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ABSTRACT

The natural frequencies, natural modes, and coupling coefficients are
computed for a wire model of an aircraft. These same parameters are cal-
culated from scale model measurements made at the University of Michigan
and from system level aircraft test data obtained from the ATHAMAS I,
ATHAMAS II, and ATLAS I electromagnetic pulse simulators. Comparisons are
made between the wire model theoretical results and the results from the
various measurements.
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CHAPTER 1

INTRODUCTION

During electromagnetic pulse (EMP) testing surface currents are
induced on the skin of an aircraft. These currents are measured at a
number of different locations on the aircraft. Then the measurements
are repeated with the aircraft in different orientations relative to
the incident field. The resulting data are a collection of short
duration (typically 2 to 5 usec) time functions. When the test
results are interpreted, comparisons are made between measured and
predicted currents. The predicted currents consist of computer code
results and scale model measurements. Usually these comparisons are
made by overlaying time or frequency domain graphs. The process of
collecting and storing measurement data and of comparing them with
predictions could be improved greatly if the information in the surface
currents could be condensed in some way. The singularity expansion
method (SEM) offers this possibility for improvement.

The SEM introduced by Baum [1] provides a compact and
physically meaningful way of characterizing a conducting body's
response to EMP. With this method the response of a conducting body
to an incident impulse plane electromagnetic wave is expressed as a
sum of complex exponentials. This sum depends on a few parameters,
namely natural frequencies, natural modes, coupling coefficients, and
normalization factors. If these parameters are known the response to

an arbitrary plane wave excitation can be obtained. Conversely, the



parameters can be calculated from a sufficient quantity of surface

current responses plus knowledge of the incident field. In principle,
it is possible to take a large number of surface current measurements
and compress the information contained in them into a few tables and
graphs of SEM parameters. This report addresses some of the practical
problems in carrying out this data compression process. There are two
problem areas tc consider. First, the SEM parameters should be
calculated for some aircraft model. Second, the parameters should be
calculated from measured data and compared with the theoretical model
results.

The first of these problems has been considered by several
investigators. Because of the complexity of aircraft surface
geometry, it is difficult to formulate and solve the scattering

probTem for an exact aircraft model. As a consequence, simplified

models have been used to allow tractable mathematical formulations
which preserve the global aircraft features. Crow et al. [2] used
perpendicular crossed wires as an aircraft model. They divided the
wires into segments and assumed sinusoidal current distribution along
each segment. Then they obtained an analytic expression for the
scattered electric field in terms of induced current. Based on the
Pocklington integral-differential equation and the boundary conditions
of the incident and scattered electric fields, a matrix equation
relating induced current and incident electric field was formed by
means of method of moments. The zeros of the determinant of the
system matrix defined the locations of natural frequencies. They were

found numerically by Muller's method. The natural modes and coupling




coefficients were also defined, and solved for numerically [3]. In
subsequent work these results were extended to the case of crossed
wires over a perfectly conducting ground plane [4] and then the
imperfect ground case [5]. The latter study is based on transmission
line theory and is much simpler than the conventional method of moment
techniques.

Bedrosian [6] developed the "six length stick model" and
computed natural frequencies and natural modes for several different
types of aircraft. The stick model employed the assumption of a
sinusoidal current distribution on each conducting stick. At the
Jjunctions conservation of the current and continuity of charge-density
were enforced. A matrix equation was developed for the junction and
end conditions on the sticks. The zeros of the determinant of the
matrix and the computation of average radiated power and stored
magnetic energy for each cycle yielded the natural frequencies. The
natural modes were obtained from the matrix equation.

In the first part of the work described in this report a simple
wire model of a B-52 aircraft was analyzed. The wire current was
calculated using a time domain computer code. The SEM parameters for
this simple model were computed from the current. These results are
compared below with the results given in [2] and [6]. Of course one
would hope that these wire model parameters would compare reasonably
well with the actual (but unknown) B-52 aircraft SEM parameters.

The second part of our work consisted of an attempt to
calculate the parameters from measured data. Two types of measured

B-52 data were available. Frequency response data for a B-52 scale



model has been taken at the University of Michigan Radiation
Laboratory by Liepa [7]. Also, some surface current density
measurements from B-52 system Tevel tests conducted at the ATHAMAS I
(HPD), ATHAMAS II (VPD), and ATLAS I (Trestle) Simulator facilities
were obtained. None of these measurements were taken with SEM
parameter extraction as a goal. Consequently there are not enough
measurements to completely define the SEM description. But the
results are encouraging and indicate that the parameters can be
determined from experimental data.

A description of the wire model and the method of calculating
the SEM parameters is presented in Chapter 2. Chapter 3 gives the
numerical results and their comparison. Chapter 4 presents conclusions
drawn from this study. Two techniques for calculating the "sum of
complex exponentials" description for a transient waveform, Prony's
method and the iterative premultiply method, are treated in detail in

the appendix.
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CHAPTER 2
FORMULATION

2.1 GENERAL EXPRESSION FOR THE RESPONSE

In this report no attempt is made to determine or analyze the
current density variation around the circumference of the aircraft
body. There are two reasons for this. First, the test data are
surface current density measurements but the measurements are not
distributed around the circumference in any consistent way. Second,
the thin wire code computes the total axial current on wire segments.
Any current variation about the wire circumference is ignored in
making the thin wire approximation. For these reasons the surface
current is modeled below as having a two rather than three-dimensional
space dependence.

Consider a scatterer lying in the xy plane in three-dimensional
space struck by a pltane e]ectromagneﬁic wave. The direction of
the propagation K of the incident field makes an angle ¢ with the
z-axis and the projection of E on the xy plane makes an angle & with
the x-axis. Then using the SEM representation [1], the induced

current at any location on the scatterer can be written as
I(t.8,0.%.y) = IR (8,0,%,y) exp(s thu(t - t )
o

+ g(t,8,0,X,Y) (1)

where ty is the turn on time, the s are the natural frequencies or
8.1

poles of the scatterer, the Ru are the corresponding residues at s
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and g(t,e,¢,x,y) is the forced response. The summation over a
represents the natural response of the scatterer. It is shown in [1]

that the residues can be factored as

= pmax nl ; F
R, (8:6:%,y) = nlaX ol (8,0)1_ (x,9)F(s,) (2)
where
ngax - the normalization factor
n& - normalized coupling coefficient
id - normalized natural mode
?(sq) - Laplace transform of the exciting function.

As a result, the natural response can be expressed in terms of SEM
parameters as

ZRa(e,¢,x,y)exp(sat) u(t - tg)

[0

=] nlax nl(e,4)1 (x,y)F (s )exp(s t)u(t-to) (3)

a
Since the values of the induced current are always real, the poles S
shown in Equation 1 occur in complex conjugate pairs or lie on the
real axis of the complex s-plane. The pole locations depend on the
geometry of the scatterer.

The natural modes describe the spatial amplitude variation in
the current. They are normalized so that at the maximum magnitude
points they are real and equal to one. They are independent of the
angles of incidence 6 and ¢, but are functions of the spatial

coordinates x and y. The coupling coefficients describe the coupling
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between the incident field and the scatterer. They depend on the
angles 6 and ¢, and are independent of x and y. They are also
normalized so that at the maximum magnitude points they are real and
equal to one. The normalization factors are calculated to provide
proper magnitude and phase in Equation 3.

One of the greatest advantages of SEM in data compression is
the factoring of the residues in Equation 2. Without Equation 2, it
would appear that to define the surface current natural response it
would be necessary to measure I(t,8,¢,X,y) at a large number of
separate values of the argument. But from Equation 3, it is necessary
to measure only enough data to define the product. The natural modes
and coupling coefficients are usually well-behaved functions. This
also reduces the number of the spatial samples. The natural

frequencies along with other SEM parameters provide extrapolation in

time and interpolation in spatial coordinates. The information in the

surface current 1is then effectively condensed.

2.2 THE COMPUTING METHOD
Suppose I(t,®,¢,x,y) is known for t > to and a number of 6,¢,X,

and y values. In order to find the parameters, it is necessary to
find the Sy, and Ra(e,¢,x,y) in Equation 1. Prony's method [8] was
used to compute the natural frequencies and residues from the time
domain response generated by the thin-wire code. This method is
suitable for computer generated data. It does not work well with
experimental data because of noise. For this reason the iterative

premultiply method [9], [10] was used to analyze the Michigan scale
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model and system test data. Both methods fit the given data by a sum
of complex exponentials. Due to numerical error and measurement
noise, there exist extra "fitting poles" that are not the poles of the
response. However, the poles of the response can be recognized by
increasing the number of complex exponentials fitted. As the order
increases, some pole values become approximately constant to several
decimal places while others change randomly. The poles that stabilize
as the fitted order increases are the natural frequencies of the
current data. The residues were obtained by a standard least-square
curve fitting scheme, using the complex exponentials of the poles as a
set of basis functions. For field excitations that can be expressed
as a sum of complex exponentials, the poles and residues can be
calculated from the source driven region where the exciting waveform
is still present. For those which cannot, it is useful to wait until
the forced response dies out essentially.

The result of applying one of the two methods to the response
data is a collection of S, and Ra(e,¢,x,y) values. The pole values
calculated from different data sets should vary only within a few per-
cent. The « natural mode is calculated by fixing 6 and ¢ and scaling
the o residue variation as x and y are changed. This is done for each
particular natural freguency. By Equation 2, the natural modes cal-
culated should be independent of the incident angles 6 and ¢.

However, because of computation and/or measurement error, some de-
pendence exists. In order to reduce the effect of these errors, the
field orientation that yielded maximum residues was chosen. For the

natural frequency S 4 there exists a location on the aircraft that
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makes the corresponding Ra greater than that of other locations for
any field orientation. In the calculation of the a-coupling coeffi-
cient, this particular location was chosen. Then the variation in Rq
as a function of 8,¢ was tabulated and normalized to yield the
a-coupling coefficient, n;(e,¢). From Equation 2, the a-normalization

factor can be expressed as

max R, (8:8:%,) @
> né(9q¢)ia(X=Y)f(5a)
In actual calculation only
Ré(e,¢,x,y) = R (8,4>x,y) exp(s t;) (4a)

is available, where t; depending on the starting point ts in the
calculation of poles and residues, and the distance B, between the

incident wavefront and the origin of the coordinate system.

2.3 DESCRIPTION OF DATA
2.3.1 The Thin-Wire Code Data

The wire model of the B-52 aircraft consisted of three equal
radius cylinders. The radius R = 1.6 meters was chosen so that the
cylinders and the B-52 fuselage would have approximately the same
cross-sectioned area. The locations of the cylinders are shown in
Figure 1. The incident plane wave is depicted in Figure 2. The di-
rection of propagation K makes an angle 6 with z-axis, and the pro-
jection of K on the Xy plane makes an angle ¢ with the x-axis, n is
the polarization angle of the incident electric field, and only n =
90° 1is considered in the simulation. At t = 0, the wavefront of the

15
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Figure 2.

The coordinate system and electric field orientation.
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incident wave is assumed to be a distance of D from the origin of the

coordinate system, where Dy = 40 meters. A double exponential pulse

electric field

E(t) = E5 « f(t)

exp(-at) - exp(-Bt) , t Z 0

—t
—
—
St
t

0 otherwise (5)

was used as the incident electric field, where a = 4 x 106,
B =2.2 x 10% and E; = 1 volt/meter.

The thin wire code solves the time-domain electric field
integral equation numerically [11], [12]. The numerical solution

begins by approximating the structure geometry by a set of cylindrical

segments. Then the integral equation is rendered into a set of linear

equations by the method of moments. For any desired incident field, the

equations are treated as an initial value problem and total axial
current is obtained for each time step and each segment. In this
study, the wire model was divided into 30 segments as shown in Figure
1. The time step was chosen as ot = 2 x 10-% sec. For each run of
the thin-wire code, the axial currents are available for 600 time
steps at each of the 30 segments.

In the first stage of our study, we also experimented with the
wire model with the tail included. The frequency responses from both
models were compared to the frequency response of the Michigan scale
model data. The data trom the model matched the Michigan scale model
data no better than that from the present model in the high frequency
region (above 6 MHz), while they all were close to each other in the
low frequency region. This 1is the reason for adopting the present

18



wire model for simulation.
2.3.2 The Michigan Scale Model Data

The experiment performed at the University of Michigan was that
of illuminating a scale model B-52 by an electromagnetic plane wave.
Surface current density at several locations on the model was measured
and scaled to full B-52 aircraft dimensions. The measured current
density data consist of the frequency response at several locations
along the fuselage and wings for five different field excitations.

The field orientations, in terms of the definition in Figure 2, are

orientation 1: 6=90°, ¢= 90°, n= 90°
orientation 2: 6= 0", ¢=180°, n= 90°
orientation 3: 6=90°, ¢= 90°, n=180°
orientation 4: 8 =90°, ¢= 90°, n= 9Q°

orientation 5: 8 =90, ¢=180°, =n= 90°
Before the calculation of SEM parameters from these data, the Inverse
Fourier transform was performed to get time domain responses. A
second-order Butterworth low-pass filter with cutoff frequency of 10 MHz
was applied to filter out the high frequency components
(H(s) = wé/(sz 1414 w s + wé), w =2 107).

2.3.3 System Test Data

The measured current data from the ATHAMAS I (HPD) simulator
consist of data sets measured at three different locations on the
fuselage and one data set measured on the wing. In this test a B-52
aircraft was placed on a lossy ground and illuminated by an EMP with
the principal component of the electric field either parallel or

perpendicular to the fuselage. The field orientations correspond
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roughly to orientations 1 and 2 for the Michigan data except that .
8 X~ 45° in each case. Because of the lossy ground plane, the aircraft
poles extracted from these data are expected to have more negative
real parts than those from that in free space case [5]. In the
ATHAMAS II (VPD) simulation the ground plane is more conductive, and
the incident electric field is perpendicular to the conducting ground
plane. Only one current measurement is available. Poles extracted
from these data are expected to be closer to the imaginary axis [4]
than are the poles from the other data.
The data from ATHAMAS I and ATHAMAS II are time domain data.
Fach data record was filtered as above before poles and residues were
calculated.
In the ATLAS I (TRESTLE) simulator, the measurement data
consist of time responses measured at two different locations on the ’
aircraft. The incident field orjentations are the same as orientation
4 and orientation 5 in the Michigan test. The iterative premultiply

method was applied to the digitized time domain waveforms.
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CHAPTER 3
NUMERICAL RESULTS

3.1 EVALUATION OF SEM PARAMETERS FROM DATA

GENERATED BY THE THIN WIRE CODE
3.1.1 The Transient Response and the Exciting Field

The 30 segment wire model shown in Figure 1 was formulated for
the time domain thin wire computer code WT-MBA/LLL1B [13]. A double
exponential pulse was selected as the exciting electric field. Plane
wave excitation was assumed, and the field orientation was charac-
terized by the angles 8 and ¢, as shown in Figure 2 with n = 90°.
For each run of the thin wire code, the induced current data at the
center of each of the thirty segments was computed at 600 time steps
of width at, with &t = 2 x 10-® sec. The thin wire code was run re-
peatedly to generate current data for different field orientations.
For an arbitrary incident plane wave, the electric field can be
decomposed into two orthogonal components, one with the E field
parallel to the fuselage (x-axis), the other with the E field per-
pendicular to the fuselage. These components are called symmetric
excitation and antisymmetric excitation respectively [14].
3.1.2 The Natural Frequencies

Prony's method was applied to the current data to compute the
poles and residues in Equation 1. The poles are the natural fre-
quencies of the scatterer, and were determined by the criterion set

in Section 2.2. Four pole-pairs were extractable from the current
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induced on the fuselage, and one additional pole-pair appeared in the ‘

current data from the wing. These values are listed in Table 1.

Table 1. Natural freguencies of the
B-52 wire model poles

a poles

1 | as,1,1  -0.145 x 107 + j 0.135 x 10%
2 | sy,1,1  -0.810 x 10%° + j 0.149 x 10°
3 | sy,1,2  -0.312 x 107 + j 0.196 x 10°
4 | sy,2,1  -0.389 x 107 + j 0.373 x 10°
5 | sy,3,1  -0.328 x 107 + j 0.408 x 10°

It was observed that when the exciting field contained only the
antisymmetric component, that is, E perpendicular to the fuselage, the
first resonance dominated the current response on the wings. For this .
reason, the first mode is called the antisymmetric mode. The other four
modes are called symmetric modes. The same mode designation is used
as that used in [4].

3.1.3 The Natural Modes

Figures 3 through 7 present the real parts of the normalized
natural modes for the five natural frequencies. It should be noted
that for the antisymmetric mode only the distribution on the wings 1is
shown, since no current is coupled to the fuselage. Three-dimensional
plots of the natural modes are shown in Figures 8 through 10 with the
arrow representing the direction of current flow. The imaginary parts

of the natural modes are all small and hence, are not shown.
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Figure 8. Three-dimensional plot of the real part
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3.1.4 The Coupling Coefficients

As can be seen from Equation 2, the a-coupling coefficient
contains the variation of the residue as the function of 6 and ¢. For
a fixed segment we calculated the residues for several combinations of
6 and ¢. The segment can be chosen from the normalized natural mode
plot so that the peak of each mode corresponds to the chosen segment
on the scatterer. The normalized variation in these residues gives
the nl(6,¢).

03

The normalized coupling coefficients for the five resonances
are presented in Figures 11 through 15, with both real and imaginary
parts shown. Each curve shows the ¢ variation of residue for a fixed
value of 6. Three 6 values were chosen, 6 = 30°, 6 = 60°, and o =
90°. Due to the symmetry of the wire model, the né(6,¢) is an even
function of ¢, that is, n;(e,¢)= n;(e,-¢).

It should be noted that the definition of the exciting field
orientation (6 and ¢) is based on the coordinate system and is
independent of the location of the wire model. For the same incident
field orientation, the induced current response on the scatterer may
be different, depending on the location of the wire model in the
coordinate system. Hence,the coupling coefficients will be affected,
if the location of the wire model is changed. In the foregoing
simuTation, the wire model was placed so that the fuselage lies on the
x-axis with the wing-fuselage junction coinciding with the origin.

It is interesting to know how the coupling coefficients will
vary as the wire model is moved along the x-axis. Assume that the

wing-fuselage junction is moved from (0,0,0) to (-a,0,0). Then it
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can be argued that for plane wave excitation the coupling coefficients
will change as

n1(6,¢) = nl(6,¢) « exp(s <+ a * cos¢ * sing /c) (6)
a new o old a

where ni(6,¢) are the coupling coefficients shown in Figures 11

old
through 15 and n;(6,¢)new are the coupling coefficients of the moved
wire model.

One special case of interest is the midpoint of the fuselage
moved to coincide with the origin of the coordinate system. This puts
the origin at the center of the smallest sphere containing the
scatterer. Using Equation 6, the new coupling coefficients are
computed and shown in Figures 16 through 20.

Figure 21 presents the © variation of the residues with ¢
chosen to be 90° for all five natural frequencies. Only the real
parts are shown, since the imaginary parts are all very small.

3.1.5 The Normalization Factors

The normalization factors can be computed from Equation 4,
where Ru(6,¢,x,y) represents the residue obtained from the current
response caused by an incident pulse striking the origin at t = 0. 1In
all the preceding graphs, the time origin was chosen so that at t = 0
the incident wavefront was DO meters from the origin. DO is chosen
for convenience in running the thin wire code. Also, the R'(8,¢,x,y)
in Equation 4a is obtained not from the transient response ztarting at
t = 0, but from those which start at a later time, t =t . From

s
Equation 4a, we have
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R (es¢axsy) = R‘(e,qa,x,y)exp(-s tl) (7)
o (o o

The time shift factor exp(-saﬁl) in Equation 7 moves the time origin
to the time when the incident waveform crosses the origin of the
coordinate system, where t, = t¢ - Dy/c.

In this study ts was chosen to be ts = 15 At, and DO = 40

meters. The normalization factors so obtained are

A18% = 0,101 x 107 + § 0.563 x 10°

-0.102 x 107 + j 0.424 x 10°

max
N2

3% = 0,902 x 10° - j 0.991 x 10°

A% = 0,396 x 10° - j 0.204 x 10°

nP3X = 0.899 x 10° - j 0.525 x 10°

These normalization factors correspond to the coupling
coefficients in Figures 16 through 20. The time origin is thus chosen
so that at t = 0 the incident wavefront strikes the center of the

minimum circumscribing sphere.

3.2 COMPARISON OF THE WIRE MODEL RESULTS

WITH OTHER THEORETICAL RESULTS

Taylor et al. [2] found the SEM parameters for perpendicular
crossed cylinders in free space. The cylinder lengths and junction
point are such that the natural frequencies cannot be compared with

our wire model frequencies. However, the natural modes for the two
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models are very similar. This indicates that the mode shape is not
especially sensitive to the exact model geometry.

The coupling coefficient normalization used in [2] is different
from that used here. But the general shape of the coupling
coefficients for both models is similar. Some obvious differences
exist because of the different geometries. For example, symmetric
excitation cannot excite the antisymmetric modes in the perpendicular
crossed cylinder model. But with the wire model having swept back
wings, the antisymmetric coupling coefficient zero does not occur at
exactly ¢ = 90° (see Figures 11 and 16). Neglecting differences of
this kind, it appears that the coupling coefficients of the first few
modes are fairly insensitive to the relative positions of the wing and
fuselage.

Another approach for computing the natural frequencies uses the
six-length stick model developed by Bedrosian [6]. Liu et al. [15]
employed this model in an attempt to find the natural frequencies of a
B-52 aircraft. Several sets of stick lengths and length to diameter
ratios were tried. The results do not agree well with the wire model
frequencies. No antisymmetric mode was found since a symmetric
excitation was considered. The stick model has successfully predicted
the natural frequencies of other aircraft. It appears to be better
suited for modeling aircraft whose wings and fuselage are more

nearly perpendicular,

3.3 COMPARISON OF SIMULATION AND EXPERIMENTAL RESULTS

The iterative premultiply method was applied to the measurement
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data (Michigan scale model, ATHAMAS I, ATHAMAS II, and ATLAS I). The
poles extracted from these noisy measurements were less stable than
those from the thin wire code generated data. The poles obtained from
different data sources are listed in Table 2. The s-plane plot of
poles 1s shown in Figure 22.  Some of the other SEM parameters were
computed and compared with the wire model results.
3.3.1 Comparison with Michigan Data

Figures 23 through 26 show a frequency domain comparison of the
Michigan scale model data and the wire model results. In the graphs,
the Michigan scale model data have been multiplied by the Laplace
transform of the double exponential pulse to make it comparable to
the wire model result. Figure 23 shows the frequency comparison with
data taken at the nose of the aircraft and orientation 1 excitation.
In Figure 24, the field excitation is the same as that in Figure 23,
but the data were taken at the middle of the aft fuselage. Both
graphs match better in the low frequency region. For frequencies
beyond 6 MHz significant differences exist. The first and second
symmetric mode resonances (sy,l,1, sy,1,2) appear in Figure 23, while
only the first one shows up in Figure 24, since the sy,1,2 has insig-
nificant residues on the aft fuselage region. Figures 25 and 26 show
the responses at the midpoint of one wing. Figure 25 presents data
with orientation 4 excitation, and Figure 26 shows that with orienta-
tion 5 excitation. It should be noted that symmetric excitation
(orientation 4) causes a resonance peak corresponding to the first
symmetric mode (sy,1,1), while antisymmetric excitation (orientation
5) makes the resonance peak corresponding to antisymmetric mode

(as,1,1) show up.
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Table 2.

Natural Frequencies Computed from

A1l Data Sources

Thin wire model

Michigan scale model

ATHAMAS I (HPD)

ATHAMAS I1 (VPD)

ATLAS (Trestle)

as,1,1

sy,1,1

sy,1.2

Sys2,1

SY.3,1

-0.145x107+j0.135x10°8
-0.810x10%+j0.149x10°
-0.312x107+j0.196x10°
-0.389x107+j0.373x10°

-0.328x107+j0.408x10°

-0.155x107+30.137x10°8
~0.767x10%+j0.143x10°
-0.528x107+j0.170x10°
~0.373x107+j0.353x10°

-0.260x107+j0.503x10®

-0.891x10°%+j0.126x107
-0.120x107+0.140x10®
-0.118x107+j0.175x10°®
-0.246x107+j0.367x10°

-0.221x107+j0.474x10°

-0.107x10%+j0.143x108
-0.104x107+j0.197x10°

-0.754x10%4j0.374x10°8

-0.186x107+j0.123x108
~0.260x107+30.140x108
~0.505x107+30.197x10%

~0.354x107+0.340x10°
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Figure 22. s-plane plot of poles.
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The natural frequencies of Michigan data listed in Table 2 were
obtained from several different Tocations. The sy,l,1 frequency is
the average of five polte values from the aft fuselage. The sy,1,2
frequency appeared only for data taken from the forward fuselage. The
sy,2,1 and sy,3,1 frequencies are both averages of two pole values
from the fuselage. The as,l,l frequency was observed only on the
wings with orientation 5 excitation. There was no single location on
the model where all five natural frequencies appear simultaneously.
Only poles with large residues, that is, large natural modes and
coupling coefficients, were extractable due to noise. It should be
noted that the sy,1,1 and as,1,1 frequencies match the wire model
values well. The remaining natural frequencies do not agree as well.
This is probably due to model error. For example, the wire model
omits the tail section and of course does not have a variable radius
like the scale model. Data from the "large' scale model was also
analyzed, but the results were not consistent and hence, not reported
here.

The normalized sy,l,1 natural mode was copputed from the
Michigan data. The Tlargest sy,1,l residue from the scale model data
was normalized to be equal to the sy,1,1 natural mode from the wire
model at the closest location. The remaining residues were normalized
with the same factor. The result is compared to the wire model result
in Figure 27. The two graphs are very similar along the fuselage. As
can be seen from the graph, the data measured on the scale model are
not exactly at the same Tlocations as those generated by the thin wire

code. This may be one reason for the numerical differences. And the
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significant difference in the magnitude of data points close to the
tail is probably due to neglecting the tail in the wire model
simulation.

Figure 28 shows the sy,l,1 coupling coefficient uv-variation
comparison between the Michigan scale model measurement and the wire
model simulation. The angle ¢ is 90° in both cases. 4= 0° is
orientation 1 and 6 = 90° is orientation 4 in the measurement. These
were the only two angles of incidence available for this comparison.
Figure 29 presents the comparison of ¢-variation. The angle u is 90°
in both cases, ¢ = 90° is orientation 4 and ¢ = 130° is orientation 5
excitation. The same comparison as in Figure 29 for as,l,l is shown
in Figure 30.

The normalization factors were also calculated from the
Michigan data for sy,1,1 and as,1,l. The results are compared to the
results from the wire model simulation in Table 3. These results are
consistent with the Targer peaks observed in the wire model frequency

domain data presented above.

3.3.2 Simulator Results

Both the thin wire and Michigan data attempt to model the
external coupling problem in a free space, plane wave excitation
environment. The simulators (ATHAMAS I, ATHAMAS 11, and ATLAS I)
do not provide this environment. There 1s a lossy ground plane in
ATHAMAS T and a better conducting ground plane in ATHAMAS 11. In
ATLAS I an interaction between the simulator structure and test ob-

Ject exists. None of the simulators produces an exact plane wave,



o Michigan scale model
— The wire model

— ] o _—___;-:;
_'_’____,._.:—-'—'—'_
_—f—‘——_/—.’—'—
T
107
C:'—
E— I
’E t:ll_
.
=
1
L o
L -4
&: (]
Cda
T i 1 ! l ] —
0.0 |50 0.0 45, E0.0 75.0 au. o

Figure 28. Coupling coefficient for the sy,1,1 natural
frequency at ¢ = 90°: Michigan scale model
and the wire model simulation.

56



o Michigan scale model

— The wire model

Pea
a
— 1 —
1 —— .
! e .
i K '
H o Y
| .
£ E 5
[ - E
: 1
« i 3
- "
if _! -“" ‘l!
| H
| ; \
! !
‘l! Il
7 L‘x
- r ¥
I3 it} ! Y
i w3 Ix 1
R | \
= - -4 y
B { 4
o 7 !
] ! |
— P \
; "
5 ¢
1 4 p
d
— ?
= i ’
i K 4
Teh e J '
e et kN
K %
i ri- |'I
5 4
! ! §
H i '
i ‘li
Pl H
LS S I‘
— ! k3
[T ¢ \
i b
h k!
; N Y
: £ 1
LS
s |
e & H
P I 4 E
b = - )
P - 3
st T - ‘i"'l
i { ] i ki
[ s E) Pl B L it R =] [T
[ KRR R S o u =y 1ot 1
LT Froctmy
1 N O Y B

Figure 29.

Coupling coefficient for the sy,1,1 natural
freguency at 8=90°: Michigan scale model
and the wire model simulation.

57



o Michigan scale model

— The wire model

]

- — T e f n .
D030 Ens e 1300 150.0 im
. v P SnTaly
= PRI/ TDER!

/!

REAL FART

~

-1

Figure 30. Coupling coefficient for the as,1,1 natural ] )
frequency at 6=90°: Michigan scale model
measurement and the wire model simulation.




Table 3. Normalization factor comparison

Thin wire model Michigan scale model
Tax 0.101 x 107 + j 0.563 x 10%| 0.629 x 10% + j 0.192 x 10°
]
(as,1,1)
nmax -0.102 x 107 + j 0.423 x 10°|-0.882 x 10° + j 0.651 x 10°
2 .
(sy,1,1)

but ATHAMAS II and ATLAS I provide a moderate approximation to a plane
wave environment. Some theoretical studies have been made on the
effects of these extra interactions. Shumpert [16] computed the SEM
parameters for a wire scatterer parallel to a lossy ground. He found
that the natural modes are not affected much by the ground plane. But
the natural frequencies are sensitive to the conductivity and permit-
tivity of the ground and also to the wire height above the ground.
Taylor et al. [41,[5] investigated ground plane effect on the SEM
parameters for crossed wire configurations. They concluded that the
real parts of the natural frequencies decrease as the wire configura-
tion approaches a perfect conducting ground plane. They also found
that a lossy ground plane makes the real parts of the natural fre-
quencies more negative compared with the free space case. Lam [17]

studied the interaction between a parallel plate simulator and a
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cylinder. They found that the dependence of pole location on the .
distance between the test object and simulator is oscillatory.

The natural frequencies calculated from the ATHAMAS 1 data are
lTisted in Table 2. As in the Michigan scale model case, the various
poles appear at different aircraft locations. No current waveform at
a single location contains all the natural frequencies listed. The
antisymmetric mode appears only on the wings as expected. There are
variations in the value of the same pole as the test location is
changed. Poles from different measurement locations were averaged to
give the final values. From the results in [5], the lossy ground
plane should make the pole real parts more negative. However, we can
see from Table 2 that only the sy,1,1 mode follows this trend. The
difference may be due to measurement error. No attempt was made to

compute natural modes or coupling coefficients since not enough mea-

surements were available. Qverall, the data from ATHAMAS I yielded
poorer results than that from the other simulators.

Only one measurement was available from the ATHAMAS II simu-
lator. It was taken on the fuselage with a vertical incident electric
field orientation not considered in the wire model. Three natural
frequencies were obtained with the imaginary parts very close to the
wire model results. Compared with the free space case, all three
poles are closer to the jw axis of the complex plane as predicted in
[4].

Both incident field and current density response waveforms were
available from the ATLAS I test. This made it possible to divide out

the incident field and compare directly with the Michigan data. The



frequency response at the midpoint of one wing with orientation 5
excitation was compared to the calculated wire model response and the
Michigan scale model data. The graph is shown in Figure 31. The
poles from data at two different locations were calculated and listed
in Table 2. The interaction between the simulator structure and the
test object in ATLAS I may be one reason for the differences in pole
Tocations from that of the wire model. However, Lam's study [17]
shows that the effect of this extra interaction is complicated. The
normalization factor of the antisymmetric mode was calculated as
0.895 x 10° + j 0.836 x 10° compared to 0.101 x 107 + j 0.563 x 10°
of the wire model. Overall, the results from ATHAMAS II and ATLAS I

are very encouraging and argue in favor of taking more external data.
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CHAPTER 4
CONCLUSION AND RECOMMENDATIONS

The SEM parameters were calculated for a wire model of a B-52
aircraft. The results were compared with similar calculations using
scale model data and system level test data. Several factors affect
these comparisons:

(1) the wire model is a very simple model for an aircraft;

(2) both the wire model and scale model results are for free

space conditions;

(3) the system level test data include simulator-test object

interaction effects and

(4) only a small amount of measured data were available.
Despite these factors, the results indicate that the SEM representa-
tion can be applied to measured test data.

Because of cost, it is not practical to take enough system test
measurements to completely define the SEM parameters for an aircraft.
A reasonable approach is to present theoretical current density pre-
dictions and/or scale model data measurements as a collection of SEM
parameters. These pretest data would be useful as a gquideline for
sensor placement and aircraft orientation in the system test. It
would also be useful in making decisions about the "reasonableness'
of the test results.

Once obtained, the system test data could be reduced to a

collection of natural frequencies and (probably incomplete) modes
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and coupling coefficients. This would provide a compact way of
representing surface current density medsurements and of comparing
them with pretest predictions. It would also allow for a simple

extrapolation technique--but this is a subject for future work.
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APPENDIX

This appendix provides two algorithms used in this thesis for
calculating poles and residues from transient time response, that is,

"Prony's Method" [8], and the "Iterative Premultiply Method" [9], [10].

1. Prony's Method
For a system with only simple poles, the system's natural re-

sponse can be expressed as

y(t) =
;

tho~—1=<

1 c exp(sit) (A.1)
whére the s, are the poles in the complex frequency plane, and the op
are their corresponding residues. Since y(t) is a real function of

time, the S must either be real or occur in complex conjugate pairs.
Let y(t) be sampled at equal time intervals with a total of N points,

then we can write

I~ =

y(kT) =y = cy exp(s.kT)s k=0, 1,0y Mo (A.2)

i=1

where Yy are the sampled values and T is the sampling interval.

(A.2) is rewritten as

where z; = exp(sz).

With this set of equations, the problem is to solve for both the
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M values of Z, and the M values of Ci It is assumed that the value
of N be at least equal to 2M. The solution to this set of equations

is nontrivial, since they are nonlinear in the zi‘s. Let

Zys Zpseees Zy be the roots of the algebraic equation

n n-1 n-2 _
z + ayz +a,z teeetay 4z tay = 0 (A.4)

so that the left-hand side of (A.4) is equal to the product
(z-z])(z—zz) cen (z—zM).

In order to determine the coefficients 815 8pseens Ay, WE mul-

tiply the first equation in (A.3) by Ay the second egquation by

th

., the M™" equation by ays the (M+T)th equation by 1, and

R R
add the results. Since each of the Z, satisfies (A.4), then the

result is of the form

R A N

A set of N-M-1 additional equations of similar type is obtained in

the same way by starting instead successively with the second, third,

th

.» (N-M)"" equation. In this way it is possible to obtain the N-M

linear difference eguations

I}
O

Yy FaqYyay ¥ Tt Ay,
Yuep T Ay T Aoy Tty = 0

. . (A.5a)

. .

Yol T Ao ta¥nag Tt Ay T O

6()




which can be written in matrix form as
y=Ha (A.5b)
with
L= [yM T yN-]}T

_.yM-_l « e —yo

N2 T T M
a = {a]a2 e aM}T

Since H and y are known, a can be found as

1

a=H 'y, if N=2M (A.6a)

or, if N > 2M, a can be obtained by the Teast square method as

a= (HH) Hly (A.6b)

After a is determined, the M values of z. can be found as the
roots of (A.4). (A.3) then becomes a system of linear equations
in the C; with known coefficients. The c; can be determined from
the first M of these equations. It is trivial to obtain the poles
S since the roots of Equation (A.4) were defined by (A.3) as

z; = exp(sit), then the poles are simply

In Z;

S = — (A.7)
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In summary, the Prony's method, instead of attacking the
nonlinear equations directly, solves two sets of linear equations

and an Mth

-order algebraic equation. Thus, the nonlinearity of the
equations is concentrated in the single algebraic equation. Up to

this point, the problem seems to be solved; however, when the tran-
sient response is corrupted by noise and the signal to noise is low,

Prony's method has proven to be fnaccurate [9], {18]. One way to

overcome this difficulty is discussed in the next section.

2. Iterative premultiply method

" When the data are measured by some measurement device, they are
by no means noise free. Noise is also present in the analog to digi-
tal conversion and gquantization process, which are necessary for
digital processing. Let Yo k=0, 1,..., N-1, be samples from an
observed transient waveform. We want tc approximate Yy by a sequence

of the form

C; exp(sikT) ;s k=0, 1,..., N-1 (A.8)

e~ =

X
S
For a given choice of the Cis Sio and M, there may be error between

Yi and Xy o which is denoted by

ek = }'k - Xk (Ag)
The mean squared error is defined by
T
E(M,cybs,) = Nﬁkzo ey (A.10)
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The values of c, and 5. that minimized E(M,ci,si) for a fixed M are
called the minimum mean squared error estimates. With this frame-
work the problem of calculating poles and residues from a transient
waveform can be stated in two parts: (1) find the minimum squared
error estimates of C. and S for a fixed M, and then (2) determine
a "suitable" value of M.

From (A.5a) we can write

+ a + -0 + 3

1%6-1 = 0; N-1 >k > M (A.11)

% M k=M z K2z

k

Using Equation (A.9) in Equation (A.11), we get the relation

Ve Pt A T O T Ay T T g Nl 2 k2
(A.12)

Now let Vi be the right-hand side of (A.12). Then we have the matrix
equation

y=Ha+yv o , (A.13)

.
where v [VM’VM+1 o VN—1}

y, H, and a are as defined in (A.5b).

When using Prony's method one obtains the same least squares solution

as in Equation (A.6b), that is,

a, = (HT )—]HTx_ (A.14)

—Ls

This solution is a biased estimate of a unless the covariance matrix
of v is a constant times the identity matrix [19]. In the case con-

sidered here the components of v are linear combinations of the error
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€ k=0, 1,...N-T. As a result the estimates of a, are biased
and the poles calculated from these estimates can be far from the
estimates that minimize E(M,ci,si). In fact, these least squares
solutions minimized _jgj rather than E(M’Cisi) that we want to
minimize.

To derive the iterative premultiply algorithm, let us check

the relation between e and V.- From (A.13) we have

Vg = et gt tae s N-T > ko> M (A.15)
Let
_ . T
and
aM . a1 10 0
0 3y a1 10 - 0
D=

O « « « a, « « 4«3

L —

The matrix D is N-M-1 by N. Using this definition and (A.10),
We can write

v=>De (A.16)

The error we would Tike to minimize is §T§_= E(M,ci,Si). The matrix

D is singular so we cannot solve for e directly, but by using the
pseudo-inverse for D, it is easy to show [20] that the minimum norm

solution of (A.16) satisfies

ng = VT(DDT) v (A.17)
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Using (A.13) and (A.17) we have

-1

ele = (y - H)T(0") (y - Ha) (A.18)
This equation expresses the original error defined in (A.9) in terms
of the difference equation parameters ass i=1, 2,...M. The problem
of minimizing E(M’Ci’si) = ng_is then the problem of minimizing
(A.18) with respect to the as. The equation is nonlinear, but a
simple iterative technique can be used to find the minimum [10].

Suppose e is a vector of uncorrelated random variables, each
with mean zero and variance one. Then from (A.16) the variance of
v, R, will be

R = DD! (A.19)

Using this expression for RV, we can see that the minimum variance,
unbiased estimate for a is given by (A.18). To motivate the tech-
nique for minimizing (A.]S), we observe that if the matrix DDT did
not depend on a, then the minimum of ng_wou]d be given by the
solution for a from the normal equation

-1 -1
HT(DT) Ha = HT(DDT) 'y (A.20)

Since D does in fact depend on a, we can use (A.20) but with itera-
tions. That is, we solve (A.20) for a with DDT = Identity matrix,
then compute DDT from the estimated a and recompute a from (A.20).
This process is continued until the estimate of a converges.
Equation (A.20) shows the inverse of DDT. It is unnecessary and

inefficient to compute this inverse, since DDT is a symmetric positive
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definite matrix. It can be factored with Cholesky's method [20] as

oo = F'F (A.21)

where F is upper triangular and nonsingular. Define y and H as the

solutions of the equations

T~
Fy=y
(A.22)
FIH = H
Using (A.22) in (A.20) we can get
ATfa = Aly (A.23)

as the set of normal equations to be solved for a.
To summarize, the iterative procedure consists of the following

steps:

1. Solve Equation (A.20) for a with DB' = I.

2. Compute DDT from the present
T

.

T |

3. Factor DD’ and compute ¥ and H.
4, Solve for a new a from (A.20).
5. Check if the new a has changed appreciably from the previous
one. If yes, return to step 2. Otherwise the iteration
is complete.
After a is obtained, the procedures to solve for s, and c, are the
same as those in Prony's method discussed in the previous section.
The "suitable" number of poles, M, depends on the character-

istics of the transient data. There is no easy formula for this

determination. One practical way to use this iterative premultiply
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method is to try it for several different values of M, and pick up
those poles that are numerically stable as the poles of the system.
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