnetic radiation, one need only determine how
much of each natural modal current has been excited [12]. This is deter-
mined by the coupling coefficient associated with the given singularity.

The solution of (2.40) is

T(s) = Z-1(s) V(s) = ¥(s) V(s) (2.53)
Y(s) = the inverse of the system
impedance matrix
= Ly,
where
Yon = the matrix elements of Y(s).
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Elements of the inverse matrix may be written

(-1)™" 4 (s)

m
Yon ~ A(S?"’*_ (2.54)

where Anm(s) is a minor determinant of Z(s) formed by deleting the nth

th column, and A(s) is the determinant of Z(s). Examination

row and the m
of (2.54) indicates that the poles of the response function I(s), are

the zeros of A(s). The poles have been termed the system natural reso-
nant frequencies. Now writing the unknown current in a partial fraction

expansion, one obtains
=T

= Y.
T(S) = T(S) V(S) = E ﬁ)——v_(s) (2.55)
. 1
1

th

In (2.55) S; is the i*" natural resonant frequency and 7: the correspond-

ing residue, defined as

7‘; = Tim  [(s-s;) Y(s)] (2.56)

+S .
SS.l

Using the circuit theory analogy, certain information about the system
natural resonant frequencies may be inferred. First, the resonances
must occur in the left-hand portion of the complex plane to insure a
decaying response. The poles must occur in conjugate pairs to produce a
real time domain current, and since the scatterer has a finite quality
factor, no poles may reside on the jw axis. Furthermore, it is assumed,
but without proof, that the poles are all simple [1]. This has been
found to be the case in many exactly solvable geometries.

The system residue matrix at the pole $=S, > 7:, has been shown to
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be a dyadic [13], [14]; that is, it is proportional to the outer product

of two n dimensional vectors

T = 85,C. (2.57)
where

3; = natural mode vector

Eﬁ = transpose of coupling vector
and

By = proportionality constant.

The natural mode vector is a solution to the equation

Z(s ) v. =0 (2.58)
and the coupling vector satisfies the equation

=t T

Z (sa) Ca =0 (2.59)
where

=t _ —

2 (sa) transpose of Z(sa)
In this problem the system impedance matrix is symmetric, that is

=t _ =

z°(s,) = Z(s ) (2.60)

so the natural mode vector and the coupling vector are identical,

Vg = Ca (2.61)
and therefore, (2.57) may be written

T -gv 3t
YG- - B(lvct\)(! (2'62)
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where

-t _ -
v, = transpose of v,

Let the natural mode vector be normalized such that its maximum element

is real and equal to unity,

v =v normalized
(10 a

Now the residue matrix becomes

=B v v
oo o

T = =t
¢ o %

(2.63)

(2.64)

Note that the proportionality constant B, is not the same as in (2.62),

but no confusion should result since it has not yet been defined.

Several methods are available for calculating the proportionality

constant By The method presented here is simple and requires a minimum

of computation time. From (2.64) it is evident that

r =
(ya)'ﬁ - Ba {(Va)i}o {(va)’i}
_ 2
= B {(va)i}o

where

")

-th
(ya 55 = an element from the i

(2.65)

row and ith

column of the system residue matrix

evaluated at the singularity Sy

'{(va)i} 2z an element from the ith

row of the

natural mode vector corresponding to

the singularity Sy



and therefore,
(y )i

B — . (2.66)
* {(va)'i}o

The ijth element of the system residue matrix at the pole Sy may be

found using (2.54) and (2.56)

(y:)ij = lll:a (s-5)(v4) 15
(s )N L (s,)

so that finally,

(s-s ) (-1)"3 4, (s,)
B, = 1im — = . (2.68)
s*s, (v );}g a(s)

Expressing the residue matrix as in (2.64) allows one to write the re-

sponse vector of (2.55) in the form

I(s) -Z s vt ‘S{fi)) (2.69)

or equivalently as

1(s) -Z 835 ‘2 ‘;(2) (2.70)

(1

since by (2.61)

v =C = normalized coupling vector
% %
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In (2.70) the scalar product of the normalized coupling vector Cz , and
0

the incident Tield vector V(s) occurs, multiplied by the proportionality

constant By This quantity has been defined by Baum [14], as the cou-

pling coefficient <, at the singularity $=s s SO

a a

c = ‘32 [V, (s,)] (2.71)
0

As stated, the coupling coefficient determines how much of each natural
modal current distribution, (i.e. natural mode vector) will be used in
calculating the response vector I(s). It is a function of the incident
angle 6, ground parameters, (conductivity o, and permittivity, eReo) and
the particular singularity at which it is calculated. The response
vector may now be written in terms of the coupling coefficient as

cv

o) ao

I(S) = E —(STS:)- (2.72)
o
Consideration of (2.72) will show that the complex natural frequencies,
and natural mode vectors are not a function of the angle of incidence of
the electromagnetic excitation, only the coupling coefficient. Therefore,
once these quantities have been determined for a particular geometry the
response function for any incident field is easily found.
Time domain currents may be found by using the Laplace inversion

formula, thus

. st
cv e
ey _ 1 ¢ %
'l(t) = 21TJ / W ds (2.73)
Cy
where Cb is the Bromwich contour.
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Approximations and Limitations Imposed

The validity of any analysis is a function of the approximations

used in its construction. This section will discuss the limitations

imposed by the approximations used in this analysis.

The assumptions and approximations are as follows:

a)

b)

c)

d)

e)
f)

Current is assumed to flow only in the direction of the wire
axis.

Boundary conditions are applied only to the axial component of
the electromagnetic field.

The surface current density is approximated by a filament of
current on the wire axis.

End caps on the cylinder are ignored.

The moment method is an approximate numerical solution.

The vreflection method is an approximate technique.

For a finite length cylinder the axially directed incident field

excites both an axially and circumferentially directly current [15-18].

However, the axial component of the current is much more-significant than

the circumferential component provided the length of the cylinder is much

greater than its radius. Therefore, the first two approximations are

valid for thin cylinders.

Replacing the surface currents with filamentary

currents on the wire axis is valid provided the circumferential variation

of the surface currents is uniform [3]. This will be the case if the

cylinder is thin and located many radii away from the ground plane. The

scattered fieid contributed by currents induced on the ends of the cylin-

der will be negligible provided the cross-sectional area of the cylinder
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is small, a<<i. In applying the moment method, the number of zones into
which the scatterer is divided must be increased as the frequency of
analysis increases., For an acceptable solution, ten zones per half wave-
length may be used. Thus, one may conclude that this analysis is not
applicable for high frequencies.

The term "ground wave" applies to energy propagated over paths near
the earth's surface [5]. It is convenient to divide the ground wave
into a "space wave" and "surface wave". The space wave is made up of
direct and ground-reflected energy. The surface wave is that energy
which is guided along the earth's surface, in much the same manner as an
electromagnetic wave is guided by a transmission line.

Sommerfeid [19], was the first to treat radiation from a vertical
dipole over a finitely conducting earth. In this original discussion,
Sommerfeld stated that it was possible to divide the ground wave strength
into two parts, a space wave and a surface wave. Norton [20], later
expressed the fields for an electric dipole above a finitely conducting
earth in a form which clearly showed this separation into space and sur-
face waves. As pointed out by Jordon [5], when the dipole is located far
from the earth the space wave becomes the total ground wave. But as the
dipole nears the earth additional terms must be taken into account in
order to form the total reflected field. These terms are the ones which
account for the surface wave.

A comparative numerical study of several methods for analyzing a
vertical thin wire antenna over a finitely conducting ground plane was

done in a dissertation by Jerry McCannon [21]. In this work the
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reflection method was found to give answers within 1 to 2 percent of the
exact solution when the height of the dipole was greater than 3/8 A.

As stated in the introduction, it was found that the reflection
method for the horizontal dipole produced results within 10% of the exact

Sommerfeld formulation if
h > (O.ZS/JEE)A (2.73)
where

h = height of the dipole above ground
€ = relative permittivity of ground

A = free space wavelength.

For an average relative permittivity of 15 the dipole must be located
at a height greater than h = .065x.

In short, the reflection method used in this analysis yields good
results in determining the imaginary part of S, provided the scatterer is

not brought into close proximity of the ground plane.
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ITII. Numerical Results

A computer code has been written to determine specific SEM para-
meters (i.e., the system resonances and corresponding natural modal
current distributions). These parameters are a function of scatterer
height-to-length ratio, length-to-radius ratio, ground conductivity and
relative permittivity.

Before presenting the results of this work, a brief review of two
other closely related problems is in order.

Tesche [1] treated the case of a cylindrical scatterer in free
space. The exterior natural resonances of this problem occur in layers
in the complex plane and may be described by Ye.n where "£" denotes the
layer of the pole and "n" the pole within the layer. These free space
resonances are repeated in Figure 1. Singularities located with an
"x" have natural modal current distributions which are even functions
about the scatterer midpoint; those located with a dot have odd modal
distributions. Note that the imaginary part, wl/c, of the singularities
in the first layer occurs at approximately an integer multiple of =, or
at a point where the length of the cylinder is resonant (i.e., £=nr/2).
First layer resonances are of greatest impcrtance in calculating induced
currents since their position in the complex plane is nearest the imagi-
nary axis. In the free space problem pole locations are a function only
of cylinder length-to-radius ratio. As the radius of the structure is

increased, the poles move away from the imaginary axis indicating that

44



B

=

more damping is introduced. A commonly used shape parameter is defined

by
2 = 2In (£/a) (3.1)

A1l the figures in this work are for a shape parameter of 10.6 (£/a=200).
The problem of a thin cylinder over a perfectly conducting ground
plane has been treated by Shumpert [9]. Singularities in this problem
are a function of scatterer height-to-length ratio as well as length-to-
radius ratio. When the cylinder is half its length above the perfectly
conducting ground plane, the poles will be oriented as shown in Figure 2,
Comparison of this figure with Figure 1 indicates that the critical
resonances, those along the imaginary axis, are only slightly displaced
from their free space counterpart. Figure 3 displavs the movement
of singularity Y17 @s the scatterer recedes from the ground plane. As
shown, this pole spirals about the free space location until a pole from
another layer takes its place. That is, the original pole, Yi1° leaves
the spiral path and begins to approach the origin while the new pole
takes up the spiral trajectory left by the original pole. This pole
makes only a partial revolution about the free space location before it,
too, is replaced by a new pole. It is interesting to note that each of
these singularities have similar modal current distributions. First
layer singularities are associated with the length of the scatterer, as
in the free space case. Singularities in the other layers have been
associated with scatterer-ground plane interactions.

Let us now consider the problem of a thin cylinder over a finitely
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conducting ground plane. Figure4 shows the movement of singularity

m in the complex plane as several system parameters are varied. The
outer dashed spiral through the points labeled "A" is the trajectory

of pole Y11 @8 the scatterer is brought near the ground plane; the con-
ductivity is held constant at o = 1.2 x 10 along this curve. A
conductivity of this value corresponds to a very good earth, that is,
the ground plane may be considered perfectly conducting. Therefore,
this spiral is seen to be identical with the trajectory of Y11 presented
in Figure 3. For each value of h/%, the conductivity is varied from

2

o = 1.2 x 10°, point "A" on the dashed curve, to ¢ = 1.2 X 10'4, point

"G", intermediate values are shown at points "“B" through "F". The value

3and o = 1.2 x 1072 at points "E" and "F" respectively

o=1.2 x 10”
correspond to typical values of conductivity for normal terrain. Let
the paths traversed by the pole for a given value of h/Z be called

the inner spirals. It is seen that each inner spiral, corresponding

to a given value of h/£, converges to point "G" as the conductivity of
the ground is reduced, this result is to be expected since "G" is the
location of Y11 for free space conditions. When the pole is displaced
from position "G" along one of the inner spirals more energy is being
reflected from the ground plane. As o becomes very large, points "A",
all the incident energy is reflected, and the problem becomes that of a
cylindrical scatterer over a perfecf]y conducting ground plane. Figure
5 1is also a plot of Y17 @s the value of h/2 and o vary, the relative
permittivity is held at five. Unlike Figure 4, point "G" is not the

same in the limiting case of small o, but rather each inner spiral
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converges to some point along an inner dashed spiral. Although the
conductivity becomes small, the ground plane is still somewhat reflec-
tive since thea relative permittivity is held at five. Next consider
Figures 6 and 7 where the relative permittivity is held at fifteen

and one hundred, respectively. Again, as the conductivity is reduced,
the paths followed by the singularity for a given value pf h/£ converges
to an inner spiral. The points along these inner spirals are displaced
from the free space pole position in proportion to the relative permit-
tivity of the ground.

Some insight into the behavior of the system singularities may be
obtained by considering their origin. As stated, the singularities in
the complex plane are the zeros of the determinant of the system imped-
ance matrix. Therefore, as the impedance elements vary so will the
position of a given pole. The impedance elements for this problem may

be expressed as

f i

- - RY

Zmn Zmn szmn (3.2)
where

2l = matrix elements of the f b

o ix elements o e free space problem

Z;n = matrix elements due to image terms in the

perfect ground problem

and

v (eR+X) siny - [(eR+X) - coszzp]l/2

Rv = - - (3.3)

(eR+X) sinv + [(cR+X) ~ coszq,]l’2
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€R = relative permittivity of earth
X = 120n0/y, o = conductivity of earth.

From (3.2) it is apparent that when the reflection coefficient is very
small the impedance elements will be the elements of the free space
problem, and thus the singularity locations will be those of Figure 1.
This condition will be met when the relative permittivity of the earth
is unity and the term "X" in (3.3) is much less than one. When the
Fresnel reflection coefficient is near unity the impedance elements will
be those of the perfect ground case, and the singularity locations will
be those of Figure 2. This occurs when either the term "X" or the
relative permittivity of the earth is large. Note that the size of the
term "X" is proportional to the conductivity of the earth and inversely
proportional to the frequency of the particular singularity under
consideration. Thus for higher order poles the ground conductivity
must be larger to produce a perfectly conducting earth than for Tower
order poles. In short, displacement of a singularity from its free
space position is a function of the magnitude of discontinuity in the
ground plane whether it be produced by the conductivity or relative
permittivity.

Trajectcries of first layer singularities Y127 Y13° Y1a° and Y15
are presented in Figures 9 through 15. As the system parameters vary,
these singularities behave similarly to the fundamental resonance dis-
cussed above.

Figures 16 through 23 were constructed in order to determine the

percent chance in the fundamental damping constant, (Rey]]), relative tou
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the free space damping constant, (ReYo), and the percent change in the
fundamental resonar. frequency, (ImY]]), relative to the free space
resonant frequency, (Imyo). This data, taken from the trajectories of
Figures 4 through 11 is presented as a function of conductivity with

the relative permittivity and height of the scatterer above the ground
plane as parameters. Note that although the percent change in damping
constant can be quite large, the resonant frequency changes no more than
+5%. This result supports the proposition that first layer resonances
are associated with the scatterer itself not the scatterer-ground plane
interactions.

The real and imaginary part of the natural modal current distribu-
tions for rescnant frequencies Y11* Y125 Y13% Yqg and Y15 are shown in
Figures 24 and 25. These distributions are, of course, influenced
by ground characteristics and scatterer height-to-length ratio, but
numerical results show that these influences are relatively minor. One
should also otserve that the imaginary part of the mode vectors is at
least an order of magnitude less than the real part indicating that the
mode function is approximately a real function of position.

Coupling coefficients associated with singularities Y11, Y120 and
Y13 are shown in Figures 26 through 90. 1In each of these figures, the
coupling coefficient, normalized such that its maximum magnitude is equal
to unity, is plotted as function of the angle of incidence of the elec:ro-
magnetic excitation, ie (the angle & shown in Figure 1). 1In addition,
the curves are presented with either scatterer height-to-length ratio, or

ground conductivity, or ground relative permittivity as a parameter.
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Figures 26 to 31 present coupling coefficients for fundamental
self-resonant singularity Y11 at scatterer height-to-length ratios of
0.25, 0.50, 0.75, 1.0, 1.25, and 1.50 respectively. In each of these
figures, the relative permittivity, eRs is held at unity, while the
curves in a given figure correspond to ground conductivities of ¢=120.0,
0=0.12, and ¢=0.00012. When ¢=0.00012 and eR=1.0, the coupling coef-
ficient remains the same regardless of the scatterer height-to-length
ratio; an expected result since the ground plane has vanished and "free
space" conditions prevail. For the "free space" case, the coupling
coefficient has its maximum value at broadside incidence, ie (8=90°),
a result which agrees with previous investigation [1]. One observes
that the coupling coefficient does not differ greatly from the "free
space" case, Figures 26 and 27, even when the ground conductivity
is high, ¢=120.0, as long as the scatterer is within approximately 1/4
wavelength of the ground plane. In Figures 28 through 31, the
coupling coefficients for 0=0.12 and 120.2 begin to differ significantly
from the free space case. With a height-to-length ratio of 0.75 and
0=120.0, see Figure 28, maximum coupling occurs at 75°, and for a
height-to-length ratio of 1.00 and ¢=120.0, see Figure 29, maximum
coupling occurs at 45°. Now when 0=120.0 and the scatterer height-to-
Tength ratio is 1.25 and 1.50 in Figures 30 and 31 respectively,
the coupling coefficient again maximizes at e=90°.

One migit logically ask, for a fixea scatterer geometry and ground

parameters, what angie of incidence will produce maximum coupling?
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First consider the simple case of a time harmonic plane wave obliquely
incident on a perfectly conducting half-space. If the normal to the
half-space is in the x-direction, and if the incident electric vector
is parallel to the plane of incidence, (vertical polarization), then
the sum of the incident and reflected waves will produce a standing
wave in the x-direction whose electric vector is parallel to the
perfectly conducting ground plane. Defining o« as the angle formed by
the incident ray and the ground plane, the magnitude of this standing
wave will be proportional to sin[gx sina] sina, where g = ggw A the
free-space wavelength, and x is the perpendicular distance frém the
ground plane. Now let us immerse a "thin-wire" in this standing wave
with its axis parallel to the electric field at a fixed number of
free-space wavelengths above the ground plane. WWhat incident angle a
will produce a maximum standing wave at the position of the thin wire?
It will occur at the angle o that maximizes sin[gx sina] sina, which
occurs when either cosa=0 or tan[Bx sinal + gx sina = 0.

Returning to the scatterer-ground plane problem with the above
discussion in mind, will afford some interesting results. Table 1
predicts the angle & that results in maximum coupling for a given
scatterer height when the ground plane is nearly perfectly conducting,
(0=120.0). For Figures 26 and 27 where the scatterer is 0.11 and
0.22 wavelengths above the ground plane, the table predicts maximum
coupling to occur at broadside incidence. From Figure 28, maximum
coupling occurs at 6=75°; for this case the table predicts a value

between 73.0° and 73.5°. The difference in the predicted value and
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the value in the figure is probably due to numerical evaluation of the
coupling coefficient at 5° intervals. Using the standing wave analogy,
see Table 1, one would expect the coupling coefficient to maximize
for 42.0°<6<42.5° in Figure 29, In the figure, the maximum occurs
at 45°. Figure 30 indicates peak coupling at 6=90°, a value which
is predicted by the table. Although the table also predicts a maximum
at approximately 33°, as can be seen from Figure 30, there is a
relative extrema in the magnitude of the coupling coefficient at this
angle. Generally, the discussion applicable to Figure 30 applies as
well to Figure 31.

Figures 32 and 33 display the angular varijation in the real
and imaginary part of the coupling coefficient for the fundamental
resonance with the scatterer height-to-length ratio as a parameter.
For these figures, the conductivity is large, 0=120.0, and the relative
permittivity is one, eR=1.O. Note that although the information
contained in these figures is redundant, (see Figures 26 through 31),
there inclusion provides ready visualization of the variation in coupling
~oefficient with scatterer height-to-length ratio.

Figures 34 through 42 show variation in the coupling coefficient
for 11 with the relative permittivity as a parameter.

In Figures 34, 35 and 36, the scatterer height-to-length ratio
is held at 0.25, while the conductivity o is respectively 120.0, 0.12,
and 0.00012. 1In each of these figures, the coupling coefficient, (real
and imaginary part), is plotted for a ground relative permittivity, e

R’
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of 1.0, 15.0, and 100.0. As can be seen from Figure 34, when the
ground conductivity is large, 0=120.0, there is no variation in the
coupling coefficient as the ground permittivity is varied. This
result can be explained as follows. As previously discussed, the
singularity location relative to its free space position is a function
of the discontinuity at the free space-lossy ground plane interface.
Although the ground relative permittivity for conditions depicted in
Figure 34 varies greatly, the conductivity remains large, producing
a large discontinuity in the ground plane. Thus, the position of Y11
in the complex plane will be constant. Since the coupling coefficient
is strongly dependant on singularity location, (see Equation 2.71), it
too will be constant. In Figure 35, the conductivity o is 0.12.
Since this is still a relatively large value of conductivity only a
slight variation in the coupling coefficient is produced by varying
the relative permittivity. In Figure 36, the greatest variation in
the coupling coefficient with relative permittivity is observed. The
conductivity for this case is essentially zero and, therefore, the
discontinuity in the lossy ground-free space interface is controlled
by the relative permittivity.

Figures 37 through 39 and Figures 40 through 42 contain
plots of the variation in coupling coefficient with relative permit-
tivity for scatterer height-to-length ratios of 0.75 and 1.25 respec-
tively. The interpretation of these figures is similar to that given

for Figures 34 through 36.
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The coupling coefficients associated with the second self-resonant
singularity, Y1p» are shown in Figures 43 through 66.

The coupling coefficients corresponding to the second self-resonant
singularity locations "A", "D", "G" of Figure 8 are shown in Figures
43 to 47. Table 2 predicts possible angles of maximum coupling
for these figures using the "standing wave analogy". From the first
row in the table, it is seen that there is no angle 6 between 0 and S0
degrees that satisfies the equation TAN[BhSINs] + 8hSINe=0. The reason
for this is that 0 < BhSINe < 1.38 for 0° < & <90° and thus TAN[8hSIN6]
will be positive. However, as always, a relative extrema is predicted
at 6=90°, an expected result considering the fact that all the coupling
coefficients are even functions about 6=90°. That is, one would expect
the same amount of coupling at say 6=95° as at 6=85°. From Figures
44 and 45 maximum coupling occurs at 50 and 35 degrees respectively,
values that are predicted reasonably well by Table 2. Using the
“standing wave analogy" one would expect peak coupling to occur for an
incident angle of approximately 22 or 67 degrees for the coupling
coefficient in Figure 46. From the figure peak coupling occurs at
65°, with a relative extrema in the magnitude of the coupling coefficient
occuring at approximately 22 degrees. Results from the last row of the
table agree reasonably well with the corresponding figure.

Variations in the real and imaginary part of the coupling coefficient
for the second self-resonant singularity, Y1p» 35 2 function of spacing,
h/2, are shown in Figures 48 through 51. 1In each of these figures,

the relative permittivity is one. The conductivity in Figures 48 and
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49 is large, ¢=120.0, while for Figures 50 and 51 the conductivity
is 0.12.

Figures 52 through 66 are plots of the coupling coefficients
for singularity Y2 with the relative permittivity of the ground plane
as a parameter. Coupling coefficients in these figures are for
singularity positions "A", "D", and "G" in Figure 8, and positions
"A*, "D", and "F" in Figure 9. As before, when the ground conductivity
is large, the coupling coefficient is insensitive to changes in the
relative permittivity (see Figures 52, 55, 58, 61, and 64).
The largest variation in the coupling coefficient with relative permit-
tivity is noticed in Figure 54, 57, 60, 63, and 66, a result
indicative of the large difference in position of points "G" and "F" in
Figures 8 and 9.

In Figures 67 through 90 are presented the coupling coefficient
for the third self-resonant singularity, Yq3:

Figures 67 through 71 present the angular variation in the
coupling coefficient for singularity positions "A", "D", and "G" in
Figure 10. Table 3 predicts possible angles of maximum coupling
for these figures using the "standing wave ané1ogy”. From Figures 67
and 68 maximum coupling for perfect ground (6=120.0) occurs at 45
degrees and as always, a relative extrema in the magnitude of the
coupling coefficient occurs at 90 degrees. Of course, the extrema at
90° is predicted by Table 3-3, the maximum at 45°, however, is not since
BhSIN® < w/2 when h/2 < 0.2. It is also interesting to note that unlike

the corresponding figures for Yio and 113 in Figures 67 and 68 the
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coupling coefficient for 0=0.12 (real and imaginary part) corresponds
more closely to the "free space" coefficient than to the "perfect
ground” coupling coefficient. This result can be explained by noting
that for higher order poles the ground conductivity must be larger
to produce a perfectly conducting earth than for lower order poles.
Next, consider Figure 69, for the high conductivity case maximum
coupling occurs at 6=40 degrees; using the "standing wave analogy"
one would expect peak coupling to occur at approximately 50 degrees.
The mechanism for this error is not known. For Figures 70 and
71 Table 3 again predicts relatively accurately the angle of
maximum coupling.

Figures 72 through 75 show variation in the real and imaginary
part of the coupling coefficient for the third self-resonant singularity
with the scatterer height-to-length ratic as a parameter. In Figures
72 and 73 the conductivity is 120.0 and the relative permittivity
is one. In Figures 74 and 75, the conductivity is 0.12 and the
relative permittivity is one.

Figures 76 to 90 show variation in the coupling coefficient
for Y11 with the relative permittivity as a parameter. In each of these
figures, the conductivity and scatterer height-to-Tength ratio are
held constant. Explanation of the behavior of the coupling coefficients
in these figures is similar to that given for Figures 34 through 42.

For the wire scatterer in free space, the coupling coefficient for
the third singularity at an incident angie of 70 degrees was shovn by

Tesche [1] to be zero. Note from Figures 67 through 90 that a nul
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in the coupling coefficient occurs at 70° independant of the ground

parameter and scatterer height-to-lergth ratio.
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29. Coupling coefficient for fundamental self-resonant
singularity, Yi70 @S @ function of conductivity, o, and

incident angle 8. The scatterer height-to-length ratio,
h/2 , is 0.25, and the relative permittivity, ER> is unity
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30. Coupling coefficient for fundamental self-resonant
singularity, Y11 @S @ function of conductivity, O,

and incident angle 6. The scatterer height-to-Tength
ratio, h/¢, is 0.50, and the relative permittivity,
€ns is unity
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31. Coupling coefficient for fundamental self-resonant
singularity, Yy7» @S @ function of conductivity, o,

and incident angle 6. The scatterer height-to-length
ratio, h/e, is 0.75, and the relative permittivity,
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32. Coupling coefficient for fundamental self-resonant
singularity, Yi1° as a function of conductivity, o,

and incident angle 8. The scatterer height-to-length
ratio, h/2, is 1.00, and the relative permittivity,
eps is unity
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33. Coupling coefficient for fundamental self-resonant
singularity, Yyqs 25 @ function of conductivity, o,

and incident angle e. The scatterer height-to-length
ratio, h/2, is 1.25, and the relative permittivity,
eps is unity
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34. Coupling coefficient for fundamental self-resonant
singularity, Yi7> @5 @ function of conductivity, o,

and incident angie 6. The scatterer height-to-Tength
ratio, h/%2, is 1.50, and the relative permittivity,
€ps is unity
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Table 1.

FIGURE

3-26

3-27

3-28

3-29

3-30

3-31

Predicted angle of incidence for maximum coupling using the
The table applies to Figure 3-26
through 3-31 for large couductivity, (o = 120.0), and unity

"standing wave analogy."

permittivity, (eR = 1.0)

h/%

0.25

0.50

0.75

1.00

1.25

1.50

Im(Y]] ) =

2.850

2.775

2.825

3.025

2.975

2.850

wt
o

gh

713

. 388

119

.025

.719

.275

>

cose=0

90°

90°

90°

90°

90°

90°

tan[gh sins]
+ gh sing = 0

NO SOLUTION

NO SOLUTION

73.0°<8<73.5°

42.0%<9<42.5°

33.0°<p<33.5°

28.0°<p<28.5°
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35. Real part of coupling coefficient for fundamental self-
resonant singularity, Yy7» @S 2 function of scatterer

height-to-length ratio, h/¢, and incident angle 6. The
ground conductivity, o, is 120.0, and the relative
permittivity, Eqs is unity
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37. Coupling coefficient for fundamental self-resonant
singularity, Y110 @S a function of the ground plane

relative permittivity, €p> and incident angle e¢.

The scatterer height-to-length ratio, h/2, is 0.25,
and the conductivity, o, is 120.0
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38. Coupling coefficient for fundamental self-resonant
sinqularity, Y171» as a function of the ground plane

relative permittivity,

ep> and incident angle 8.

The scatterer height-to-length ratio, h/2, is 0.25,
and the conductivity, o, is 0.12
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39. Coupling coefficient for fundamental self-resonant
singularity, Yi1° as a function of the ground plane

relative permittivity, €ps and incident angle 8.

The scatterer height-to-length ratio, h/¢, is 0.25,
and the conductivity, o, is 0.00012
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40. Coupling coefficient for fundamental self-resonant
singularity, Yyy> s function of the ground plane

relative permittivity, €p and incident angle 8.

The scatterer height-to-length ratio, h/%, is 0.75,
and the conductivity, o, is 120.0
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Coupling coefficient for fundamental self-resonant
singularity, Yy1e 2s @ function of the ground plane

relative permittivity, eR> and incident angle o.

The scatterer height-to-length ratio, h/%, is 0.75,
and the conductivity, o, is 0.12
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42. Coupling coefficient for fundamental self-resonant
singularity, Y17> @s @ function of the ground plane

relative permittivity, €n> and incident angle 9.

The scatterer height-to-length ratio, h/2, is 0.75,
and the conductivity, o, is 0.00012
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43. Coupling coefficient for fundamental self-resonant
singularity, Yyp» @8 @ function of the ground plane

relative permittivity, €p> and incident angle 8.

The scatterer height-to-length ratio, h/2, is 1.25,
and the conductivity, o, is 120.0
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singularity, Yyq> @S 2 function of the ground plane

relative permittivity, €p> and incident angle @.
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46. Coupling coefficient for second self-resonant singu-
larity, Y1ps as @ function of conductivity, o, and

incident angle e. The scatterer height-to-length

ratio, h/2, is 0.20, and the relative permittivity,
€R? is unity
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49. Coupling coefficient for second self-resonant singu-
larity, Y1, 35S @ function of conductivity, ¢, and
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Table 2.

FIGURE

3-43

3-44

3-45

3-46

3-47

Predicted angle of incidence for maximum coupling using the
The table applies to Figure 3-43

through 3-47 for large conductivity, (¢ = 120.0), and unity

"standing wave analogy."

permittivity, (sR = ]

h/%

0.2

0.4

0.6

0.8

1.0

In(r12) = %
5.800
5.825
6.025

5.900

5.900

gh

106

= 2nh
)

1.38
2.70
3.90
5.34

6.66

cos6=0

90°

90°

90°

90°

90°

tan[gh sine]
+ gh sing = 0

NO SOLUTIOHN

48.5°<p<42.0°

31.0%<p<31.5°

22.0°<p<22.5°
66.5°<p<67.0°
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51. Real part of coupling coefficient for second self-
resonant singularity, Y103 as a function of scatterer

height-to-length ratio, h/%, and incident angle 6.
The ground conductivity, o, is 120.0, and the relative
permittivity, €p> is unity
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52. Imaginary part of coupling coefficient for second
self-resonant singularity, Y1p> 35 2 function of scat-

terer height-to-length ratio, h/2, and incident angle
. The ground conductivity, o, is 120.0, and the
relative permittivity, €R? is unity
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53. Real part of coupling coefficient for second self-
resonant singularity, Y195 as a function of scatterer

height-to-length ratio, h/%, and incident angle 6.
The ground conductivity, g, is 0.12, and the relative
permittivity, €R> is unity
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54. Imaginary part of coupling ccefficient for second self-
resonant singularity, Yqos 25 2 function of scatterer

height-to-length ratio, h/%, and incident angle s.
The ground conductivity, o, is 0.12, and the relative
permittivity, eR> is unity
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55. Coupling coefficient for second self-resonant singu-
larity, Y120 as a function of the ground plane rela-

tive permittivity, «

R® and incident angle 8. The

scatterer height-to-length ratio, h/z, is 0.20, and
the conductivity, o, is 120.0
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56. Coupling coefficient for second self-resonant singu-
larity, Yi0° as a function of the ground plane rela-

tive permittivity, €R? and incident angle 6. The

scatterer height-to-length ratio, h/¢, is 0.20, and
the conductivity, o, is 0.12
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57. Coupling coefficient for second self-resonant singu-
larity, Y12 as a function of the ground plane rela-

tive permittivity, €p> and incident angle 6. The

scatterer height-to-length ratio, h/%, is 0.20, and
the conductivity, o, is 0.00012
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58. Coupling coefficient for second self-resonant singu-
larity, Y190 as a function of the ground plane rela-

tive permittivity, e,, and incident angle 6. The
R

scatterer height-to-length ratio, h/%, is 0.40, and
the conductivity, o, is 120.0
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Coupling coefficient for second self-resonant singu-
larity, Yips @S 2 function of the ground plane rela-

tive permittivity, eps and incident angle 6. The

scatterer height-to-length ratio, h/%, is 0.40, and
the conductivity, o, is 0.12
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60. Coupling coefficient for second self-resonant singu-
larity, Yip> 35 2 function of the ground plane rela-

tive permittivity, ep> and incident angle 6. The

scatterer height-to-length ratio, h/%, is 0.40, and
the conductivity, o, is 0.00012
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61. Coupling coefficient for second self-resonant singqu-
larity, Y1p» @S @ function of the ground plane rela-

tive permittivity, ep, and incident angle 6. The
P R

scatterer height-to-length ratio, h/¢, is 0.60, and
the conductivity, o, is 120.0
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62. Coupling coefficient for second self-resonant singu-
Tarity, Yyg»> 35 @ function of the ground plane rela-

tive permittivity, €p> and incident angle 8. The

scatterer height-to-Tength ratio, h/¢, is 0.60, and
the conductivity, o, is 0.12
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63. Coupling coefficient for second self-resonant singu-
larity, Y105 as a function of the ground plane rela-

tive permittivity, eps and incident angle 8. The

scatterer height-to-length ratio, h/%, is 0.60, and
the conductivity, o, is 0.00012
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64. Coupling coefficient for second self-resonant singu-
larity, Yip» 35 2 function of the ground plane rela-

tive permittivity, S and incident angle 8. The

scatterer height-to-length ratio, h/2, is 0.80, and
the conductivity, o, is 120.0
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65. Coupling coefficient for second self-resonant singu-
larity, Y190 as a function of the ground plane rela-

tive permittivity, €R> and incident angle 6. The

scatterer height-to-length ratio, h/%2, is 0.80, and
the conductiviﬁy, o, is 0.12

121

80.30



1.00

€=1.0,RERL( , IHMRG. -2
€=15,0,REAL~4 , IMAG. X

'-_C)
Em
P—-‘D—
O
—i
L
L
LIS | !
© -y L
o
(@)
=
— O
——)Ln
0o
—
=
O

(an]

(@n]

N i T U i 1 T

'0. 00 15,00 30.00  u5.00  60.00 75.00 90

ANGLE OF INCIDENCE

66. Coupling coefficient for second self-resonant singu-
larity, Y100 @S 2 function of the ground plane rela-

tive permittivity, €ps and incident angle 8. The

scatterer height-to-length ratio, h/¢, is 0.80, and
the conductivity, o, is 0.00012
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67. Coupling coefficient for second self-resonant singu-
larity, Yips @S 2 function of the ground plane rela-

tive permittivity, €Rs and incident angle 5. The

scatterer height-to-length ratie, h/¢, is 1.0, and
the conductivity, o, is 120.0
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68. Coupling coefficient for second self-resonant singu-

larity, Yyp» @S 2 function of the ground plane rela-
tive permittivity, eR? and incident angle 6. The

scatterer height-to-length ratio, h/g%, is 1.0, and
the conductivity, o, is 0.12
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69. Coupling coefficient for second self-resonant singu-
larity, Y1ps @S @ function of the ground plane rela-

tive permittivity, €R> and incident angle 8. The

scatterer height-to-length ratio, h/2, is 1.0, and
the conductivity, o, is 0.00012
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70. Coupling coefficient for third self-resonant singu-
larity, Y130 as a function of conductivity, o, and

incident angle 6. The scatterer height-to-length
ratio, h/%2, is 0.10, and the relative permittivity,
€ps is unity
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71. Coupling coefficient for third self-resonant singu-
larity, Y13> as @ function of conductivity, o, and

incident angle 6. The scatterer height-to-length
ratio, h/e, is 0.20, and the relative permittivity,
s is unity
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72. Coupling coefficient for third self-resonant singu-

larity, 130 as a function of conductivity, o, and

incident angle 6. The scatterer height-to-length
ratio, h/%2, is 0.30, and the relative permittivity,
N is unity
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Coupling coefficient for third self-resonant singu-
larity, Yi13s @S a function of conductivity, o, and

incident angle 8. The scatterer height-to-Tength
ratio, h/%, is 0.40, and the relative permittivity,
€R? is unity
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74. Coupling coefficient for third self-resonant singu-
larity, 32 as a function of conductivity, ¢, and

incident angle 6. The scatterer height-to-lcngth
ratio, h/g, is 0.50, and the relative permittivity,
€R> is unity
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Table 3.

FIGURE

3-67

3-68

3-69

3-70

3-71

Predicted angle of incidence for maxirmum coupling using the
“standing wave analogy." The table applies to Figures 3-67
through 3-71 for large conductivity, (o = 120.0), and unity
permittivity, (eR = 1.0)

h/2 Im(y11) = E%— gBh = g%i cos2=0 Eaggsgiignijo
0.1 8.725 0.873 90° NO SOLUTIOH
0.2 8.675 1.730 90° NO SOLUTIOH
0.3 8.775 2.630 90° 50.0°<5<50.5°
0.4 8.875 3.550 g0° 34.5%°<9<35.0°
0.5 8.875 4,440 30° 27.0°<9<27.5°
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Real part of coupling coefficient for third self-
resonant singularity, Y130 @S 2 function of scat-

terer height-to-length ratio, h/2, and incident
angle 8. The ground conductivity, o, is 120.0, and
the relative permittivity, e is unity
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76. Imaginary part of coupling coefficient for third
self-resonant singularity, Y130 @s @ function of

scatterer height-to-length ratio, h/2, and incident
angle 8. The ground conductivity, o, is 120.0, and
the relative permittivity, ER> is unity
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77. Real part of coupling coefficient for third self-
resonant singularity, Yy3s 35S @ function of scat-

terer height-to-length ratio, h/%, and incident
angie 6. The ground conductivity, o, is 0.12, and
the relative permittivity, eR> is unity

134

90.00



FFICIENT

C

CIUPLING CO

o
(on)
H/L=0.10-0p ,H/L=0.20-2 N
H/L=0,30-4 ,H/L=0.40-x
o H/L=0.50-¢ d////\
1p}
D‘..
Q
o
SEAN
N\

-
o \\—
e \\\ )
C‘j-— \.
o
o
H" - T “"’-_—r'_—" Tt T ""'—f"'_ '"'"—"'—‘_}" - T -'—" l - N o i
'0. 00 15.00 30.00 L5.C0  60.00 75.00

ANGLE COF INCIUOENCE

78. Imaginary part of coupling coefficient for third
self-resonant singularity, Yi3> @5 2 function of scat-

terer height-to-length ratio, h/2, and incident angle
8. The ground conductivity, o, is 0.12, and the rela-
tive permittivity, > is unity
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79. Coupling coefficient for third self-resonant singular-
ity, Y130 @5 @ function of the ground plane relative

permittivity, ep> and incident angle 8. The scatterer

height-to-length ratio, h/2, is 0.10, and the conduc-
tivity, o, is 120.0
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80. Coupling coefficient for third self-resonant singular-
ity, Yi3> @5 @ function of the ground plane relative

permittivity, €ns and incident angle 8. The scatterer

height-to-length ratio, h/%, is 0.10, and the conduc-
tivity, o, is 0.12
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81. Coupling coefficient for third
ity, Y13> @s a function of the

permittivity, Ens and incident angle 6. The scatterer

height-to-length ratic, h/%, is 0.10, and the conduc-
tivity, o, is 0.00012
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82. Coupling coefficient for third self-resonant singular-

ity, Y132 @5 @ function of the ground plane relative
permittivity, €p> and incident angle 6, The scatterer

height-to-Tength ratio, h/¢, is 0.20, and the conauc-
tivity, o, is 120.0
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R The

scatterer height-to-length ratio, h/2 , is 0.20, and
the conductivity, o, is 0.12

tive permittivity, e,, and incident angle 6.
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84. Coupling coefficient for third self-resonant singu-
larity, Yi3> @S @ function of the ground plane rela-

tive permittivity, eRs and incident angle 6. The

scatterer height-to-length ratio, h/2, is 0.20, and
the conductivity, o, is 0.00012
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85. Coupling coefficient for third self-resonant singu-
larity, Y13> @S function of the ground plane rela-

tive permittivity, €ps and incident angle 8. The

scatterer height-to-length ratio, h/%2, is 0.30, and
the conductivity, o, is 120.0
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86. Coupling coefficient for third self-resonant singu-
larity, Yi3» 2S5 2 function of the ground plane rela-

tive permittivity, €p> and incident angle 8. The

scatterer height-to-length ratio, h/%, is 0.30, and
the conductivity, o, is 0.12
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87. Coupling coefficient for third self-resonant singu-
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88. Coupling coefficient for third self-resonant singu-
larity, Y137 @S @ function of the ground plane rela-

tive permittivity, €ps and incident angle 6. The

scatterer height-to-length ratio, h/%, is 0.40, and
the conductivity, o, is 120.0
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90. Coupling coefficient for .third self-resonant singu-
larity, Yi3> 3s a function of the ground plane rela-

tive permittivity, €ps and incident angle 8. The

scatterer height-to-length ratio, h/e , is 0.40, and
the conductivity, o, is 0.00012
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91. Coupling coefficient for third self-resonant singu-

larity, Yi3> @s @ function of the ground plane rela-
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tivity, o, is 120.0
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92. Coupling coefficient for third self-resonant singu-
larity, Y130 as a function of the ground plane rela-

tive permittivity, €p> h/%, is 0.50, and the conduc-
tivity, o, is 0.12
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IV. Conclusions

The Singularity Expansion Method (SEM) coupled with the reflection
coefficient approximation seems to be an appropriate technique for ana-
lyzing a cylindrical scatterer over a finitely conducting ground. Pole
locations of the cylinder over perfect ground calculated by investigators
were found to be identical to those calculated in this analysis when the
ground conductivity is large. Also, when the ground conductivity is -
reduced with the relative permittivity held at unity, calculated pole
locations agree with those of the free space problem. These facts add
credence to the reflection coefficient technique. In general, it is
found that displacement of the singularities from their free space posi-
tion is a function of discontinuity in the ground plane. The mechanism
for discontinuity is seen to be somewhat immaterial. Mode vectors
corresponding to first layer singularities show 1ittle or no dependence
on the parameters of the problem.

Coupling coefficients corresponding to the first three fundamental
resonances have been presented as a funcfion of the parameters of the
thin wire-lossy ground problem. For the case when the ground plane is
nearly perfectly conducting the "standing wave analogy" as discussed in
the numerical results section predicts, relatively accurately, the anale
of incidence which results in maximum coupling to the scatterer. Although

the "standing wave analogy" is obviously not completely rigorous, the
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point of view taken hére is that the physical insight provided by this
technique and its apparent accuracy in predicting maximum coupling are
sufficient to compensate for the lack of mathematical rigor.

The greatest value of this work lies in the fact that a relatively
complicated problem has been solved within acceptable engincering accu-

racy over a wide range of parameters.
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