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Abstract

The nuclear electromagnetic environment of a missile underground shelter
is a conducting environment. The environment conductivity affects the
penetration of environment electromagnetic energy through apertures on
the shelter shield into the shelter's interior. To study this effect an
analytical model is formulated and solved. It is concluded that the electric
field penetration is enhanced by the environment conductivity, while the
magnetic field penetration is unaffected.
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I. INTRODUCTION

The electromagnetic shield of a missile shelter is perforated by an
assortment of apertures. These apertures are essential to the operation of
the shelter system, and serve a variety of functions such as communication,
power supply, access and ventilation. They are, however, imperfections of
the shelter shield, and, in the event of a nuclear attack, become inadvertent
points of entry for electromagnetic energy in the nuclear environment into
the shelter's interior. To ensure the survival of the shelter system in the
nuclear environment, the shelter shield must be adequately hardened to
reduce the aperture penetration to a safe level.

The acquisition of quantitative data on the phenomenon of aperture
penetration is essential to the hardness design and validation of the shelter
shield to a specified level. There has already been a considerable amount
of studies on aperture penetration performed under various programs of
hardening military aircraft against the nuclear electromagnetic pulse (EMP).
The results of these studies, however, are not immediately applicable to
the missile shelter. The reason is that the type of nuclear environment the
shelter shield is expected to be exposed to is the source region. The source
region is a conducting environment whereas the EMP environment of military
aircraft in flight is generally not. If the shelter shield aperture is
above ground, the conducting environment is the air ionized by the nuclear
radiation. If the aperture is underground, the conducting environment is
the soil with or without ionization by the nuclear environment. In studying
the source-region electromagnetic penetration of apertures on the missile
shelter shield, one must therefore consider the problem of penetration from
an external conducting environment into a non-conducting interior.

Despite the difference between the two types of penetration, there is
reason to hope that, under certain circumstances, the existing data of
aperture penetration from a non-conducting environment can be utilized,
after appropriate modification, to describe aperture penetration from a
conducting environment. The present study is performed to examine this
possibility.



In this study one aims at deriving rigorous basic results pertaining to
aperture penetration from a conducting medium. The approach is to formulate
and solve an analytical model typifying the penetration. By comparing the
analytical solution with that for penetration from a non-conducting medium,
one can establish contact between the results for the two penetration situations.



IT. ANALYTICAL MODEL

Figure 1 illustrates a typical configuration for the penetration of
source-region electromagnetic energy into a missile shelter's interior
by way of an aperture on the shelter shield. The shelter is depicted as
a horizontal underground shelter buried entirely in the soil. The source
region of a nuclear explosion nearby can be characterized by an air conduc-
tivity o ;.. a Compton current QF, and the electromagnetic fields E and H in
the air above the ground. The electromagnetic fields can penetrate into the
ground and interact with the conducting shelter shield. As a consequence of
this interaction the fields furthermore penetrate the aperture on the shield
and Teak into the shelter's interior.

The dimensions of the aperture are in general much smaller than those of
the shelter. In calculating the leakage electromagnetic fields inside the
shelter, it becomes advantageous to decompose the calculation into two
separate problems. The first problem is the external interaction problem of
the shelter shield. In this problem the aperture is considered to be
completely covered up so that the shelter shield can be regarded as a perfect
shield. One then calculates the response of this perfect shield to the
source-region electromagnetic environment. The response takes the form of
induced charges and currents on the shield's outer surface. One can determine
the total electromagnetic fields Esc and ﬂsc at the site of the aperture.
These are called the short-circuit fields at the aperture because they are
determined with the aperture covered up or short-circuited.

The second problem is the aperture penetration problem. Here one
considers the short-circuit fields and the ground conductivity as given, and
one calculates the penetration of the short-circuit fields into the shelter's
interior when the aperture is opened up. In the present study one will be
concerned exclusively with the aperture penetration problem.

The aperture penetration problem will be studied with an analytical
model shown in Figure 2. In this model the shelter shield is modeled by a
conducting screen coinciding with the xy plane of a rectangular coordinate
system. On the upper side of the screen (z > 0), one has a conducting medium
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Figure 2. An analytical model for studying the effect of
environment conductivity on the electromagnetic
penetration of an aperture.
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characterized by a conductivity 0y @ dielectric constant €4 and a perme-
ability uy. It will be referred to as medium 1. On the under side of the
screen (z < 0), one has a non-conducting medium (02==0) characterized by

a dielectric constant € and a permeability Hp It will be referred to as
medium 2.

Suppose there exists in medium 1 a given electromagnetic field of
angular frequency w and field vectors Esc and ﬂsc’ satisfying the Maxwell
equations in medium 1. At the surface of the screen (z=0), Esc is of
necessity normal to the screen and Hsc is tangential to it. For the purpose
of studying aperture penetration one can consider the fields to be uniform

and put

The aperture penetration problem consists in calculating the electromagnetic
fields leaking into medium 2 when a circular aperture of radius a and
centered at the coordinate origin is opened up on the conducting screen.

The results of the calculation are summarized in Section III. The
calculation is detailed in Appendices A, B and C.



ITI. SUMMARY OF RESULTS

Consider the aperture penetration problem depicted in Figure 2. The
penetration is quasi-static if the radius a of the circular aperture is
much smaller than the skin depth & of the external conducting medium 1

defined by
§=_ /-2
mU]O]

For oy = 0.01 mho/m and a frequency of 1 MHz, & is about 5m. In the

following the quasi-static criterion is assumed satisfied.

Results for 01_= 0

If medium 1 is non-conducting (oy =0), the electric field E, and magnetic
field H, penetrating into medium 2 are given by

£y = - W,
Hy = - W,
where
€
) 1 2 a1 9

Vo = - Escz ST E—(tan r Z-)
Hy 2( 11 c )

U, = - X —{tan = - -

2 SC oWyt W Lo148
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with

l"2=x2+‘y2+z2

At large distances from the aperture (r >> a) the fields are dipole fields:

v =] pr
2 47rs:2 r3
1 Br
U, = 5 —
2 A4m r3

where

ro=oxe, +ye +ze,

The dipole moments are given by

o
|
w| oo

Results for 9 #0

If medium 1 is conducting (oy # 0), the electric field E, and magnetic

field 52 penetrating into medium 2 are given by

E'l +€2
EZ(U] # 0) = E] Ez(c] = 0)

_}_{2(0] #0) = ﬂz(o] = 0)

The electric and magnetic dipole moments of the far fields (r >> a) are
given by
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P_(O] #0)

E(U] #0) =

i
|13

o
[

e

Conclusion

For the same external short-circuit electric and magnetic fields, the
electric field penetration of an aperture is enhanced by a factor (e]-+52)/e]
when the external medium is made conducting, while the magnetic field
penetration remains unchanged.

This conclusion is reached through a quasi-static analysis of penetra-
tion through a circular aperture. It is believed that the same conclusion
should hold true for apertures of other shapes.
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APPENDIX A
OBLATE SPHEROIDAL COORDINATES

The aperture penetration is calculated by solving Maxwell's equations
separately in media 1 and 2, and matching the solutions at the aperture.
In medium 1 Maxwell's equations read

V'E=0
VXE = - JuuyH
V'H =0
VxH = (o +jue)E (1)
In medium 2 they read
V'-E=0

VxH = jue,E (2)
To solve Maxwell's equations for the circular aperture geometry, it is
advantageous to introduce the dimensionless oblate spheriodal coordinates &,n

and ¢ . They are related to the rectangular coordinates x,y and z through
the equations

13



x=a /(D)1 =) cos ¢
y=ay (1+&22)(1 -1%) sin ¢
z = agn ' (3)

Their ranges are
- w < <o
0<nc<
0<¢ <2n (4)

As shown in Figure 3 the coordinate surfaces of constant £ are confocal
oblate spheroids. The coordinate surfaces of constant n are confocal
hyperboloids of one sheet. In particular the circular aperture is the
coordinate surface £ = 0; the conducting screen is the ccordinate surface

n = 0. The z axis is given by n = 1. The upper half-space z > 0 corresponds
to £> 0, and the lower half-space z< 0 corresponds to £<0.

In the oblate spheroidal coordinates the Laplace operator is given by

VoW = ;ﬁzg%:fggy [ gg (1+¢2) %%
+_").(]-n2)_aﬂ + €2+”2 _a_z_w_
o M+ (1-n?) ae? ()
The general solution of the Laplace equation
VoW = 0 (6)

is of the form

14



Figure 3.

Oblate spheroidal coordinate system.
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w0 n
_ m ., m, ...
W —nzo mzo [Anm P (3g) +Bann(Ja)]-

“Ph(n) [Cm cos mg+D_ sin m¢] (7)

where P? and Qﬁ are the associated Legendre functions. In particular

P](jg) = jg
N -1 1
Q](JE) = gtan T 1
Pi(n) = (8)
and
P](. -
Pi3e) =3/ 1+¢
ol(5e) = /146 [t 1.5
1 £ 1+ 2
£
1 _ Z
P1(n) = T-n (9)
The branch of the arc tangent is to be chosen to make
0< tan' L <m (10)
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APPENDIX B
ELECTRIC FIELD PENETRATION

Apertures are as a rule small. The smallness of an aperture is
measured by the ratio of the linear dimension of the aperture to the skin
depth of the external conducting medium 1 at the frequencies of the nuclear
electromagnetic fields. The skin depth & 1is given by the expression

s§- /.2
u)Ll-IG-l

For o = 0.01 mho/m and a high frequency of 1 MHz, & comes out to be about
5m, which is much greater than the size of apertures. The aperture
penetration can be considered quasi-static.

(1)

In the quasi-static penetration of an aperture the penetration by the
electric and the magnetic field can be analyzed independently. The electric
field penetration is described by the pair of quasi-static Maxwell's equations

v-E =0 VxE =0
= g (12)

in both media T and 2. The electric field can therefore be derived from an
electrostatic potential V:

E=-w (13)
which satisfies the Laplace equation:
vy = 0 (14)

Let the total electric fields and potentials in media 1 and 2 be denoted
by EJ’ V] and 52, V2, respectively. On the conducting screen the boundary

conditions are = =
V] V2 0 (15)
At the aperture the boundary conditions are
V] = V2 (16)
and
9
( ' EB)EU " fofos (17)
; 17



In the low-frequency limit, the condition (17) becomes

at the aperture. This boundary condition differs from that for a non-
conducting medium 1. It implies that the conduction current 0121 in

medium 1 cannot flow through the aperture into the non-conducting medium 2.
The short-circuit electric field Esc can be derived from a potential

sc’

sC —SC

JEgoa Py3e)Py(n) (19)

in terms of the oblate spheriodal cobrdinates. The total potentials V]
and V2 can be expanded as follows:

<
1]

L= [0 vee, 50 | py)

<<
i

» = | py(e) + 0oy (32 | Py () (20)

These expansions automatically satisfy the boundary conditions (15) on the
screen (z=0). The expansion coefficients A,B,C and D are determined by
imposing the aperture boundary conditions (16) and (18), and the asymptotic
boundary conditions:

V] 7 Vs as &>«
Vo, » 0 as g > - o (21)

The results are

18



=B a [3P08) #2058 | Pyn)
Vp = 2 a [ 3 39) + 1 0,) | Py (22)

One can rewrite V2 in the form

- 2 -1 1 1
V2 = - ESCZ —TF <tan m - Tgr) (23)

where |£] is related to the rectangular coordinates through the equation

2_.2,/0:2_.22,,.22\%
-a+ - +
€| = ( r -a (r g )C+4az > (24)
2a
with
2 )24 y2y g2 (25)
At Targe distances from the aperture (r >> a), the field §2
penetrating into medium 2 has the form of a dipole field:
1 PBr
Yo = 7w, 3 (26)
The dipole moment p is given by
8 3
B =387k, (27)
If medium 1 had been non-conducting (0] = 0), the electrostatic
potential V2 in medium 2 would have been equal to
€
12 -1 1 )
V, = - E —_— = -
2 sc? ey te, T ( tan TeT TeT (28)

Comparing equation(28)with equation (23), one concludes that the effect of
the conductivity of medium 1 on the quasi-static electric field penetrating

19



into medium 2 is to modify the field amp]itude in medium 2 by a factor of
(e]‘+62)/€], the field pattern in medium 2 remaining the same.

Note that the conductivity 9 does not appear explicitly in the
expression for V2. The effect of environment conductivity enters indirectly
through the new aperture boundary condition (18).

20



APPERDIX C -

MAGNETIC FIELD PENETRATION

In the quasi-static 1imit the Maxwell equations for the magnetic
field in medium 1 are

VxH

Hy = oy (29)

They differ from the equations for a non-conducting medium in the appear-
ance of the conduction current density 01Ey-  In medium 2 the Maxwell

equations are simply

The electric field Ey in medium 1 has already been calculated in
Appendix B. It can be written as the sum of the short-circuit electric
field E.. and a term E' due to the aperture:

where, by equation (22), E' is given by
\ 2 '.
E=-v[2Eg a000) ] py(n) (32)

Then the conduction current density in medium 1 has two parts o]ESC and

o]gf. The magnetic field penetration problem can be split up into two sub-
problems involving each of these two current densities.

In the first sub-problem one considers the solution of the field equations

21



VXE]=<ﬁE (33)

—SC

Since O is the source of the short-circuit magnetic field 55c’

E
1=sc¢
this problem is identical to that of the penetration of Hsc through the
aperture, It is solved as follows.

Around the aperture, Hsc can be derived from a magnetostatic potential

sc

SC SC

g 2 /OB ) cos ¢

JH, a P}(jg)P}(n) cos ¢ (34)

in terms of the oblate spheroidal coordinates. One can similarly derive the
total magnetic fields ﬂq and HQ in media 1 and 2 from magnetostatic potentials

U] and U2 :

H =‘VU~I

Hy = - W, (35)

The potentials satisfy the Laplace equation. They can be expanded as follows:
- 1. 1,. 1
U] = AP](J€)+BQ] (JE;) P](ﬂ) cos ¢

U, = [c P} 5e)+ 0 0] (8) | P} (n) cos ¢ (36)

These expansions automatically satisfy the boundary condition for the magnetic
field at the screen (n=0):

22



The expansion coefficients A,B,C and D are determined by imposing the
boundary conditions at the aperture (£ = 0) :

_ d
and the asyumptotic boundary conditions:

Uy > Uge € > o

>0 & > (39)

The results of the determination are:
Uy =Ha 3Pl (G —22ql(5e) | pYin)
17 e @30 AN 1in/ cos ¢

R i+t ale ]l cos o (40)

U2 can be rewritten as

H )
. 2 -1 31 g]
U2 HSC X U] +1J2 T [tan Iﬂ 1+ |€|2 :] (4])

where, as before, |g| 1is a function of x,y and z as given in equation (24).

At large distances from the aperture (r>>a), U2 assumes the form of a dipole
potential :

1 mr
Uy = 7 ==
47 r3 (42)
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The dipole moment m is given by

_ 16 M 3
BT, e (43)

Consider now the second sub-problem dealing with the penetration of the
aperture by the magnetic field generated by the conduction current density
o]gf. It can be seen that this portion of the magnetic field is a higher-
order contribution, and should be dropped in a quasi-static calculation. The
magnitude of this magnetic field is of order O1Esca' But Esc is related
to HSC by the characteristic impedance of medium 1:

U)H-I

Eee = BT Hee (44)

Consequently the magnetic field generated by o]gf is of order (a/6)HS

o
which is small in the quasi-static regime.

One concludes that, in the quasi-static regime, the magnetic field
penetration of the aperture is not affected by the conductivity of medium 1.
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