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Abstract

A curve fitting and pole extraction algorithm has been developed
and applied to exact frequency domain data for the surface fields on a
perfectly conducting sphere. The data are fitted extremely close
and for at least a handful of the lowest order SEM poles, the extracted
poles and their residues are in good agreement with their known exact
values. Unfortunately, this is not true if the frequency response is
degraded in accuracy. In particular, noise effects are explored, and
it is found that for noise levels typical of the best experimental data,
it is no longer possible to locate more than (at most) the dominant

SEM pole to a reasonable degree of accuracy.



DETERMINATION OF SEM POLES FROM FREQUENCY RESPONSES

1. Introduction

The singularity expansion method (SEM) is based on the analytic
properties of the electromagnetic response of a body as a function of the
complex frequency s. For a passive body the singularities are confined
to the left half of the complex s plane, and a knowledge of these
singularities can serve to characterize the response to any excitation.
If the body is finite and perfectly conducting, the only singularities
in the finite part of the plane are poles, which are simple and occur in
complex conjugate pairs (Baum, 1976; Sancer and Varvatsis, 1980), i.e.,
are symmetrically placed with respect to the negative real s axis.

It is fundamental to SEM that the poles are independent of the
mathematical representation of the response and are a property of the
body alone. 1In particular, their locations (but not the residues) are
unaffected by a change in the illumination, and if a collection of poles
is extracted from computed or measured data for the response, the SEM
poles can be distinquished from numerical artifacts by their positional
invariance. Cataloging the true poles is therefore a simple method of
summarizing information about a body, and their extraction from measured
data could serve as a means of target identification.

Several numerical algorithms exist for determining the SEM poles

from frequency domain data. One of these is an iterative method developed

by Sharpe and Roussi (1979) and based on a technique of Levy (1959). It
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is essentially a least squares method that fits the data with a

rational function from which the poles and residues are then computed.
The iteration linearizes the calculation and also reduces the excessive
weighting of the higher frequencies that a straight least squares compu-
tation normally produces. The program was initially applied to measured
data for the axial current at several Tocations on a thick cylinder over
a frequency range spanning the first five longitudinal modes. In every
instance the ratiornal function obtained gave an excellent fit to the
measured data curve, but apart from the lowest order one, the poles

were not positionally invariant. As the angle of illumination changed,
all poles except the first showed substantial movement in the complex
plane, and it proved impossible to achieve a fit when the movement was
restricted. Of course, for a thick cylinder the SEM poles are not

known precisely.

The extent to which the lack of success was due to the program
itself, the selection of such parameters as the sampling interval and
the order of the rational function, or to the noise and other
inaccuracies in the measured data, was not apparent. In the time domain
it is found (Cho and Cordaro, 1980) that pole extraction is quite
sensitive to noise. To see if this same sensitivity exists in the
frequency domain and, at the same time, gain experience in the appli-
cation of the program, it is helpful to consider data whose accuracy
can be controlled. The only finite body whose frequency response is
easily obtained to any accuracy desired is the sphere, and in the
following sections we consider the determination of the poles and

residues from frequency domain data for the surface fields on a
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perfectly conducting sphere. For this body the SEM poles and
residues are known precisely. After a brief description of the
numerical algorithm and the computation of the exact surface fields,
poles and residues (Section 2), the extraction of the poles and
residues from the frequency response data is discussed (Section 3),
along with the influence of the various parameters in the algorithm.
In Section 4 we then consider the effect of noise and other data

inaccuracies on the pole extraction process.

2. Formulation

Over any finite frequency range the electromagnetic response of
a body can be approximated by a rational function whose poles can be
found. It is assumed that a subset of these approximate the SEM poles
which are dominant in this frequency range and can be distinguished by
their positional invariance to a change in excitation of the body. It
follows that the most effective pole extraction procedure is one that
accurately determines the SEM poles and maximizes the subset.

Given a (complex) frequency response F(wz) where w, 5% = 1,2,...,L,
are sampled (real) frequencies, the numerical algorithm employed fits this

with a rational function

m
a taowt...+tauw
Py = ——— T (mgn) . (1)

b +bw+...+bmn
o]} 1 n

The initial curve fit is obtained when the error

E = ZL: !D(wl)F(wl) - N(ml) :

2=1
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is minimized, subject to the constraint b0 = 1.0 by solving the

simultaneous set of equations

e = 0 s J=0,],...,m
3aj

oE .

SEE = 0 , j=1,2,...,n

for the coefficients a; and bj. The square of the resulting denominator
is then used as a weighting factor in a further application of least
squares to improve the rational function fit, giving rise to an iterative
procedure. At the kth stage of iteration, the coefficients are obtained
by minimizing

¢

-1
{Dk(wg)F(wz) = Nk(wl)} {Dk-l(ml)}

and so on until the error is Tess than a pre-specified value.

2

3 (2)

L
2=1

A program has been written to implement this curve fitting routine.
Apart from the frequency range and the sampling interval which are in
general determined by the data at hand, there are three parameters which
must be chosen at the outset. They are the orders of the numerator and
denominator polynomials, M and N respectively, and the maximum allowed
error which terminates the jteration. At the conclusion of the program,
the poles and residues of the rational function approximation are computed.
The process is then repeated using other (distinct) data for the
response of the same body, and those poles which are common to most of

the results are identified as SEM poles of the body.
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To better understand the limitations of the method and to gain
experience in the selection of the parameters involved, it is helpful
to consider data for a frequency response whose poles and residues are
known precisely. This is true in particular for the surface field on a

perfectly conducting sphere.

A sphere of radius a is illuminated by the plane wave

P | ~ Hquwz/c =i iwz/c
E1 = X e / s H /

= -&Y e
propagating in the direction of the negative z axis of the Cartesian
coordinate system (x,y,z). Y is the intrinsic admittance of the
surrounding free spacé medium, ¢ is the velocity of 1ight in vacuo,
and a time factor eiwt has been assumed and suppressed. If (r,e,¢)
are spherical polar coordinates, the tangential components of the

total magnetic field at the surface r = a are

(Bowman et al., 1969; pp. 396 and 397) with

Pgl)(cos )

1 (22 o) - jgj sN+L _2n + 1 1
1 \¢ ° wa n{n +T) E(2)' (gg) sin e

n=1 n c

+ —157i——§57—- %E-Pﬁl)(cos ei} (3a)
& (c )




T (L—uci ’e) " i ™R {g(z)' Eso_a_l) 35 Ph eos ©)
n

n=1 Cc

. 5 Pgl)(cos e)}
_(2) fwa sin ©
o ()

(3b)
c

where Pgl)(cos 8) is the Legendre function of degree n and order unity

as defined by Stratton (1941, p. 401) and

£ = ol L P 0 - g-x-{xhy)(x)}

(

n2)(x) is the spherical Hankel function of the second kind of

where h

order n.

By appropriate truncation of the infinite series representations,
it is a simple matter to compute T1 and T2 to any desired accuracy. A
program was available (Senior, 1975) for the far zone scattered fields
of a sphere and this was modified to compute T1 and T2 for 6 = 0(45)180°
and 0.2 < wa/c < 7.0 to six decimal accuracy. In the limit as « »+ O,
T1(0’e) = -(3/2)cos 6 and T (0,8) = -3/2.

The functions gﬁz)(x) and g£2)|(x) are proportional to polynomials
in x of orders n and n+l1 respectively whose zeros are the SEM poles.
In terms of the complex frequency s = iwa/c, the polynomials have
positive real coefficients which ensures that all zeros lie in the ]eft
half plane, and those which do not 1ie on the negative real s axis
occur in complex conjugate pairs. As shown, for example, by Martinez

et al. (1972), the zeros can be arranged in layers lying successively
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further from the imaginary s axis. When ordered from the right, the

odd (even) numbered layers are the electric (magnetic) mode resonances

(2)"

produced by the zeros of &

(~is)and gaz)(-is) respectively. In
general the dominant SEM poles are those in the first (2 = 1) layer,
and the nth pole numbered up from the negative real s axis is a zero of

2},
&,(1 ) (-is).
T and T can be expressed as
1 2

o«

= R(6) Ry (8)
T (-is,0) = HZ;I—% . T (-is5,0) = mzl s @

1
where the s_ are zeros of eithenlgﬁz) (-is) or gﬁz)(-is), and
RT(e) and R?(e) are the residues of T1 and T2 respectively at s = Sp-

The residues can be found by computing

{ds gﬁz)'(-is)§ , -%; {-is ggz)(-is)}
s=s s=§

m m

n.lo.
w

and then dividing these into the quantities

1.n+1 2n + 1

n(n + 1) Fn(e)

where Fn(e) is either (a/ae)Pﬁl)(cos 8) or Pgl)(cose)/sin 8. For
9 = 0 the poles and residues of the first six poles in the first layer
are given in Table 1. For comparison we note that for the first pole

(at s = -1) in the second layer, RI(O) = R2(0) = -j0.551819.
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Table 1: Exact poles and residues for first layer poles

m Sm R';(O)
1 | -0.500000 + i0.866025 | -0.0946447 - i0.516674
2 | -0.701964 + i1.80740 0.633323 - 10.0853256
3 | -0.842862 + i2.75786 0.0802221 + 10.733736
4 | -0.954230 + i3.71478 | -0.822075 + 0.0767481
5 | -1.04764 + i4.67641 -0.0741270 - §0.901805
6 | -1.12891 + i5.64163 -0.0664705 + 0.223154
®
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3. Exact Data Analysis

The curve fitting algorithm was applied to the computed data for
T2 as a function of frequency in an attempt to extract a handful of the
lowest order SEM poles. The objective was to locate 4 or 5 pole pairs
with sufficient accuracy to leave no doubt as to their identification
as SEM (rather than curve fitting) poles, and to allow us to determine
the 6 dependence of their residues. Data were available for 0.2 < wa/c
< 7.0 in increments of 0.1 and 0.02, and in the expectation that the
poles which could be accurately located would be the dominant ones with
Im S within the frequency range covered by the data, it was anticipated
that most {if not all) poles would 1ie in the first layer.

To apply the algorithm there are a number of parameters which
must be chosen, some of which relate to the dafa and others to the

curve fitting process. Regarding the data, there are the minimum,

maximum and increments of wa/c and, in our case, the choice of phase
reference for the frequency response. Since our concern was with the
lower order poles, it was natural to choose min wa/c to be the smallest
value for which data was available, namely 0.2; and to avoid handling

more data than was clearly necessary, we initially selected max wa/c = 4.0
with increments of 0.1. The computed data of Section 2 are phase-
referenced to a plane perpendicular to the z axis through the center

of the sphere. For all 6 except w/2, arg T2 varies almost Tinearly

as a function of frequency, and this translates into a roughly

sinusoidal variation of the real and imaginary parts which are the

inputs to the curve fitting process. The variation is greatly reduced

-10-




if the phase is referenced to the point on the surface of the sphere
where the field is computed, and since it is natural to expect that a
smooth curve can be fitted more accurately than a rapidly varying one,
arg T2 was increased by wa/c cos 8 prior to the application of the
algorithm. Once the curve fitting was accomplished and the poles and
residues determined, the phase reference was returned to the original
location.

Three parameters involved in the program itself are the orders
M and N of the numerator and denominator polynomials and the maximum
aliowed error Emax' Since the set of SEM poles is infinite in number
and the response remains finite as wa/c » «, it would seem that the
accuracy of curve fit should increase with M and N, and that a logical
choice would be M = N. Numerically, however, problems are experienced
when M and/or N are large due to the finite range of numbers that any
computer can handle, whereas if N is small there are too few poles
available to simulate the data. It was therefore anticipated that
there would be an optimum range of N and, perhaps, M depending on
the frequency span of the data and the particular characteristics of
the computer.

The error Emax relates to the convergence of the iterative
process and is not directly a measure of the curve fit nor, of course,
the accuracy of pole extraction. When running the program, Emax was
set at 10_8 and the iteration was terminated when this value was
achieved, or after 20 jterations, whichever came first. In many
instances the maximum allowed error was not obtained, but the curve
fit was still excellent. As a measure of the curve fit we therefore

computed
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g=1

(c.f. (2)), where the polynomials are those obtained from the final
iteration, and recorded this quantity. Due to the limited precision
with which the datawere stored, any value of E... less than 0.25 x 1077
was shown to be zero. Since the curve fit was excellent in most cases,
it was not unusual for this to occur.

A1l of the initial runs were carried out for 6 = 0 (for which
T2 = Tl). It was found almost immediately that numerical difficulties
arise if N exceeds (about) 25, and if M = N, these problems can occur
for M,N as sma]i as 18. In either instance the éxponential range of
the computer (Amdahl 470/V8) was exceeded. We therefore chose M < N,
and because of the restriction on N, limited the frequency span of the
data to wa/c < 4.0 to allow for a reasonable number of curve fitting
poles in addition to the SEM poles that were sought.

Figure 1 shows the curve fit to |F(w,)| for & = 0 and
Awa/c = 0.1 with M = 7 and N = 8. The criterion for Emax was met

and E = 0.25 x 10'3. The extracted pole locations are shown in

fit
Fig. 2, and we observe that three of the poles vaguely resemble the
first three SEM poles, more closely as regards Im Sm than Re Syt

The agreement is better if M = 9 and N = 10, and better still if M and
N are increased to 11 and 12 respectively (see Fig. 3). We are now
beginning to pick up the fifth SEM pole of the first layer (which lies

outside the range of Im s spanned by the data), as well as the first

pole of the second layer. The convergence criterion was again met and
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Fig. 2: Comparison of exact (®® ) and fitted function poles for

M=7and N=8 (0O 0O) and for M =9 and N = 10 (X X).
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_ -7
Efit = 0.51 x 10 ".

modulus of the simulated response was graphically indistinguishable from

In this case and in all others discussed, the

the data within the frequency range spanned by the data, but as seen
from Fig. 4, there are discrepancies outside the range.

Table 2 compares the locations of the first four SEM poles with
those of the extracted poles for 6 = 0, Awa/c = 0.1 and four M and

N combinations. In each case E = 0 and the agreement in pole

fit
locations improves with increasing order of the polynomials. The best
results are for M = 15 and N = 16 in the sense that a further increase
in M and/or N gives no improvement. Similar comparisons for a variety
of polynomial orders from 8 to 18 have shown that the accuracy of the
extracted poles is best for M = N-1 and diminishes for N 2 20.

For given M and N a decrease in the sampling interval from 0.1

(39‘data points) to 0.02 (191 data points) has no appreciable effect,

as indicated in Table 3. The results of shifting the phase reference

of the data to a plane through the center of the sphere are shown in

Table 4 and, as expected, the accuracy of the pole locations is poorer.
The above data are all for 6 = 0, and for the cases considered in

Tables 2 through 4 the accuracy of curve fit is extremely good.

However, this does not imply a comparable accuracy in the extracted pole

Tocations, and in a practical situation where the locations of the

true poles are unknown, it is necessary to vary the illumination

conditions, e.g., change 6, and use the positional invariance of the

true poles as the criterion of accuracy. We also comment that Efit is

unrelated to Ema » and for the cases in Tables 2 through 4, the specified

X
error 10'8 was never achieved prior to the completion of the allowed

20 iterations.
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Fig. 4: Comparison of TZ(O ) ( ) and the curve fit (----) obtained

with wa/c = 0.2(0.1)4.0, M =11 and N = 2.
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Table 2: Comparison of exact and extracted pole locations for 6 = 0,
Awa/c = 0.1 and various M,N
Extracted

Exact

M=12, N=14 M=13, N=14 M=14, N=16 M=15, N=16
-0.500000 -0.5010 -0.5007 -0.5007 -0.5000
$i0.866025 $i0.8641 +i0.8659 $i0.8657 $i0.8658
-0.701964 -0.6964 -0.7052 -0.7027 -0.7025
$i1.80740 ${1.808 +i1.804 $§1.803 $i1.806
-0.842862 -0.8436 -0.8334 -0.8408 -0.8399
+12.75786 1§2.739 +§2.762 i2.766 ti.2.760
-0.954230 -1.056 -0.9309 -0.9199 -0.9439
+i3.71478 ti3.575 +i3.642 ti3.685 ti3.678
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Table 3: Comparison of exact and extracted pole locations for 6 = 0,
showing the effect of Awa/c
Extracted
Exact M = 14 M=15, N =16
Awa/c = 0.02 Awa/c = 0.1 Awa/c = 0.02 Awa/c = 0.1
-0.500000 -0.5003 -0.5007 -0.4999 -0.5000
+i0.866025 *70.8635 $70.8659 *i0.8657 +i0.8658
-0.701964 -0.6997 -0.7052 -0.7021 -0.7025
+§1.80740 *§1.810 *i1.804 +i1.806 *i1.806
-0.842862 -0.8364 -0.8334 -0.8407 -0.8399
+i2.75786 12,752 $i2.762 *i2.760 ¥j2.760
-0.954230 - -0.9721 -0.9309 -0.9489 -0.9439
+i3.71478 +i3.647 ti3.642 +i3.682 +i3.678
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Table 4: Comparison of exact and extracted pole locations for 8 = 0

and Aawa/c = 0.1, showing the effect of phase reference

Extracted

Exact M=13, N=14 M=15, N=16

center surface center surface
-0.500000 -0.5010 -0.5007 -0.5009 -0.5000
+i0.866025 | %70.8655 +i0.8659 +i0.8650 +i0.8658
-0.701964 -0.6994 -0.7052 -0.6994 -0.7025
+i1.80740 ti1.801 +i1.804 *i1.804 +i1.806
-0.842862 -0.8600 -0.8334 -0.8522 -0.8399
+i2.75786 +i2.770 ti2.762 ¥i2.769 +i2.760
-0.954230 -0.8879 -0.9309 -0.8794 -0.9439
¥i3.71478 +i3.797 *i3.642 1i3.785 +i3.678
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The effect of changing 8 is shown in Table 5, which gives the

extracted pole locations for & = 0(45)180° with M = 15, N = 16 and

Awa/c = 0.1. The accuracy does not vary significantly with 8, though we

observe that at 8 = 90° where the first and third poles are not excited, the

accuracy of the second and fourth poles is better than before. The

residues R?(e) of the first four poles for T2 are plotted in Figs. 5

through 8, and the somewhat poorer accuracy with which the fourth

pole is located, particularly for e > 90°, is reflected in its residue.
The fourth pole is fairly close to the upper 1imit of the

frequencies spanned by the data. To improve its accuracy and, at the

same t%me, locate the next pole or two, it is natural to increase

max wa/c to 5 or 6, and the results of doing so are shown in Table 6.

The best agreement is obtained with M = 17 and N = 18. Although the curve

fit is again excellent, as it was for M = 15 and N = 16 with the smaller

data set (see Table 3), the first three poles are not quite as accurately

.1ocated, but the fourth through sixth are in reasonable agreement.

Unfortunately, to increase the data span still more and extract further

poles requires the use of polynomials of higher order, and because of

the numerical difficulties that occur when N exceeds (about) 25, this

does not prove to be effective. An alternative approach is to retain

the same span of data and 'window', i.e., shift the span to encompass

those poles which are sought. This is illustrated in Table 7 for three

different M and N combinations applied to the data for 2.0 < wa/c < 6.0.

In terms of the accuracy of the extracted poles, the case M = 15 and

N =16 is best. The fourth through sixth poles are located more

accurately than with the larger frequency span, but the first pole is
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Comparison of exact and extracted pole locations for Awa/c

0.1,

Table 5:
M =15, N =16 and 6 = 0(45)180°
Extracted
Exact 6 = 0° 6 = 45° 6 = 90° 6 = 135° 6 = 180°
-0.500000 -0.5000 -0.5000 -0.4997 -0.5001
: not excited
$i0.866025 +i0.8658 +50.8661 +i0.8667 ti0.8660
-0.701964 -0.7025 -0.7020 -0.7008
not excited not excited +
+41.80740 +i1.806 ti1.807 1i1.808
. -0.842862 -0.8399 -0.8418 ) -0.8419 -0.8410
not excited |
+i2.75786 $i2.760 +i2.760 “+42.759 +i2.751
-0.954230 -0.9439 -0.9490 -0.9565 -0.9341 -0.9310
- ¥§3.71478 +i3.678 1i3.698 +5.3716 +i3.732 ti3,622
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Fig. 5: Real {(

) and imaginary (- --) parts of the residue,
R;(G), of the first pole fo the first layer and the extracted

real (O O) and imaginary (X X) parts.
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‘R?2(g), of the second pole of the first layer and the
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extracted real (O O) and imaginary (X X) parts.
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Fig. 7: Real (

) and imaginary (- —-) parts of the residue,
R3(p), of the third pole of the first layer and the extracted
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real (O O) and imaginary (X X) parts.
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Fig. 8: Real ( ) and imaginary (- - -) parts of the residue,
R:(e), of the fourth pole of the first layer and the

extracted real (0 O) and imaginary (X X) parts.
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Table 6:

Comparison of exact and extracted pole locations for

8 = 0, and wa/c = 0.2(0.1)6.0
Extracted
Exact
M =15, N=16 M=17, N =18 M=19, N = 20

~0.500000 -0.5020 -0.5007 -0.5008
+i0.866025 +i0.8643 ti0.8637 +i0.8638
-0.701964 -0.6935 -0.6986 -0.6980
+i1.80740 *i1.812 *j1.810 +41.809
-0.842862 -0.8252 -0.8370 -0.8369
+j2.75786 $i2.742 +i2.753 +i2.751
-0.954230 -0.9472 -0.9532 -0.9567
+i3.71478 +i3.649 +i3.697 $i3.693
-1.04764 -1.061 -1.073 -1.090
ti4.67641 *i4.464 ti.4.622 +i4.619
-1.12891 -0.9781 -1.161 -0.8810
ti5.64163 ti5.183 +i5.372 ti6.046
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Table 7: Comparison of exact and extracted pole locations for

8 =0, and wa/c =
Exact e
=15, N =16
-0.500000
not located

110.866025
-0.70]964 ‘0-6365
${1.80740 +i1.802
-0.842862 -0.8449
1i2.75786 +i2.746
~0.954230 -0.9582
$i3.71478 +i3.714
-1.04764 1.041
¥i4.67641 14656
-].]289] _].079
115.64163 +i5.467

2.0(0.1)6.0

Extracted

M

17, N =

not located
-0.7005
*i1.730

-0.8558
¥i2.765

-0.9422

ti3.728

-1.071

Yi4 658

-1.054

ti5.497
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B

=19, N =20
not located
-0.6025
*i1.816

-0.8536
+52.730

-0.9787

ti3.738

~1.011
tia.728

-0.9399
ti5.658




not picked up at all, and the second is considerably in error. This
is hardly surprising since the first two poles are no longer spanned
by the data.

As a result of the above investigation, the following conclusions
can be drawn. In the first place, the data should fully span the
imaginary parts of the poles to be located. If n SEM poles are
spanned, N should be in the range 3n to 4n with M = N-1, but N should
not exceed (about) 25 to avoid numerical difficulties. This upper
1imit decreases with increasing max wa/c and is almost certainly
machine dependent as well. For a greater span of data and/or to extract
more than a handful of SEM poles, it may be necessary to process the data

in batches (perhaps overlapping), i.e., use windowing.

4., Effect of Noise

In most practical applications of the pole extraction method,
the data for the frequency response have been obtained by measurement or
by the numerical solution of a less than perfect model of the scatterer.
Inevitably such data are subject to noise and other uncertainties, and
it is important to see how the accuracy of both the curve fit and the
SEM pole extraction are affected. For this purpose, two types of noise
were considered: numerical inaccuracies in the form of data limited
to k decimal places, and added Gaussian white noise of various amplitudes.
For the first study, the real and imaginary parts of T2(0) which
were originally accurate to six decimal places were rounded to k
decimals with k progressively reduced. The data used spanned

0.2 < ya/c < 4.0 in increments of 0.1 and 0.02, and since a rational
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function with M = 15 and N = 16 had proved to be effective in the
absence of noise (i.e., when k = 6), this function was chosen. For
Awa/c = 0.1 and 0.02 the curve fits were equally good, but because

the accuracy of the extracted poles was slightly better for the closer
sampling, we used this in all of the noise studies.

As k was reduced down to 1, the extracted poles became increasingly
inaccurate as shown in Table 8, and for k = 2 even the dominant pole
was substantially in error. In spite of this, the curve fit remained
good. Figure 9 shows the Toci of the extracted poles as functions
of k. As k decreases, each pole moves closer to the imaginary s axis,
and the general behavior is similar to that found when fitting the
exact data with rational functions of progressively lower order. This
suggests that by increasing M and N we might be able to overcome some
of the noise effects and thereby improve the accuracy of the extracted
poles. Because of the numerical difficulties referred to earlier,
the largest N that could easily be handled was 24, and the results
of using M = 23 and N = 24 with data having k = 3 and 2 are presented
in Table 9. The increased order of polynomials produces only a slight
improvement, primarily for the data with k = 2.

In the second study Gaussian distributed white noise was added
to the exact data for the real and imaginary parts of TZ(O), wajc =
0.2(0.02)4.0. The noise was produced by a random number generator
for which the mean and standard deviation could be specified. In all
cases the mean was chosen to be zero and the standard deviation varied

to change the noise level. For noise with standard deviations 10'5

4

and 10° ', the values of Eeit and the pole locations provided by a
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Table 8: Comparison of exact and extracted poles for 8 = 0 , wa/c = 0.2(0.02)4.0,

M =15 and N = 16, with data sets rounded to k decimal places

| Extracted E
T Exact 1 |
| k=6 | k = 4 i k=3 k =2 ; k =1 |
-0.500000 -0.5000 -0.5011 | -0.5140 | -0.4081  :  -0.3764
a | 1
!
%10.866025 *10.8658 *i0.8639 | *j0.8577 | *i0.8369  *i0.9174
| | f
|
-0.701964 -0.7025 -0.6957 -0.7005 | -0.4924 | -0.2961
| | |
$i1.80740 | Zi1.806 ti1.811 | %i1.8610 L %41.643 P 141,939
; | f |
' -0.842862 -0.8399 -0.8323 -0.7548 . -0.4727 | -0.1581 |
P ; ‘
*i2.75786 $12.760 i2.732 L ti2.842 - Lizsste . ti2.964
i :
-0.954230 -0.9439 -0.9614 -0.6875 ¢ -0.3981 | -0.04094
1i3.71478 *13.678 i3.517 *i3.784 193.924 | 143,257
-7 -1 -1 -1 -1
Eeit <0.25 x 10 0.27 x 10 0.27 x 10 0.27 x 10 0.31 x 10
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Table 9: Comparison of exact and extracted pole locations for & = 0,
and wa/c = 0.2(0.02)4.0 for various decimal places k of
data accuracy
Extracted
Exact ——
k = 3 k =2
IS U U N i
M=15, N=16 | M=23, N=24 | M=15, N=16 | M =23, N =
-0.500000 -0.5140 -0.5054 -0.4081 -0.4824
+i0.866025 ti0.8577 *i0.8648 170.8369 +i0.8051
. -0.701964 -0.7005 -0.6873 -0.4924 -0.6564
+§1.80740 *i1.861 tj1.827 Ti1.643 ¥i1.676
-0.842862 -0.7548 -0.7488 -0.4727 -0.6578
ti2,75786 *i2.842 +i2.753 ti2.516 ti2.643
-0.954230 -0.6875 -0.6607 -0.3981 -0.5721
ti3.71478 ti3.784 *i3.670 +i3.924 +i3.620
Eeit 0.27 x 107} 0.27 x 107! 0.27 x 107} .27 x 1071
L —— R I - o B SV




rational function having M = 15 and N = 16 are listed in Table 10,

and even in the former case, the extracted poles differ substantially

from the exact ones. Figure 10 shows the curve fit to the magnitudes

of the noisy data for the standard deviation 10-4.
As a final test the curve fitting and pole extraction algorithm

was applied to measured data for the field component T2 at the front

(6 = 0) of a metallic sphere 6 inches in diameter (Fig. 11). The data were

obtained in an anechoic chamber over the frequency range 0.118 to

4.4 GHz, corresponding to 0.2 < wa/c < 7.0, but only the data for

0.2 < wa/c < 4.0 were used. Since prior studies using measured data

for the fields at the surface of a thick cylinder had shown that

filtering could remove some of the experimental noise, the measured

data were also processed using a seventh order digital filter. For

both the unfiltered and filtered data, the results of pole extraction
with a rational function having M = 15 and N = 16 are given in Table 11,
and are comparable to those in Table 10 for Gaussian noise with
standard deviations 10_4 and 10—5 respectively. Although filtering
gives some slight improvement in the accuracy with which the second,
third and fourth poles are located, it does so at the expense of a
decrease in the accuracy of the first pole.

As a result of these studies it appears unlikely that the
curve fitting and pole extraction algorithm can accurately locate more
than (at most) the first (dominant) SEM pole using measured data for

the frequency response.
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Table 10:

Comparison of exact and extracted pole locations for & = 0,

wa/c = 0.2(0.02)4.0, M = 15 and N = 16 for different levels

of Gaussian distributed white noise

Exact

-0.500000

$i0.866025

-0.701964
$i1.80740

-0.842862

+j2.75786
R

-0.954230

$i3.71478

o e vgree s ae e ae

std. dev. =
-0.4492

$i0.8313

-0.6022

41.700

-0.5819

*j2.625

-0.4773

*i3.582

Extracted

-35-

107°

std. dev. = 107"

-0.3907

$i0.9026

-0.4235

+i1.855

-0.3092

ti2.849

-0.06515

e

$i3.436
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Table 11: Comparison of exact and extracted pole locations for measured
data at 8 = 0 with 0.2 < wa/c < 4.0, M =15 and N = 16
Extracted
Exact — T "
Filtered
Experimental Experimental
-0.500000 -0.3920 -0.3709
+i0.866025 +i0.8575 +i0.8014
-0.701964 -0.3530 -0.4101
i1.80740 +i1.927 *j1.872
-0.842862 -0.2764 -0.4258
+i2.75786 ti3.066 1i2.662
-0.954230 -0.3332
not located
+i3.71478 +i3.764
-1 =1
Efit 0.77 x 10 .78 x 10
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5. Conclusions

Using rational functions a curve fitting and pole extraction
algorithm has been developed and applied to exact frequency domain data
for the surface fields on a sphere. The data are fitted extremely
closely and for at least a handful of the lowest order SEM poles, the
extracted poles and their residues are in good agreement with their
known values. It is possible that the method could be further refined
to yield a few more poles, but the performance is already close to
the l1imits of the computer. Overall, the success is comparable to that
achieved by Brittingham et al (1980) using a frequency domain Prony's
method.

Unfortunately, the situation is very different if the frequency
response is noisy or degraded in accuracy in a manner typical of
measured data. Although the curve fit is still good, even a small
amount of noise is sufficient to produce considerable discrepancies
between the extracted and true (SEM) poles, and for noise levels
characteristic of the best experimental data, it is impossible to locate
more than (at most) the dominant SEM pole to any degree of accuracy.

Since these conclusions have been reached using only a single
algorithm applied to the frequency response of a sphere alone, it cannot
be inferred that all frequency domain methods will be equally affected
by noise. Nevertheless, the algorithm is a reasonably sophisticated
one and is highly successful in curve fitting the data. Likewise the
sphere, though a less resonant structure than (say) a thin wire, has
a frequency response which is not unlike that of more complicated
targets such as an aircraft. For these reasons, it is probable that

the conclusions have general validity.
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