ERaerer—— |

Interaction Notes
Note 411
December 1981 '
POLE EXTRACTION IN THE FREQUENCY DOMAIN
Thomas B.A. Senior and Jeffrey Pond

Radiation Laboratory
Department of Electrical and Computer Engineering

The University of Michigan
Ann Arbor, Michigan 48109
Abstract

An investigation has been carried out to examine the practicality
of extracting the SEM poles for scatterers from measured frequency
domain data. The ultimate objective was to determine the poles, coupling
coefficients and modes for a B-52G aircraft using data for the surface
currents and charges measured using ¢ small scale model, but this was
not achieved. Three curve fitting and pole extraction algorithms were
examined, and one of these was quite successful in fitting data. This
particular program was applied to artificially generated data and to the
measured longitudinal currents on a cylinder. Unfortunately, only the
lowest order pole (at most) showed the positional invariance in the
complex s plane required to separate the true (but unknown) poles from
those generated by the curve fitting process. A detailed siudy using
exact, artificially degraded and measured data for the surface fields
on a sphere confirmed that accuracy of curve fit is not itself a
guarantee of accuracy of (true) pole extraction, and showed that a
relatively small amount of noise or other data degradation greatly
affects the accuracy with wi-ich the poles can be located. When the

same algorithm was applied to measured data for the B-52G for a




variety of incidence angles, not even the Towest order pole could be

found with sufficient accuracy to justify acceptance of the residue.
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CHAPTER T: INTRODUCTION

The singularity expansion method (SEM) is based on the analytic
properties of the electromagnetic response of a body as a function of the
complex frequency s. For a passive body the singularities are confined
to the left half of the complex s plane, and a knowledge of these
singularities can serve to characterize the response to any excitation.
If the body is finite and perfectly conducting, the only singularities
in the finite part of the plane are poles, which are simple and occur in
complex conjugate pairs (Baum, 1976: Sancer and Varvatsis, 1980), i.e.,
are symmetrically placed with respect to the negative real s axis.

It is fundamental to SEM that the poles are independent of the
mathematical representation of the response and are a property of the
body alone. In particular, their locations (but not the residues) are
unaffected by a change in the illumination, and if a collection of poles
is extracted from computed or measured data for the response, the SEM
poles can be distinguished from numerical artifacts by their positional
invariance. Cataloging the true poles is therefore a simple method of
summarizing information about a body, and their extraction from measured
data could serve as a means of target identification.

Theoretically any target response to a time harmonic field

such as the surface current density is expressible as a residue series




in the complex frequency s (= ¢ + jw) plane, where w is the circular -

frequency and the s, are the SEM poles representing the complex

natural frequencies. Each residue can also be written as the product
of a natural mode factor which is a function of position on the target
and a coupling coefficient which depends on the incident field. When
the target is illuminated by an electromagnetic pulse (EMP) which has

a broad frequency spectrum, the degree to which the natural frequencies
are excited depends on the coupling coefficients which are themselves
functions of the angle of incidence and the polarization of the incident
illumination. To determine the 'optimum’ EMP simulation for the target,
it is therefore important to understand this dependence. Moreover, if
the natural frequencies and their coupling coefficients could be

found, it might then be possible to develop an equivalent circuit which,
when driven with the appropriate input waveform, could produce the

same transient field as an EMP excitation.

Given data of sufficient accuracy for the frequency response, it
is feasible that the SEM poles could be extracted and the residues
decomposed in the manner indicated above. For most targets of practical
interest, however, the only data available are experimental in origin,
and it is by no means evident that all (or, indeed, any) of the
analysis is still feasible. The objective of the present project was to
attempt the analysis using data for the surface fields on a B-52G
aircraft obtained from scale model measurements made in the Radiation

Laboratory's surface field facility. Some data were available from a

prior study (Liepa, 1980), but to the extent necessary it was required

that additional data be gathered.
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The initial and vital step on which all others in the sequence
depend is the extraction of the SEM poles. The mathematical procedure
is to fit the frequency response data using a rational function or its
partial fraction expansion and to distinguish the true (SEM) poles from
those generated by the curve fitting process by their positional
invariance to a change in the excitation conditions. Several numerical
algorithms exist for fitting the data. One of these is an iterative
method developed by Sharpe and Roussi (1979) and based on a technique
of Levy (1959). It is essentially a least squares method that fits the
data with a rational function from which the poles and residues are
then computed. The iteration linearizes the calculation and also
reduces the excessive weighting of the higher frequencies that a
straight least squares computation normally produces. Although the
program is relatively inefficient, it had been our intent to rely
exclusively on this; but at the beginning of the project difficulties
were experienced in implementing the necessary extensions to the basic
program described by Sharpe and Roussi. In the meantime we had been
provided with an alternative program written by Dr. H. J. Price of
the Mission Research Corporation which was considerably more
efficient. The decision was made to use this instead.

The initial version of the program was dubbed MRC1 and used only
the real part of the frequency response, but it was felt that useful
experience could be gained by applying this to existing measured data
for the B-52G aircraft. The program duly provided a fit to the data

and yielded poles and their residues, but as we explored the effect of



such parameters as the increment in frequency, the number of data

points used, and the value of Woo g o certain peculiarities revealed

ax
themselves. In particular, the results obtained were extremely
sensitive to the magnitude of @y and differed substantially
according to the manner in which the frequency was normalized.

So began an exercise in frustration, part of which is documentec
in Chapter 2. In an effort to resolve the problems, we now resorted
to numerically generated data for specific rational functions whose
poles and residues were known precisely. Sometimes the program
accurately determined these and others not, and there seemed no logic
to the successes and failures. Since we could discern no fault in
the program itself, we had to believe that numerical round-off errors
were responsible; and when we received the improved version (MRC2) of
the program which accepted data for the real and imaginary parts of
the frequency response, we turned to a CDC computer for which the
program had been written rather than an Amdahl 470/V8 on which the MRCI
had been run. Unfortunately, neither the new program nor the new
computer helped. A variety of techniques were tried some of which are
described in Chapter 2. A1l were unsuccessful and when the extended
version of the Tess efficient but more direct Sharpe-Roussi program
became available we transferred our attention to 1it.

The program had no difficulty fitting the computer-generated
data with which the MRC2 program had struggled, and the poles and
residues were accurately recovered. To test its performance in a more
realistic situation, the program was then applied to measured data

for the surface fields on a metal cylinder for a variety of
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excitations. In each case a reasonable fit to the measured data was
achieved, but there was no consistency in the pole locations. Indeed,
the poles wandered to such an extent that it was impossible to
distinguish the true poles from those generated by the curve fitting
processs and though there were certain groupings that were believed to
be associated with SEM poles, the spread was too large to justify an
analysis of the residues.

It was once again time to retreat and consolidate. To better
understand the capability of the program and, in particular, to appreciate
the manner in which the orders of the rational function polynomials and
the frequency span of the data affect the accuracy of the extracted
poles, it seemed appropriate to examine the frequency response for a
body whaose poles and residues are known precisely. One of the few
bodies for which this is true is a sphere. The results of applying the
program to computed data for the surface fields on a perfectly conducting
sphere are presented in Chapter 3. For 'exact' data accurate to six
decimals, the program successfully extracted a handful of the dominant
poles and determined their residues; but as the accuracy of the data was
reduced, the accuracy of the results progressively decreased. Indeed,
for data accurate to two decimals, only the dominant pole was located
with sufficient precision for its residue to be accepted. The results
obtained by adding noise to the computed data or using measured data
were similar: only for the dominant (lowest order) pole was the
information meaningful, and filtering the data produced no improvement.

The investigation described in Chapter 3 represents one of the

major accomplishments of the project. It showed that the accuracy of
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curve fitting per se is not a measure of the accuracy with which the
true SEM poles can be located, and a relatively small amount of noise
or other degradation of the data has a major effect on the determination
of the pole locations and their residues. In fact, with less noise than
is typical of the best experimental data, only the dominant pole would
be located with sufficient accuracy to justify a consideration of its
residue. This finding agrees with the conclusion of our earlier study
of the cylinder and was expected to hold in general; but since the
sphere is a very special shape (and a less resonant one than, say, a
thin cylinder), it was felt prudent to re-examine the cylinder data
using those program parameters which had been found most effective in
analyzing the sphere. The results are summarized in Appendix A and
are virtually identical to those obtained earlier. Although it is
possible to associate a particular grouping of extracted poles with
a true SEM pole, the spread in pole Tocations is too great to ascribe
any meaning to the residues computed. A brief and semi-quantitative
discussion of the manner in which an error in pole location affects
the residue is given in Appendix B.

While the sphere study was being completed, the surface fields
on a scale model of the B-52G were measured at several locations on the
aircraft, each for a variety of illumination and/or polarization
conditions. With a heavy heart we now turned to the analysis of the data.
There were no surprises, and only the dominant pole could be located.

A selection of the data and a discussion of the analyses performed

are given in Chapter 4.



CHAPTER 2: APPLICATION OF THE MRC PROGRAMS

Our original effort toward curve-fitting and the location of
poles and residues was through the use of a program known as the Sharpe-
Roussi program, written at the Radiation Laboratory. The Sharpe-Roussi
program, however, was still in the process of being debugged when a
complete program was supplied by Mission Research Corporation; it was
therefore decided to use the latter program.

This first MRC program used only the real part of the data, which
made it somewhat suspect; there was also some difficulty with ensuring
that the poles and residues were generated in conjugate pairs. Before
the program could be thoroughly evaluated, a second program was received
from MRC and became the principal subject of investigation; it is
referred to hereafter as MRC2.

The MRC2 program calculates a least-squares fit of a rational
function to complex data in an indirect manner. After multiplying
through by the unknown denominator to linearize the problem, the

objective is to minimize separately the real and imaginary parts of
F(jw-i)D(jm-l) = N(Jw-i) ’ i = ]92)---:M

where F(jwi) is the given data, D(jwi) is the denominator, of order N,
and N(jmi) the numerator, of order N + 1. Separating real and imaginary
parts yields an overdetermined system of 2M equations in 2N + 3 unknowns,

which can be written in the form



Aa = 6

where A is generated from F(jw), a is a vector of the unknown rational

function coefficients, and § is a vector of residuals which is to be

minimized. Taking the inner product gives
§°8 = atAtAa = atDa

To add the constraint

a Lagrangian multiplier is used and derivatives with respect to the

coefficients are taken of

atDa - x(ata - 1)
After some manipulation this yields

Da - 2a = 0

Thus the A's and a's are, respectively, eigenvalues and eigenvectors

of D. Further manipulation gives
atDa -2 =0

Since it is desired to minimize atDa, the smallest eigenvalue is
chosen; the corresponding eigenvector gives the coefficients of the
desired rational-function approximation.

After the necessary editing and debugging to adapt the program

to our system, it was checked using a test function of the form
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_ o * +25 + 3

o S ™ So

Runs were made with Aw constant at 1.0 and the number N of data points
(and thus mmax) varying over 5,10,20,50,100. The best match was
obtained for N = 5.

The test function was modified to the form

1 + 31 + 0.5

s + 0.5 -j2 s +1-38 " conjugates + 1.0

The various parameter combinations tested and the results obtained

are summarized in Table 2.1.

Table 2.1
AN 5 10 20 40
1.0 w =5 w =10 w = 20 w = 40
max ma X max max
Adequate Excellent Excellent Very good
0.5 -—- w =5 w = 10 w =
max max max
Excellent Excellent Excellent
0.25 -— - w = b w = 10
ma x max
Excellent Excellent

From these results it was concluded that Aw was not critical so long as
the function was adequately sampled. The case of N = 40 and Aw = 1.0
was not as good as most of the others; it was felt that this was

probably due to the large value of CH
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Taking the case N = 20, Aw = 0.5 as a reference and keeping
N constant at 20, the pole locations, residues, and Aw were scaled,
first by a factor of 5 and then by a factor of 100. With the scale
factor of 5, poles and residues were calculated with an accuracy of
3 significant figures; with the scale factor of 100, to within 10 to
15 percent. It was thus concluded that a reasonable amount of
scaling was permissible but that a definite dpper 1imit existed.

A more realistic test function, with five conjugate pole pairs,
was then constructed and the program modified to accommodate it. The

poles and residues of the new function were:

Pole Residue
-0.5 * j2.0 2.0 % j0.1
-0.15 ¥ j6.0 2.5 % 30.8
1.6 1 312.0 051 j2.5 Constant = 2.0
2.0 ¥ j16.0 1.6 ¥ j1.8
-10.0 T j20.0 0.2 ¥ j0.4

This function was used for three different test runs, all with 800

data points and 11 poles, with Aw (and thus w___) and the pole position

max
scale factor ranging over two orders of magnitude. The results were
extremely poor; none of the poles were located.

The test function was run again, with 80 data points. One
pole was located with reasonable accuracy, although the residue was
about 20 percent in error. A similar run with 15 poles was expected

to give similar results with additional poles having small residues,

but did not correlate with the previous run at all.
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As it was felt that either N or Wnax Was the 1limiting factor,

the program was run again with N = 20 and Aw = 1.0 (wmax = 20) and

N =20, Aw = 0.5 {(w = 10). For the first case, the lowest pole

max
was located within about 2 percent and the residue within 10 percent.
Although no other poles were located, the constructed function agreed
quite well with the test data. For the second case, the first pole
and its residue were found exactly, no other poles were found, and
the constructed function agreed with the test data to five significant
figures.

It was apparent that more insight was needed into the effects
and interactions of the various paramters. These parameters were N,

the number of data points; Aw, the frequency increment; w the

max’
maximum frequency; NP, the number of poles in the approximating

function and the scale factor. Accordingly, a series of tests was
devised to vary each of the parameters independently, to the extent
possible. The earlier, two pole-pair, test function was used, as good
results had been obtained previously with this function.

The first test runs gave results which did not agree with those
previously obtained. It was at this point that an error was discovered
in the program. The error was corrected, but all the results from the
five pole-pair test function were invalidated.

Using the two pole-pair test function, the following tests were
made:

1. To check ©ax? keep N constant and scale Aw, the pole positions,
and the residues. Scaling by a factor of 10 caused no change; scaling
by 100 caused only 1 to 2 percent change. It was concluded that w

max
was not a critical parameter.
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2. To check N, multiply N and divide Aw by the same factor. This
was tried with a factor of four, producing no change and leading to the
conclusion that N was not critical.

3. Since the test function was fairly constant over much of its
range, the poles and residues were scaled by a factor of ten to concen-
trate the program on the "interesting" part of the function. This
produced no change, indicating that the "constant" section of the
function was not causing difficulty.

4. When NP was set equal to 11, the "real" poles and residues
were calculated accurately. "False" poles were generated but their
residues were at least four orders of magnitude smaller. It was
concluded that NP, as long as it was made sufficiently large, should
not cause problems.

5. To test the program capability at locating "weak" poles, the
residues were scaled by a factor 0.01. The poles and residues were
calculated to within 2 percent of the correct values.

The test procedure was quite inconclusive, in that none of the
parameters had any appreciable effect on the performance of the
program.

The five pole-pair test function was again tried, with N = 800
and Aw = 0.1, 0.01, and 0.001, with the poles and residues correspondingly
scaled. None of the poles were located in any of the three runs.

The two pole-pair function was tried again. With N = 800,

Aw = 0.025, o T 20, the poles and residues were calculated correctly.

With N = 20, aw = 1.0, Woax o 20, and the poles and residues scaled

ax
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down by a factor of 0.1, none of the poles were found. In this latter
case, because of the scaling, a substantial part of the data record
was almost constant; it was believed that this was the cause of the
difficulty.

The constant was removed from the test function and the program
run with N = 20, Aw = 0.1, which gave results accurate to 3 percent,

and with N

H

20, Aw = 1.0, and the poles and residues scaled by 0.1
which gave totally inaccurate results. It was felt that Aw was too
large for the rate of change of the function.

Using the same parameters of the first run above, but with the
constant term set to 1.0, the poles were not Tocated, indicating that
the constant was indeed the source of difficulty.

The five, pole-pair test function was tried again, with the
constant term set to zero. The results, although somewhat better than
previous runs, were still insufficiently accurate to be of use. There

was, however, some tendency toward accuracy as w was decreased,

maXx
leading to the conclusion that sampling a large part of the constant
region was undesirable, even if the constant was zero.

A measure of success was attained using N = 50, Aw = 0.1,
Orax = 5.0; the two lowest poles and their residues were calculated

within 1 percent. With N = 800, Aw = 0.025, Wnax = 20 four poles were

ax
located within 2 percent and their residues within 5 percent. 1In both
cases, the program located poles with imaginary parts less than Whax
and tended not to locate poles with imaginary parts greater than W
Since the program did not appear capable of accurately calculating

more than one or two pole-pairs per run, specifically those whose
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imaginary parts were in the frequency range scanned, it was decided
to use a "windowing" technique, examining relatively small, overlapping
frequency intervals.

After a number of false starts, the windowing technique was
implemented and a number of runs made with test data. All the runs used
Aw = 0.1 and a 50 percent overlap between successive windows; the number
of points per window was varied from 20 to 50, with and without a constant
term in the test function. With two exceptions, the poles were located
within ten percent of the correct locations and the residues determined,
although somewhat less accurately, particularly in regard to the angle.
It did not appear, therefore, that window size was a critical parameter
as long as it was kept reasonably small. In the two exceptions mentioned
above, three pole-pairs were located and the fourth was not; in one case
the test function contained a constant and in the other it did not, so
the constant could not be considered the source of difficulty.

Since the windowing technique was producing generally satisfactory
results it was decided to continue with it. A decision algorithm was
formulated: if a pole appears in two (or more) successive windows within
*10 percent of the same location it is a "real" pole, and its location
and residue are taken as those generated in the window in which the pole
is most nearly centered.

A1l of the testing of the window technique thus far having been
done with smooth, highly accurate test data, the data was perturbed
to simulate noise in experimental data. This perturbation consisted of
the addition of a small, cosinusoidally varying term to the real part
and a corresponding sinusoidally varying term to the imaginary part.
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For this data the smaller window (20 points, Aw = 0.1) was definitely
superior; two poles and their residues were located accurately and the
imaginary part of the third was also found, although the real part

and the residue were grossly inaccurate.

The test function was modified slightly to make the dominant
pole less dominant and run with "noise" amplitudes of 0.07, 0.02, and
0.00. In the noisy cases only one pole was located, although it was
located quite accurately, as was its residue.

Since the program obviously could not handle noisy data, it became
necessary to filter. (It should be noted that while true least-squares
fitting is itself a smoothing process, rational function fitting
invariably involves a modified least-squares procedure and tends to be
somewhat ill-conditioned.) An eighth-order filter with a cutoff of 110
cycles/plot was tried. There was considerable ringing in the filtered
data due to the discontinuities at the ends of the data record; this
was smoothed by eye. The results from the filtered data showed only a
slight improvement; two poles were located with good accuracy, although
the residue of the second one was in error by about 50 percent.

Surprisingly, when the same data was run with a much larger
window encompassing all the poles, the results were much better. All
the poles were Tocated within about 10 percent and residues within
about 20 percent. The small-window approach, which worked well with
smooth data, was less effective than the large-window method for noisy
data. This was confirmed by another run with a noise amplitude of
0.07; although the accuracy of the pole locations was poor, they were

at least identifiable . The noise thus remained a major problem.
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Since experimental data could not be expected to be accurate
to more than one or perhaps two decimal places,! test data files with
data rounded to varying degrees of accuracy were generated and tested.
With one decimal place accuracy and small {20 point) windows, only the
first pole was Tocated, although it was located quite accurately both
as to location and residue. The run was repeated with two-place data
with essentially the same results, although in this case the fourth
pole was identifiable, with about 15 percent error.

The same two data sets were tried with large (200 point) windows.
With two decimal-place data, all the poles and residues were found within
1 percent. With one-place data all the poles were found within 15
percent in the worst case and 7 percent in the best case; the residue
accuracy was not quite that good and tended to correlate with the
accuracy of the corresponding pole. This last result was to be
expected; if the pole location is incorrect, the residue must change
to fit the data. These test results are summarized in Tables 2.2 and 2.3.

These results clearly indicated that noisy data must be filtered.
As the filtering procedure was being implemented, work was also
progressing on another curve-fitting routine, the Sharpe-Roussi program.
This is a more direct, though less efficient, least-squares procedure.
Since the Sharpe-Roussi program subsequently proved more accurate than

the MRC2, further work on the latter was abandoned.

1Typically the best experimentally obtained frequency domain data is
limited to an accuracy of at most 5 percent which, for a response
comparable to unity, translates into one or two decimal accuracy.
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Table 2.2

Large Window Test Results

Pole -0.4%j2.0 -1.5%356.0
Actual +
Residue  2.0230.1 2.5%30.8
Noise Amp. 0.0 -0.39%j2.0 -1.47%36.0
1.9%50.12 2.4%50.74
. + ., + .
Noise Amp. 0.02 -0.39 -j2.2 -1.6-j6.2
1.7%50.56 2.8730.29
. +. + .
Noise Amp. 0.07 -0.2-32.75 ~-1.7-37.9
0.42%31.1 0.43%352 .4
1 Decimal Place -0.365j2.3  -1.7236.5
1.4%50.78 2.8%50.25
2 Decimal Places -0.473j2.0 -1.5%56.0
2.0%51.3 2.5%50.79
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-1.6%312.0

0.05%32.5

-1.6%512.0

-1.5%52.5

-1.6%512.2
0.47%52.6

-1.7%51300

2.4%51 .6

-1.6%3512.3

0.7%52.4

-1.6%312.0

-0.065%32.5

-2

-2
-1

.0¥316.0

.6¥31.8

.0%3516.0

.6%31.9

.9 T316.0
5¥i1.5

.2%516.0

.89%30.59

.9%315.9

65351.4

.0%516.0

6%51.8



Table 2.3

Small Window Test

Pole -0.4%52.0 -1.5%36.0
Actual + +
Residue 2.0-3j0.1 2.5-30.8
. +, +,
Noise Amp. 0.0 -0.4-3j2.0 -1.6-j6.0
2.0%50.11 3.0551.2
Noise Amp. 0.02 -0.4%32.0 ---
2.0%350.097
Noise Amp. 0.07 -0.4¥352.0 ---
2.0%50.08
1 Decimal Place -0.4fj2.0 -
2.0%51.2

2 Decimal Places -0.4051j2.0 -
2,04%50.115

-20-

Results
-1.6%512.0 -2.0%316.0
0.05%52.5 1.6%51.8
-1.7%512.0 -2.1%515.8
-0.32%52.8 2.5%51.4



CHAPTER 3. APPLICATION OF THE SHARPE-ROUSSI PROGRAM TO SPHERE DATA

3.1 Introduction

The Sharpe-Roussi program for determining the SEM poles from
frequency domain data was developed by the Radiation Laboratory and is
an iterative technique based on that of Levy (1959). It is essentially
a least squares method that fits the data with a rational function from
which the poles and residues are then computed. The program was
initially applied to measured data for the axial current on a thick
cylinder over a frequency range spanning the first five longitudinal
modes. In every instance the rational function gave an excellent fit
to the measured data, but of the poles extracted, only the lowest order
(dominant) one was positionally invariant.

The extent to which the lack of success was due to the program
itself, the selection of such parameters as the sampling interval and
the order of the rational function, or to the noise and other
inaccuracies in the measured data, was not apparent. 1In the time
domain it is found (Cho and Cordaro, 1980) that pole extraction is quite
sensitive to noise. To see if this same sensitivity exists in the
frequency domain and, at the same time, gain experience in the appli-
cation of the program, it is helpful to consider data whose accuracy
can be controlled. The only finite body whose frequency response is
easily obtained to any accuracy desired is the sphere, and in the
following sections we consider the determination of the poles and

residues from frequency domain data for the surface fields on a
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perfectly conducting sphere. For this body the SEM poles and
residues are known precisely. After a brief description of the
numerical algorithm and the computation of the exact surface fields,
poles and residues (Section 3.2), the extraction of the poles and
residues from the frequency response data is discussed (Section 3.3),
along with the influence of the various parameters in the algorithm.
In Section 3.4 we then consider the effect of noise and other data

inaccuracies on the pole extraction process.

3.2 Formulation

Over any finite frequency range the electromagnetic response of
a body can be approximated by a rational function whose poles can be
found. It is assumed that a subset of these approximate the SEM poles
which are dominant in this frequency range and can be distinguished by
their positional invariance to a change in excitation of the body. It
follows that the most effective pole extraction procedure is one that
accurately determines the SEM poles and maximizes the subset.

Given a (complex) frequency response F(mQ) where w,, £ = 1,2,...,L,
are sampled (real) frequencies, the numerical algorithm employed fits this
with a rational function

a_ tawt+ ... +taw

N(w) - 0 1= o m < 1
D(u)) bo Fobpet ...+ N mn (m___n) . ( )

The initial curve fit is obtained when the error

< )

L
ZEEN [o(wl)p(mn) - )|
2=
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is minimized, subject to the constraint bo = 1.0 by solving the

simultaneous set of equations

-0, =00,..m
J
EE_. = 0 . J='|,2,...,n
Bbj

for the coefficients a\j and bj' The square of the resulting denominator
is then used as a weighting factor in a further application of least
squares to improve the rational function fit, giving rise to an iterative

procedure. At the kth stage of iteration, the coefficients are obtained

-1
{q‘(%m%) . Nkmg)} {nk_l(w }

and so on until the error is less than a pre-specified value.

by minimizing

o3

L 2
=1

A program has been written to implement this curve fitting routine.
Apart from the frequency range and the sampling interval which are in
general determined by the data at hand, there are three parameters which
must be chosen at the outset. They are the orders of the numerator and
denominator polynomials, M and N respectively, and the maximum allowed
error which terminates the iteration. At the conclusion of the program,
the poles and resjdues of the rational function approximation are computed.
The process is then repeated using other (distinct) data for the
response of the same body, and those poles which are common to most of

the results are identified as SEM poles of the body.

-23-



To better understand the limitations of the method and to gain

experience in the selection of the parameters involved, it is helpful

to consider data for a frequency response whose poles and residues are

known precisely. This is true in particular for the surface field on a

perfectly conducting sphere.

A sphere of radius a is illuminated by the plane wave

iwx/c ol iwx/c

Blo- Xe , H = -§Y e
propagating in the direction of the negative z axis of the Cartesian
coordinate system (x,y,z). Y is the intrinsic admittance of the
surrounding free space medium, ¢ is the velocity of light in vacuo,
and a time factor eiwt has been assumed and suppressed. If (r,6,d)
are spherical polar coordinates, the tangential components of the

total magnetic field at the surface r = a are

P‘l)(cos )

V)5 3 ity [ ey

+ ——f—i————— i—-Pr(]l)(cos e)} (3a)
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n=1 [

. ; Pﬁl)(cos e)}
(2) fuwa sin 6
()

where Pgl)(cos 8) is the Legendre function of degree n and order unity

T (ﬁ_a ’e) oy i ) {g(z)l Eﬁﬂ) %Epfll)(c"s )
n

(3b)

as defined by Stratton (1941, p. 401) and
ar(lz)(X) = xhr(lz)(X) s E,(IZ)'(X) = %;{xh,(]z)(X)}

where hﬁz)(x) is the spherical Hankel function of the second kind of
order n.

By appropriate truncation of the infinite series representations,
it is a simple matter to compute T1 and T2 to any desired accuracy. A
program was available (Senior, 1975) for the far zone scattered fields
of a sphere and this was modified to compute Tl and T2 for & = 0(45)180°
and 0.2 < wa/c < 7.0 to six decimal accuracy. In the limit as o > 0,
Tl(O,e) = -(3/2)cos 8 and T (0,8) = -3/2.
(2

The functions £ )(x) and gﬁz)l(x) are proportional to polynomials
in x of orders n and n+l respectively whose zeros are the SEM poles.

In terms of the complex frequency s = iwa/c, the polynomials have
positive real coefficients which ensures that all zeros lie in the left
half plane, and those which do not lie on the negative real s axis

occur in complex conjugate pairs. As shown, for example, by Martinez

et al. (1972), the zeros can be arranged in layers lying successively
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further from the imaginary s axis. When ordered from the right, the
odd {even) numbered layers are the electric (magnetic) mode resonances
£Z)|(-is)and ggz)(-is) respectively. 1In
general the dominant SEM poles are those in the first (2 = 1) layer,

produced by the zeros of ¢

and the nth pole numbered up from the negative real s axis is a zero of

Eiz)'(—iS).

T and T2 can be expressed as
1

= RM(e) R"
Tl('isae_) = z g’l_—s_ ’ TZ('isse) = Z sz‘fez (4)

m
m=1 m=1

where the s_ are zeros of either gﬁz) (-is) or ggz)(-is), and
RT(e) and RZ(e) are the residues of T1 and T2 respectively at s = s_.

The residues can be found by computing

%g-i}is Egz)'(—is)} R %g‘ {;is gﬁz)(-is)}
s=s s=5

m m
and then dividing these into the quantities

.n+l 2n + 1

n(n + 1) Fn(e)

1
where Fn(e) is either (3/ae)P£ )(cos 8) or Pﬁl)(cose)/sin §. For
o = 0 the poles and residues of the first six poles in the first Tayer

are given in Table3.1. For comparison we note that for the first pole

(at s = -1) in the second layer, RI(O) =R (0) = -i0.551819.
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Table 3.1: Exact poles and residues for first layer poles

m s R':(O)

1 -0.500000 + i0.866025 -0.0946447 - i0.516674
2 -0.701964 + i1.80740 0.633323 - i0.0853256
3 -0.842862 + i2.75786 0.0802221 + i0.733736
4 -0.954230 + i3.71478 -0.822075 + i0.0767481
5 -1.04764 + 14.67641 -0.0741270 - i0.901805
6 -1.12891 + i5.64163 -0.0664705 + 10.223154
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3.3 Exact Data Analysis

The curve fitting algorithm was applied to the computed data for
T2 as a function of frequency in an attempt to extract a handful of the
Towest order SEM poles. The objective was to locate 4 or 5 pole pairs
with sufficient accuracy to leave no doubt as to their identification
as SEM (rather than curve fitting) poles, and to allow us to determine
the 6 dependence of their residues. Data were available for 0.2 < wa/c
< 7.0 in increments of 0.1 and 0.02, and in the expectation that the
poles which could be accurately located would be the dominant ones with
Im Sm within the frequency range covered by the data, it was anticipated
that most (if not all) poles would Tie in the first layer.

To apply the algorithm there are a number of parameters which
must be chosen, some of which relate to the data and others to the
curve fitting process. Regarding the data, there are the minimum,
maximum and increments of wa/c and, in our case, the choice of phase
reference for the freguency response. Since our concern was with the
lower order poles, it was natural to choose min wa/c to be the smallest
value for which data was available, namely 0.2; and to avoid handling
more data than was clearly necessary, we initially selected max wa/c = 4.0
with increments of 0.1. The computed data of Section 2 are phase-
referenced to a plane perpendicular to the z axis through the center
of the sphere. For all o except n/2, arg T2 varies almost linearly
as a function of frequency, and this translates into a roughly
sinusoidal variation of the real and imaginary parts which are the

inputs to the curve fitting process. The variation is greatly reduced

-728-



if the phase is referenced to the point on the surface of the sphere
where the field is computed, and since it is natural to expect that a
smooth curve can be fitted more accurately than a rapidly varying one,
arg T2 was increased by wa/c cos 8 prior to the application of the
algorithm. Once the curve fitting was accomplished and the poles and
residues determined, the phase reference was returned to the original
Tocation.

Three parameters involved in the program itself are the orders
M and N of the numerator and denominator polynomials and the maximum
allowed error Emax” Since the set of SEM poles is infinite in number
and the response remains finite as wa/c » =, it would seem that the
accuracy of curve fit should increase with M and N, and that a logical
choice would be M = N. Numerically, however, problems are experienced
when M and/or N are large due to the finite range of numbers that any
computer can handle, whereas if N is small there are too few poles
available to simulate the data. It was therefore anticipated that
there would be an optimum range of N and, perhaps, M depending on
the frequency span of the data and the particular characteristics of
the computer.

The error Emax relates to the convergence of the iterative
process and is not directly a measure of the curve fit nor, of course,
the accuracy of pole extraction. When running the program, Emax was
set at 10_8 and the jteration was terminated when this value was
achieved, or after 20 iterations, whichever came first. In many
instances the maximum allowed error was not obtained, but the curve
fit was still excellent. As a measure of the curve fit we therefore

computed
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N(w) \

L
e T Ly [Py - (5)

=1

(c.f. (2)), where the polynomials are those obtained from the final
iteration, and recorded this quantity. Due to the limited precision

with which the datawere stored, any value of Efit less than 0.25 x 10-7

was shown to be zero. Since the curve fit was excellent in most cases.
it was not unusual for this to occur.

A1l of the initial runs were carried out for 6 = 0 (for which
T2 = Tl). It was found almost immediately that numerical difficulties
arise if N exceeds (about) 25, and if M = N, these problems can occur
for M,N as small as 18. 1In either instance the exponential range of
the computer (Amdahl 470/V8) was exceeded. We therefore chose M < N,
and because of the restriction on N, 1imited the frequency span of the
data to wa/c < 4.0 to allow for a reasonable number of curve fitting
poles in addition to the SEM poles that were sought.

Figure 3.1 shows the curve fit to ,F<w2)' for 9 = 0 and
hwa/c = 0.7 with M =7 and N = 8. The criterion for Emax was met

-3

and E... = 0.25 x 10 The extracted pole locations are shown in

fit
Fig. 3.2, and we observe that three of the poles vaguely resemble the

first three SEM poles, more closely as regards Im Sm than Re Sm

The agreement is better if M = 9 and N = 10, and better still if M and
N are increased to 11 and 12 respectively {see Fig. 3.3). We are now
beginning to pick up the fifth SEM pole of the first layer (which-lies
outside the ranqge of Im s spanned by the data), as well as the first

pole of the second layer. The convergence criterion was again met and

-30-



3.0 ' | I T
20|
w
)
D
-
—J
&
=
<
10 |
Q0 . 1. N I .
00 1.0 20 30 4.0
wa
c
Fig. 3.1:  Comparison of T2(0 ) ( ) and the curve fit (----) obtained

with wa/c = 0.2(0.1)4.0, M = 7 and N = 8.
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Fig. 3.2: Comparison of exact (% ) and fitted function poles for

M=7and N =8 (0 0O) and for M = 9 and N = 10 (X X).
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; -7
Ec.p = 0.51 x 1077,

modulus of the simulated response was graphically indistinguishable from

In this case and in all others discussed, the

the data within the frequency range spanned by the data, but as seen
from Fig. 3.4, there are discrepancies outside the range.

Table 3.2 compares the locations of the first four SEM poles with
those of the extracted poles for @ = 0, Awa/c = 0.1 and four M and
N combinations. In each case Eﬁt = 0 and the agreement in pole
locations improves with increasing order of the polynomials. The best
results are for M = 15 and N = 16 in the sense that a further increase
in M and/or N gives no improvement. Similar comparisons for a variety
of polynomial orders from 8 to 18 have shown that the accuracy of the
extracted poles is best for M = N-1 and diminishes for N 2 20.

For given M and N a decrease in the sampling interval from 0.1
(39 data points) to 0.02 (191 data points) has no appreciable effect,
as indicated in Table 3.3. The results of shifting the phase reference
of the data to a plane through the center of the sphere are shown in
Table 3.4 and, as expected, the accuracy of the pole Tocations is poorer.

The above data are all for 8 = 0, and for the cases considered in
Tables 3.2 through 3.4 the accuracy of curve fit is extremely good.
However, this does not imply a comparable accuracy in the extracted pole
locations: and in a practical situation where the locations of the
true poles are unknown, it is necessary to vary the illuminatien
conditions, e.qg., change 6, and use the positional invariance of the
true poles as the criterion of accuracy. e also comment that Efit s
unrelated to Emax’ and for the cases in Tables 3.2 through 3.4, the specified
error ]0'8 was never achieved prior to the completion of the allowed

20 iterations.
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with wa/c = 0.2(0.1)4.0, M =11 and N = 2.
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Table 3.2: Comparison of exact and extracted pole locations for 6 = 0,

Awa/c = 0.1 and various M,N

Extracted

Exact

M=12, N=14 M=13, N=14 M=14, N=16 M=15, N=16
-0.500000 -0.5010 -0.5007 -0.5007 -0.5000
+i0.866025 $i0.8641 $i0.8659 +i0.8657 +i0.8658
-0.701964 -0.6964 -0.7052 -0.7027 -0.7025
$i1.80740 $i1.808 %i1.804 $i1.803 *41.806
-0.842862 -0.8436 -0.8334 -0.8408 -0.8399
+i2.75786 +i2.739 $i2.762 $i2.766 $.2.760
-0.954230 -1.056 -0.9309 -0.9199 -0.9439
+§3.71478 $i3.575 1+i3.642 $i3.685 1i3.678

-36-




Table 3.3: Comparison of exact and extracted pole locations for 8 = 0,
showing the effect of aAwa/c
Extracted
Exact M=13, N=14 M=15, N =16
Awa/c-=-0.02 Awa/c = 0.1 Awa/c = 0.02 Awa/c = 0.1
-0.500000 -0.5003 -0.5007 -0.4999 -0.5000
+i0.866025 $i0.8635 ¥i0.8659 *i0.8657 +¥10.8658
-0.701964 -0.6997 -0.7052 -0.7021 -0.7025
*71.80740 %i1.810 *i1.804 *i1.806 +{1.806
-0.842862 -0.8364 -0.8334 -0.8407 -0.8399
+i2.75786 *i2.752 *i2.762 ¥§2.760 +i2.760
-0.954230 -0.9721 -0.9309 -0.9489 -0.9439
+i3.71478 +i3.647 ti3.642 +i3.682 ti3.678
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Table 3.4: Comparison of exact and extracted pole locations for 8 = 0

and Awa/c = 0.1, showing the effect of phase reference

Extracted

Exact M=13, N =14 B M=15, N = 16

center surface center surface
-0.500000 -0.5010 -0.5007 -0.5009 -0.5000
+70.866025 | 1i0.8655 +i0.8659 *50.8650 ¥i0.8658
-0.701964 -0.6994 -0.7052 -0.6994 -0.7025
+i1.80740 +i1.801 +i1.804 *i1.804 t41.806
-0.842862 -0.8600 -0.8334 -0.8522 -0.8399
+i2.75786 +j2.770 ti2.762 %i2.769 *i2.760
-0.954230 -0.8879 -0.9309 -0.8794 -0.9439
*i3.71478 +i3.797 *i3.642 +43.785 ¥i3.678
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The effect of changing © is shown in Table 3.5, which gives the
extracted pole locations for 6 = 0(45)180° with M = 15, N = 16 and
Awa/c = 0.1, The accuracy does not vary significantly with e, though we
observe that at 8 = 90° where the first and third poles are not excited, the
accuracy of the second and fourth poles is better than before. The
residues RZ(e) of the first four poles for T2 are plotted in Figs. 3.5
through 3.8, and the somewhat poorer accuracy with which the fourth
pole is located, particularly for 8 > 90°, is reflected in its residue.

The fourth pole is fairly close to the upper limit of the
frequencies spanned by the data. To improve its accuracy and, at the
same time, locate the next pole or two, it is natural to increase
max wa/c to 5 or 6, and the results of doing so are shown in Table 3.6.
The best agreement is obtained with M = 17 and N = 18. Although the curve
fit is again excellent, as it was for M = 15 and N = 16 with the smaller
data set (see Table 3.3), the first three poles are not quite as accurately
located, but the fourth through sixth are in reasonable agreement.
Unfortunately, to increase the data span still more and extract further
poles requires the use of polynomials of higher order, and because of
the numerical difficulties that occur when N exceeds (about) 25, this
does not prove to be effective. An alternative approach is to retain
the same span of data and 'window', i.e., shift the span to encompass
those poles which are sought. This is illustrated im Table 3.7 for three
different M and N combinations applied to the data for 2.0 < wa/c < 6.0.
In terms of the accuracy of the extracted poles, the case M = 15 and
N =16 is best. The fourth through sixth poles are located more

accurately than with the larger frequency span, but the first pole is
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Table 3.6: Comparison of exact and extracted pole locations for
6 = 0, and wa/c = 0.2(0.1)6.0
Extracted
Exact : — ]
M =15, N = 16 M =17, N = 18 =19, N = 20
-0.500000 -0.5020 -0.5007 -0.5008
+40.866025 *70.8643 +50.8637 +i0.8638
-0.701964 -0.6935 -0.6986 -0.6980
*§1.80740 *i1.812 ti1.810 +i1.809
-0.842862 -0.8252 -0.8370 -0.8369
+{2.75736 *i2.742 ti2.753 +i2.751
-0.954230 -0.9472 -0.9532 -0.9567
+i3.71478 +i3.649 +i3.697 +i3.693
-1.04764 -1.061 -1.073 -1.090
*i4.67641 Yi4.464 ¥i.4.622 +i4.619
-1.12891 -0.9781 -1.161 -0.8810
+i5.64163 ti5.183 ti5.372 *i6.046
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Table 3.7:
o =0, and wa/c = 2.0(0.1)6.0
Extracted
Exact 7 oo T
M =15, N =16 M=17, N =
-0.500000
not located not located
$10.866025
-0.701964 -0.6365 -0.7005
+i1.80740 +i1.802 +i1.730
-0.842862 -0.8449 -0.8558
*i2.75786 *i2.746 *i2.765
-0.954230 -0.9582 -0.9422
+i3.71478 ti3.714 ti3.728
-1.04764 -1.041 -1.017
+. +- +.
Ii4.67641 +i4.656 Ii4.658
-1.12891 -1.079 -1.054
+i5.64163 ti5.467 ti5.497
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Comparison of exact and extracted pole locations for

not located

-0.6025

*i1.816

-0.8536

+i2.730

-0.9787

ti3.738

-1.011
ti4.728

-0.9399
ti5.658




not picked up at all, and the second is considerably in error. This
is hardly surprising since the first two poles are no longer spanned
by the data.

As a result of the above investigation, the following conclusions
can be drawn. In the first place, the data should fully span the
imaginary parts of the poles to be located. If n SEM poles are
spanned, N should be in the range 3n to 4n with M = N-1, but N should
not exceed (about) 25 to avoid numerical difficulties. This upper
1imit decreases with increasing max wa/c and is almost certainly
machine dependent as well. For a greater span of data and/or to extract
more than a handful of SEM poles, it may be necessary to process the data

in batches (perhaps overlapping), i.e., use windowing.

3.4 Effect of Noise
In most practical applications of the pole extraction method,
the data for the frequency response have been obtained by measurement or
by the numerical solution of a less than perfect model of the scatterer.
Inevitably such data are subject to noise and other uncertainties, and
it is important to see how the accuracy of both the curve fit and the
SEM pole extraction are affected. For this purpose, two types of noise
were considered: numerical inaccuracies in the form of data limited
to k decimal places, and added Gaussian white noise of various amplitudes.
For the first study, the real and imaginary parts of TZ(O) which
were originally accurate to six decimal places were rounded to K
decimals with k progressively reduced. The data used spanned

0.2 ¢ wa/c <« 4.0 in increments of 0.1 and 0.02, and since a rational
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function with M = 15 and N = 16 had proved to be effective in the
absence of noise (i.e., when k = 6), this function was chosen. For
Mafc = 0.1 and 0.02 the curve fits were equally good; but because
the accuracy of the extracted poles was slightly better for the closer
sampling, we used this in all of the noise studies.
As k was reduced down to 1, the extracted poles became increasingly

inaccurate as shown in Table 3.8, and for k = 2 even the dominant pole

was substantially in error. In spite of this, the curve fit remained
good. Figure 3.9 shows the loci of the extracted poles as functions
of k. As k decreases, each pole moves closer to the imaginary s axis,
and the general behavior is similar to that found when fitting the
exact data with rational functions of progressively lower order. This
suggests that by increasing M and N we might be able to overcome some
of the noise effects and thereby improve the accuracy of the extracted
poles., Because of the numerical difficulties referred to eariier,
the largest N that could easily be handled was 24, and the results
of using M = 23 and N = 24 with data having k = 3 and 2 are presented
in Table 3.9. The increased order of polynomials produces only a slight
improvement, primarily for the data with k = 2.

In the second study Gaussian distributed white noise was added
to the exact data for the real and imaginary parts of TZ(O), wa/c =
0.2(0.02)4.0. The noise was produced by a random number generator
for which the mean and standard deviation could be specified. In all
cases the mean was chosen to be zero and the standard deviation varied
to change the noise level. For noise with standard deviations 10~
and 10_4, the values of € ind the pole locations provided by a

- s

[
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Table 3.9: Comparison of exact and extracted pole locations for 8 = 0,
and wa/c = 0.2(0.02)4.0 for various decimal places k of
data accuracy
Extracted
Exact o ]
k k
M=15, N =16 =23, N =24 = 15, N =16 =23, N = 24
-0.500000 -0.5140 -0.5054 -0.4081 -0.4824
+i0.866025 ti0.8577 *i0.8648 ¥i0.8369 +0.8051
-0.701964 -0.7005 -0.6873 -0.4924 -0.6564
+41.80740 *i1.861 ti1.827 i'1'1.643 ti1.676
-0.842862 -0.7548 -0.7488 -0.4727 -0.6578
+i2.75786 ti2.842 +i2.753 +i2.516 ti2.643
-0.954230 -0.6875 -0.6607 -0.3981 -0.5721
1i3.71478 ti3.784 +i3.670 +3.924 ¥i3.620
Erit 0.27 x 107} 0.27 x 107} 0.27 x 107} 0.27 x 1071
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rational function having M = 15 and N = 16 are listed in Table 3.10;
and even in the former case, the extracted poles differ substantially
from the exact ones. Figure 3.10 shows the curve fit to the magnitudes
of the noisy data for the standard deviation 10_4

As a final test the curve fitting and pole extraction algorithm
was applied to measured data for the field component T2 at the front
(6 = 0) of a metallic sphere 6 inches in diameter. The data were
obtained in an anechoic chamber over the frequency range 0.118 to
4.4 GHz, corresponding to 0.2 < wa/c < 7.0, but only the data for
0.2 < wa/c < 4.0 were used. Since prior studies using measured data
for the fields at the surface of a thick cylinder had shown that
filtering could remove some of the experimental noise, the measured
data were also processed using a seventh order digital filter. For
both the unfiltered and filtered data, the results of pole extraction
with a rational function having M = 15 and N = 16 are given in Table 3.11,
and are comparable to those in Table 3.10 for Gaussian noise with

% and 107° respectively. Although filtering

standard deviations 10~
gives some slight improvement in the accuracy with which the second,
third and fourth poles are located, it does so at the expense of a
decrease in the accuracy of the first pole. Figure 3.11 shows the
curve fit to the magnitudes of the experimental data.

As a result of these studies it appears unlikely that the

curve fitting and pole extraction algorithm can accurately Tocate more

than (at most) the first (dominant) SEM pole using measured data for

the frequency response.
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Table 3.10: Comparison of exact and extracted pole locations for 8 =
wa/c = 0.2(0.02)4.0, M = 15 and N = 16 for different levels
of Gaussian distributed white noise

Extracted
Exact -5 -4
std. dev. =10 std. dev. = 10
-0.500000 -0.4492 -0.3907
+i0.866025 +i0.8313 i'1'0.9026
-0.701964 -0.6022 -0.4235
+{1.80740 +§1.700 *i1.855
-0.842862 -0.5819 -0.3092
¥i2.75786 $i2.625 tj2.849
-0.954230 -0.4773 -0.06515
+{3.71478 ti3.582 $i3.436
-4 -3
Efit 0.27 x 10 0.38 x 10
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Table 3.11: Comparison of exact and extracted pole locations for measured
data at 8 = 0 with 0.2 <wa/c< 4.0, M=15and N =16
Extracted
Exact
Filtered
Experimental Experimental
-0.500000 -0.3920 -0.3709
*{0.866025 %i0.8575 *i0.8014
-u.701964 -0.3530 -0.4101
1{1.80740 +i1.927 +i1.872
-0.842862 -0.2764 -0.4258
1i2.75786 +i3.066 112 .662
-0.954230 -0.3332
not located
$13.71478 +i3.764
_1 -1
Efit 0.77 x 10 .78 x 10
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3.5 Conclusions

Using rational functions a curve fitting and pole extraction
algorithm has been developed and applied to exact frequency domain data
for the surface fields on a sphere. The data are fitted extremely
closely and for at least a handful of the lowest order SEM poles, the
extracted poles and their residues are in good agreement with their
known values. It is possible that the method could be further refined
to yield a few more poles, but the performance is already close to
the limits of the computer. Overall, the success is comparable to that
achieved by Brittingham et al, (1980) using a frequency domain Prony's
method.

Unfortunately, the situation is very different if the frequency
response i1s noisy or degraded in accuracy in a manner typical of
measured data. Although the curve fit is still good, even a small
amount of noise is sufficient to produce considerable discrepancies
between the extracted and true (SEM) poles; and for noise levels
characteristic of the best experimental data, it is impossible to locate

more than (at most) the dominant SEM pole to any degree of accuracy.
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CHAPTER 4: APPLICATION TO MEASURED SURFACE FIELDS ON A B-52G

The ultimate objective of the project was to determine the poles
for a B-52G aircraft using data for the surface fields measured on a
small scale model, and then deduce the dependence of the residues on
the excitation, i.e., polarization and angle of illumination. Because
it was expected that the noise levels in the data would be similar to
those which precluded the extraction of all pole pairs other than the
dominant one for a sphere (Chapter 3) and a circular cylinder (Appendix
A), it seemed unlikely that the project would be successful unless the
more resonant character of the aircraft response were to have a drastic
effect.

Currents and charges were measured at several locations on a
1:100 scale model of the aircraft, and we present data for one
component of the current at each of two locations. The measurement
procedures and the manner in which the test points are defined are
described in a report by Liepa (1980). The first point, W667T(R),
was on the top of the right wing on the bisector of the leading and
trailing edges approximately half way along, i.e., at midwing, and
the second, F562T, was on the top of the fuselage between the wings.
The currents flowing along the bisector and across, i.e., transverse
to, the fuselage were measured using a surface-mounted probe. At
the first location the major current paths are from wing tip to wing

tip, from the wing tip to the fuselage tail, and from the wing tip
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to the aircraft's nose, whereas on the fuselage only the first of
these paths is expected to be significant. Because of the symmetry
of the fuselage location, only the odd order modes can be detected.

Data were recorded for seven different roll angles ¢ about
the axis of the fuselage, where 8 = 90° corresponds to topside
illumination with the incident plane wave having the electric vector
transverse to the fuselage. Each recording consisted of 437 data
points spanning the frequency range 0.118 to 4.4 GHz. The radius L
of the minimum circumscribing sphere for the model was determined
to be 0.284 m, and for purposes of analysis and presentation of the
data the frequencies were subsequently normalized to this value.

At the midwing location the major current paths are from one
wing tip to the other, from the wing tip to the tail of the fuselage,
and from the wing tip to the nose. At the fuselage location, it seems
probable that the first current path will be dominant. When e =0
or 180° the currents are only minimally excited, and at & = 90°
symmetry indicates that only odd order modes can exist. It therefore
appears that the most general responses having the Targest numbers of
modes with signficant excitations are those measured at the midway
location for 8 = 30, 60, 120 and 150°, and our initial attention was
directed at these.

The more resonant features of the frequency responses occur
for f < 1.0 GHz. We therefore concentrated on the frequency range
0.118 < f < 1.0 GHz; and since there was no a priori knowledge of the
number of poles in this range, it was first necessary to choose the

polynomial orders M and N in the Sharpe-Roussi program for the best
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fit to the data. After some exploration it was found that M = N-1 = 23
was optimum, and Fig. 4.1 illustrates the resulting fit to the data.
For the midwing response with 8 = 0(30)180°, the locations of the
extracted poles in the third quadrant of the complex s plane are
shown in Fig. 4.2. The poles have no clear subsets which are
positionally (i.e., 8) invariant, and though there are several groupings
which are suggestive of approximations to true poles, the spread (or
wandering) is too great for any meaningful analysis of their residues.
One simplification is to eliminate those poles which do not
contribute significantly; but because of the wandering, it is not
sufficient to do so based on the residues alone. The contribution of
a pole is primarily determined by ]AmI/Re s, Where S and A_ are the
computed pole Tocation and residue respectively. For each 6 the
maximum value of this ratio was obtained and only those poles having
factors greater than 10 percent of this were deemed to contribute
significantly to the response. Their locations in the complex s plane
are shown in Fig. 4.3. The groupings which were previously regarded
as approximations to true poles are now more evident, and are still
further enhanced when we eliminate the poles associated with the
responses for 6 = 0 and 180° for which the currents are only minimally
excited (see Fig. 4.4). The two pole groups at wl/mc = 0.4 are
consistent with the first order wing tip to fuselage tail and wing tip
to wing tip modes. The pole group at wl/wmc = 0.7 is consistent with
the dominant wing tip to nose mode where the current path crosses
from wing to fuselage at the leading edge of the wing. The pole group

at wl/mc = 0.97 is consistent with a second order mode.
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Several other procedures were tried in an attempt to concentrate
the poles still further. Different combinations of M and N did not
- produce as good a fit to the measured data and the resulting poles
were more spread out. This was true also when reduced ranges of
frequency were used; and since digital filtering had produced, at best,
only marginal improvements in the case of the sphere and cylinder, it
was not felt to be appropriate for the B-52G data whose high frequency
structure may not be entirely noise.

Similar analyses were also applied to the data measured on top
of the fuselage at station F562T. It was found that the best fit
was obtained with M = N-1 = 19, and Fig. 4.5 illustrates the type of
fit that was achieved. Figure 4.6 shows the extracted poles in the
third quadrant of the complex s plane for & = 0(30)180° and we note
that clustering is less evident than for the wing data. If we use
the above-mentioned criterion to eliminate those poles which do not
contribute significantly and, in addition, ignore the results for 6 =0
and 180° for which there is minimal excitation, we are left with the
poles shown in Fig. 4.7. There is no clear specification of any true
poles and we have been unsuccessful in all attempts to localize the
poles still further. Indeed, polynomials of other orders and/or
reductions in the frequency range used increased the apparent
randomness of the pole locations.

Because of our inability to accurately locate the SEM poles,
it is impossible to give credence to the residues; and there is no
point in pursuing further the dependence of the residues on the

polarization and direction of the illumination, etc. The failure
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was not surprising in view of the results of our previous studies

of sphere and cylinder data, and the effects of noise and other data
degradations on the accuracy of pole extraction. This is in spite

of the continued success of the Sharpe-Roussi program at curve fitting
using a rational function--the task that it was actually designed to
do. It is therefore unlikely that any other similar procedure would
be more effective; but since this is always a possibility, it may be
helpful to present the entire frequency responses that were measured
at the midwing and fuselage stations. These are shown for all seven

orientations of the aircraft in Figs. 4.8 through 4.21.
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CHAPTER 5: CONCLUSIONS

A numerical technique has been developed which accurately fits
a2 rational function to the frequency domain response of a body. The
algorithm has been applied to data for the surface fields on a scatterer
to extract the dominant SEM poles.

The algorithm is one of three curve fitting techniques that were
investigated, and was selected because of its superior ability to fit
a response and correctly determine the poles and residues. It was
then applied to measured data for the longitudinal current on a circular
cylinder. ATlthough the resulting curve fits were excellent, only the
dominant pole pair could be accurately located; and all of the other
poles produced showed considerable movement in the complex s plane with
changes in illumination. Because of this wandering, it was impossible
to separate the true (but unknown) poles from those generated by the
curve fitting process.

To optimize the choice of parameters involved in the program,
we made a detailed study of the application of the algorithm to data
for the surface fields on a perfectly conducting sphere. To extract
a handful (M, say) of the pole pairs within a given frequency range
it was necessary to adequately sample the response over the frequency
range of interest, and to use a rational function with polynomials
of orders 4M-1 and 4M (approximately) in the numerator and denominator

respectively. When applied to 'exact' data for the sphere, five pole
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pairs could be located and their residues determined. Unfortunately,
noise and/or other data degradation dramatically decreased the poles
and residues that could be found. Several noise models were
investigated; and for a noise level of about one percent, only the
dominant pole could be extracted. Some of the other extracted poles
were grouped in a manner that suggested approximations to a true pole,
but their accuracy was no longer sufficient to provide meaningful
information about the residues. With measured data, it was difficult
to locate even the dominant pole pair 1in spite of the continued
accuracy with which the data were fitted.

As a final test, the program was applied to data for the
currents on a B-52G aircraft measured using a small scale model. Data
were measured for several angles of incidence at a number of locations
on the aircraft including the middle of a wing and on the top of the
fuselage between the wings, and care was taken to achieve the best
possible accuracy. The fits to the resulting curves were again
excellent, but none of the SEM poles could be accurately located.
Several groupings of extracted poles were suggestive of approximations
to true poles, but the dispersion was too great either to separate
true from curve fitting poles based on their positional invariance, or
to warrant an analysis of the residues.

It is, of course, possible that some other algorithm could have
more success, but the one that we used is reasonably sophisticated and
was eminently successful in that which it was designed to do, namely,
to fit a data set with a rational function. Unfortunately, accuracy of
curve fitting is not itself a measure of the accuracy with which the

true poles are extracted.
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Appendix A. Application to the Surface Field on a Circular Cylinder

Prior to the present study some measurements had been made of the
longitudinal current on a circular cylinder with hemispherical end
caps. The brass cylinder had an overall length of 15.20 inches and a
diameter of 2.005 inches and was illuminated by a plane wave incident in
a plane perpendicular to the axis with its electric vector parallel to
the axis. The current was measured in a plane 3.80 inches from an
end at the five positions specified by 6 = 0(45)180° where e =0
corresponds to the front and in each case the phase was normalized to
that of the incident field at the point of measurement. Because of the
probe location it was anticipated that only the odd order modes could
be detected. The frequency was stepped over the range 0.250 to 4.325
GHz to provide 816 values of the complex frequency response, and in
the graphs which follow the current is shown as a function of the
normalized frequency 2fL/c where L is the length of the cylinder and
c is the velocity of light in vacuo.

These data were used to test the ability of each computer program
to extract the SEM poles from measured values of the frequency response.
As the study progressed, the MRC1, MRC2 and Sharpe-Roussi programs
were applied in turn; and since none of them were successful, it is
sufficient to summarize the results obtained with the best of the
three, namely, the Sharpe-Roussi program.

Qur initial efforts were directed at fitting the response over
the entire frequency range using a single rational function, and it

was found that a function with M = 13 and N = 14 was optimum. The
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extracted pole locations are shown in Fig. A-1 and it is seen that

all poles except the Towest order (dominant) one varied with 6. In
each case, howeyver, the rational function provided an excellent fit

to the data, and Fig. A-2 is an example of the curve fit obtained.
With lower order polynomials the poles wandered more, and higher order
polynomials produced a splitting of the dominant pole and no better
clustering of the others.

We also tried a variety of other approaches to improve the
accuracy of the extracted SEM poles. Reducing the frequency range
of the data did not significantly affect the positional stability
of the poles. For that portion of the response curve corresponding
to 0.250 < f < 2.745 GHz (the first 500 data points), the optimum fit
was obtained with M = 9 and N = 10, and the resuiting poles are
shown in Fig. A-3. Once again the curve fits were excellent (see,
for example, Fig. A-4) and polynomials of lower and higher order had
the same effect as before.

Measured data are inevitably subject to noise and other types
of experimental error. In the belief that noise was one factor
Timiting the accuracy of the extracted poles, digital filtering was
applied to the data. From an examination of the data it was felt
that a seventh order filter would be best at remvoing the small ripples
without distorting the rest of the curves. Prior to application of
the filter, the data were smoothly continued to higher and lower
frequencies to eliminate ringing, and after filtering the extrapolated

portions were eliminated. In an effort to pinpoint the second pole

-87-



Fig. A-1:
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Fig. A-3:
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(which is actually the third order pole), we now used only the data
spanning the frequency range from 0.250 to 2.745 GHz. The least
wandering of this pole was obtained with M = 9 and N = 10 (Fig. A-5),
but the results are not much better than with the unfiltered data and
are achieved at the expense of a splitting of the dominant pole for
several values of 6. In every case the curve fit was again excellent
(Fig. A-6).

Another approach that was tried was to subtract the dominant
pole contribution from each data set and to fit the remainder. To our
disappointment this made 1ittle difference in the accuracy with which
the second pole was Tocated in spite of its new role as the 'dominant'
pole. We also modified the program to allow a pole to be constrained
after each iteration to 'encourage' the convergence of the second pole
to a location which was the average of that produced by other data
sets. To the credit of the program it rebelled; and after each such
constraint, the next iteration restored the pole to the location which

it would have had if freely chosen.

OQur Tack of success should not obscure the fact that the program
does achieve that which it is mathematically designed to do, namely, to
best fit a rational function of specified order to a data set. It
would appear that the best fit is absolute rather than local; and
provided the orders of the rational function polynomials are sufficient,
the curve fits that are obtained are remarkably good. Unfortunately,
the same cannot be said for the accuracy with which the poles other

than the dominant one approximate the SEM poles.
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Fig. A-6:
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APPENDIX B. EFFECT OF AN ERROR IN POLE LOCATION ON THE RESIDUE

Our study of pole extraction from frequency domain data has
led to the conclusion that in a practical situation where the given
data are subject to experimental noise and/or other data inaccuracies,
no SEM pole other than (perhaps) the dominant one can be extracted
with sufficient accuracy to specify the manner in which the residues
depend on the polarization and the incident field direction. Indeed,
the separation of the true poles from those introduced by the curve
fitting process can no longer be carried out with certainty; but even
in those cases where it is believed that a cluster of poles extracted
from the various data sets are all approximations to a single SEM
pole, the variation in position is too large to justify a meaningful
analysis of their residues.

In order to quantify this statement it is necessary to relate
the error in a residue determination to the error in the location of
the corresponding pole. If the correct location of a pole were known,
the positional error of the extracted pole could be defined as the
radius of the smallest circle which encompasses the positions found
from all of the data sets. In practice, however, the SEM poles are
not known; but it is generally true that the main error in the Tocation
of the extracted pole is in the real part of the complex frequency s,
i.e., the 'wandering' is roughly parallel to the real axis in the
s plane. An illustration is provided by the second (actually, third

order) pole in Fig. A-3. A rough estimate of the effect on the
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residue can now be obtained as follows. Let the actual contribution
of a pole to the frequency response be A/(s - sm), and let the
approximation provided by the curve fitting process be A'/(s - s&).
At the resonant frequency w = Im s where the pole has most effect on

the frequency response, a precise curve fit would now yield

showing that a given percent error in the real part of the pole location
translates into the same error in the determination of the residue.
In the case of the second pole in Fig. A-3, the wandering as a
function of the aspect angle ¢ implies ¥40 percent error in the computed
residue.

To establish a criterion for a computed residue to be useful,
it is convenient to consider a perfectly conducting sphere for which
the residues are known precisely. Assuming the dominant dependence of a
residue on the angle 8 (position on the sphere) to be An cos ne, it
was found necessary for the residue of an extracted pole to Tie within
the bounds An(cos ne ¥ 0.5) in order to be able to discern the true @
dependence. In general this was satisfied only if [s& - smf s 0.1
where s_ and sé are the true and extracted pole locations expressed in
terms of the normalized (complex) frequency, and for at least the first
four poles, the criterion was the same independently of m. An error
of less than (about) 10 percent in the pole location is therefore

necessary for any meaningful analysis of the residues.
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APPENDIX C: COMPUTER PROGRAM

We present here a listing of the computer algorithm used in
this study, along with appropriate documentation for its use. The
program is in IBM Fortran for use in an interactive mode to facilitate
the curve fitting process. It has been run on an AMDAHL 470/V8.

The program was written to accept in two different formats
the input data for the frequency response which is to be fitted with
a rational function. The first format is approprate for experimental
data, and is:

Line 1 FILENAME (4A4)

2 Comments (18A4)

3 Comments (18A4)

4 TITLE (18A4)

5 FMIN, FMAX, AMPMIN, AMPMAX, PHASEMIN, PHASEMAX, NN
(4F8.3, 2F8.2, 15)

6 F(1), AMP(1), PHASE(1), F(2), AMP(2), PHASE(2), F(3)
AMP(3), PHASE(3) 3(2F8.3, F8.2)

data

..... eeeee.....F(NN), AMP(NN), PHASE(NN)
where all frequencies are in MHz and NN is the number of sample
frequencies. AMP(I) and PHASE(I) are the amplitude and phase

respectively of the response at F(I) in MHz. The second data format
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is appropriate for numerically generated data of high precision;
and this Numerical Format is:
Line 1 FILENAME (4A4)
2 Comments (18A4)
3 Comments (18A4)
4 TITLE (18A4)
5 WMIN, WMAX, NN (2F8.3, 32X, I5)
6 W(1), REAL(1), IMAG(1) (3F12,6)
7 W(2), REAL(2), IMAG(2) (3F12.6)

data
¥

NN+5 W(NN), REAL(NN), IMAG(NN) (3F12.6)
where all frequencies are in M rad/sec and NN is the number of sample
frequencies. REAL(I) and IMAG(I) are the real and imaginary parts
respectively of the response at W(I) in M rad/sec.

The program uses data from two different sources for input
and has four different outputs. The following is a list of the inputs
and outputs, where the number in parentheses is the data set reference
number for the various inputs and outputs. The program requires the

following inputs:

Terminal (5): interactively the user supplies M,N,R (radius of
minimum circumscribing sphere), number of
iterations, maximum allowed convergence error,

and type of frequency response data supplied.
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Frequency Response: frequency response data in either Experimental
Data (9)
or Numerical Format.
The following outputs are available:
Terminal (6): iteration number and convergence error value
at each iteration, poles and residues.
Normalized Frequency: the frequency response of the input data with

Response (7)

frequency normalized by F = Fx 2 x R/c

norm
where R = radius of minimum circumscribing
sphere and ¢ = speed of 1light in vacuo. Data
are given in the Experimental Format.

Rational Function: the frequency response of the fitted rational

Response (8)
function over the same frequency range in
normalized frequency. Data are given in the
Experimental Format.

Poles and Residues: a tabulation of the poles and residues of the

(1) rational function in terms of normalized
frequency. The zero frequency value of the
rational function is also given.

A sample run follows. This is an attempt to fit, with a rational
function having M = 19, N = 20, the surface current on a 1/100.60 scale
model B52 aircraft over the frequency range 118.4 MHz to 100.6 MHz.

The sample consists of: the interactive process, experimental
frequency response (Data Set 9), normalized experimental data (Data
Set 7), rational function approximation (Data Set 8), and poles and

residues 1ist (Data Set 10). Following the sample run is a listing of

the computer program in Fortran.
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Sample Run:

Interactive Process:

FRUMN FROGRAM 7=R580%.030.N 8=R580%,030,.L 9=R5809.030 10=R380

MEXECUTION EBEGINS

EMTER THE DREGREE OF THE NUMERATOR FOLYMNOMIAL
AS A TWO DIGIT INTEGER

19

ENTER THE DEGREE OF THE BENMOMINATOR FOLYNOMIAL
AS A TWO NIGIT INTEGER

20

B5809
BE2LyMIDWING (R) » 30 DEGBGRO?

IS DATA TN THE FORM OF FREQ(MRADD sREAL IMAG. 7
MO

ENTER RADIUS OF MINIMUM CIRCUMSCRIBING SPHERE

254

EMTER THE MaAXITMUM MUMRER OF ITTERATIONS
ALLOWED WITH & TWO DIGLT IMTEGER
20

ENTER THE CONVERGEMCE ERROR VALUE
IN DOURLE FRECISTION FORMAT
1.0-8y

IT= 1 ERR=0,460197E+01
IT= 2 Sfefe=0 L 38ATEYE 00
IT= 3 CRE=Q L 702B64E-02
IT= 4 R L 2537 6E -0
IT= %5 ERE=0.630892E~01
IT= 6 EFRE0 . AGY 7 E4E -0

" Ay (.Z" ) l::‘ O "L

U L}' l'\"‘oo J("\Z);U\)L "'"] )
I7T= 19 ERR=0. 7008
IT= 20 ERR=0.21255¢

L 03
T3
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ROOTS OF DENOMINATOR ARE!

=~0.4664E-01
—~0.4664E-01
-0.3017E-01
=-0.3017E--01
-0.9809E-02
=~0.9809E-02
~0.8290E-02
-0.8290E-02
=0.2192E-01
=0.2192E-01
-0.,1247E-01
-0.1247E-01
0.2583E+00
0,2585E4+00
—~0.2319E-01
-0.9319E-01
=-0.8649E~-01
—0.8549E-01
0+ FOPPEAFOO
0.3099E+00

RESIDUES aRE

B

0.8242E-01
0.8242E-01
0.8080E~-01
0.808B0E-01
0.7844E-03
0.7844E-03
=QL.21B2E-02
-Q0.,2182E-02
0. 5808E~01
0. 5808E-01
0.3618E~-02
0.3618E-02
=0.1380E+00
~0.1380E4+00
0.7693E-01
0.7 e
0. 4928

OO

=0+ G87PELQ0
Q. 6879E4D0
=0, 4524+00
0. 4524E+00
=0+ B033E4H00
0., 8033E400
=01 217E+01
O0.1217E401
=-0.3874E+00
0.3874E400
~-Q.9768E+00
0.976BE+00
-0, 8358E+00
0.8358E+00
=0.1204E4+01
0.1204E+01
=0 1IDPE4HO]
Q. L559E4+01
=0 3075EF0L
0L, 3075E4+01

RESFECT IVELD

0.1361E-01
=0 L3SHTE-QL
Q. 2889E-01
=0, 2689E-01
0.4094E-02
=Q+A094E-02
3. 1408E~-02
=0+ 1408E-02
Q. 1566E-01
=0 13566E-01
=0 5775E-02
Qe SH775E-02
0.8304E-01
~0 . 8804E-01
=0, P471LE-01
Q. 9471E-01
O A2EZE-OL

0.1 01
=0, 1LE79EH0L

FEMNECUTION TERMIMATED
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=201~

Data Set 9:

SR I

-1
g

¢
o

10

11

¥,

SN NN

S0
&1
H2
6H3
&4
65
)

&7

Experimental Format.

BEBOY

EO2e Ly B0DEGy -2, 2

GF )

BEHEIL s MIDWING (R » 30

118.4001001,600

118.400
132.800
147,200
161600
176,000
190400
204,800
219,200
233446500
248,000

824,000
?10.400
F24.800
PEP 200
593,600
468,000
82,400
Y94.800

1202
1.874
1,722
l. ¢ 9 C') ({J
2:743
3,817
4,903
3,558

4,448
4,276

1192
14208
1.:244
Lo 350
1.399
1.445

+ 037
1 (()\54

DEGFRHBO9
780 Gl
34,99 123,200
-+ 81 137.600
14,49 152,000
265,30 164,400
28.31 180.800
20.93 195,200
.55 209,400
-146+13 224,000
~14,30 238,400
=33.64 252,800

¢ B9 GO0 BGD
<ED RLE 200
89 229,600
711 944,000
.80 958.400
7 G7 972800
7 LO2 97200
HeEBH1L001 600

~40.42

1+4350
1.545
1.808
2,387
3,239
4.064
4,312
X.886
4,349
J3.919

1.206
].”09
|. ¢ A \)8
l + \5\.1\.
1.421
1.399
1,872

.1. + (()\{)3

364099
12012
13,00
21,13
35,34
32,65
10,47
~1.71
-5, 68

]

"'400 \...

R 1]
2,00
\{) . 4 3
744
A2
8.09
é64+64
4,87

Experimentally measured data for a scale model B52 aircraft.

M2y C/UB3 v Ay XY 1023780 RUWL o« s BAND 1

185
128,000
142,400
156,800
171,200
185,600
200.000
214,400
228,800
243%,200
207 EO0

OT.H00
20,000
34,400
248.800
P463.200
()’// + L)OO
FPLL 000

Data is in

1.5908
1538
1.”04
.. + \I “

+ 393
Ge 19l
4+130
4,784
4.621
2,994

+218

26

1. 20

1,316
10363
L+ 425
1Led4b4

14608

33,35
1654
28,96
32,97
35,49
a7
~10.67
“1?.u4
A \) & ‘
R

OA-()
3.65
\) ¢ 4 4
Se27
7415
7421

15

o .—ﬁ:aﬁ&»‘ﬁfm‘?‘
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Data Set 7: Experimentally measured data for a scale model B52 aircraft in normalized
frequency. Data is in Experimental Format.

1 Br5809
2 NORMATLIZED EXFERIMENTAL DATA

4 BE2L o MIDWING(RY 230 DEGERESE0Y

g 0,224 1.896 0.781 J.1%1 0 —-40.42 J36.99 185
& 0224 1.212 36,99 0,233 1450 12412 0.242 1.9208 33435
7 0,201 1.874 -0.81 Qe Le&Ha% 13.22 0.270 1538 105
8 0279 Le722 24.49 0.288 1,808 21413 0.297 1.894 28,0848
¥ 0306 1.966 2630 G315 24387 35.34 0.324 2 A3 32.97
10 0.+333 2.743 28.31 0.342 X, 239 F2.65 Q. 351 J.393 5. 69
11 (.3460 3.817 20.93 0.370 4.064 10.47 Q379 S.191 7471
12 0.388 4.903 3,55 0,397 4,312 ~1.+71 0.406 4,130 ~10.67
13 0.415 3,588 -146.13 D,434 3.8848 ~5.68 0.433 4,784 12,64
14 0,442 4,468 ~14,30 0,451 4,349 19,05 0.+450 4,621 246,51
135 0.470 4,276 ~33.46 G, a7 3.519 —-40.42 0.488 2,998 ~39.27

a0 1.694 1.192 0,39 17068 1.206 -0 .35 1,715 1.218 =030
451 1.724 1.208 0.6%5 1.733 1209 2,00 L.742 1226 Je 68
b2 1.751 1.244 G.89 1760 1,268 6.43 1,749 1.316 &4 47
&% 1.778 1350 7411 1.787 1353 7484 1,796 1363 b7
&4 1.805 1.398 9480 1.815 1.421 6462 1.824 1.425 715
&G 1.833 1.445 7407 L.842 1.399 3.09 1,851 1.454 7421
56 1.840 1.+537 7.02 1.859 1.572 bH+b4 1.878 1,605 HelS
&7 1.887 1.634 G856 1.896 1.663 4.87



-voL-

Data Set 8:

50
&1
£ )
J Al
&3
&4
)
FS
L)

&7

E)'-"(\{')()

RATIONAL

FUNCTION RESFONSE

Frequency response of a fitted rational function with M =
in terms of normalized frequency.

19, N = 20,

Data is in Experimental Format.

WETH NORMATLTZED FREQUENCY

RS2y MIDWING(R)Y » 30 DEGIRHH09

O.224
0.224
0.251
0.279
0306
0,333
0360
0.388
0,415
0,442
0.470

1.696
1. ¢ / 4)4
L7751
l.778
1.80%
1L+833
1+840
1.887

1.896
101 JK
1.867
2,035
2,302
2.780
3.7683
4,901
3,668
4,375
B.927

L+323
1.344
14369
1395
1.421
1+448

474
13014

1.211
1i8.93
21 .91
25,08
"8¢"4

D775
") MR

+* Aal

"'./v\. ?
=112

=385 01

LeQb
3,37
G20
&7
.00
P14
10.19
Ll.164

‘\ < / () '
0,233
OC.2461
0.288
0315
O.342
0,370
0,397
Q,424
0.451

0,47y

1708
1.733
10760
1.787
L.81%
1.342
1.8469
1.894

-42.26

1,786
1+918
20009
2429
3.030
4.309
44443
3,746
4.531
I o440

1.329
1352
1.378
1+404
1.430
1+456
1.483
LBl

38.84
19.90
22,99
26,15
29.19
3067

22,92

.....

“40«54

1.89

4.02
\Io/\.g

/6 1\,)
8,39
9.30

ll 48

188
0.242
03270
0.297
0,324
0,351
0,379
0,404
0.433
0.460
0.488

1,715
1.742
1.769
1.79%
1,824
L. 851
1.878

1.824
1,971
2,197
2,504
5357
4,805
3.908
4,037

3. ()()"

1337
1.+341
Loal
1,439
Lo46%
1,492

20.90
24,01
27,20
30,01
29 9%
] v e L \5

...()) R /7*..

- ‘C()O\\)

-2 6 0.1 l

42,328

2:.66
10&)3

He23

7,59
8,77
9. 85

10,84

R



Date Set 10:

SN E SN

(o)

Y,

rational function with M = 19, N = 20.

B5809
NORMALTZED FOLE LOCATIONS AND RESTIDUES
M N
19 20
ROG2LyMIDWING(RY » 30 NEGFLHBO9
~QsA5H54E-01 -0, 6879E4+00 0.8242E-01

=0, 45541201 Q.6B72E+00 0.8242E-01
Qs 3017E-01  —-0.4524E4+00 0.,8080E~01
= 3017E-01 QO AT2HELD0 Q.8080E-0G1
=0 2809E-02 -0.8033E+00 0.7844E-03
-0.9809E-02 0,8033E+00 0.7844E-03
-0.8290E-02 -=-0,1217E401 -0.2182E-02

-0.8290E-02 Q. L217E401 —~0.2182E-02
~0,21P2E~-01 —0.3874E+00 0.q609F ol
-0.2192E-01 874E+00 +3808BE-01
=~Qe L247E-01 —0 9/ hBE+00 O 3618E-02
~0.1247E-01 «P7658E+00 0.34618E~-02

Q25851400 —0 B353E+00  ~0.1380E+00
0.2883E+00 0,8358E400  ~0,.1380E4Q0

=3, P31 9E-01 -0, 1204E+01 0.769

=0, 931PE-0L Q. 1204E401 078695
=~Q BEAPE-CL ~0. 1559401 0, A9281
~Q, BHAYE-01 <LOHYELO] 04926
OQKO””FJOO =0, 30731401 0»3' <

¢ JOPPEFO0 0, 3075E401 + 373
DL TERM IS
0.1482E+01
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List of normalized pole locations and residues of a

0.1361E-01
=~0+1361E-01
Oo~u89F"Ol
-0, 2&89E~01
0.4024E~-02
-0.40%4E-02
0.1408E~-02
~0.,1408E-02
0.1586E~01
-0, 13568E-01
~Q.5775E-02
SG779E~-02
0.8804E~-01
~0,3804E~01
—Q0.P471E~01
0.9471E-01
Q.- 'IZ'.’(S'/"E'—(‘J

0.1q/9L%Ol
-0+ 13792E+01



Program Listing:

1 (.1 S T N I T R I I I I I I L L I LT R I I L T I T T I I N L I T R N I O I S R N NN ST N oI nn I I N T LN NE I T i =
2 Coeesns

3 Coeowe s USING THE REAL AND IMAGIMARY FARTS OF A

4 Covoae oFREQUEMECY RESFONSE A% INFUTy THIS FROGRAM

] Cove e s o BENERATES THE COEFFICIENTS OF THE RATIOMAL

& Cosns e o FUNCTION WHITH AFFROXIMATES THE KNOWN

7 Cosoewe odFREQUENCY RESFONSE. THE NMUMERATOR IS A

8 Cooves oFOLYNOMIAL IMN FOWERS OF &

K4 CoseesOF DEGREE M.,  THE UDENOMINATOR IS OF NDEGREE

10 CoveswaMNe (M<=NY, THE FOLES AND RESTDUES OF THE

11 Coerves o RATIONAL FUNCTION aRE THEN COMFUTEID,

2 Ceeesvn

13 [-"‘"' g I I T I I N I T I T T I I L R A T S N N I I IS SN I R NN s i o m =
14 T REALXE (A-MH.0-2)

] ACOF CA0 » BCOF (400 s AATCOF (A0 » BRRCOF (40

16 ACOF (40) »COF (A0 » RRCOCAO)

17 DIMENSTON ROOTROA0 yRODTE (A0 v RODTRM(40) y RDOTINCA0Y

18 DIMENSTON ROLGOI »BOACLO0Y »SCLODY» TOLO0) »UCLOCY »A (1002100
19 DIMENSTON RO1000 X100 »WLOOO0) o FHNEWCLO0Q)Y y AVEC (L1000
20 DEMEMSTON FUECI1C00)

21 COMMDN FREQCOLIO00) »OMEGACLO00) » NFREQ

22 COMPLEX RES{A0)

23 COMPL 5 S vy e CTHEXF » DEMPL X » DCOMNIG

24 COMPLEXRLS SG(1000)

25 TNTEG FoarE{4) - TITLECLED

26 INTEGER YES/'Y"/

27 WETTE(Hy 94D

28 WRITE{(&»94)

29 WRITECS»?4) -

30 WRITE(6294)

31 P4 FORMATOS 7))

-

32 Cevesens

33 CovressREAD DEGREE QF NUMERATOR AND HENOMINATOR FOLYNOMIALS

34 Cosveen

38 WRITE(&Hy219)

34 219 FORMAT( S ENTER THE DEGREE OF THE NUMERATOR FOLYMNOMIAL e/

37 Le/ AS A TWO DIGIT INYEGER)

38 READCS GO

3 Q@9 FORMAT(T2)

40 WRITE(&4y94)

41 WRITE (S 28D

42 a8 FORMATC ENTER THE D

43 2y 8% A TWO DIGLT LMY

44 REAT (G 99N

4% WERTTE (59D

Ad {

47 Coees e s REAT IN THE DATA TO BE CURVE FIT BY CALLIMNG
{
{

. .

Bl OF THE DEMOMINATOR POLYMOMIAL 72/

RN
HECTENENR

IR 2 2 N I

43 Ge e e e e BULBROUTINE DATAZ
49
50 CALl IATA2 Ry Xs OMEGS y MFREQR FREQ  FLO » FEAX » FRORM e AMFR TN

A A A I
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[
bR =

A AMPMAX s FHAM LN PHAMAX y AVEC» FUECy FNAME s TITLE » TANSW)

3
*
-+
-
-
-

33 C. +HMAKE A TATA FILE CONTAIMNING THE DAaThd TO BE
Coevws e FIT BUT WITH FONORMY=FEXPFYXIRR/C » WHERE
93 Covees o R=RADIUS OF MINIMUM CIRCUMBCRIBIMG SFHERE
96 CoerveC=HPEED OF LIGHT

[ —tar']
J S [4000009

S8 CALL NORMANFRER AMPHMINy AMFPMSX s FHAMIN» FHAMAX Y
99 SFREQy AVEC» FUECy FNAME » TETLE » ALENG)

50 Cosvvae

61 Corees s COMPUTE THE SIZE QF THE MaATRIX TO RE USED
&2 Coevee oFOR MINIMLIZIMG THE ERROR TO OBTAIN THE LEAST
53 Coseee o SAUARES ERROR FIT

6'{} COOQ“’O

65 8810 MMlI=M+N+1

66 TER=Q

\.LJ COOO ‘¢ &

68 Covess o INITIALIZE THE MATRIX S0 THAT aALL

&9 Cevase o THE ELEMENTS ARE SET TO ZERO

70 Cosvven

71 oo 7 T=1sMML

72 07 =1y MMl

73 7 AT J3=0.00

<
*
»
-

*

*

7% IT=0

74

s READ MUMBER OF ALLOQWED ITERATIOMS BY WHICH
e o THE RATTIONAL FUNMCTTOM MUST CONVERGE

-
-
tep]
Ll
-
-
*
*

ol
o

D

-

L4

-

-*

80 WRITE (S 111D

g1 111 FORMATC(? EMTER THE MAXIMUM MUMBER OF ITERATIONS s/
82 3y ALLOWED WITH A& TWO DIGIT INTEGER?)

83 READCS» 113 LTMAaX

84 113 FORMAT(T2)

8% WRITE(H,11112

846 1113 FORMATOS /)

87 D=DCMPLXCO .00 L 110D

8¢ Casve
a9 C.s e REAT THE COMUVERGEMCE ERROR CRITERION UVALUE WHICH
P Cov s o hDETERMIMES TERMINATION OF THE ITTERATIVE PROCESS
21 Coveves

92 WRITE S 2229

?3 222
\) 4

95

QP& 2321

*

LN 3

*
.

+

THE COMVERGEMCE ERRQOR VALUE » 7
CESTON FORMAT )

G

RITECSH P21
98 P21 FORMATOS 70

. s
()’(? |

LOO Coona o  INITIALLZE THE MUMERASTOR aND DEMOMIMATOR COEFFICIEMTS
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1901
102
103
104
105
106
107
108
109
110
111
112
113
114
113
116
117
118
119
120
121
122
123
124
12%
1246
127
128
129
130
131
132
133
134
1345
134
137
138
139
140
141
142
143
144
14%
144
147
143
149
150

B —

CossreeTO ZERD, SET W) TO OME WHERE WLy IS THE DENOMINATOR

Cevose BRUARED OF THE K-1 ITERATION. FOR NK=1.
Covenes
N 4 I=1.NFREQ
4 Wil h=1.00
no 11 r=1,n
ACOF (1) =0.10
AACOF (L)Y =0. 100
BRECOF (T )=0.10
11 BCOF CLY=0, 00
ACOF (NF1 =0, 10
AALCOF IN+LY=0,100
GOTO 3
C% L S
LUOLCULATE WLy FOR THE K ITERATION
s WHERE K1

O
-
-
*
+
*

—
<
-
*
-
-

1 0o 8 I=1-MMl
ne 8 J=1yMMl
8 ALy J)=0.T10
Do 5 =1y NFREQ
SLa=lJROMEGATT)
D=RO0F M-1 343 00F (NS 1
MM 2m=MN-~-2
DO 10 =1 NP2
10 D=RCOF (N-Jd-121+0481
D= DOFIRE L
WCTy=1,00/C0TARSE (Y ) dok2
+
SCALCULLATE THE ELEMEMTS OF THE MATRIX ARRIVED
SRBY TOKING THE UERIVATIVES OF THE ERROR WITH
FOLYNOMIAL COEFFICIENTS

-
+
*
.
-

4.
*
»>
-
-

-
>
>
.
.
)
T
&g
s
~
e
—
—
o
o
—
T

.....

D
<
+
-
-

NOoC oG oGOuU
+* o
-
*
*
.

BLO=Q ., D0

S0=0,10

N2=N+N

no 1% I=1»-MN2

BOACT Y=0,00

SCI)=0.00

T{I)=0QL. 00

13 UiTr=0.00
noo1s K=y NFREQ
EBRO=8004+W (K3

LS SO=5Q0+ R ) Rl R
0o 26 I=1yr2
0 20 K=LsNFREQ
BUACT)=RBOACT Y HHEGA (D) e TR
SCDy=8CY FOMEGH CROD Rk DR R il (RO
TOCLr=TCL ) FOMEGA TR Sk DX O % (KD

29 UCTY=UCT) HOMEGY SR 30 CR GRSk 24 X ORI AR Y b (R0
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151 Xi=1.000

152 BLOO=RIORX1

153 SO=50kX1

154 no 21 K=LsN2

155 ROA(K ) =RBDACK)Y ¥X1L

158 SR Y=S (R kXL

157 TR)=T (K Y¥X1

158 21 Uy =0 Oy L

j- 5 L) C LN B B BE 2R 3

140 e e e LO0AD FARTITIONED MATRIX
1 \6 :I- C L I I N N B

1462 ME1L=M41

1 6 3 C * e P e E D

144 TeseseL0AD UFRFER LEFT PARTITION
145 e s e e s
1466 A(Ly1)=RI0

1467 no 30 I=lsMFle2

148 F=-1

169 o 40 J=1mMrl:2

170 TF{T . EQ. L ANDJSEQ.1060TO 35

171 ACEy J)Y=RBUACLT~4)+CI-1 2 )k (=1)

172 NNENE

173 Tle=f41

174 ITFOJLGTMPLORTLGT MPLIGOTD A0

17% 39 ACTH Ly I LY =BIA -1 012+ 2Y KPR (-1
1746 40 Frazfpre {17

177 30 CONTINUE

:I- .}7 s: C LT K B

179 Cesoes: LOAD LOWER RIGHT FARTITION

.30 Coervwn

181 o 50 I=leNe2

182 fr=-1

183 D 95 J=lepMe?2

184 ACHPLFET e MP L+ =0T +dY RN (-1)

183 M T =ML +T 4+

186 M Js=mP LR+

e7 IFHPILGT o MHLORMPILGT SLMNLYGOTO 355

168 ACHMPL e MP Y =UBCTHIE2) PO~

189 55 PrapR{—12

190 50 CONTINUIE

191 Coveves

1o o we e LOAN UPFER RIGHT aAND LOWER LEFT MATRICES
123 Coeenve

124 D0 &0 I=LlypMe2

L3 Froz—

124 D0 60 J=leie2

197 TFCY L E Pl 2A(E e MPLEDY =TI d=1 2% % (=1
198 IFCLLEHMPIYACTAMPLy JY =TS 1 0%

L9 Td=141

200 Ji=J+1

*

-
-

-
-
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201

202
203
204
2049
204
207
208
209
210
211
212
213
214
215
216
217
218
219
220
209

N

222
20
224

Iy

PR
foatae]

e e s

Aee e /
elelc!
23
200
2%
230
231
232
233
2324
235
234
237
238
239
240
241
242
243
244
245
246
D47
o

A'—' S
249

250

65

TFCTL o LEHMPLAMDJLJLE NS T2 JLEMP LY =T (I H I L3 RPN (~1)
If"\JI GLELMPLAND.TL LEMYATIMPLe J1 =T (IHIHL PR -1)

Fra=fo{—1)

DO &5 I=1yMs2

Fa=-1

00O &% J=2sNe2

TFCLLEMPIYACTL e MPL+d) =5 ~1 4+ J)*F' (-1
TFCHLLE HPLYACTEMP Ly D) =S (T ~-1+ 1) XF
Ti1=1+1

Jl=041

M E=ME 14+

TFCTLJILEWNGAND S LELMPIIACTAMP LA L » J-1 0 =8¢ -1+

IFCTL LE.MYACTL y JAHMPL -1 =80 T~1+0 ) &P

TFCELLE NANDL Bl LE ML )AL L F1L) =8 CT+ U410
CI+04+1

TFCIt LEMPL ANDJLLLE.NYACTL y JLEMPFLY =8
Fafd(—13

CQ60'00
Coesese o LOAD B-VECTOR

C000000

8
c.
C.

-~
- &

.
.

+

*

*

MF2=M32

B(1)=50

no 8% K=2:HF1L:2

K L=R4+1

BORKY=T(K-12

TFOGGTWMPLY GOTO 85

BLRALY=85C0K7

COMTINUE

O 86 K=MF2ryMNL2

B(KY=0.00

KF1=K+1

IF(KPL.GT.MNIOGO0TO 86
BCKFLY=U(K-M2

CONTINUE

LCALL GAUSSTAN ELTMINATION ROUTIME
LT INVERT MATRIX S0 THE FOLYNOMIAL
SCOEFFICITENTS CAM BE FOUND

-

-

-

LhLL REDUCE (A MM1 » B NOLIMD

LI

JYEPEC-LD

T'I‘

*F
YRPX (-1

S CALCULATE CONUERGENCE ERROR FOR THIS ITERATION

» MEL
: =ACOFCDY Yk 2EAERR
) LMHPJJMNl
WP (RO -BCOF (L=t 3 2ok 2 4 RERR
ER Rt RERR
IFERRJAEZEFSORITOEQL.ITMAY YGOTD 350
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i

B LR

C‘OQQ‘Q
Ceoves o TRANSFER B(IN)’S TO COEFFICIENT MATRICES
COQOOGO
Do 90 I=1:MM1
255 C TFROD) WLTLOXRCIDDARS (RIL) D

[ ]

1
4

SHSESNSEN
%

.

ACOF (T )=RB{LID
AACDF (LH)=R{1)
GoTn 20
87 RCOF(I-HMFLY=0C1)
BRCOF(I-MP1)=0(L)
@0 CONTINUE
IT=1IT+1
LURITE ITERATION NUMBER AMND
HLCONVERGENCE ERROR VALUE

a0
.
-
*» ¥
. *
. -

tep)
L.
<
+
*
-
-

WRITE(H.9229) IT-ERR

PP FORMAT(3Xy "IT=/ 213 ¢SXs "ERR='yE12.6)
GOTO 1

Covesns

Ceves e o GET FIRST DENOMINATOR COEFFICIENTy RO

: LEQUAL TO OME

L‘:"J'I"OG

350 XCArFdly=1
BRCOCL =1
MFL=N+1
OO 358 L=2:NF1
XCOF{Ly=RCOF (L1

R BRCO{L)=RCOF(I-1
WRITE(&H:98)

Qb FORMAT T 7))
WRITE (6301

301 FORMAT O ROOTS OF DENOMINATOR ARESI /7 7 7))

Ceoeo

—
<
Py
*+
*
<

)
)

-

SEIMD THE ROOTS OF THE DENOMINATOR POLYNOMIAL
[:090009
CAlLlL. ROOTS(AXCOF sCOF M ROOTR y ROQTT e TER?

Cﬁ"‘ﬁ'

[::0000

-

2 Covreo s FIMND THE RESIDUES OF THE RATIONAL FUMCTION

291 Covvnnn

292 Call. RESIIUCAAGDF » BRCOF » Me NeROOTT  ROOTR » RES » FHAX » FNORM
2973 1o Al NG )

294 Covensn

295 Covwn e oFIND THE ROOTS SCALED TO THE RAVIUS OF

296 Coevves THE MINTHUM CIRCUNSCRIBING SPHER

297 Covenn

29 FI=3.1415924535
299 Lo 28 I=1.N
3GO FOQTENCE Y =ROOTR L) RFMAX/FNMORMYaALENG/ (FLE300.0)
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301 ROOTINCD) =ROOTI (1) #FMAaX/FRORMXALENG/ (FIX300.0)
302 28 CONT INUE
303 Coevens
304 Coroes +HMRITE NORMALIZE ROOQTS AMD RESIDUES
305 Coeoses s INTOD NEVICE 10,
30& Cooooot
307 WRITE(LIO0,192) FMNAME
308 WRITE(LO»188)
309 WRITE (1O 185)
310 WHITE (LG 187) Myl
311 WRITECL0,192) TITLE
312 WHEITECLOy400) (ROOTEM{I ) »ROOTINCI) yRES(I) v I=1sid)
313 WRITE(10,403)
314 403 FORMAT(L2H TIC TERM IS53)
315 Corevons
318 Coeeee e CALCULATE THE FREDICTED ZERD FREQUENCY
317 CoeersdVALLE OF THE RESFONSE
318 Covenee
319 AD=ACOF C1)
320 WRITECLO402) A0
321 402 FORMAT (1XeEL12,42
322 WRITEC(H»401) (ROOTRNCI)  ROOTINCL) »I=1+N)
323 WRITE &, 2235)
34 223 FORMATCS 7))
328 Coveere
32¢ Cevoer e WRITE THE RESIDUES ON THE
327 Coors s o INTERACTIVE TERMINAL(DEVICE &2
328 Cooeenn
3329 WRITE(S,302)
330 302 FORMATC RESTIOUES AREy RESFPECTIVELY: /Z 7 %)
331 WRITE(S>202) (RES{(I)»I=1ysMN)
332 202 FORMAT(2X«2E12.4)
333 WIRITE (&6 2200)
334 2200 FORMATCS 7D
335 400 FORMATC(A(LXyEL2,.4))
336 401 FORMATC(2CLXyE12.4))
337 186 FORMAT(2ZH NORMALIZED FOLE LOCATIONS »
338 BLEN AND RESIDUES)
339 187 FORMAT C1LXy 215
340 1932 FORMAT C1L Xy 18a4)
341 185 FORMAT(1LH M N2
l.: CER A B AR )
Coere o wCONSTRUCT FREQUENCY RESFONSE USITNG THE
Coevas o RATIONAL FUNCTION AFPFRUOXIMATION TO THE
Covvn oo MEASURED DATH
Coeveos
CAOLL COMNODAINFREQ - FMAX s FLOFNORM N AACAF « BRCD v i 2 FNAME
Sy TITLE «ALEMG s 552
STQOF
FHLY

)
'~

>,
[

E N N - N R
R ERR T S A S ]

NsiEgs]

il DN D D GE UL
(LI e}

b b d
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386
387
RenE=)
g
389
390

COQ"GO

Covseee o THIS SUEBROUTINE SOLVES A%X=H RY GAUSSIAM

o
C.
c.
C.

C.

(9=

C.
C.

+

s e JELIMINATION. N IS THE MATRIX SIZE. X IS

e JREDUCED IN B, A IS DESTROYED. A IS5 CONVERTED
se e TO UFPFER TRIANGULAR FORM AND BACK SURSTITUTION
sse oIS FERFORHED.

UBI\(WUI I ME REDUCE fﬁyi\'/Pyi'llLH)
IHFLLCLF REALXB{(A~HsO)—2Z)
DIMENSION AC1002100)yRO1IO0D
NMi=N-1
D0 1 J=1,HMl1
s e s FIND LARGEST ELEMENT IN JTH COLLUMN

AMAX=TIARS (A (S J))

LEAaVE=

TJ=J+1

oo 7 L=1.J.N
TFnaBS AL« ) L LE.AMAXIGO TO 7
AMNX= DhBS(ﬁ(Lyd))

IREY 2RSS

3UNT1HUE

IFAMaX LT L D=8 WRITE(H 10D
IFALGAVELEQ. DGO TO 8

Cio?."
Coves s +EXCHANGE ROWS OF A AND R

C.OOGOO

9

8

,y

.

(.:0-’:

(-\
Y

+*

N0 9 L=JvN
TEMP=AC s ]l)

ATy L= lLSAVE 1)
ACLSAME o L) =TEMI
TEMP=31{.))

BC ) =RIOLGAVED
ROLSAVE
no 1L I=IJg«sM
ﬁerHwﬁkl:l)/ﬁkaJ)
no 2 K
ACT 2K (I Y S HANRA e KO
ROL)=Ro 00 —al PR BR D)

s e s PERFORM BACK SURSTITUTION

23
[.:000000

no 5 o Jd=1-n

LAST=MN-UJ4+1
LASTI1I=LAST+1
IFALasTLWGT.HYGO0 TO 5
D0 3 I=LASTI » M
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401 3 BCLAST 2 =BLASTI-A(LAST D)ARCT)

4032 7} BLASTI=RILAGTI ZAA{LAST v LLAST)

403 RETURN

404 10 FORMATC SMALL-0R ZERQ-YALUED FIVAT7)
405 ENT

407 Covvnne

40¢ Covess o THIS ROUTINE SOLVES FOR THE COMFLEX

4079 Covess ROODTE OF A NTH ORDER POLYROMIAL.

410 Coesewe THE ROQTS ARE RETURNED IMN REAL AND IMAGINARY
411 Covees s FARTS,

412 Coreoens

41'5 ::':.:::'..:::::::—'.::—:::.:::::::::.::.:' e e R et e
414 SURROUTINE ROOTS(XCOF»COF yMyROOTRyROOTT » TERD

415 IMFLICTIT REALE3(A-HO-2Z)
416 ODIMENSTON XCOFCA0) »COF (A0 » ROOTRCA0) y ROOTI (A0
417 TFIT=0
418 N
419 TER=0
420 TFCXCOF N1 210925210
421 10 TFNY LG, 15232
22 1S TER=1
423 20 FOETUHM
424 25 TER=4
425 GO TN 20
426 30 IER=2
427 GO TO 20
429 32 IF(N=-A4035: 35,30
429 35 NX=N
43 NXX=H+1
431 N2==]
A32 KJ1l=N+1
433 0o 40 L=1yKJ1L
434 MT=RKJ1--1+1
435 40 COF(MTY=XCOF L)
434 45 X0=,005Q00101
437 Y0=0,01000101
438 IN=0
43‘? SO -"/\U
440 XUﬁ“l0.0*YD
441 Yum= 10 ONX
442 X=X0
443 Y=Y{)
444 LCT=0
447 IMN=Tik 1
4446 GO TO &0
447 734 IFIT=1
448 XX
449 YER=Y
4% 460 ICT=Q
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80

?0
?9

1LOO

1O

UX=0,0

Uy=0.0

V=0.0

YT=0.,0

XT=1,0

U=COF {(MN+1)

IFCUYAG 130065

g 70 Is=1eN

L=MN-T+1

TEMP=COF (L)

KT2:= 7': XT-YRYT

YT2=KRYTHYHXT

Us=U+ TEMPEX T2

U=UY+TEMFHRYT2

FI=1

UX=UXHF TR X TR TEMF

UY=UY--FLXYTXTEMP

XT=xXT2

YT=YT2

SUMEQ =X UYLy

IFCSUMSQI 7S L L0735

L= CURUY ~UXUXD) /5UMSH
=+ 0K

DY == CLIRLY +UEUEO) SSUMER

Y=Y4+DY

ITF(OARBS DY +DARSCDX) -1 . O0—-12)100, 80,80

ICT=TET+1

IFCICT-500246085y85

IFCIFITILO0»90¢100

IF(IN-5)080s9595

TER=3

GO TO 20

N0 105 =1 NXX

MT=RKJL~-141

TEMF=XCOF {(MT)
XCOF(MT)HY=COF (L)

COF Ly =TEMP

=X
NV“TTF%P

1He 120

Y ] 15
R L

AI=1 s GU-10Y L3S 125y 125

l‘-\|=N'~'A-;
GO TO 140
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901l
502
503
504
G505
5086
507
508
509
":1()

o911
9512
913
914
515
Gla
317
518
919
520
I:'P)-I

Lz ey

whal s
523
524

525

D26
927
328
929
530
G331
532
533
934

533

36
L_37
838
539
540
541
G942
543
544
599
S48
547
D48
549
S30

A

130 X=0.0
NX= NY"[
N’( - /./ - '

135 Yﬁ0.0
SUMSR=0.0
ALFHA=X
N=N-1

140 COF (2)=COF (2)+ALFPHAXCOF (1)

TF(MYLSSy 155145

ng 150 L=2s0

COFCLAL)Y=COF LA +HALPHAXCOF (L) -SUMEBQRCOF {L~-1)

ROOTL(N2)=Y

RODTR(MN2)Y =X

N2=N2+1

TF(SUMSQITA0y 1659160

160 hEE f
suUMSQ=0.0
GOTO 159

163 IF(MNY202,20:45
ENID

N o
[ R e

Cosveea s THIS SURROUTINE READS TN THE FREQUERCY RESPOMSE
CovsreTO BE FIT. DATA CAMN RE SUBMITTED IN TWO DIFFERENT
Cessee T FORME., THE FIRST FORM IS5 FOR FREQ., (MHZ)» AMF oy FHAOSE»
CressesAT THREE DIATA SETS FER LINE AMO THE FORMAT

Coees s SSPFECIFICATION IS 3(2F8.3:F8.2).

Cevsne o THE SECOND FORM IS FOR FREQ, (MRAD. Y REAL

C. o FARTy IMAGINARY FART» AT ONE DATA SET FPER

Coeeoso LINE AND THE FORMAT SFECIFICATION IS 3F12.46

C.QOOOO

*

-
-
*

[:"‘"“""‘" TolDIn oI R sn I == frreperiosibieni bt ons it A Sttt Sibantafhavediead pr oo st st raniivondbanribent

SUBRROUTIME UhTﬁhtnzYvUMf 1yPllLlelLﬂvFlUy[MﬁXylthM-
2AMPMINy AMPMAXy FHAMIN  FHAMAX y AVECy FUECy FNAME y TITLE y TANSW)
IMFLLICIT REALXB(A-H0-2)
DIMENSION FREQCLIQQ0O) yRCL0O0Q) y X{1000 I s AVEC(LIO00) » FUEC (L1000
1rOMEGACLGO0Y y RFREQCLOOO)
INTEGER FNAMECA) »WHICH Ny NM2 o NFREQ
INTEGER CMNTLOI8) vOMNT2(I3) s TITLECLE)
INTEGER YES/7Y7/
(:0‘0000
CovvweoREAD FILE NAMES, TITLESs ANID COMMEMNTS
Cosvann
READC? 9 109 FNAME
WEITE (S 110 FNAME
READ(Py LOPICMNTL
READCD v LORIUMNT2
READ(?» 1O TYITLE
WRITEC(S» 11O TITILE
WRITE{S»28)
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H
kY

73 FORMATOS )
C‘ L K B K 1
Ceesee s READ TN MIN. AND MAX. VALUES
e e e s dREAD NUMRER OF DATA FOINTS
C’l L N
READCP» LO1OFILQe FMAX » AMFMIN AMPMAY y PHAMIM y FHAMAX » NFREQ
IT=MNFREQ
WRITE(SHy121)
121 FORMAT( I6 DATA IMN THE FORM OF FREQMRADD) »REAL»IMAG. T7)
READ{S»122) TANSH
122 FORMAT (AL
IFCEANSW L EQ.YESY GO TO 322
WHICH= HMOI(ILy3)~1
NM2= TI-%
0D 20 I= L1eMM2»
READ(S» LO7IFR Ll DYy AVECCD) » FVECCD) » FREQCI+1L)Y yAVECC(I+L ) »
IFVECCIHLY s FREQOIH2Y » AVEC L4220 » FPYEC (TH2)
20 COMNTINUE
TF(WHICH?» 21,2223
22 READCY » LOZIFREQCTII) s AVECC(IT) o FUEC(T L)
GO TO 21
23 REAOC?» LOZOFREQOIE-1) »AVEC. I I -1 y PUEC LT 1) o FREQOTLL) »
IAVEC (T Y)Y »FVECCLT)
21 CONTINUE
Lo FORMAT (A8, '-3 v 2F8 .2 18D
107 FORMATIIC(2FE.3:F8.2))
109 FORMAT(LEAL)
110 FORMAT(1X»18A/4)
FNORM=(FMaX/ (FLLOX2 %3, 1415926535 Yk 5
WRITE (593D
93 FORMATC(Y 7))
ng 30 I=1yMFREQ
OMEGACL)=2: %3, 141592803 5XFREQ L) ZAF MR NORM
A=AVEC L)
PeFUEC(II 3 1415924535/7180.
(AP *'H\KUL,US) ()
ACTY=aXDETM ™)
30 COMT THUE
GOTO 29

322 FRNORM= CFMAXAFILLOY K. 5
LIRITE (A 93D
LD =L [1.-' (320w

(:000000

Covr o o bCONVERT FREQUENCY IN RAD. T0Q HERTZ
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s“ol
G022
603
604
L5005
L£0Q6
&H07
4083
609
S510
611
612
613
414
615
616
G117
618
612
,qo
\J e I

it e

3 Al aAn
ey
 Jod]

624
&H2G
&2
H27
628
&H29
630
631
632
633
634

35
H36
637
638
&H3Y
&40
&4
&AL
643
H449
&A%Y
546
b647
648
649
H30

RN -~

REQT) =RFR (2L K3, 14159)
OMEGA (1) “RFREQ (L) /FMAXKFHORH
32%  CONTINUE

324 FORMAT(3F12.8

29 RETUR

ENII

Coreores THIS ROUTINE CALCULATES THE RESTOUES OF
Covees e THE FOLES OF A RATIOMAL FUNCTION GIVEN
Cere s THE FOLES OF THE RATIONAL FURNCTION

CQQQOO'

vUPPUUlJNL hL
EFNORM e ALEMNG)
ITMFLLICIT REALRS(A-HO~Z)
ODIMENSTON AACOF (A0« BRCOF (A0 ¢ ROODTTI (A0 s ROOTR A0
COMPLEXY®1LS AAYRRRESTID
COMPILEX RESCAQ:
Frl=3,14188928530
TI=1
T A NN E
AN=ROMPLYXCAACDF (1) » O 1103
P
OO 12 I[=2«0MM
AN=AATDCHMP L AARCAF L) v Q. UMY FDCMPLAEQQTR (D) v ROQOTL Uy Y&
LX(I-12
12 CONTINUE
BR=OCMPLYX(BRCQF (L) » 0. 110D
nn 13 Ta=2eN
YI\ "‘..
BL=RR4DCMPLEY(BRCAFCID) v O DO HOCHMFILX XXy 0. 10D
IXDOMPLXRAQOTROD oROOTI A YR =1)
13 CONTINUE
RESTD=nA/BE
RESCEID) =RESTDAFMAX A FNORMYALENG/ (FIN300. 00
ITT=T1+1
11 CONTINUE
RETURN
L

cee s e THTS ROUTIME TARKES THE RATIONAL FUNCTION
. s W WHICH REST FILT THE OaTa aND CONSTRUCTS THE
Se v e S FREQUENCY RESPONSE OF THE FITTED FUNCTIOM

—~ o o e e
HER ] T3 ERE S
.

«

.

LR R A )

SUBRAQUTIMNE lUHUn'NFﬂEUvIMn Ty BRCO

2FNAME s TITLE y ALENG 2 $8)
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651 IMPLICIT REALYS(A-HyO0-Z)

&552 OIMEMSION FUEC(LO00) vy PVEC{1000) »AVECC(L1000) yFVECN (1000
653 ODIMENSION AACOFC(40) »BREQCA0)

654 INTEGER FNAME(A) »TITLE(LS)

6555 COMPLEXXLS S8C1000)»CONST»AZ»B2,C1X

&556 INTEGER WHICH

657 AMFMIN=1200.0

658 AMPHAX=-1200.0

559 FHAMLIN=1200.0

560 FHAMAX=~1200.0

&61 TI=NFREQ

542 FI=3,1415926535

663 CI=(0.N0y1.00)

664 FLO=(FLO/FMAX)¥FNORM

66 FHI=FMNORM

bH6 DF=(FHI-FLO)/ (NFREQ—-1)

667 DELOM=2, XFIxDF

6468 OM=2 ¥F LXFILLO

669 MM=M4- 1

670 MiN==NAL

671 ng 150 L=1»NFREQ

&72 GHECL ) =CTROM

673 AR=NCHMPLX (AACTOFCL1 290, 00)

674 I} 2y M1

675 AL=A2LDCHMPLXGAATCOF (XY » Q.00 XEE L) 30k (1 --1)
676 1 CONT IHUE

&77 B2=0CHFLX(BRCAOCL) » 0. 110)

4678 no 13 I=2»:MH

679 BR2=R24ADCMPLX(BERCOCI) y Q. DOYRBG (LI KK (T -1
4580 13 CONT IMUE

4681 CONGT=A2/R2

482 RE=DREAL CCOMST

&83 XKX=DIMAGICONSET?

484 FHASE=TIATANZ2 { XX KR)

6835 FUEC L)) =FHABEX180,0/F1

686 FUEC (L) =DIMAG(SE LYY /(2. OXF T XK (FMAX/FNORM)
687 AVEC (L) =CDARSCCONSET)

4848 Qb= 0M-+ DL OM

689 IFCAMFMIN LOGT. AVEC(LL)) AMPMIN=AVEC (L)
690 TFCAMPMAX LT, AVEC L)) AMPMAX=AVEC (L)
571 TFAPHAMIN 6T, PUECILY)Y PHAMIN=PUEC (L)
H92 LFOPHAMAX LT PUECILY Y PHAMAX=RUWED (L)
&93 1590 COMTINUE

674 ne 1S I=lyNFREQ

H95 FUBECMCI ) =FUECCT Y HALENG /150,

696 15 CONTIMNUE

697 FLO=FUECMOL)

6598 FMAX=FUECNC(IL)

H99 WRITE(G» 109 FNAME

700 WRITE(Be111)

58]
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WRITE(Sy110)
WRITE(S109) TITLE

C# LK 2 R

Coveas e JWRITE DATA ON DEVICE 8

CQ LK 2 K
WRITE(By LOWIFLOyFRAX e AMFHINy AMPMAX y FHAMIN FHAMAX » NFREQ
WHICH= HOD(IL,3)-1
MM2:=11--2
nog 20 I= 1-MM243
WRITE(S LOZIFVECHIL) s AVECL L ) 1 PUECID) » FUECN(IH LY vy AVEC (L4110
Ly PUECCTHLY o FUECNCTE2) p AVEC (T2 » PUEC (IH2)

20 COMTIMNUE
IFCUHICH)Y 21,2223

22 WRITE(Sy LOZIFVECNCITY s AVECCTI D) « FVECIIT)
GO TO 21

23 WRITEAL(By LOZYFVECNCIT-1Y v AVEC (T L-1) vy FUECCITI-1) s FVECNC(IL ) »
TAVECC(IL) »PVECCT DD

21 CONTINUE

101 FORMAT(AFB .3, 2F8. 2150

107 FORMAT(3(2FE. 3y FB.2))

109 FORMAT LXKy 18024)

110 FORMAT(25H )

111 FORMAT (A44H RATIONAL FUNCTION RESPOMNSE WITH NORMATLIZED.
110H FREQUEMNTY)

RETURN

C000000

Cosves e THIS ROUTIME NORMALIZES THE EXFERIMENTAL
CeseweIATA TO THE RADIUS OF THE MINMIMUM

Coese s oCIRCUMSCRIBING SFHERE.

ey
lJO’OOOQ

SURBROUTINE l\'l"]ﬁl'ir\\Nl (2% I-ﬂ:m“ﬂ-MLN m'ﬂ l‘lﬁ/(yFHin
IFREQyAVEC» FUECy FNAME » TETLE » ALENG)
IMPLLICIT REALXE(A~H»0-2)
ENGTON FREQOLOGO) »FVEL (10000 »AVELCLIO00) »FNEW(1000?
TOFNAME(A) y TETLECLS)Y s WHICHy NFREQ

[J—NIF

124 }OthT\’FJ)ll RADTUS OF MINIMUM CIRCUMSCRIRBING SPHERE?)
thU(h_lﬁﬁ) ALEMG
125 FORMAT(F 1O,
NHITFf”)vQH\
?9 FORMATC 7D
Cevesnn
Covow o o FIND WHLAFIXCy THE MORMALLIZED FREQUENCY
Covessn
ng 29 I=1t.NFREQ
FNEWCTY=2%XFREQCIIYXALENG/300,
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29 CONTIMUE
FLO=FMNEW(1)
FMAX=FMEZW{LT?
WRITE(71110 FMAME
WRITE(Z»112)
WRITE(Z,110)
WRITE(Z»111) TITLE

(:i.‘.”

Coevw e WRITE NORMALIZED DATA ON DEVICE 7

c:b'éiﬁ’

WRITE(ZyLOIFLOFHAX AMFMIM AMPMAXy PHAMIMN FHAMAX » NHFREQ

WHICH= MOD(NFREQ:3)~1
NH2=NFREQ-2
[0 20 I= 1yNM2y3

WRITE(Z 2 107)FMEWIT) v AVECC T ) » FUEC (L) s FNEWC(TH1) » AVEC{LT+1L 2y

*

LPVECCLAL Y p FNEWLL4H2) » AVEC T2 » FUEC (T 42

20 CONTINUE
IFCUHICHY21 2223

22 WRITEC? s 1070FNEWII) yAVEC(TI D) »FUEC(TII)

GO 1O 21

23 WRITE(Zy LO7)FNEWCTII-1) » AVEC LT~ 1) vy PUECCT L) o FNEWCTIT Y »

LTAVECCTIY s PUEC (T T
21 CONTIHUE
101 FORMAT (AFS .3
1O7 FORMATCI(2AFB. 378,230
112 FORMAT (30H NORMALLIZED
11O FORMAT{25H
111 FORMAT (1 Xy L8AS)

RETURN

EMID

EXFERTMENTAL

)
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