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BOUNDING SIGNAL LEVELS AT TERMINATIONS OF A MULTICONDUCTOR
TRANSMISSION LINE BEHIND AN APERTURE
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(ABSTRACT)

This report develops a technique for bounding the maximum voltages
and currents at terminations of a multiconductor transmission line (MTL)
located behind an aperture-perforated conducting screen excited by an
electromagnetic pulse. The electromagnetic field is coupled through a
small aperture to provide the excitation of a multiconductor transmission
line behind the aperture. A model 1s presented in terms of external and
internal sources which in turn creates traveling waves on the multi-
conductor transmission line. The latter transfer energy to the termina—
tions. The energy at a termination is translated to voltages and cur-
rents from which the upper bounds are determined. These upper bounds
are obtained using vector norms and associated matrix norms. The
formulation is presented in the frequency domain and transformed to
the time domain to obtain useful upper bounds for transient analysis

of multiconductor transmission line geometries with aperture excitation.
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CHAPTER I

INTRODUCTION

In designing some svstems, the designer should be able to charact-
erize the penetration of electromagnetic pulses (EMP) or lightning
signals through apertures of general shapes as well as quantify the
effects of the coupled energy on transmission lines located in the
vicinity of the aperture.

Apertures that are of concern to the designer are usually electro-
magnetically small over the spectrum of the EMP, or lightning, and their
existence may be for some purpose, e.g., windows, open access holes, or
they may be unintentional as in the case of cracks around doors or
plates covering access ports or poor electrical seams [1l]. Small in
the sense of electrcmagnetic penetration implies that the maximum
dimension of the aperture is small compared with the wavelength of the
time-narmonic electromagnetic field. The analysis of the coupling
(penetration) problem has been investigated by a large number of people
since 1897. The first scientist to propose a solution was Lord
Rayleigh [2,3], whose solution was expressed as an ascending power
series of the wavenumber k(}=%§) where A is the wavelength. Bethe [4]
presented the results for the leading terms in the Rayleigh method by
using a scalar potential function approach. Bouwkamp [5] used a set of
coupled, integro~differential equations to soclve the problem. Recently,
some have used an integral equation approach to tackle the problem.

Notable among them are Butler and Umashankar [6],[7].



The coupling of the energy from an incident electromagnetic wave
to a transmission line located behind an aperture-perforated conducting
screen has been investigated by many engineers and physicists in the x
past decade. Kajfez [8] has computed the coupled energy by the use of
equivalent electric and magnetic dipole moments. He has derived the
equivalent sources of a transmission line model by using both mode-
matching and reciprocity techniques.

Butler and Umashankar [9] have approached the problem numerically
by the method of moments, and have formulated integro-differential
equations for a finite-length wire with arbitrary orientation behind an
arbitrarily shaped aperture. They have also taken into consideration

the scattered energy into the aperture by the wire after wire

excitation. Lee and Yang [10] have solved the problem using transform
techniques, and haye obtained the same equivalent sources as Kajfez [8].
In addition they have determined the effects of a wire being very close
to the aperture. Davis [11] has developed a model using a method
spatially equivalent to Lee and Yang [10] method. He has alsc come up
with a capacitive term in his model which is not in Lee and Yang. The
importance of the capacitance occurs when the wire i1s close to the
aperture causing a capacitive discharge of the aperture region by
currents on the wire.

Davis [11l] has also found a method for bounding the maximum voitage
and current levels at terminations of a wire behind an aperture. In his
analysis, he has approached the problem both in the frequency and time

domain.




This report extends the bounding problem of a single wire to the
problem of obtaining an upper bound for the computation of the voltages
and currents at terminations of multiconductor transmission lines (MTL)
located behind an aperture-perforated conducting screen. The computa-
tions are carried out in both frequency and time domains. There are
several stages that lead to the final results.

In Chapter II, the electromagnetic field coupling through small
apertures is discussed. This 1s then extended in Chapter III to the
excitation of a MTL where a model is presented in terms of externmal and
internal sources which in turn create traveling waves on the MTIL. These
waves transfer the coupled energy to the terminations. The available
energy found at the terminations is translated to voltages and currents
by impedance transformations. Finally, the bounds on the voltages and
currents are obtained in Chapters IV and V using vector norms and
assoclated matrix norms. The digscussion is closed with the presentation
of comprehensive examples which elaborate on the use of the techniques
to find upperbounds on the signal levels in both the frequency and time

domain.



CHAPTER II

ELECTROMAGNETIC FIELD COUPLING THROUGH SMALL

APERTURE IN A CONDUCTING SCREEN

In this chapter the equivalent electric and magnetic dipoles '
representation of an aperture 1s illustrated and the basic formulas
are given for this problem. The presentation is tutorial and the
scope is limited to the discussion of techniques which may be en-
countered in application. The development follows the procedures
of Butler [13].
Ideally, the problem will be discussed for a small aperture in
an Infinite planar screen. Of course, in practical problems, one

never can encounter an infinite or totally flat screen. However, if

the following conditions are satisfied, then one can replace the
real world problem with an ideal one:
1. The minimum distance across the surface of the screen
should be large relative to the wavelength in the medium.
2. The minimum radius of the curvature of the screen should
be large compared with the wavelength '
3. The point of observation should be close to the surface
of the screen relative to the minimum distance across the
screen. \
4. The point of observation should not be close to the outer
edge of the screen.

S. The edges of the aperture should not be close to the edges

of the screen.




In general, the problem of concern is shown in Figure (1), where
one sees an infinite conducting screen with an aperture (4) cut in
it. The screen is extremely thin and separates the space into two
parts, each characterized by p (medium permeability) and e (medium
permittivity) where € can be complex to account for a lossy medium.
On each side of the screen, there are electric and magnetic sources
3; andﬁ+ which are known impressed currents, and give rise to the
e;citati;n of the aperture.

One can show [14] that the diffracted field by a small aperture
can be represented approximately by radiation from equivalent elec-
tric and magnetic dipoles. Figures (2) and {3) depict the idea of
electric and magnetic dipole representation for an aperture. Note
that in both cases the equivalent dipoles radiate in the presence
of screen when aperture 1s completely closed. Also, observe that
the electric dipole is in the same direction of incident electric
field, whereas the magnetic dipcle is in opposite direction of the
incoming magnetic field.

The moments of these equivalent electric and magnetic dipoles
are related to the known exciting fields by special constants called
polarizabilities. (See Appendix A for detailg.) For the case of
Figure (1), one can replace the aperture (A) by equivalent dipoles,
and the moments of these dipoles can be related to the polarizabi-
lities [11] as

-+ _ 7 _ Sc=,= | _ gSct,= )
T fsael; (ro) ED (ro)]z (L
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Figure (1). Location of sources with respect to
the aperture and the perfect electric
conductor (PEC).
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Figure (2). Equivalent electric and magnetic dipole representation
of an aperture [13]: (a) electric field incident on
screen without aperture, (b) electric field incident
on screen with aperture, (c¢) equivalent electric
dipole on screen with closed aperture, (d) magnetic
field parallel to screen, (e) magnetic field and screen
with aperture, (f) equivalent magnetic dipole on screen.
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Figure (3). Equivalent problem description: (a) incident
field on aperture, (b) equivalent dipole
moments replacing the aperture.




- + -,'m.:SC-" _“SC*"
Py, T ey f (ry) - H (ro)] (2)

- * . . Sct .
where pe‘ is the moment of the equivalent electric dipole, EZC‘ is

called the short-circuit electric field (field which would exist if
there was no aperture), ;0 is the point of evaluation located in
the aperture, and ﬁSci(;o) is the short-circuit magnetic field.
The plus and minus signs represent the regions of the positive and
negative z respectively.

In addition, the constants ae and :: are the electric and
magnetic polarizabilities respectively; the latter is a dyad defined
as a_ = (o _ )xx + (am’yy)§§. Thus Equation (2) can be written

m m, XX

in component from as

¥ .z [Se= = Sc+, =
pm,x =+ am,XXEIX (ro) - HX (ro) (38)
+ - rSc— - Sc+ ,~

= + " - H 3b
P,y “a,yvlly Tl T Hy (ro)]l 0)
- + a + A
Pn = Pg,x * + P,y b4 (3¢)

The equivalent dipoles are located at ;o on the screen with the
pair E;t 5£‘placed on the positive side of the closed surface, and
Bé: 5;' placed on the negative side of the closed surface.

-+
As seen from Equation (1), pe‘ is perpendicular to the screen

- -Qct
surface while the directlon of pmi is determined by HSC_(rO) and

the shape nf the aperture through a . Now, at the present stage,
one is able to calculate the field which passes through a hole in
a conducting surface as well as the field which scatters back.

Consider Figure (3) as depicted in the two parts. Note that the

13



direction of two electric dipoles are opposite to each other in two

regions as are the direction of two magnetic dipoles.

Considering Figure (3b), one can write:

EIE - By 4 i) + 75 (4a) ’
g5 = 85 + 1% @) + 8% (4b)

where Ei(f) and ﬁi(g) are total electric and magnetic fields present
at point (r) in region II or I corresponding to the {(+} and (-)
respectively. The (e}and (m) superscripts denote the fields of the
electric and magnetic dipoles in the presence of the plane con-
ductor, and the Sc denotes the short-circuit fields defined
previously.

The electric and magnetic fields at a point (;) due to electric

and magnetic dipoles located at (;O) in a homogeneous space of

infinite extent are given by [13,15,16]

E® = - %'VX(EQKVG) (5a)
-—e . —
H™ = - iy P xVG (5b)
-m .=

= ju up xVG (5¢)
B = - 7x(p_x7G) (3d)

where G 1s the free space Green's Function defined as:
-jk|r - T
o lr - x|
¢lr,ry) = — (6)
4mlr - T |
o}
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Substituting Equations (5) into (4) and using image theory, one

obtains:
= +.=y o wSct,zy 2 - T ol
E ~(r) E (r) . Vx[pe xVG(r,ro)]
+ 230 u p_TxG(E,T ) (7)
] M Pm 3 ,rO

BE@ = B9 - 250 Fx96(T,T)
- 4 - -
- ZVX[pm‘xVG(r,ro)} (8)

If aperture raference is centered at the coordinate origin, then
;o becomes a zero vector in the above equations. The above equa-
tions are valid in the distant region of the aperture (at least one
aperture dimension away).

The merit of the above approximations for computing fields de-
pends on theelectrical size of the aperture, the distance of observa-
tion point from the aperture, and the choice of the coordinate

origin with respect to which the dipole moments are calculated.

The details of dipole approximation are given in Appendix (B).
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CHAPTER TIII
ELECTROMAGNETIC EXCITATION OF MULTICONDUCTOR
TRANSMISSION LINES THROUGH AN APERTURE-PERFORATED
CONDUCTING SCREEN

In this chapter, the electromagnetic excitation of multiconductor
transmission lines (MTL) located behind an aperture-perforated conduct-—
ing plane is developed using the procedures and method of Kaifez [12].
In order to do this development systematically, an aperture representa-
tion by dipoles 1s discussed which notationally is different from the
representation introduced in chapter II. The equivalent source models
are then derived using methods iIntroduced by Kajfez [12].

Consider Figure (4) with a multiconductor transmission line
parallel to the aperture on the plane. There exists an electric field
in the aperture region which may be designated by f; (z,x). The
aperture may then be replaced with the equivalent magnetic surface

current density given by

TP (x,2) = E, ( ;
s (x,z A %,z) Xy

where y is the normal unit vector into the region of interest (y > o).
For coupling to a MIL by a small aperture this magnetic current
distribution may be replaced by the two current dipoles just above

the closed aperture as shown in Figure {5). These two current

dipoles have amplitudes defined by

e [f - m
Cm = }} JS {x,2z) dxdz (3)

and

-
¢ = Jue

r
!
e )

[ i+ 22 x J® tx, 2) dxda. (10)

‘
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Figure (4). A MIL parallel to a plame with aperture (4).

v

-l
/ C
e
2 B
/< ¥
c
P jnal
x
Figure (5). Aperture is replaced by equivalent current dipoles.
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The derivaticn of Equations (9) and (10) can be found in Appendix (B). .

The dipole moments Ee and Em as introduced in Chapter IIL are also
proportional to the above weighted integrals of the equivalent surface

magnetic current [11]. From this proportionality, we may relate the

current dipole amplitudes and dinole moments for et by ¢
> ES
¢, = Ju ?e (L1
and
T = jeu p_. (12)
m To'm

The concept of polarizability (Chapter II) can be invoked here ro
express Ee and Em in terms of the exterior fields. Considering
Figures (6a) and 6(b), for the case of coupling to quasi-TEM (Transverse

Electromagnetic) waves, only the y component of E and the x component

-
of H are of interest. The resultant expressions are given by

—_ ~ .. Sc- Sed+ | 0
c_ C g jmuam,xx(dx B ) % (13)
Bt ad ~ SC“ SC+ -~

= . = 5 = (1
cg Ceyy Jweae(Ey Ey Yy . 14)

Having introduced the preliminary notation, it is g>ssible now to
obtain equivalent sources for a MIL behind an aperture~perforated
screen. Figure (3) may be redrawn for a different perspective as

shown in Figure (7). Using the concept of traveling waves introduced
in Appendices (D) and (E), the distribution of the electric and magnecic

-, - ,th . . . N s .
fields for the i1 mode on the MTL traveling in (+z) direction aras

= . _ -j84z — -

Ei(x,y,z) =a; e ei(x,y} (L3)

A (x,y,2) = ay @ o7 B (x,y) (15)
18
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Figure (6a). Plane (p) with aperture (A).
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Figure (6b). Aperture replaced by a metalic lid

and the associated current dipoles.
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f = MTL

2
Y

 ——
Aperture

Figure (7). Aperture replaced by a metalic
1id and assoclated current
dipolés appropriately located.
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where EI (x,v) and'EZ(x,y) are the power normalized modal fields

over the cross section of the MIL. As depicted in Figure (7), it will
be assumed that there are two infinitesimally spaced planes, denoted
by (R) and (L), at each side of the aperture junction. The equivalent

source model of MIL coupling will be established between these planes.

According to Appendix (F), the pair ¢ ox and Cey excite the 1th

mode traveling in (+z) direction as

1 ,
851 7 2 [mehxi(XO’O> - ¢

(x,,0)] (17)

eyeyi XO’

where a_; is the source of a traveling mode in {(+z) direction. The

quantity hxi( 0) is the (x) component of the ith modal magnetic-field

Xy
distribution evaluated at the point (x = xo) and (y = 0). Similarly

e .(x,,0) is the y-compecnent of the normalized electric modal field.

yi oo’
A traveling wave source propagating in the (-z) direction, due to the

pair 1is

1 )
bsi = - E[mehxi(xO’O) + ceyevi(XO,O)], (18)

Figure (8) shows as and bSi sources which are convenient for analysis

using scattering coefficients. Using the Dirac notation of Appendix

(C), one may define the vector [as> and {bs> as

gasl bsl
asZ bs2
a> = ) and {bs> = . 1 . (19)
"
_ésN__ _PSNJ
21
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Figure (8).

< =_" = Q‘
1

Traveling wave sources in (+z)
and (-z) direction for each mode [l
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Define two new vectors §aR> and |b, > as

[aR> = !aL> + |as> _ (20a)
]bL> = |bR> + }bs> (20b)
where {aR> is the total traveling wave coming out of R (right hand

reference plane) which 1s sum of ]as> and the wave vector incoming to
L (left hand reference plane). The planes R and L are shown in Figure
(8). Similarly {bL> is the total traveling wave coming out of L which
is sum of [bs> and the wave vector incoming to the R.

The equivalent circuit in terms of voltages and currents can be
obtained by matrix algebra. Consider the model of voltage and current

sources shown in Figure (9). The Kirchhoff laws require that
]VR> = [VL> + [Vs> (21a)
{IR> = [IL> + IIS> (21b)

Use equation (E3) from Appendix (E) to counvert the scattering repres-

entation to a voltage wave representation
Vg> = M, (ag> = la;>) + 1 (Jog> = [by>)

where gv 1s 2 matrix whose columns are voltage eigenvectors. Substi-

tuting from (20a) and (20b), the above equation can be written as
= M - 550
[VS> gv(las> lbs>) (22)
Invoking equations (17) and (18), one can write the components of

(§a5> - Ibs>) as

<asi - Dsi) - mehxi(XO’o)

23
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Figure (9). Voltage and current source representation
for each mode [12].
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This equation (22) can be written as

™ 0)]

1 g2

VS> = C ﬁv .

_PKN<XO’O>

Similarly using equation (E4), (17), and (18), one can write the

equation for {Is> as

—eyl(xO’O)W

k- I . a
[IS> Cay My . (24)

eyN(xO,0>

For definitions and derivations of M. and ﬁv whose columns are current

I
and voltage eigenvectors, respectively,refer to Appendix (D). Note
that in the above derivations, the energy stored in the aperture
junction was neglected, therefore the Figures (8) and (9) represent
the zeroth-order approximation.

The first-order equivalent circuit is now delivered for the small
aperture with a MIL behind it. Consider Figure (7) again with the
medification shown in Figure (10) with no incident wave coming from

right. Using equation (13) and (14) and noting that the external

field (or Sc¢ ) is zero, one can write

. LSC
=+
c Fwi am,‘ H (25a)
. sc+
cey “jue ol Ey (25b)

Decomposing electric and magnetic fields into their modal distributions,

the j~th mode for each field is

25
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Figure (10). 1Incident and reflected waves on MTIL
with current dipoles on the closed-
aperture junction [12].
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85 2 a4 n . (%4,0) (262)

X3 Li %3

sc+ '

E - X~y 0 26b
yi T ALy %y or® (26b)

where 4 . is the amplitude of the normalized electric or magnetic
field. In a similar fashion the 3i-th component of the amplitude of

the current dipole moments are

= 2
mej jop o hxj aLj (27a)
¢, = ~juea_ e a, . 27b

ey - 1% Sy3 %L (270)
If these moments are summed over all possible moaes, then

N
¢ = jwpa I h . a., (28a)
i gy

N
c = ~-jwea I e 28b
ey T 7% I %1t (260)

According to equations (17) and (18), the following can be written for

the 1th mode of the wave in (+z) direction

] + (a..) (29a)

[c h . -

Ri 2 mx Txi Cey eyi Li

- L . l
b,. = 2[cmx hxi P eyi} (29b)

P

Now substituting (28a) and (28b) in the above equations one obtains:

1 N N
= Lra - L - "
aps 2[3w; a hxi 'L hxj aLj + juea, ey1 E eyj LJ] ar;
j=1 j=l
{30a)
. N N
= e — [ 3 ) ¥ - dwesg , z . «
bLi ZIqucﬂnnxi . hxj aLj Ju=ty eyl . eyj aLJj (30b)
j=1 j=1
Define two real, svmmetric matrices H and § as
(H].,, = % wyga h . h . (31la)
2 m xi %]

1]

27



[E].. = LGea (31b)

ij 2 e eyi eyj

Equations (30a) and (30b) can then be written in terms of E and H as

lag> = L+ 3E+ 1B |ap (32a)

b = (GFE+FIE [ (32b)

where I 1s an identity matrix.
The signal flow graph of equations (32a) and (32b) is shown in
Figure (1l1) where laS> and Ibs> represent the zeroth-order equivalent

source models., One may define the transmission matrix T as

Jt

I=1+iH+3iE (32¢)

and the reflection matrix R as

R=-jE+JE (32d)

Then equatiocns (32a) and (32b) can be written as:

T T[]
) [2oaj{les]

Incorporating the same analysis for ]bR>, one obtains the complete

(32¢)

source free signal flow expressions as

I? 7 27 2] ,
el 15 ol

In the next chapter, this signal flow representation and the aperture

17

|3

signal flow sources are combined as the basic model of sperture

coupling to a multiconductor transmission lines,

28
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Signal flow graph of equations (32a) and (32b).
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CHAPTER LIV

BOUNDING VOLTAGE AND CURRENT
AT A TERMINATION OF THE
MULTICONDUCTOR TRANSMISSION LINES

In this chapter, the procedures for calculation of maximum voltage
and current at a termination of MIL over a small aperture excited by an
external electromagnetic pulse is formulated. Consider the aperture
representation to be as shown in Figure (12},

Figure (12) can be represented by the corresponding signal flow
graph in Figure (13). 1In Figure (13) T and R represent the trans-
mission and reflection matrices as derived in equations (32¢) and (32d).
The quantities ]as> and Ibs> are the source representations as obtained
in equacions (17) and (18). The quantitiesz4 and_{’_3 are termination
reflection matrices as computed in equaticns (E15) and (El17). Finally,

ER and EL are the propagation matrices whose elements are exponential

functions of (z) representing the phase or time delays as

i i . - 3
igﬁ Diag [e Jslzﬁ, - jBNZ4E

- - e (33)
N piag [eT2F1%3, . . ., 73%yi3)

where Si is the phase constant for each mode. As shown in Figure (12)
the origin is taken to be the region of the aperture for computation
J}> and %bR{O)> represent the traveling waves

immediately to the right of the aperture and |a, (0)> and ]bL(\’))" drtora

p
the traveling waves immediatelv to the left of the aperture.

One can deduce the following equations by method of signal flow

theory:
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Figure (12). Terminated MIL over an aperture.
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Figure (13). Signal flow graph of Figure (12).
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lag(@> = T |2 (0)> + R [b(0)> + [a> (34a)

IbL(O)> = T {bR<0)> + R |aL(O)> + [bs> (34b)
Alsc at terminations 24 and £3 one can write

iaR(24)> = 32 iaR<0)> (35a)

{ o = -1-

[bp(®)> = 2o 1bR(0)>, (35b)

]bL(—£3)> = {bL(O)> (36a)

2 (,)> = 972, (0)>, (36b)
and

[ba (2> = T, lag(z,)> (37a)

{aL(-z3)> =TI, ]ba(-23)> . (37b)

Substituting equations (35) and (36) in (37), one can conclude that

[bp(0)> = 9. I, ¢ {a (0)> (38a)

22
|2, (0)> = 2 I, & [b (0)> (38b)
Having introduced equations (34) and (38), cne can solve for {aR(O)>,
{bR<O)>’ ]aL(O)>, and IbL(O)>. For this first-order formulation,

|bL(O)> can be shown to be

- sy - mee=l o=l =L _.-s

5 (0> = [(L-R&; [y2) =Ty L7257 -R (T2 20«
-1 -1 -1 -1

[fbg> + T(h D7 227 =R [a>] (39a)

Similarly taR(O)> can be obtained as
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and

on

the

the

and

= - - - R)Y )
lag(@)> = [(1 - R 2 I, 220 = T8, " L7 2,7 = R) 7 (T g I, 9.)]
-1 -1 -1 -1
x [lag> + 2(8 " 17 &7 - B) Ibs>1. (39b)

For almost all practical prcblems of interest, one can neglect R
assume T to be unity, meaning that there are negligible reflections
the MTL due to the aperture., In fact, Kajfez [12] has shown that
reflected amplitudes are approximately one percent (or less) of
amplitudes of the incident modes. Therefore substituting R = 0

T = I into equations (3%9a) and (39b), one obtains the following

aquations:

The

and

o, (0> = [T = ¢, I, et

S Lt o Dy 4T o + 4 I,

2o I, 2 [ag! (40a)

=2 — ™ B - :
2 (0)> = [L1-9 I, 8 8T, o Ma>+0o I8 [o>] (400)

above two equationsg are the zeroth-~order formulation.
Having derived |bL(O)> and [aR(O)> , one can use equations (36a)

(36b) to solve for ]bR(O)> and [aL(O)> as

-1 -1 -1 -1

! —3 < - T 1

b (0> = 87 I en = 8 Iy 2 1 (e gy Iy 0 (b 2] (41a)
-1 -1 -1 -1

lag (@)> = [8,7 127 &7 - @, I, &1 [lb >+ e, I, ¢ [a> (41b)

Figure (l4) represents the zeroth-order signal flow graph for the

terminated MTL over an aperture.

can

for

Having formulated simple expressions for 1aR(O)> and [bL(O)>, one
calculate [a(z)> and lb(z)> at any point on the lipe. Specifically

voltage at (2,) termination, one obtains the following:

33



s
% Y
23 % z3 Pt 2'4
C) - N —
& r

Figure (14).

The zeroth-order signal flow graph.
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EV(z)> = L_\&}{!a(z)> + Ib(2)>]
V(20> = Mo (lalz,)> + 1b(2,)>]

However, Ia(24)> and !b(24)> can be represented as follows from

Figure (14):

[3(24)> =2 ]aR(O)> (42a)

b()> =L, & Jag(0)> . (42b)
Therefore,

V> = [Ve)> = M (T + 1,1 & [ap(0)> (432)

Substituting (40b) into (43a), one cbtains

-1
AR tESAIERIe RS AN AR RS

[[a5> + r

4
E% =3 EL tbs>} (43b)
Using equation ( E4 ) and subsetituting from (43a) one can also obtain

any expression for ]14> as

17wt lv,> (44}

I 1

> = !I(ZQ)> = EI[E,' 14][1 +

4 L
In order to find an upper bound for the voltage or current at a
termination, [V> and |I> should be maximized in some mathematical
sense. The best mathematical procedure for bounding vectors or ma-—
trices is the calculation of their norms. The norm of a vector or a

matrix is a single number which gives both a conceptual and mathemati-

can evaluation of the size of the vector (or matrix) in the same sense

v

that the modulus does for a complex number. The norm of a vector la>

is denoted by | la> || and satisfies the following relatioms [17):
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il la>1l> 0 unless [a>= Q
lgla>|| =|8] Il |a>]| for 8 = complex scalar
Hla>+fo> | <l fa> i+ o>

Il a>=1o>] > [[la>][-1]l [6>]]

The p-norm of a vector is defined as

1
H [3.> Hps (-]allp + {azlp oo ]anlp)ps P = la2>~'-:°° . (.45)
For the case of p = «, this norm becomes
Ia>ll, = maximum ja| (46)

Similarly, the associated norm of a matrix A 1s denoted by iha

and satisfies the following relatioms:

lall>0 unless A =0

H 85_” = ]B{ H éH for B = complex scalar
fa+sli<|lal + l38 || (triangle inequality)
hasfi<iialllsll

The norm of a matrix for special values of (p) is defined as

Tally =57 1 lagl (47a)
hall, = /maX(_eigenvalue ATa) (47b)
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where () denotes complex conjugate transpose. Before going further,
there is another identity which will be used, not proved in this —

discussion, and is given by

st (48)

2 N
wel LAl

Ta-o =llz+a+a’+ .+

where ”.é H < 1.

Also, as noted from equations (45) and (46), the two-norm of a

vector 1ls greater or equal to its corresponding infinity-norm since

/ixllz + |x2l2 +o. 0t Ixnl2 > /Iximaxlz

Thus, the two norms satisfy the inequality

INESd PR NE L (49)

For passive terminations, which are the cases of interest, the two-

norm of the termination reflection matrix [ satisfies
e, <1. (50)

This is due to the fact that reflected power from a termination is
always less than or equal to incident power for physically realizable
systems.

The following mathematical derivation illustrates the proof for
existence of equation (50). If Ea> is defined as a power wave vector
incident on a passive termination with reflection matrix I, then the

power of the reflected waves ib > cannot be greater than the incident
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power :

< blb>< < ala> for physically realizable systems

or
<blb>= <afr'rla> s <ala> (L)

Similarly, for any eigenvector [ui> of matrix Efﬁ_with eigenvalue

ki one obtains

< ui[F+F|ui> = Ai < uilui>

But according to equation (51)

i i i
Therefore
<
(Ai)<ui|ui> S <uy ui>
or
A, S
Gys D
Particularly
X €1
max
or
VAnax <1 (52)

The above equation is the definition of the two-norm of matrix I, and

thus

hril, <1 (53)

At this stage, one can start analyzing equation (43b) by taking the

infinity-norm of |V4>> as
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Fv,> 11 =l (L4T)0[L-8 T 0 0.7 01 “la >+ 8,000 05> 111

Using the triangle inequality for norms and other relations as intro=-

duced previously, the above equation is easily shown to be

v > sl clzil #lz 1l egll NTE-2To8 07 20] I

[l fag> I+ IEe Il lmgl, lle i 1T >3

Invoking equations (48) and (43b), the above inequality can be

expressed as

i L8 thgll Cl 2l + e 0 1 agll -

Ul lag > N1+ Hl2 N, HZHELHZH [og >l 1 G54)

Using equation (33), one obtainms

2

kS Hz= Il 25 H2=l (55)

Substituting equations (53) and (53) into equation (54), one has

<H_I_Hzal)

2

1- [l g D0 20T 0 |l

ARy

[l Tag> 1+ 1 5, >
) )
(56)

e pnorm in the denominator may be expanded as

[ERrn e IEy PN I XN EN NN AT N
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or by substitution

I n
Il ?L:‘3249R£L?R“2 s 1.

But in order to make the righthand side of equation (56) a finite
quantity, one has to mathematically introduce the practical losses

associated with each mode travelling on the MIL as

-vlz ~-yNz
ER J Diagie  ,...,e v
- - - (57)
L 1z +yNz
Diag e+Y yeeeyd
\ = = )
where

oy is a decay constant for each mode.

Therefore by (47b)

~0aq
Foll = ™% @ 1%

(59)

-yl
he Il =55 @

where (24) and (23) are right and left termination distances from the
aperture as depicted in Figure (12). The above equation can also be

written as

RGO
| ll = e
R (60a)
~Cipia)ts
o ll =e .
1
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Equation (56) may now be expressed as

119> 1< s I, w12 ,# o>

where

If O is defined as the sum (CR + cL), then

op = 2aq;, (L, +2) = 2ag . 4o (60b)
thus
2
o> S gl g Tl la> 1l = H e, 11, (61)

The quantity GT may also be Interpreted to include losses in the termi-
nation corresponding to non-unity bounds oam the |£i3> and to include
radiation loss both back through the aperture and in coupling to higher
order modes.

It is computationally advantageous to replace ]]gvllm with the two-norm

which is consistent with

v > 1l < v > - (62)

This may be seen by determining the two-norm which by equation (D27)

and (D31) is
L Il - /) (63)

where the Ai‘s are the eigenvalues of the MIL matrix I..'-l which is the
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iaverse of induction matrix of the MIL. Also using the triangle in-

equality, one obtains

ag> 1< B llegelng> 1+l = le,> ] )
and

15> 1, B llmeg > 11 + 3 ll=cg le, > 11 -

Since

leglng> = ll-cpelng> I

I=cagl &1l = ey le,> 1

equation (6l1) may be written as

2 Vi
"“——;:g;;‘/mix('x; ) [l ey In,> HZ*'[[Cey[ey>f12]

19,1 —

(64)
Finally, since the vector IV3> defines the voltage on a MIL with respect
to ground, the maximum voltage of interest, in other words the voltage

between any two lines, is bound by

7] e < 20 19, >

Using the above inequality, equation (64) may be written as

4 max, Vi
lav| S PN Crd tlegglng >+l egyle,> 13
(65)

which is the desired upperbound.

Substituting for Cox and cey from equations (13) and (1%), equation
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(65) can he exprassed as:
L

IAVIma.x S 1 - T /max(—i—) [u‘am[

1557 || n, > |
bound 2

it SC-
B

+ e |ag
bound 7

e >
>
(66)
Having determined a maximum bound om the termination voltage, one can

calculate a maximum bound on the termination current using equation

(43a) and (43b) to simply obtain

luzll,
N, >l € ——= | |v,>] (67)
eIyl v
av| |l
1. - —= _~r2 (68)
Iuyll,

Invoking equations (D28) and (D32), one can calculate “EIHZ in the

same way as || My H2 to obtain

I Q'I_IH? -/max(eigenvalue of gfy_z) = /max( -;i; ) (69)

Therefore equation (68) can be written as:

|av| max (M)
T = A (70)

max (/A1)
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or

|47 | 1
] = = 1)
max 2 ma.}:(.:r-i )min(-;i )
i i

Therefore by equations (66) and (71) one has a bound on both yoltage
and current at a passive termination located at some distance from the
aperture. Although the above formulations all have been based on the
fact that the termination is to the right of the aperture at a distant
(24), equations (66} and (71) provide a general frequency domain upper
bound at any point on the MIL. It should be noted that the losses due
to the aperture or termination can be taken into account by modifying
Op as previously suggested.

The next chapter transforms these results to transient domain, and

includes the important multiple reflection phenomenon.




CHAPTER V

TRANSIENT ANALYSIS

The previous discussions were based entirely on the £requency
domain analysis where each mode was treated as steady state sinusoidal
function of time. In this section the transient (time-domain) analysis
is considered together with the multiple reflection phenomenon.

A quasi-TEM analysis of the MTL is discussed in Appendix (E). It is
assumed that this quasi-TEM waveform is non-dispersive, in other words
an arbitrary waveform is transmitted by each mode without distortion,
and the waveform at the distance (24) is a replica of the transmitted
waveform delayed in time by ( é% ) where vy is the velocity of the mode.
Mathematically, this 1s expressed as

L

ai(ﬂa,t) = ai(p,t-;% ) (72)

The signal flow graph for the time domain is given in Figure (13)
where terminations are located at distances (24) and (13) to the right

and left of the aperture. If the ER matrix of the previous chapter is

given by
g = &R 1 (73)
then
lap(e,,t)> = [aR(‘o,t-t4)> (74)
where
%4
T, = e (75)

The zbove formulation implies that all the modes have the same velocity
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Figure (15).
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Time domain analysis of aperture excitation.
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and consequently the same phase constant. Therefore it takes T, units
of time for all modes to Impinge on the termination. On the other hand

if the 2% matrix is

- -iBik (76)
fp= DOy e “]
then
lag (2, 1> = |[a-RiCo,t-ri)J> a7
where
%4
Ti = ;\}: (78)

In this case, each mode has its own characteristic time constant (Ti),
and the formulation is much more complicated. In the following
analysis, there are three major assumptions that should be kept in
mind: 1) The propagation matrices ER and EL are taken to be constant.
Mathematically, it is written as

o 184
- 1 (79)
883

o

tL-e-

where B is defined as

™
[}
< e

Also the wvariable (r) corresponding to the transit timeifrom (-23) to

(+l4) is defined as
Ly + 24

T ()
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2) Terminations are assumed to be passive and resistive which implies
that the elements of termination matrices 24 and 23 are real and
constant; 3) The medium permittivity (e) 1s taken to be that of free
space Ceo) so that all the modes travel with speed of light (v=c).
The above three assumptions imply the worst case conditions for the
whole system in terms of the voltage built up at terminations as a
congsequence of having the highest possible speed for esach mode
traveling on the MTIL. This directly relates to minimal mode attenua-~
tion between successive multiple reflections. Also as implied in
Figure (15), the aperture transmission and reflection matrices are

assumed to be unity and zero as given by

|—
[ ]
j

(80)
R =0

This assumption simplifies the formulation and calculation of the pro-—
blem and due to the very small effect of I and R for problems of
interest [12], it is a good approximation to the exact solution.

In Chapter IV, the termination voltage was calculated as
v, > =2 (2 +T,1 8] a(@> .

In the time domain, ER[aR(O)Z> is replaced by a series of incident and

reflected waves coustituting the multiple reflection phenomenon as
v, = >¥v[£+f—4} { [as(t~ra)> +£‘_3_I‘_4{as(_t-1'4—21‘)>

+ ...+ (I‘3£4)n as(»t—'ta—n(Z‘r))>+ ve.
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Iylb e+t =200 >+ I 0a0p e+, -2QT >
oo+ (_1‘_324)n331bs(t+14-n(21))> + e (81)

The above equation can be best understood by observing Figure (16).

At time (t),las(t)> travels (F,) units of time to reach the right
termination. After being reflected by I',, the wave travels (t) units
of time to reach the left termination, and again is reflected by Is.
Finally, it travels (r) units of time to impinge on the right termina-

tion. This process continues indefinitely as

NE» -
@,T,) ! a (t-7,-nQ1))>.

Similarly, one can deduce that the process for [bs(t)> takes the

-

Iorm

n
(5_314) _1_*_3 | bs<'t+r4"n(‘2r))> .
Equation (81) can now be simplified to

V> = [T+ 0,10 L (o) e (e- 1, -n20)) > +
n=0

18

n
] O(r3£4> Tylb (e +1, ~2(atl)7) >) (82)

Due to the losses of the aperture, the terminations, and the MTL, the

above equation may be modified tc include such losses as

fer - ? -on oy
'VZ‘}:L\‘iV{lﬂ“‘”nﬁoe (L40) [as(t-ri-n(ZT))>+
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Figure (16). Multiple reflection phenomenon.
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LI T, lb G T, - 2 ) > (83)

Ho~18

n={

where (e-pn) takes into account the system loss for each time that a
wave travels twice the length of the MTL and passes over the aperture.
In order to simplify the computatioa of equation (83), one can use a
pole expansion method of the Singularity Expansion Method (SEM) [18].
This expansion wmay be written for simple poles of a general function

F(t) as

m
F(e) = § £, %1% u(r) (84)
i=1
where the sj's are simple poles of the transform of F(t), and fj's are

residues due to each pole. Using the format of equation (84) in

equacion (83), one can write

] (¢ =1, -n(21)
IaS(C“T4-21(,2T))> = Z [asj (o))eSj ‘ra n(2t u(t—TA—n<2T))
j=1
(85)
ja14
|bs(t+rﬁ+~ 2(n+l)r)>.'z | bsj (O)>esj(t+T4‘2(n+l)r)
J=l u(t+14_2(n+l)T)
(86)

where (sj) is the propagation constant for each external made in the
function expansion. If equations (85) and (86) are substituted in

equation (83), one obtains

m N
. - - ss{t=-7, -n(27)) =-om
[V, >= -\iv[_f_‘*‘igJ[ﬂ.iT %asj(o>>—1ige 2 4 e
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n M
3 iij ©> 7 o5 (_t+14-2(,n+l)r)e-pn} (87)
j=1 n=Q

where, due to the unit step functions,

C“‘C&

N = Integer [ o ] (88a)
t-+r4-—21

M = Integer [ — ] (88b)

for N and M non-negative. If ¥ or M 1Is negative, the corresponding

series is deleted.

In order to obrain an upper bound on the voltage at the termination,
one should take the two-norm of equation (87). Using the matrix and
vector norm properties introduced previously along with the triangle

inequality, one obtains

f-'@v“z L “L*szl Lji[

353 © > ”7_

17> <

T 53 (t=-14- n(ZT))e-on

e[ oy,

o
J 5 (89)

M ,
{i z esj(t-rré-Z(n+l)t)e-cn
n=0

4

If s,, the propagation constant, is decomposed into its real and

imaginary part as

S

O IR ORI
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then

¥ q (t-1,=-n(27)) _~en ¥ -ns(t =1, ~n(21))_~en
E e~ 4 e < Z e 3 4 e

n=Q n=Q
and

< Ig =Ny (t+r4-2(n+l)r)e-pn
nmQ

If %3 (t+ T, " 2 (_n+l)r)e-pn

n=0

The quantities (—nj) and (gj) represent the decay and phase constants
regspectively for each mode.

One can use the finite geometrical series to simplify the above

expressions as

bZI &3 (t-t4-n(21))e—pn - o~ (t—r4—2Nr)e-oN.

n=0
1 - o~ Q1) (2nyT-0) (50
1 - e—(ZT\jT ~-p)
and
bf o~N3 e+ 1, = 2(n¥l)T) ~en _ =0y (t+7, =27 = 2Mr) -oM
n=0

-(M+1) (2nyT - p)
L j) (91)
1-e ﬂjT P

Equations (90) and (91) hold only when

2nj1>p

or

2n.t <
3 p
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For the case when (anr = p), one may obtain

N
Z e"ﬂj (t‘T4'nC2T))e"Qn - (N+l) e‘-'ﬂj (.t-T4) (92)
n=(
and
If &N t +1'4 - 2(n+l)r)e-pn - (1) o~ (x +14 -27) (93)
n=Q

Ar this stage, one can start computing a numerical upper bound on the
voltage at the termination.
The maximum value for both e_njct T4 = 207) and e-nj(t+'14"21'-2MT) is
unity which occur approximately whem (N) and (M) are replaced by their
respective values given in equations (88).

In order to find an upper bound for the remaining terms in equations

(90) and (91), one can set M equal to N and compute the values of N for

which the remaining terms are maximum. That is

1— . -(N+1)(2n4t -
3 -oN {l—e 3 ] -0 (94)

N Le L - o= @57 =9)

After taking the derivative and solving for N denoted by N', one ob-
tains

i3 o) _

N' = (.anr-o) (95)

The above value for N' maximizes the equation which can be verified by
showing that the second derivative is negative. Since N' must be
greater than or equal to zero for the correct solution, one must com-

pute (95) and replace N" with
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N e = Dax [0,N"] (96)

Substituting Nmax in equations (9Q) and (91), one obtains

7

anr
IZq' SN E-T4-a2D) —en < 4 exp | + m(‘zﬁjr) |
n=(0 ' 1-
p

(L ~5E—)
2njf

-(anr—o)

(97a)

l-e

and

anr

% o Nyttt =2(@tl)T) -en S | exp (°'+ Qn(Zﬁ T)

1 A
L p

[*]
(l- anT)

A,

(97b)

-€2njr-o)

L 1l=-e

for N' greater than zero and unity otherwise. For the case when
(anr = ), equations (92) and (93) are used and the results can be

shown to be

X (-é—)e(p-l), <1
z e-nj(;-r4-n(21))e—pn < (98)
n=0 1, p>1

The above results also hold for the summation over M.
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Equations (97a) and (97b) may be simplified notationally by defining a ‘

new variable vy as

Y = anr .

Hence, the above-mentioned equations can be written as

%‘ o Ny (e =1, =n(27)) ~pu ¢ exp [p . p’anp/Y)jl
=0 Y-pP

L=

—_— (99)
1 -a (p-v)

and similar simplified result holds for summation over M. If (p) 1s

zero, the system has ideally no internal loss and the upper bound of

the voltage at the termination will be maximum. Thus the worst case .
condition suggests no loss. Substituting zero for (p) in equation (99),

one obtains

¢ 3

bg 2Ny (£ =14 =n(27)) -en
n=0
1l
4 %:1 e-—nj (£ + 74 =2(nt+l) T)e-pn r < (1- e-Y) (100)
20 )

Finally, substituting equation (100) in equation (89), ome obtains the

voltage upper bound as
| gy Iy liosg @)

oo < s 1, [ o e, 4

(1- e-anT)

(L01)
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With the simplifications of equations (53) and (63), equation {(101)

becomes ¢ 3

oo, @1+ sy, 01,

||| <2/ | - - o)
=t A-e )

As discussed in chapter IV , the maximum vyoltage between any two lines

is
‘Avlmaxsz H |vy> Hz
Therefore 1 - )
[H[a @> 1+ 1eg, 0> [,
IAV < 4/ BEE If - : i - > (103)
max Vo1 Xi y=1 -anT
(L -e )

One can use equation (70) to obtain an upper bound on the current as

[av]
- max V/f (104)
max max( )min(v]
i A Aq

1f lasj(0)> and [bsj(0)> are replaced by their equivalent express-—

ions in > and |e, >, then equation (103) becomes
¥y

NMege @ ot Hl ey @]
m.ax(v 2

AV‘ < 4 )4 1 -
I max i "Aq a1 a - e-ant)

(105)

In time domain, Cox and cey can be expressed as
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e ™ E %0 -a?—t (8,57 (6)] (1062)
and
o " eae% [Eysc‘(c)} (106b)
where
sSC— SC— R Sst
Heo (0) = @) ] £y e (107a)
j=1
sc- scm, = s4(t)
E, (e) = &, )jZlfj e (107b)

Taking derivatives from equations (107a) and (107b), and substituting
in equations (1l06a) and (106b) respectively, equation (105) can be

written as

— m |s.l!f!! _
!AV max < Va G-Z) Zl -2n, 7 u’am,xx 'H °
t 3 (1-e 3 ) bound
| com
150 | lsomalsr ™ er-1, ] |
)

(108)

for a lossless MIL.
Equations (108) and (104) suggest a computational method for upper
bound signal levels in time domain at a termination of MTL behind an
aperture-perforated conducting screen.

In the next chapter, the resultant equations will be used to com-

pute an upper bound signal level for a specific problem both in

frequency and time domains.

58




CHAPTER VI
COMPUTATIONS OF SIGNALS UPPER BOUNDS FOR A
PARALLEL-PLATE TWO~-CONDUCTOR TRANSMISSION LINE

In this chapter, the results of previous discussions aleng with
Appendices are used to compute an upper bound for the voltage and the
current at a termination of a parallel-plate two-~conductor transmission
line located behind a circular aperture. Hopefully, this example will
help the reader understand fully the concepts and the procedures used in
previous discussions Iin computations of upper bounds.

The four basic equations which fully describe upper bounds on the
voltage and the current in both time and frequency domains, as derived

in chapters IV and V, are

e eI N el
¢ aeibound}E;c‘ [[fjev> HzJ (66)
] 1
! ' ’max B Zmax V/;axc;i)miné;i e

; <, /max v .
' AV ‘max <4 i (Ai u’am'

A g

bound
IPSIT: ;1
A e R

& LjSll"e J

-t

(108)
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. AV[ / :

I 104)

max, v min
1 G 1 A.)

The parameters used in this particular problem are the same as the ones
introduced in an example by Kajfez [12] which facilitate comparison of
results.

There are a few concepts that should be mentioned before proceeding
to actual computations. By transmission line theory, the induction

matrix L is related to the induction coefficient matrix K' as

where ¢ 1s the speed of light inm vacuum. The matrix K' describes the
capacitance relationships of the homogeneous MIL and is evaluated for
the system filled with a vacuum. This matrix depends only on the
geometry of the system. The quantities Ai's appearing in all the above-

-1 matrix, and the v,'s

mentioned formulas are the eigenvalues of the L
are the corresponding modal velocities related to the eigenvalues (-Bi)
of the matrix (,—wZ_Ii_IS) as

Vi

-

8
where K is the same matrix as K' except that it is evaluated with the
true values of permittivity of the medium contained in the system.

The parallel-plate two-conductor transmission line is located

behind a circular aperture of diameter d = 2 cm which is positioned at
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z = 0 as shown in Figure (17). The transmission line is terminated

by matrices gﬁ and 53 representing passive terminations located
distances of 5m and 7m from the aperture respectively. The cross
gsection of the transmission line is shown in Figure (18). There are
three layers of dielectrics separating two strip conductors of width W,
The thickness of dielectrics are denoted by hl’ h2’ h3, and are assumed
to be much smaller than the width W.

The computations of both the sources and the induction matrix require
knowledge of the quasi-static modes on the MTL. In order to obtain the
electrostatic field, a unity potential is applied to conductor a, while
conductor b and the shield are held at zero potential. Then, the

normalized fields in three regions are

2 (109)
&y

—_ ——>
a

1
1A hl v

1
]
o
£
i
WII
W i

Similarly, a unity potential may be applied to conductor b while conduc-
tor a and the shield are held at zero potential. Then, the normalized
fields in three regions are

——
a

= =1
= O$ B hz y>

E I, - a, (110)

B B h3 y

Computation of the elements of the induction coefficient matrix K is
accomplished by integrating the electric flux through the closed surface

Sz around the conductor a as

Q, = [e—f. s (11la)
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Figure (17). Two-conductor transmission line behind an aperture.
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Figure (18). Cross section of two-conductor transmission line [12].
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Equation (111b) can be written as

Qa = Kaa + Kab (111ic)

where Kaa_and Kab are the elements oflg and depend only on the geometry

of the system. By equations (lllc), (111b), and (109), the coefficient

Kaa is
st w
R = ZE* 2 d ZE+ d
aa €1 - 1A ° ay * 3 3A ay x
Xm- K=
2
€ £
=y El + Hi (112)

1 3

Similarly, the other induction coefficients are found as

£

- . w3
Ky = Kg W i, (113)

5b ) ,

3

For this particular example, the following parameters are used to enable

comparison to the transient results of Kajfez [12]:

hl = 2cm
h2 = 2cm
h3 = lcm
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W = 10cm
Elr = 1.0
€2r = 1.0
€3r = 2.0

Substituting these parameters in equations (112), (113), and (114), ome

obtains

Kaa Kab 1 25 -20

K=

= = s0
S

where (eo) is the permittivity of vacuum. If all three dielectrics are
assumed to be air ( e, = 52 = 53 = EO), then the induction coefficient

matrix, denoted by K', becomes

15 -10

-10 15

Thus Lﬁl can be obtained as

%o -10 15

wheare 9 is the permeability of vacuum. The correspounding eigenvalues

of L © can be computed as
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The eigemvalues (- Biz) of the matrix B = (A—wZT:E(_) and the correspond-

ing eigenvectors can be obtained as

2 w |2 1 1]
g = Q’-) ’ IC > = =
1 c S s [lj

2 9 w |2 111
8 = = (=) , [C > = =
2 5 c 2 /E [l]

and the corresponding modal velocities are computed using the relation
v m i as
i
vy = ¢
3
3

v =

2 c

where ¢ is the speed of light in vacuum.

To determine the sources, the previous results must be extended to
compute the aperture modal function fey:> and |hx:>.
By equaticn (D31), the matrix Zf.v which transforms a power wave to its
corresponding voltage value is obtained by computing the voltage eigen-—
vectors f¢i:> given by equation (D27). Substituting the particular

values of )\i’ Vi and lr,i> in equations (D27) and (D31) one obtains
o1 I 6.14 2.37
%p1 %p2 Ls.la -2.37

Similarly, by equations (D29) and (D32), one can compute the matrix

M. which transforms a power wave to its corresponding current value as
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. l-wal Vo) 0.0814 0.2108
=T
L Vi1 Vo 0.0814 -0.2108

By definition, the electric field of the nth mode traveling in

positive (z) directton is
E (x,v,z) = a e e ~18p2 (115)

where E: is normalized for unit power.

Bv selecting a, = 1, one has
— e
E (x,7,0) = e (x,7)

The corresponding voltage vector for (an = 1) and (bn = () is obtained

from equation (E3) as

Cb -]
_! Tan
v > = [o >=

¢bnd

If the potentials on the two conductors are selected equal to ¢an and

¢bn as shown in Figure (19), then the modal function EZ of the nth mode

can be obtained as

—¢bn

= (116)
¥ h,

Syn * Qan (E2A)y + ti>bn (EZB)

Extending this result to both modes (n = 1,2), one obtains

e, > =22 ¢bl_$
' LbZJ
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Figure (19). Computation of the modal electric field L. [12}.
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which gives
-307.0Q

‘ e > =
y +118.5

for the problem of interest.
— . —

The modal functiom hn (x,v} is equal to the magnetic field Hn(x,y,O)
inside the transmission line when tRe current on conducter (a) and (b)
are respectively selected to be wan and wbr as shown in Figure (20).

The currents are assumed to be uniformly distributed over the con-

ductor surfaces. An elementary computation using Ampere’s law and

magnetic flux conservation gives the following:

wan hl + wbn(hl-+h3)

xm W(hl+h,z+h3) (117)

where wan and w“n are obtained from the matrix EI which transforms a
power wave to 1ts corresponding current value. The vector IhX3> for

the problem of interest becomes

0.814
[h > =
‘Oa421

The external short circult fields are needed to complete the
bounding process. For an incident wave with transverse magnetic (TM)

polarization as shown in Figure (21), one has

-2E
se- _ , . sc- _ .
EY -EO sing, Hx 7, sina (118)

The incident parameters chosen by Kajfez [12] are
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Figure (20). Computation of the modal magnetic field hxn [12].
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Figure (21). Transverse Magnetic (TM) polarization
incident on the aperture {12].
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(’l?’

1457, @ =300, B = 100 Ky, ng = v

In order to obtain z numerical value for equation (f9) cne must

compute the norms and absolute values for the following quantities:

A , - :
< Ez = /(0.814)7 + (0.421)° = 0.9164 A/,

| f,

e, > f . /(307)2 + (118.5)% = 329.1 v/

| —Eq
B = ’ —— sine f =132.6 4
N, m

£ 7 L= | 2Egsine | = 1414 KV

y
3
da~ | . ~—B
am = ( = = 1.333<10
3
£y e eesx 107!
x, = ( 17 ) 6.666 x 10
Assuming <1i)min = ldB/lOOft , one cbtains
20 log {e—(ai)min<100tt)! = - 1
togyg | ]
or
(2,) = 3,777 % 107°
i’ min !

and by equaticn (60b), T becomes

-3

Now, ou: can substitute all the available data into equations (66) and

(71) to obtain
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-9
<
fAvfmaX < (w)  (191.4 x 10 7)Y V

-9
< (3.
| I ]max (w) (3.287 x 10 7) A

If the dielectric is replaced by a vacuum and the incident angle

is set (6 = 900, o = 900) for maximum short circuit fields, the upper

bounds are

lav]__ S (@) (4.76 x 107 v

ma
and

1] S (.06 x107) A

This forms a useful frequency-domain bound for the problem presented with
a voltage less than 10 Volts for frequencies below 3.3 MHz.
For comparison, this problem has been solved exactly for open-
cirecuit terminations on the MTL. For such a case
=L
Determining the fas> and Ibs> of equations (43b) from (13), (14), (17)

=_I—.

and (18), the results were computed and are plotted in Fig. 22 along
with the bound. A modified bound is also plotted which represents the
actual bound of the particular problem. The difference in bounds is

4.1 which seems slightly unreasonable until the bounding approach is
examined. A factor of two arises in the bound to account for a dif-
ferential mode which does not occur in the case considered. The tri-
angle inequality used in the bound of {as> and [bs> contributes another
1.5. The product of the 2-norms of.gv and [ey> versus the «=-norm of
(gvley>) contributes a 1.29 factor. A small contribution also occurs due
to some of the neglected loss terms. In light of these observations, the

resultant bound is very reasonable.
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Figure 22. Open-circuit example.
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For the Transient Analysis, the external incident fields given by

equation (118) should be modified in order to take into account the

time variations as

-2E
E 5¢7(t) = 2E.F(t)sing, H_° (t) = F(t)sina (119)
y 0 X 0
where for EMP a suitable function is
-at -Bt (120)

F(t) = e - e R

Kajfez's date [12] are

a = 3 x 106 sec—l

B = 108 sec—l
FEquation (120) is in the format of equation (84) with \fj} = 1(j=1,2),
nl = a, and nz = 8. Using equations (108) and (104) for the vacuum

filled lines with Kaifez's data, one obtains
|av| < (1.8959) V
max

<
| 1 [max (0.0281) A

where EHXSC-I and ]Eysc_[ in equation (108) correspond to the ex-

pressions of equation (119) without the F(t).
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Kajfez [12] has obtained a result for this problem with moderately
mismatched terminations. He has obtained a maximum voltage peak of
about (0.27) volts for conductor (a) and (0.25) volts for conductor (b).
Although at first glance, it may appear that the result obtained in
this discussion (1.9 volts) is not reasonable at almost ten times that
of Kajfez, it should be noted that for upperbound computations it is in
reasonable agreement. The reason being that Kajfez has not computed
worst case conditions and thus in solving the problem he has not de-
viated from the actual parameters regarding the termination. With his
moderate mismatch, multiple reflection phenomenon have not affected
the bound due to the loss. Also, in computation of various variables,
he has used the true permittivity of the system. In this discussion,
the use of multiple reflection phenomenon has had a negligible effect on
the bound. At several stages of computation, other matrix norm in-
equalities such as

lae | < fal [s]
and

[a+3] <lal+lzl

have been used extensively. These inequalities have contributed twice
or more to the exact values, and therefore lévlmax may be reasonably as

small as

lav| < 0.95 volts
max
In the transient analysis, the velocity of all the modes have been
assumed to be the velocity of light in a vacuum which is actually larger
than the true velocities of the modes in their respective media. 1In

addition, the upperbound has had a factor of two to account for the
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possible potential difference between wires and not just to ground.
Taking all these factors into account, one can readily observe that the

(1.9) volts for a bound on the voltage is indeed in reasonable agree-~

ment with Kajfez's calculations.
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CHAPTER VII

UPPER SIGNAL BOUNDS FOR
ADDITIONAL CANONICAL PROBLEMS

A more complete understanding of the bounding procedures will be
presented in this chapter in connection with the upper bounds of three
additional canonical problems. These problems are two parallel thin
wires behind an aperture, parallel thin and thick wires behind an
aperture, and a wire between an aperture-perforated parallel-plate
transmission line. The latter two represent a wire at the surface of
a cable bundle and a wire between bulkheads respectively.

As in the previous chapter, we use the bounds of equations (66),
(71), (108), or (104) as appropriate. Let us first concentrate on the

voltage represented by equation (66) below:

by vy sc-
Vo T fomnG) il LRSI IR

+e |o_| EZST [ le>] 1 (66)
€ bound 7 y 2

Equation (66) was actually obtained from an upper bound on the power
along the transmission line. The square root is the upper bound on the
transformation from power waves to voltage waves. The factor of Ffour
accounts for the wire to wire voltage rather than just the wire to
ground voltage in addition to the total termination voltage, which can
not exceed twice the incident voltage wave. The quantity (l-—EUT)
accounts for the total multiple reflections with Op representing the

loss per round-trip transit. The remaining terms represent the

traveling wave sources due to the aperture. The w results from a time-
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derivative in the aperture current dipole moment representation, with
a and ay the required components of the dyadic aperture polarizabilit-
ies. The [ hx> and [ ey> vectors are associated with the multiconduct-
or transmission line (MTL) fields at the aperture as required for the
source determination using the reciprocity theorem.

For a particular problem as shown in Figure 12 of Chapter IV the
radian frequency w 1s assumed known and the loss Op must be estimated.
This loss is due to power absorbed in the terminations,or line, and
radiated in other neglected modes or back through the aperture. For

simplicity, we shall set o, equal to only the line loss which will be

T
estimated at 1dB/100ft., typical of standard transmission lines in the
high frequency (HF) range.

In order to facilitate the field calculations associated with the
sources, the medium is assumed to be homogeneous. In general, we shall
use the parameters of a vacuum, Hy and €, which provide a maximum
value of vy to be 3 x 108 m/s. The bounds on the polarizabilities are
obtained from the geometry of the aperture. In general, these bounds
may be determined from the polarizabilities of an ellipse which cir-
cumscribes the aperture. The HXSC- and Eysc- are obtained from the
exterior problem which is assumed to have been solved.

The remaining quantities Ai,[hx >, andiey > are determined from
the geometry of the MIL. The equations defining the MTL are given in

Appendix D as

%|v>= -jwL{I > (p1)
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and

d .
az l I> = —Jw_IS]V> (2)
The parameters Ai are the eigenvalues of Lﬁl. If the medium i1s a

vacuum as assumed, these are simply the eigenvalues of czg where ¢ is
the speed of light 3 x 108 m/s. The induction coefficient matrix K
may be determined by either solving n boundary value problems using
Laplace's equation for the n wires or determining the potentials due
to charge distributions on the wires. The latter has been used where
a line charge Qi has been assumed and the asscciated potentials been

determined. These results are used to determine the matrix K from the

vector equation
[v>=pla> a2

with the elements of [V > and | Q > associated with the corresponding
wires. The matrix K is the inverse of P from which the Ai may be found. .

In determining P, the electric field in the medium is required
which is also used to explicitly determine Ey at the aperture for each
Qi' The corresponding magnetic field component HX may simply be
obtained as (—Ey/no), where Ny is the characteristic impedance of a
vacuum given by 120w,

To complete the problem, modes on the MTL must be defined. In
general, the modes are associated with the eigenfunctions of (—w%gg).
However, in a homogeneous medium Lfl = c?g and we need the eigen-
vectors of (—-25.2) where I is the identity matrix. In this case, we

c

are free to choose the eigenvectors. It is standard to choose one of

the voltage eigenvectors for an n-wire line as
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1

1
| b, > = o, (122)
1 = :

which corresponds to the bulk mode, and the other nodes [ bi > as ortho~
normal differential nodes. The corresponding charge distributions

| Q > are given by
o, >=x[b, > (123)

which results in aperture field Eyi for each |Q13>. The components of
{ey > and lhxi> are normalized for unit power flow. Thus
/2 B,
e = L= (124)
vi ‘/c<bif_1$}bi >

to give
eyl
e > = . 125
ey : (125)
e
yn
and
1
h > = - — > 126
b, a ey (126)

With these vectors and equation (66), we are prepared to determine an
upper bound on the frequency domain voltage and current.

Alternately, the f bi> may be chosen as the unit normalized eigen-
vectors of L_—l, then (123) becomes

A

o

[bi> . (127)

Lo, > =

c
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The denominator of (124) similarly becomes vAi/v . Since Eyi is pfo—

A
-{%, (124) can be simplified to
C

/2 Eyy V//;I
vt /T (28)

where the prime denotes the electric field due to a charge vector] biih

portional to

The first problem to consider in this chapter consists of two
parallel thin wires in a vacuum as shown in Figure 23, A particular
frequency is not chosen, but rather the answer is given as proportional
to w. Using the suggested 1dB/100ft estimate for the loss along with
lengths 24 and £3 of 5 and 7 meters respectively, (1 --e-c’T)—l becomes
(11.539). These are the same lengths as the example of Chapter VI.
Also assuming the same circular aperture, a, and a, are given by
(1.333 x107%) and (6.666 x10™7) respectively.

To determine the eigenvalues and field vectors, we consider the
approximate line charge equivalent configuration of Figure 24. To
compute the P of Equation (121), we may sequentially allow only
charge Ql and charge Q2 to be nonzero. From each of these line charges,
the electric fields may be determined. We obtain the corresponding
voltages by integrating the electric field from the ground plane to the
wire edges (dotted line about line charge) along both paths L, and L2.

1

From the latter, the matrix elements of P are given for thin wires as
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Figure 24. Image charge equivalent of two wires above

a ground plane.

8L



d-rg

_ 1 _ 1 -
P11 = %22 = J {zmo G-d) ~ Tne,Gard) |
O —-—
1 2d - ro
= 5 In¢ = ) (129)
o o}
and d-r, )
P12=P21=—J e -
Zﬂeo[(x—d) +4a ] 2w60[(x+d) +4g" ]
. (2d-r )% + 457
= I 1n 5 5 . (130)
o} r + 4a
O —
Thus
2 P ~-P
L—l - ; - 11 12 (131)
By =P1p ) | "By Ppg
where ¢ 1s the speed of light (3 XlO8 m/s).
It is easily shown that the eigenvalues of_Lml are given by
A, = c2/(P.. FP..) (132)
i il 12
with the associated eigenvectors given by
(133)

[b.>=——1— l—.
* V2 1R

If the charges on the two wires are designated as Ql and Q2, then
it is easily shown that the electric field at an aperture symmetrically

located between the wires is given by
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- ~dv
Ee s @y (134)
veo(d +a”)

Choosing |b13> to have the plus sign we have

.
2 veo(d2+a2)
and
By, = 0
to give B 7
-2 d n, /il
2, 2 c
le > = | 7D (135a)
y
0
- 2.4 /oAy ]
w(d2+a2) 7%
!hx> = . (135b)
° J

We note that Al is the minimum eigenvalue required in Equation (66).

Substituting this information into (66) we obtain

~5 2d M sc-

< 2d o
[Avimax (3.077 x 10 )we | 5 [ztnoHX i

T(d"+a”)

+ [ESCT |71, (136)
y
If a =4d = lem, this becomes
4

SC"II

(o v <9.794x10 " k_[2|n H °°T| +|E
max e} o X v

sC

where ko is the wave number vaoao . Using the HXSC— and Ey T of (118)

with the associated data, this bound is
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[aV] <33 k- v
max Q

or equivalently

-6
< )
fav[max w(l.11 x10 ) v . (137)

This is approximately five times the level of the parallel plate
problem of Chapter VI with a2 2 cm spacing.

To obtain the time-domain upper bound for the vacuum filled line
we note that the factor w/(l-—e-GT) of equation (66) must simply be
replaced by

m lsillfjl

j=11 -e-QHjT
to obtain equation (108). 1Ian (108), the loss has been neglected in
comparison to the decay of the short circuit fields as specified by nj

for each mode. Using the data of Kajfez in equation (120), the time

domain bound becomes
| AV ] < 10.98V. (138)
max

The second problem of interest is shown in Figure 25 with wire 2
close to wire 1 and much smaller with both radii much less than d. This
problem models a wire at the surface of a wire bundle with an aperture
centered below. If one assumes that the only change from the previous
problem is in the cross-sectional geometry, only the new Ai’

Iey:>, and th:> are needed for equation (66) to be used. Fundamental
to these quantities is the determination of P im (121).
To determine P , a charge set of Ql = 0 and Q2 = 1 is first con-

sidered. Due to the proximity of the wires, the model of Figure 26 is
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85



required with the center charges representing the cylindrical images of

Q2 in wire 1 and the left charges balancing the center charges to give ‘
Ql = 0. Computing the resulting voltages Vl and V2 between the wires
and the ground plane, the corresponding forms of P12 and P22 are
obtained as
T 2d -r r2+r'2
1 1 1 1
P12 " e a In r + 2 In 2 1
o 1 (Zd-rl) +r ©
(2d -r )2 +4,32
1 1
+ In
bre 2 2
o] r +43
1
and .
r (2d -r )2-+4a2 r 2-*(2a-r')2
P,y = L in 2 + In 2
22 8“803 r22_+4a2 (2d—r2)2+(2a—r')2
2d ~r
+ 2;2 In { r :
o | 2
where £y and r, are the radii of wires 1 and 2 and r = rlz/Za is the
location of the image charge.
For P and P,,, no image is needed in wire 1 and the line charges

21 22

are simply Ql 1 and Q2 = 0 to give

1
» 1 . 2d -Ty
11 = Jne B r
o] 1
and (2d - 1 )2-+4a2
P =% In|—2
21 T TGme_ M 2 2
o] r, +4a
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Dimensions are chosen similar to the previous problem as d = lcm,

r, = 0.5cm, = 0.lem, and a = 0.35em. The image position r' is given

1 )

by 0.3571lcm. The resulting matrices P and £—1 are given by

. |1.0986 0.7821
T 2Te, 110521 3.3940
and -
2 1.1680 -0.2692
- Ho 1 -0.3621 0.3781

The required eigenvalues and elgenvectors ofl.,__l are given by

1.6939 8.0205
Kl = S }\2 = —_—
Mo Mo
and a _
0.2870 -0.9275
lbl> = , ]b2>
0.9579 0.3738

where [b1:> represents the bulk mode.
The aperture is located half way between the centers of the wires
as shown in Figure 25. The aperture electric field for each mode is

needed for [ey:> and [hx>>. For mode 1, the charge vector is

-1 [0.0773"
lq> =P b, > = 27
0.2583

i

To compute Ey at the aperture, Q2 must be modeled by three charges above

the ground plane as was done in the evaluation of P and P22' With this

12

in mind the general formula for Ey is
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-1 1%, 4

Fy T e, Q+Q+ =557 2,42
- O gé 5
[d +(a-—r1 /2a)7]
to give
By, = -55.78 V.

Similarly for mode 2,
~1.1839"
[Q3> = 27we
0.4772

and

Eyz = 133.35 V.

From equation (128), ]ey3> becomes with the (Ai/cz) scale

-1176.8"
le. > =
7 1292.9

Substituting intoc (66), the upper bound becomes

sC-

lav] _ <0.8025 we_[2fn H "7 + ]Eysc“l].

For the incident form of Kajfez, this bound is
|av| < w(2.41x107% v,
max
In the time domain this bound becomes

|av] < 23.84 V.
max

The substantial increase in these bounds compared to the parallel plate
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problem 1s seen as a primary result of the five~fold increase in the
L2 norm of |ey:>. This 1s a consequence of the closeness of the wires
and aperture and the stronger interactionm.

The last problem is depicted in Figure 27. The wire has been
placed at the center of the structure and has a radius equal to b/100.
The wire is labeled as conductor 1 with the upper plane as conductor

2. 1If Ql = 0 and Q2 = 1, the wire may be neglected in computing P12

and P to obtain

22
_d-a
P10 = %1
[a]
and
- _b_
Pzz“eL ’
Q

The computation of Pll and P91 is more complicated since the images of
the wire in the surfaces must be included. The values Pll and PZl may

be obtained by subtracting -% times P,, or P,, from the potentials for

12 22
a wire between two grounded planes. This removes the effect of charge
on conductor 2. For the grounded planes case with the wire charge
equal to 1 C/m, the potential between planes is zero and the wire
potential is obtained from an infinite sum including the images. If only
the lower image 1s used, the wire potential is approximated by
(4.595/2we0). The additional images have a minor contribution changing
this value to (4.0466/2ws0). Combining these results for the geometry
given with L = 10b, one obtains
0.6854 0.05"
_ 1
P____
- e
o]

6.05 0.1
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Figur. 27. Cross-section of wire between parallel conductors.
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and
-1 1 1.5142 -0.757

l"_ —

uo

-0.757 10.378

The corresponding eigenvalues and eigenvectors are

0.9963 -.0845

0.0845 0.9964

The aperture is located directly below the wire for maximum
coupling and d is set equal to lem. The image summation for Ey can be
computed exactly for this problem to give the electric field at the

aperture as
poaq |l 1t %
v 1| 2Le 4de Le
) o el

Using the \bii> as charge distributions, the primed fields of (128) are

obtained as

F 1
71

—22.84/80

and

1
E

Vs —3.08/eo

which give an ]ey3> of

~755.2
l‘3y> =1 -273.3
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Since fe}_>, :hx >, and Ki are the only parts of (6b) to be

modified from the last problem, the upper bound is obtained as

AV < 0(1.197 1079 v

wicth an equivalent time domain bound of

iav!na“ < 11.84 V.
1l X

The primary observation of interest which seems to link these three
problems is that for similar dimeasional relationships, the bound tak-s

on the same order of magnitude. This would suggest the applicability

of ceanonical problems as bounds for more complex problems.
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CHAPTER VIII
CONCLUSIONS

This report developed a computational technique for upper bounds
on 8ignal levels at terminattons of multiconductor transmission lines
(MTL) located behind an aperture-perforated conducting screen. This
was accomplished in several stages, First, the electromagnetic coupling
through small aperture was described using the concept of aperture
polarizabilities. The idea of coupling was then extended to the MIL
axcitation behind an aperture where the aperture was represented by the
equivalent current dipole moments. A source of traveling waves was
introduced to replace the aperture and the aperture coupled energy.
These traveling waves transferred the energy from the aperture region
to the terminations. The amount of transferred energy in terms of the
traveling waves was found by introducing a signal flow graph of the
whole system. It was assumed that the aperture had no other signifi-
cant interactions with the MTL as might be described by additional
reflections in the aperture region.

Having computed the amount of energy at the terminations, a trans-
formation was used to represent the traveling waves in terms of the
voltages and currents. The mathematical properties of vector norms and
their associated matrix norms were discussed. Tue idea of two-norm was
used to formulate upper bounds on the voltageg and currents at the
terminations. At this stage, it was assumed that the terminals were
passive and the losses associated with each mode traveling on the MTL

were of exponential form. Although the radiation and termination losses
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were not explicitly taken into account, it was mentioned that these
iosses, if non-negligible, could be considered by modifying the term

due to propagation loss. PFurther, after some mathematical mmnipulations,
it was found that the bounds depend primarily on the source and termi-
nation local geometries. Finally, considering the fact that the

moximum veltage between any two lines might be the sum of the indivi-
dual voltages to ground, an additiomal factor of two was incorporated in
the upper bound. The upper bound on the termination voltages was formu-
lated in the frequency domain. An upperbound on the currents in
frequency domain was simply obtained from this voltage bound.

This idea was extended to the time domain where it was assumed that
the waveforms léunched from the sources were non-dispersive (yuasi-TEM),
thus reaching the terminations without any distortion. Several
assumptions were made regarding the medium, the termination, and the
modal propagation. It was assumed that the elements of the termination
are all real and constant and the propagation constant of all the modes
are equal to that in a vacuum. The multiple reflection phenomenon was
taken into account and its formulation was simplified by using the pole
expansion of the incident field characterized in the Singularity
Expansion Method {SEM). Using vector and matrix norms, an upper bound
for the voltage and the current was formulated. It was observed that
the upperbounds basically depend on the geometry of the system, the
properties of the external time-varying fields, and the shape of the
aperture.

Having formulated the upperbounds on the signal levels im both time
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and frequency domain, a comprehensive example was presented in order
to elaborate the use of the technique. The parameters and the geometry
were chosen exactly the same as a problem introduced by Kajfez [12] in
order to facilitate the comparison of results. It was found that the
maximum voltage in Kajfez's example for a moderate mismatched termina-
tion was found by a multiplicative factor of approximately ten. It was
noted that for upperbound calculations under the worst possible con~
ditions a factor of ten was in reasonable agreement with his results.
The reason being that at several stages of computation various types of
inequalities were used that doubled the exact value. Also, the velocity
of all the modes were assumed to be the velocity of light in a vacuum
which were greater than the actual velocity of the modes in their res-
pective media, contributing to the increase of the voltage at the
termination. In addition, a factor of two was used to account for the
potential difference between any two wires and not just to ground. In
the whole, it was observed that final results obtained by using the
developed techniques were in good and reasonable agreement with Kajfez's
results.

Several other problems were also approached directly by the techniques
developed. Two bundles of wires over a ground plane were bound above
by modeling them as two wires over a ground plane. A wire at the surface -
of a bundle of wires was modeled by separate thick and thin wires over a
ground plane. A last example considered a wire between parallel plates.
The problems all had comparable dimensions but interestingly had similar

voltage bounds.
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There are several suggestcions for future research. 1t would be

desirable to find signal levels on wires behind ceomposite panels
which couple the external field by a diffusion mechanism. Also of
some importance is the problem of wires passing through an aperture
corresponding to antennas or aircraft control cables. Anocher area
of research would be large aperture problems such as conformed

antennas or large windows.
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Appendix (A)

POLARIZABILITY OF SMALL APERTURES

The diffracted field in the vicinity of an aperture depends on the
excitation field and upon the shape and size of the aperture. The
moments of the equivalent dipoles are related to the components of the
known exciting field through special constants of proporticnality
called the aperture electric and magnetic polarizabilities.

Due to the importance of the use of dipole moments, a great deal
of attention has been devoted to determination of the polarizabilities.
Cohn in [Al] and [A2] has experimentally determined the constants for
several shapes, while Van Bladel {A3], has computed by numerical
methods the polarizabilities for a rectangle, diamond, cross, and a
rounded-off rectangle. Table (Al) gives the electric and magnetic
polarizabilities for a circle of radius (R), an ellipse of eccentricity
(¢), and a narrow ellipse. The following remarks should be made

concerning the table:

1) = g = + o vy

a
m m, XX m,yy

2) €= /L - (70)?

3) K and E are the complete elliptic integrals of the first and
seéond kind, as in [A5].
By the study of the data given by De Meulenaere {A3], when an in-
accuracy in the polarizabilities of 10% can be tolerated, one can
use a normalization factor of [ (aperture area)B/zl, and use elliptic

polarizabilities in order to calculate the polarizabilities of the
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rectangle and rounded-off rectangle. .

The polarizabilities of other shapes may be obtained by either

measurement or numerical solutiom of the quasi-static aperture problem.
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Appendix (B)
APERTURE REPRESENTATION BY A PAIR
OF CURRENT DIPOLES

Consider Figure (Bl) where'an aperture-perforated screen is
shown [Bl]. 1In order to evaluate the scattered field in the interior
region, one only needs to know about the tangential electric field
Et over the aperture. It 1s convenient to close the aperture with a
metalic lid and place a magnetic surface current density jsm over 1t
given by

3MeE xn (B1)
where n is the normal vector as shown in Figure (B2). The vector Et is
the total aperture field typically obtained by solution of a quasi-
static integral equation [B2].

Now, one can invoke the reciprocity theorem to compute the
scattered field at any point in the interior region due to surface
magnetic current. For the purpose of this discussion, the reciprocity
theorem as introduced in [B3] will be used. As shown in Figure (B3),
the scattered field E(r') at a point (¥') is to be computed with
respect to the origin which is taken at the center of the closed
aperture region., By introducing a unit magnitude electric dipole P

at the point (;’) (Bl], as shown in Figure (B3), one can write the

reciprocity theocrem as

("), ay = (Ee B - 3m CH) v (B2)

v

where B is an electric current dipole given by

" 7 (83)
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Figure (Bl). Aperture-perforated screen [8].
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Exn = J - ——— f / Inside Region
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Figure (B2). Aperture replaced by 3:1 {81.

Figure (B3). Evaluation of scattered field [8].

g(r')
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>
and ap is a unit vector characterizing the orientation of the testing

dipole ?. The vectors Eb and Eb are the fields produced by the source .
5, evaluated at the surfaca of the closed aperture, and }e and jm are
volume electric and magnetic current densities which are the sources
of the field scattered by the aperture. In the case of this discussion,
- - - m
Je is equal to zero and equation (B2) for the surface current JS becomes

*. - - _ > m -

E(z') . ap (JS . Hb) ds. (B4)

S

From Maxwell's equations, one can write
-y 3
vl = jue Eb, (BS)
The vector Hb can be expanded in Taylor's series as

E@ =56 +7. Bz +... (86)

where the higher order terms are assumed to be negligible. One can

write T . (vﬁ){s as
T o= (T T - T (w3, (B7)

The term (VH) . T gives rise to a quadrupolewhich 1s neglected [B2].
q

3
Substituting equation (B5) im equation (B7), one may rewrite equation
(B6) as
e e o e
B (r) = H (o) - r x [jue E (0)]. (B8)
If equation (B8) is substituted in equation (B4), one obtains
E(x’) - 3, = J-[§b<5>- jwer X Eb<5>1 . Esmds
3 (B9)

~ o -+ > ’ I3 :
Une may define Ce and Cm ag electric and magnetic dipole current

moments respectively by
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g d§ (B10)

ds . (B1l)

With these definitions, equation (B9) can be written as

> - > - - > -
B L, =-E® . -E® . T, @12)
By comparison of equations (B2) and (Bl2), one may write equivalent

currents as

- + 5 -> -
‘Im = §(y) Jm - CmcS (r) (B13)
- g - ...
3, = s 3e CRIES (B14)

where §(T) is the three dimensional Dirac delta distribution. The
equivalent dipole current moment representation of an aperture is

shown in Figure (B4).
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Figure (B4).
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replaced by a pair of current dipoles.
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Appendix (C)

DIRAC'S NOTATION OF MATRICES

_ The following material is an introduction to matrix algebra using
Dirac's Notation which was introduced in Quantum theory by P.A.M. Dirac.
The presented material is a summary of B. Friedman [Cl], S. Gasiorowicz

[c2], and A. Messiah [C3].

In Dirac's Notation, an N-dimensional column vector is denoted by

[l > =

When matrix A, anNx N matrix operates on vector {x> , the resulting
operation is another column vector [V> . By elementary properties of

matrix multiplication, the kth element of the vector |V>is computed as

N

v, = x (CLl)
K jglﬁj 3

The complex conjugate transpose of a colummn vector {x) is a row
vector denoted by <x| whose elements are the complex comnjugate

elements of |x> ordered as

* * *
<x[= (x x

1 2...KN) (C2)

where (*) means complex conjugate.
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The (+) notation is used for complex conjugate transpose of A

given by _
* )
%11 ‘ 1
* L *
At = 812 N2

Using matrix properties for comjugation and multiplication the

following product is.obtained:
< M| =(AB [x>)" = < x|BTa’ (C3)

where <M | is a Nxl row vector and §+ and éf are both NxN matrices.
One of the most important types of matrices i1s the Hermitian

matrix which is equal to its own complex conjugate transpose, i.a.,

U

A Hermitian matrix has the following properties:

1) Instead of (Nz) distinct elements, it only has LN(N+1) distinct
elements.

2) The elements on the main diagonal are real.

3) The elements which are located symmetrically across the main
diagonal are complex conjugate of each other.

Multipliication of a row vector with a compatible columm vector

results in a complex number as
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N
<Sxly> = @&* =5 x5y Ly, | = I x)y (c4)
1 % Y 2 ye1 373

It may be observed that < x|y > =<y|x >, 1f <v| =< XI_P;-, then
<V]y > =< x|AT|y>, and the result of such an operation is scalar.
Sometimes it may happen that the order of multiplication in (C4) is

interchanged, then the result is a NxN square matrix

1 %* *
y><xl = Ly, 16y xy xg e xg ). (cs)

One of the benefits of representing matrices in Dirac's Notation is
that by observing the position of symbols, one can readily determine the
format of the resulting operation. For example, assuming that B is a
scalar, ix > and ly > are vectors, and A is a square matrix, then
< xlaly > and 8 < y|x > are scalars, Alx > is a vector, and |x >< v

is a square matrix.
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Appendix (D)

MULTICONDUCTOR-LINE FORMULATION

The computation cof wvoltages and currents on a multiconductor
transmission line (MTL) in terms of eigenvectors have been analyzed by
Amemiya [D1] and Marx [D2]., This approach has been used for both
transient”ana steaéy—state waveforms. D, Kajfez [D3] has extended the
eigenvector treatment by using a simultaneous diagonalization of two
matrices. This section presents the main ideas of method of diagonal-
ization by using only one composite matrix instead of two separate
matrices.

Cousider the N-conductor transmission line with a conducting
ground plane as shown in Figure (D1l). The reference direction has
been chosen such that real, positive values of Vi and Ii represent
power flow in the positive z directionm.

References [D1], [D2], and [D4] derive the following two formulas
for a lossless MIL in sinusoidal steady-state analysis with isotropic,

nonmagnetic dielectrics:

£ v > = —jer| 1> (1)
a‘—iz- 11> = ~juk| V> (D2)

The matrix L is called the induction matrix and the matrix K is the
induction coefficient matrix.

There are two types of propagation on these lines. If the
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Figure (D1).

Voltage and currents on a MTIL with
a ground plane in the (x-z) plane.

109



dielectric 1s homogeneous, transverse electromagnetic (TEM) modes
propagate. Lf the dielectric is inhomogeneous, hybrid electromagnetic
(HEM) modes propagate [D5]. In HEM mode both the electric and magnetic
vectors have a longitudinal component. At low frequencies, the longi-
tudinal component is small and may be neglected, giving rise to quasi-
TEM modes.
Using the analysis presented by Friedman [D6], the first step is-

to decouple equations (D1) and (D2) by taking derivatives of both sides

and substituting in the same equations to obtain

2
L5 v > = wlLg v (®3)
dz

a° 2

5 [I>= KL 1>, (D4)
dz

As L and X represent stored emergy of a passive network, they are both
positive definite and thus qualify for the method of Friedman [D6].

This method of solution for |[V> and | I> comsists first of obtaining a
set of orthonormal eigenvectors ] ;i> and corresponding eigenvalues

(- Biz) for the matrix B = -wzp_g. Since L and K are positive definite,

2,

LK 1is also positive definite and the Bi s are all positive. The

eigenvalue problem is given by

-wzg_zgi;i>= -sizlci>. (D5)

The eigenvalues may be obtained from

dec[-u’L¥ +8,°11= 0 (06)
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where

<ci$cj> =8y (07)

and 61 iz the Kroneker delta.

3

One may now form a square matrix G whose columns are the [ci>

_G_‘a[ lcl>’ lcz>’o-n’ i‘:N>] (D8)

This matrix may be used to diagomalize B as

2

1.
5]

AZG §_§_-Diag[~82

A% =z 1 ,noc,-B (Dg)

where

GG =1, {D10)
The matrix G is an orthogonal real matrix, (f) denotes the transpose of
the matrix, and I is the identity matrix.

The corresponding eigenvalue problem of the decomposed matrix A

becomes
d2
—5 lt>=afy> (D11)
dz
where
x> =g"|v> (212)

Because of the fact that A is real and diagonal, equation (D1l) can be

decomposed into a second order differential equation for each mode as

2
d 2

7717 7R Yy (D13)
dz

The solution is of the exponential form
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+ -5 - +
yyo=ys e gy IR (D14)

-

CR
Vi
relation can be shown by the usual method of multiplying (D14) with

where Bi = , and v, is the velocity of the ith mode. This velocity

+ .
e jut and then taking the real part in order to obtain the rate of

change of the phase. In equation (D14}, y;- and yi' refer to the

amplitudes of positive and negative travelling waves in the z directioa.

|Y > can now be written as (D15)
> 1]
¥>= 5y lu,> (D15)
a1 171

where [ui>> denotes a column vector having all zero elements except for
the ith element which is unity.
Equation (D12) can now be used to find |V> as

N

lv>= )y iz, > (D16)
(a1t

Similarly, II>> can be obtained from equations (D1} and (D16) as

N d
. -1 ¥4 -1
}1>-izl(3;) (43 )L |¢i> (D17)

The above equation can also be written as

Bi + -jBgz _ - +iByz,,-1i,
(1 [y; e -y e L gy > (D18)

i~

1> =
i=1

From these expressions for voltage and current, the total power

carried on a MIL is the average real power defimed by
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P=3Re<V|[L> (®19)

Suhstituting equations (D18) and (D16) into (D19), P becomes
N

B * -1
P=P§Re{ Z (=)vy, v.<3 ]_I: ]C >} (D20)
{,=1 w i7] i i '

where (*) denotes the complex conjugate. If y£' is equal to zero then
the power travelling in positive z direction iIs
N 8 )
+ . k4  + -
P’ = I Re ’ (-—j—)y“‘y <c{£lic> (D21)
. w 1 73 i h|
i,j=1
It is useful to relate the positive traveling power (P+) to a

power wave (ai) such that
N
+
¥ = ] [a,]? (D22)
j=1

assuming that the travelling modes are orthogondl. In this case, ay is

given by

+
a, = ! //<cilk.ici> (D23)
a7 *

where the Ai's are the eigenvalues of the matrix Lfl. Generalizing, the
total power can be wriltten as

P o= ]

1

I ~12Z

SPEESINES (D24)
1

where the bi's are defined bv
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yi- /
b, = — <z, lagls,> (025) .
i

The voltage vector iV>’ may be written in terms of the voltage

elgenvectors i¢13>, normalized to unity power as

N .
V> [ (P14 p P16 > (D26)
t=1
where
v Ve
[o, > = |z, > (p27)
< ci]ki|;1>

Similarly, }wi>’ is the corresponding normalized current eigenvect..r
giving rise to

N

NI EE bie+jsiz)[¢)i> (D28)
i=1
where
f -2l
;ui>~vi}_ 6, > (D29)

It can be easily shown that

< ¢i‘wj > = oij (D30)
In order to transform from the power wave formulation back to the

desired voltages and currents, one defines two matrices whose columns

are the voltage and current eigenvectors given by

Moo= Clog>,oon, [6g>) (D31)

S
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Moo= Clug >, Jug>) (D32)
From equation (D30), it is easily shown that

.t.
M oM, =L (D33)

and
M, 21; -1. (D34)

In the bounding process of Chapter IV, an inhomogeneous medium
would be replaced by a homogeneous medium with a dielectric constant
less than or equal to the minimum dielectric constant of the inhomo-
geneous medium. This typically leads to the use of a vacuum model

. 2 e 2 w? R
with the (Bi = ——5) replaced by (B° = —7), where ¢ is the speed of
c

Vi
light in vacuum. In this instance, equation (D13) becomes

2
—é—é-yi - -g2 ) (D35)
dz

The corresponding [ci> and |¢i> would also change to account for the

homogeneity.
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APPENDIX (E)

TRAVELING WAVE FORMULATION

The voltages and currents on a MIL as described in Appendix (D)

are
¥ o[ =iz +38,2
[V(z,> = | la, e + b, e
= 1 i
i=1
N | -iB,z +jB.z
(z)> = ) a, e . b, e * ]
. J
i=1 *

b, > (EL)

y,> (E2)

where ]¢i> and iwi> are normalized voltage and current eigenvectors,

a; and bi represent the amplitudes of the ith mode waves traveling in

the positive and negative (z) directions respectively, and (Bi) is tle

propogation coastant of the ith mode.

Using gv and gI matrices as introduced in 4ppendix (D), equations

(El) and (E2) can be written in more compact form as
) * .
[V(z)> = M, [F (2)a> + F(2)[b>]

. ‘ %
[I(2)> = 4. [F (2)]a> - F(2)[b>]
where
jB.z j8.z
F(z) = diag [e i s e e ., € Rl ]
Equations (E3) and (E4) can be written as

W [V(2)> + 1 [ 1(2)>

-

E%;[V(z)> - 1)

]

*® .
F (z)|a> =

12}

F(z) [b> =

[T

LY g L
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In the above formulas, (ai) is the complex amplitude of ith

mode such that the power contained in the positive (z) direction is

+ 1
P, =§-[a

22

5 (E3)

Hence, the entire power transmitted along the positive (z2) directiom

is

+

PTotal 7 <a[a> (£9)

Similarly, the total power contalned in the negative (z) direction is

o —}. Iy 8
Frotal = 3 <b|b> (E10)

wnere 1t 1s assumed that there is no transfer of power among different

it is convenient to introduce a composite MTL, as shown in

Figure (EL), with 24 and Z, impedance matrices respectively located at

3

z = Z& and z = ~ﬂ3 with respect to the origin where the source is
coupled to the MTL [El]. The amplitudes of the ith wmode introduced by

the source are ay and bsi' The total amplitude a, of the ith mode

consists of 3.4 due to the source and the reflected bs* coming from

-

the leit hand termination at z = -ZB. From equations (E6) and (Z7)
the following relations can be obtained:
! 10+ el
ja(g,)> = E-tgzlv(ﬁa)> + ﬁv"(£4)> (ELL)
| L.+ leip i
b(2,)> = 5 {}11“’("*4” - lTe)e] (E12)
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Figure (El). Terminated MTL with a source located at z=0 [El].
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By Ohm's law, one obtains

lvg)> = z,]1eg))> (E13)
Combining equations (E1l), (E12), and (E13), one obtains

[b(2,)> =1, ]a(g,)> (E14)

where EA is called the reflection matrix given by

N

. + + v =1
L= gz - Dz + I (£15)

The matrix ', may contain non-zero off-diagonal elements creating

4

mode coupling. Similarly, at z = —53, one can obtain

ia(-£3)> = E3Ib(-£3)> (EL6)
where
)—l

Ly= (2 - 1z + 2 (E17)

One can also look at the problem in time~domain assuming that the
quasi~TEM waves are non-dispersive, and each mode 1s launched and
transmitted without a distortion. Assuming that the starting ampli-
tude at (z=0) 1is denoted by aio(t), then at z = £, the amplitude

4

becomes

¢

4
aia(c) =a, |t~ —; (E18)

t
N

where v, is the velocity of the ith mode. 7If the load network consists
do
of passive elements such as capacitor and inductors, the shape of the

reflected waves will be distorted as compared to the incident waves.
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APPENDIX (F)
COUPLING COEFFICIENTS FOR TRANSVERSE ELECTROMAGNETIC (TEM)
MODE EXCITED BY LOCALIZED CURRENT SOURCES
Figure (Fl) represents an electric current source } located inside
a parallel plate waveguide which produces ocutgoing waves that carry
energy to ports Zl and 22. The total electric and magnetic fields

traveling in the positive z direction have been derived by Collin [Fl1]

as
@ ~i8 z
E¥= 7 cF (@ +8 e O (F1)
a n nz
n=1
. @ "j B FA
E = 7 5 R +8 He O (F2)
a=l I n nz

+
where n stands for the nth outward propagating mode, <, is the wave
amplitude, and Bn is the nth mode propagation constant. . he vectors
- -

e and h1 are normalized transverse electric and magnetic fields of the

nth quasi-TEM mode and are real functions normalized to unit power as

f (egxB_ ) - ds=s_ (F3)

s

where § is the Kroneker delta and s is the cross section of the wave-
guide. <Collin has used the reciprocity theorem for Figure (Fl) and

has obtained

Je B 4gv (F&)

where the volume of integration encloses the current J.
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The above method can be used 1in aperture problems where a wire 1s

located behind a conducting screen a: shown in Figures (F2). The
incident field from exterior region produces both a radiation field
and a guided transverse electromagnetic wave (TEM) in the interior ‘
region. The radiation field (Erad) radizres inte a free space and
the TEM wave propagates along the wire. In order to use the method
of Collin, one wmust assume that the radiated field is negligible.
Kajfez ([F2] has attempted o justify this assumption in his coupling
formulation [F2]. Davis [F3] has also compared the radiated and the
transmitted TEM energy for such problems to justifv the assumption
that only TEM modes need to be considered.

Shown in Figure (F3) are the electric and magnetic dipoles above

a cleosed aperture which replace the aperture. The discussion of the

dipole equivalence in aperture problems is formulated in Appendix (B).
The situation in Figure (F3) is entirely the same as Figure (Fl) with
. . +m +e . c .
the two dipoles J_ = and JS being the effective sources. Now, oune
p=}

can apply the reciprocity method of Collin to obtain

(B 30 - -3%)e " s (F5)

Pk

;
i
|
i

Aperture

wher2 the integration is over the surface of the aperture.

The computation is simplified if the source currents are assumed

to take a Dirac delta distribution form of 3(x) and 3(z). For such a

distribution equations (Bll) and (Bl2) become
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Js = §{x - xo) §(z - zo) (F6)
3;3 = Ze d(x = xo) 8(z - zo) (F7)

Substitution of equations (¥F6) and (F7) in (F5) gives

- eyn(xo, 0} ¢ (F8)

n mxX

+ig 2z
+ 1 n O
c 7 e [hm(xo, 0) ¢ ey

Similarly, one can show that

t-—hxn(xo, o) me - eyn(xo, 0)) Cey:] (F9)

where the minus on hxn(xO’ 0) and in the exponent are due to the
reference direction for propagation in the (-z) direction. Equations
(F8) and (F9) completely define the source coupling to a wire behind

an aperture.
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