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Abstract

A two-surface cable shield with periodic bondings and excited either
discretely or distributedly is analyzed. It is found that the bondings
improve the overall ghielding effectiveness of the cable shield at certain
frequencies, but degrade the shielding at others. Certain criteria are
established for better shielding. In the case of distributed excitation,
the overall effective transfer functions of a two-surface cable shield can
be calculated from simple circuits. These circuits can be extended for
multi-surface cable shields.
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I. INTRODUCTION

Cable shields and cable conduits have been widely used as part of the
integrated EMP hardening design for aircraft, missiles and ground-based
systems (e.g. see Ref. 1). When cable shields are used over a long distance,
they are generally periodically grounded to their immediate outer shield
through bonding straps, clamps, screws, etc. The periodic grounding provides
mechanical rigidity of the shields, reduces the electrostatic hazards, and at
the same time might increase the shielding effectiveness against penetration
of long-wavelength disturbances. However, for the broad-band EMP, the
question arises whether the periodic grounding will improve or degrade the
overall shielding effectiveness. In this report, this question will be
answered frem a rigorous theoretical analysis. The analytical results

will help the system engineers to determine the optimum grounding arrangement.

Cable shields generally are not perfect. EMP can penetrate either
locally (such as through an aperture, a connector, or oné end of the shield,
see Fig. 1) or distributedly (such as through diffusion or uniformly
distributed apertures, see Fig. 2). These two distinct cases will be
separately discussed: discrete excitations in Section II and distributed
excitations in Section ITI. Finally, the results obtained in Sections II
and III will be summarized in Section IV, and several practical engineering

examples as to how the results can be used will be presented.
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Figure 1. Discretely excited cable shields with periodic bondings.




Figure 2. Distributedly excited cable shields with periodic bondings.
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DISCRETE EXCITATIONS

In this section, the outer shield of a double-shield configuration

(see Fig. 1) is assumed to be perfect, except at some isolated locations

where the EMP can penetrate.
on the transmission line feormed by the two shields due
from a localized location can be calculated by solving

in Figure 3. The distributions due to the voltage and

the localized penetration can be separately considered.

of Figure 3a can be decomposed further (see Fig. 4) so

shown in Figure 3b (which is redrawn as Fig. 5 with yS
° = Ii,IE or Ii) need be solved. The coupling to the

inner shield can then be calculated by multiplying the

The current and charge densitv distributions

to the penetration
the problem depicted
current sources of

The two problems

that only the problem
. .8
Vl,Vz or \O and

wires inside the

appropriate transfer

impedance or charge transfer frequency
and charge density distributions. The

assumed and suppressed throughout this

of the inner shield and the current
time variation of exp(jwt) will be

report.

At sufficiently low frequencies the TEM mode is dominant and the
voltage (V) and current (I) distributions along the line shown in Figure 5

can be calculated by solving the following pair of equations:

av
— + 2!1 =
az Tt =0 eH)
él—+ Y! + ¥ ? §(z-nd) {v=20 for z > z (2)
dz 1 d & ’ 2 2,
n:—m
where Zi and Yi are, respectively, the series impedance and shunt admittance
per unit length of the lir= andrYd is the admittance of each strap.

From Floguet's theorc., the solution

has the following form:

v{z)

I
~3

Vnexp[—j(k-+2nﬂ/d)z]

n=—o

z Inexp{—j(k-+2nﬂ/d)z]

= -

I{z)

10

of the periodic Equations 1 and 2

(3)

(&)
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Substituting Equations 3,4 into Equations 1,2 one has

= 1 7 c 4 3
In N \n(k + Znﬂ/d)/zl (3)
-Y.,2! o
d 1 v
Vo T 2 a (6)
¥Yrzl + (k + 2nn/d)
171
where
.0
v v (7
n:—co

By combining Equations 6 and 7, one finds that the dispersion relation

between k and V—Yizi is (also see Ref. 2)

Zind
cos kd = cos(dV-Y'27) + ———— sin(dv/-Y'Z}) (8)
AT s/ 1L
11

In Figure 6, cos kd is plotted versus dV—YiZi = wd/c) fof various
— 1y y t st P ooy
qg (= Zlﬁdd). (Generally, Zl’ &l and Yd are complex values. To have
L IrE 1 1 o gt Vo oyt
real and positive av. YlZl and Zled, one can assume Zl ch, Yl Ycl

and Yd = (ijd)_l, where Z;l and Y;l are purely imaginary and are

respectively the values of Zi and Yi of a perfect double shield, Ld

the inductance of each bonding strap). In the figure, one clearly sees

is

the passband and stopband structures. The stopbands are generally broader

for a larger g especially at the lower wd/c region. This is reasonable

g
because a larger dg means a better grounding. At the higher wd/c region,
the stopbands become narrower because the high-frequency disturbence does
not see the presence of the bonding straps. Also, to have the proper
propagation and decaying constants for =z >z, one should restrict the
k-value to have a positive real part and az negative imaginary part. The
imaginary part of k determines how fast the disturbance decavs when it
propagates away from the penetration point. A plot of !Im(kd)l versus
frequency for various g is given in Figure 7. From the figure, it

obviously shows that a larger qq gives a larger EIm(kd)l (which means

14
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that the disturbance decays faster) and thus, is more desirable. Actually,
at the low-frequency limit where V—Yizi é = wd/c << 1, one can easilv show

that

]Im(kd)[

1

cosh T (1 + 14/2) (9)

it

cosh M1 + L1d/(2L)] (10)

where Li is the series inductance per unit length of the double shield.

Using Egquations 5 and 6 in Equations 3 and 4, one has

2 .
o (Yrz! +x7) .
V(z) = Vo 11 5 e j(k+2nn/d)z
n=-—e Y!Z2! + (k+ 2nn/d)"~
11
2,2
- Tt
C TV TR amt1/2)
) Y.z'd & X
d 1
cos(kd/Z)cos[ ((m-%l/Z)d-—z)v—YiZi ]
X
oot
cos(dv—lel/Z)
sin(kd/2)sin[( (m-%l/2)d-—z)%?Y'Z' }
. 171
+ (1)
sin(dV—YiZi/Z)
for md < z < (m+1)d
® 5(Y12! +k2)
N 171 k+2nn/d -j{k+2nn/d)z
I(z) = VD Z 2 71 €
n=-« Yizi + (k+2nn/d)” "1

- Vv tot 2 et 2
J Vod lel(k -%YlZl)d

7 ikd(m+1/2)
\] 1
(av,z1)z;d

) sin(kd/Z)cos[( 0&+l/2)d-2)v—YiZi}

sin(d¢~YiZi/2)

17



cos{kd/2)sin [{(m-%l/Z)d-—z}/—Y‘Z' }
I L1 (12)
e )
cos(dV-Y;Zi/Z)

for md < z < {(m+1)d

1 4 .
= - — — V(z
Z, dz (z)

To obtain Equations 11 and 12, one has used the dispersion relation 8 and
several series summation formulas in Reference 3. With the expression for

I{z), one can calculate the total charge per unit length of the double shield

from

Q' () = - o= G 1@ (13)

As is obvious from Equations 11 and 12, Vo is vet to be determined
from the boundary condition at z=2z . In what follows, the cases with the

voltage and current sources will be comnsidered separately.

1. VOLTAGE SOURCE

Applying the condition that V = v° at z=z_, one immediately obtains

from Equation 1l that

cos(kd/2)cos[(z "d/z)/:gzizl
Cos(d/-—YT/fZ)

-1
! kd/2)51n[(z -d/2)v- Y'Z'
- j (14)
51n(d/—Y z! /2)




The voltage, current and charge distributions of the dcuble shield can be
. ‘s -
fully expressed by Equations 8§, 11, 12, 13 and 14 provided V° is knouwnm.

For the problem of Figure 3b, vo is simply Vi. However, to obtain v

(Note, one uses Ve = Vi for z > z, and V° = Vi for z < zo) for the prcoblem
of Figure 4a, one needs to go through some complicated algebraic manipula-
tions involving Equationsl2 and 14 and the relationships given in Figure 4a.

For the special cases of zo==0 and d/2 which are the cases to be considered
in the following discussions, v° = Vi = V; = Vi/Z. Vz can, generally, be

obtained from the short-circuit current I at the outermost surface cof the

double shield and the transfer impedance Z of the outer shield via

T1

s
=1 Z
Vo sc T1

(15)
Since I(z) and Q'(z) are now known, one can begin to discuss the

coupling to the wires inside the inner shield. The coupling can be

completely described by V;(z) and I;(z) which are, respectively, the

voltage and current source terms of the transmission-line equations of

the inside cables. If the inner shield has a shield transfer impedance

per unit length 2%2 and a charge transfer frequency @ then, V; and I;

T2’
can be calculated from (see Ref. 4):

Vé(z) Z%ZI(Z) {16)

Ié(z) QTzQ‘(z> (17)

With the above expressiong one can then define an effective transier
impedance per unit length Z!  and an effective charge transfer freguency

TV
per unit length Q%V for the double shield as follows:

Zpy(2) = V(@) /T (18)

QL (2) = Ju 11(2)/1, (19)

c

19



Here, the subscript "V is used to indicate that the quantities are for a

localized "voltage" source which is generated by Isc'

The two quantities Z%V and Q%V are z-dependent. When

are in the stopbands, they become extremely small for z >>
exponentially decaying term in Equation 12). On the other
frequencies are inside the passbands, they are oscillatory
and are modulated by the periodicity of the bondings. It,
that in order to better quantify the coupling to the wires
inner shield, one should apply some average schemes to Z]

TV
the pericd d. A natural scheme is to define

1 T
v ((m+1)d Zr 2\
jkz
e dz

o
A

= 1
“rv md o1y (2)

where nm < kd < (n+1)% when nm < ¥-¥!Z! d < (n+L)7w, n=0,1,2,....

11
two average quantities are calculated to be

Y

'

the frequencies
z_ (see the

o)
hand, when the
functions of z
thus, appears
inside the

and Q%V over

(20)

These

&

v e
anZl/Yl P

) —(Zind)(kd)exp(jkd/Z)

x

T Ay (12 vt oty a2
(F-2]v1d) (" +1)20)d

cos(kd/Z)cos[(zO—d/Z)V—ZiYi3

X

cos(dv—ZiYi/2)

sin(kd/2)sin[(zo-d/Z)V—ZiYi} -1

- .
siﬂ(dv—ZiYi/2)

where np = 1 for Figure 3b and np = 2 for Figure 3a.

20

, N\ /TEE
- “11°12 )= ot 154

TV n ) kd

(21)




z! il
TV T
. - | . 3 1 .
z, is, one can easily observe that the normalized }Z%VE and }Q%VI (normalized
with respect to their values when there is no bonding, which are, respectively,

and still depend on where z=z, is. However, no matter what

ZTlZ%z/(np¢E§7§z)and ZTlQTzYi/np) are greater than unity for some regions of
V:EI?E.d (= wd/c) and smaller than unity for the others. That is, the
bondings improve the shielding effectiveness of the double shield at certain
frequencies but degrade it at the others. Plots of the normalized |f}v§

and tQ%V‘ for z =0 and d/2 as functions of /:ZIYI'd and qg (= Zind) are
given in Figures 8 through 11. In the figures, the curves are not given

for the stopbands. In the stopbands, the normalized quantities are
exponentially decayed away from the penetration point.” Since the ranges

of the stopbands increase with qg»> one should.try to have dg as large as
possible for better shielding effectiveness. This can be achieved by

making Zin (= Li/Ld) large. Note that making "d" large, although
increasing dgs widens wd/c and hence narrows the stopbands. From the
figures, one also sees that arranging the bondings with d = cnw/w (where
resonances occur) seriously degrades the shielding effectiveness, and thus

should be avoided for the important parts of the EMP spectrum.

2. CURRENT SOURCE

Applying the boundary condition that I = 1° at z=z_, one obtains

from Equation 12:

. S ' '
o drtavgzpne a0,
| ——— 7 € %
/_ 1t y !'\d
av=¥1zy (k" +Y120)

sin(kd/Z)cos[(zo-—d/Z)V—YiZi]

X

B

sin(a-~viz!/2)
L

cos (kd/2)sin[(z, - d/2)VIIZ]] -1

-] (22)
cos(d#—YiZi/Z)

21
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The voltaws:, current and charge distributions of the double shield due to

the currernt source shown in Figure 5 can then be completely described by
. N . - ) S . .

Equations 8, 11, 12 13 and 22, provided that I” is known. Here, similar

to the voltage-source case, for the problem of Figure 3b, 1° is Ii.

To obtain IS (IS= Ii for z > Zo’ IS==I§ for z < zo) for the problem of
Figure 3a or 4b, one has to solve Equations 11, 12 and the equations given

. . . s s s s

in Figure 4b. TFor the special cases of zo==0 and d/2, I =Il==12 =IO/2.
From these current and charge distributions, ome can calculate the voltage-
and current-source terms of the transmission-line equations of the inside

cables using Equations 16 and 17.

The current source of the shield Iz can generally be estimated from
the short-circuit charge density Qéc on the outermost surface of the double
shield and the localized charge tramsfer frequency Q;l (which has a dimension
of frequency x length, different from that of QTZ) of the outer shield via

(for example, see Equation 38 of -Reference 5)

L
= T
Io schl (23)

One can also define an effective transfer impedance ZTI and an effective

charge transfer frequency for the double shield as follows:

Zpg(2)

v(z)/ (GuQ) ) (24)

4

]

2 _(z)

TI 1.(2)/Qg, 7 (25)

where the subscript "I" s used to indicate that the quantities are for

L

a localized 'current' gource which is generated by Qéc'

Similar to Z;V and- ... of the voltage-source case, ZTI
iV Y

also z-dependent. Thev bLiecome very small far away from z, in the stopbands,

9]
and 1 are

are oscillatory and modulated by the periodicity of the straps in the

passbands., The averaged quantities Z&I and 5&1 are given by




SN
-3
-
o)
L
€

I
”
[n N
=
H
-]
e
o

—(Zind)(kd)exp(jkd/Z)
B N I
Y Zl&l d (k -#Elzl)d

sin(kd/2)cos[(z -d/2)v—ZiYi]

sin(d/TT/z)

cos(kd/2)51n[(z -d/Z)VLZlYl]
-3 R (26)
cos(dv—ZlYl/2)

ZTI and QTI also depend on where z==zO is. However, no matter where

zg is, one still sees that the normalized fZ [ and IQTI!

respect to their values when there is no bondlng, which are, respectively,

(normalized with

L ., . L Vararay
QleTz/(jmn ) and QTl 72" l l/(n w)) are greater than unity for some

/7;f?~ a (where ‘the bondﬂngs degrade the shielding effectiveness) and
smaller than unity for the others. Examples of the normalized |ZTII and
lQTIi for zo==d/2 as functions of /:ZI§I d and qg are plotted in Figures 12
and 13. Similar to Figures 8 through 11, the vazlues at the stopbands are
not given. For better shielding effectiveness, one should try to increase

Zin and avoid wd/c = nm (n=1,2,3, ...).

27
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ITI. DISTRIBUTED EXCITATIONS

In this section both the outer and inmner shields are assumed to havez
uniformly distributed transfer functions: Z%l (shield transfer impedance

per unit length), 1 (charge transfer frequency) for the outer shield

and Z%Z’ QTZ for thg inner shield (Figs. 2 and 14). The outer shield is
different from that discussed in Section II which has localized transfer
parameters. The total current It and total charge per unit length Q; of
the double-shield cable are assumed known. It and QL are also assumed to
be dependent upon z as exp(~jhz) and related to each other via

- - s
JmQt dz It tht (27)

In what follows, results for this distributed double shield without bonding

straps are presented first, and then, the more general case with periodic

bonding straps is discussed.

1. SCHELKUNOFF'S CIRCUIT (REF. 6&)

When the shields are solid tubular conductors, QTl = QTZ = 0, and the
current-source fterm I; of the transmission-line equations of the inside
cables vanishes. As for the voltage-source term V;, when hd = 0 and
W o4 >> h2, it can be calculated from the circuit depicted in Figure 15
which is valid regardless whether the bondings are present or not (see
Ref. 6). The circuit elements in the figure are defined and given as

follows:

. = surface impedance per unit length of the i-th shield
ai

with internal return (i =1 for the outer shield,
i=2 for the inner shield)

Yi

2na.0.D,
i7i7 i

[IO (Yiai)Kl(Yibi) + KO(Yiai) Il (Yibi )}
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Figure l4.

A theoretical model for a distributed excited double shield with periodic boundings.
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Zgi = surface impedance per unit length of the i~th shield

with external return

Y.
"1

- E?E;E;E; {Io(Yibi)Kl<Yiai) + K0<Yibi)ll(Yiai)} (28)

. r
Ti 210.,a.b.D,
i7i74i74

It

Z!

1 series impedance per unit length of the double

shield when assumed perfect

= juu_tn(ay/b,)/(2m)

where

= T - 1
Dy = LGPk (vyap) = Ty (e 0% (vypy)

2 2
= 3 .= 2] 2
Y4 quiol J/Gi S (29)
v.s 0., 2., b., 8§, = permeability, conductivity, inner
hR T R 1 1

radius, outer radius, skin depth

of the i-th shield

and Io’ Il’ KO, Kl are the modified Bessel functions. From the circuit,
one immediately finds that the effective transfer impedance per unit length

Z% (= V;/It) of the double shield is given by

Y H ¥ ~t
oo mifr2 _m’r S (30)
= ¥ 1 1 - Y
T 2% 2,72, 2y
where - - -
[ ' '
29 =20 P2y T Iy o (31)

Fvidently, Equation 30 and the circuit in Figure 15 can be extended easily
to describe the effective transfer impedance per unit length of a N-surface

solid tubular shield with N > 2.
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£lthough Equation 30 locks simple, the circuit elements in the expression

are complicated functions of frequency and shield parameters (see Egs. 28 and

29). When &4, (= b, -a., the thickness of the i-th shield) << a.,b, and y.a,, .
i i i’ - i’71 i1
Yibi >> 1, the circuit elements Zéi’ Z;i’ Z%i can be approximated by
YL A,
i 1 ~ 1 1 N
Zz',o=2 21, = 2! = cotn(YiAi) (32)

t
at bl i 2nva.b.o A,
i7i74i71

' ii

Z...
I on/ablo.h,
1 1 31 1

i

csch(yiAi) (33)

where ZEi is referred to as the internal impedance per unit length of the

i-th shield. Equations 32 and 33 can be further approximated by

27! =7} =~ 7' ~R' = 1 (34)

ai bi Ii Ti de,1 Zﬂ/zjgjb.ﬁ.
1 11 1

when Yiﬂi << 1 (i.e.{ Si >> Ai), and

Z! ~ Z! ~ Z! ~ ¥ R! (35) .

ai bi 11 i%1Rac,1
Y38y
T~ 2 1
TSR FLILS PR (36)
when v.A. >> 1 (i.e., A_ >> £ ). Here, R' . is the dc-shield resistance
ii i i de,i -

per unit length of the i-tly shield and the real part of Yg is taken to be

positive.

2. CASEY'S CIRCUIT (REF. 7)

When §, >> A, (which wuarantees Z', = Z). = Z! = Z' , see Eq. 34),
5 2 5 1 P a bl Idi Ti
h bl 2 - ZiYibl = - ZélY;lbi << 1 (Y::l is the shunt admittance per unit

length of the double shield when assumed perfect and noc bonding straps), and
there is no bonding strap, the circuit diagram shown in Figure 16 can be used

to calculate the current I flowing on the inner shield (Ref. 7). In the
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Casey's circuit for the calculations of Z% and QT of a double shield without

periodic bonding.



circuit Y%i (i=1,2) are the capacitive transfer admittances per unit length

of the shields, which are related to QTi via,

= — oV v
QTi sYi/YTi (37)

where

11 1 1
woyL Tty (38)
1 ter fri 2

1 1
c

'—<:|s—-

1
2 Ypo

and Yéz is the shunt admittance per unit length of transmission line formed
by the inner shield and the wires within when Y%2==w.
From the circuit, one has
2
T + 7t
Zog t R /¥rq
t (2}, + hz/Y' Y £z, + hz/Y' )+ (z2'. + hz/Y’ )
T1 T1 T2 T2 cl cl

2
1 1
.ZTl + h /YT1 .

HfH

S (40)
zl + h /Yl

where

LI | ' '

Zy = Zpq F 2o, T2 (41)
from which one immediately has

z! 8 Z'. + hz/Y‘

T _ 7T _ "T1 T1

z' . 2 (42)

T2 T2 Zi + h /Yi

When h =+ 0 and e, Equation 42, indeed, reduces to Equation 30

1 = Yl -
Y11 T Y12
with 61 >> Ai. It is believed that the above thin shield (Si >> Ai)
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approximation, Egquation 42, can alsc be used for thick shields provided that

Zi defined in Equation 41 is replaced by Equation 31, i.e.,

U g 1 '
2y =21 T2y T2

and a more general circuit can be constructed (see Fig. 17). Here, the
circuit elements Z;l and Zgz should be. defined in a broader sense than
Equation 28 to include all kinds of penetrations. This circuit can also

be easily extended to describe a N-surface shield with N > 2,

Up to this point the discussion in Part 2 has been restricted to the
situation that there is no bonding connecting fhe shields. When there are
periodic bondings with period d << h_l, (/_m__3 , 1t is postulated that
the circuits and equations can still be used provided that Yi is replaced

by ¥; + Yd/d,i.e., Equation 42 becomes

ZT _ QT B le + h /V ) B
Zt - 0 (43)
T2 TZ z + h /(Y' +Y /d)

In the following, a general analysis of a double shield with periodic bondings
will be given. The results of the analysis will show whether the simple

Equation 43 is accurate enough under the impcsed conditions.

3. GENERAL FORMULATION

To obtain the current I flowing on the inner shield one has to solve

the following transmission~line equations (Fig. 14):

L (44)
dz 1 Tl t

; B g
A Vvsy, 7 sGond| v - ge o Qf (45)
dz 1 d n=—w YTl

37



8¢

/ +___
Zh—2n  Za=Zn FOTND Zho=Zre  Zop—Zt

t
0——-’-—-— hsmm———
YI
2 2
h h
25+ o Zho + =
1 7 T2
o Y2
7/
Zr Gy T
4
Zrp Slpp Iy

Figure 17. Generalized Casey's circuit (constraints éi >> Ai in Casey's circuit are lifted)

for the calculations of Z% and QT of a double shield without periodic bonding.




The shields are assumed to be infinitely extended in both +z and -z
directions so that only the particular solution of the equations need be

considered. This particular solution can be written as follows (from

Floquet's theorem)

1(2) o~ihz ) Ige—Janz/d (46)

n=-=°

V(z) e—jhz Z Vae-32nwz/d 47)

=00

After substituting Equations 46 and 47 into Equations 44 and 45, and going
through some complicated algebraic manipulations and series summations,

one eventually has, for md < z < (m+1)d,

2
Yl 1 1 hY ¥ 1 _Z!Y!
Y hIngiy d ‘¥t T AN
Wz =1 373 Lo 7
t t t \i
1wl +zly) 1 z).v) +h

2 gin] (h+(-l)n/—YiZ:'L)d/2]exp[—j (h-(~-1)" Y127y (md - 2 +d/2)]
X E (48)
n=1 cos(d —YiZi) ~ cos{(hd) + YdZisin(dV-YiZi)/(ZV—YiZi)

from which Q'(z), Z% and QT can be calculated via

' -+ 4
Q' (z) = - Jo dz I(2) (49)
Z% = Z%ZI(Z)/It (50)
i
- T24d I(z)
QT T h dz It (51)

Both Z% and QT are z-dependent. In order to better quantify the
transfer functions, one takes the average values of Z% and QT over the

period d of the bonding straps. These average values, designated as 2}
and 5&, are independent of z and are given as
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p 0
¥ - - i
212 Spa L '
3
Y! hi+z'. v 2zl Y' -z'y! i
! TITL), . __h TLTLCT11
B Y‘ 2 ] t 2 1 4 ? T 2 {
TL h"+2}Y] R"+ziv] leYTl+h
Y cos(dv-Y!Z!) - cos(hd)
d 1°1
x (52)

dY' 1 1 | : 1 ¥ t L}
1 cos(d —lel) - cos(hd) + Yd2151n(d¢—Y121)/(ZV—YlZl)

It can be shown that Equation 52 reduces to Equation 43 when

Ind - v=¥jzid| = Jaf << 1,  nhd >> qq (= 2,74 (53)
[tan hd] >> [a[, (i.e., ]hd - nﬁl >> !a{, n=0,1,2, «¢.) (54)

The conditions 53 and 54, obviously, are different and less restrictive
than those imposed on Equation 43 during the discussion in Part 2. 1In

most practical situations, Conditions 53 and 54 can be satisfied, and

Equation 43 can be used. In the case that the constraints 33 and 54 are
not met, one has to resort to Eguation 52 which is a complicated function
of the frequency and the shield parameters. The shield parameters Z%l’
Y%l’ Yi, Zi, etc., are generally complex values. However, when the

diffusion penetration is not important (which is true for most highly
conducting shields at frequencies larger than 10 kHz), the shield parameters
Z%l, Y%l’ etc., become purely imaginary (i.e., the penetration is through

the apertures such as in the case of braided cable shields}), and Equation 52
becomes a real function. This real function is plotted i:. Figures 18 through
25 as a function ofrhd = VC§ZIEZI.d = wd/c (from O to 10) bv using qZ:=Z%l/Zél’
9y = Yél/Y%l and qq = Zéled (= 0.1, 0.5, 1,2) as parameters (also assume
2%2/zél = 0, Yél/Yj'?2 = Q). The values for the parameters (qY,qZ) = (0.004,
0.01) and (0.001, 0.002) are for some typical braided cable shields (see
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Pages 581 and 584 of Ref. 4). In the figures, the curves of the approximate
Equation 43 are also given. The agreement between Equations 43 and 52 in
the region where wd/c is not close to om (Dﬁ=l{2, .+ .) is clearly shown
even when hd is smaller or in the order of”qs. The reason they agree when
hd < dg is simply because both Equations 43 and 52 have values in the order
of Gy O qg (<< 1). Because of this, probably one can lift the condition
hd >> qg in Equation 53. From the figures one can draw the same conclusions
as those of the discrete excitation case that the bondings improve the
shielding effectiveness at certain frequency ranges while degrade it at
others. In order to widen the frequency ranges for better shielding
effectiveness, one may try to increase Zle Also one should not use a
"q"-value which causes resonances (where wd/ec = nw, n=1,2, .. .) and thus

seriously degrades the shielding effectiveness.

Equation 52 can also be rewritten in the following form:

]
zT ) QT ) Tl + h /Y )
AN VU : o (55)
T2 T2 Z]+ B /(Y + qu/d)
where
q
q == s (56)
1+ dY,Z] (q2 ql)/Kh -+le )d ]
Q= Gty - 210/ @ Yay + D) G7)

51n(d/—Y )/(d/—Y )

q, = (58)
{cos(dVLY ) - cos(hd)}/[(h + Y )d /2]

Equation 55 can be easily represented by a circuit (Fig. 26). Under the

assumption that the diffusion penetration is not important, the g-values

are plotted in Figures 27 and 28 as functions of hd = V-Y‘lZ'l d = wd/c,
cl ¢

with 97> 4y and qg @s parameters. The values of the parameters in Figures 27
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and 28 are the same as those of Figures 18 through 25. From the fig

ir
=

one can easily see that g =1 when Conditions 53 and 54 are satisfied;

ures,

that is, Equation 55 reduces to Equation 43. This is another proof that

the simplified Equation 43 can be used for Equation 52 or 55 when the

Conditions 53 and 54 are satisfied.



IV. SUMMARY

In this section, the results of Sections II and III are summarized

and some examples are worked out to show how the results can be used.

1. DISCRETE EXCITATIONS

When the outer shield of a double-shield configuration is coupled
to a localized voltage and/or current source (Figs. 1 and 3), one may
employ the Floquet theorem to the periodic transmission-line equations
to determine the disturbances propagating down the bonded double shield.
A passband-stopband structure in the dispergion relation between w and k
is observed (Eq. 8 and Fig. 6). In the stopbands the disturbances
decay exponentially away from the penetration point, whereas in the
passbands the disturbances oscillate peréistently. In the stopband the
decaying constant can be easily determined from the dispersion relatiom.
Curves of the decaying constant are plotted in Figure 7. At low frequencies
the decaying constants can be calculated from the simple approximate

Equations § and 10.

a. Voltage source (Vi, see Figs. 3b and 4a)

The voltage source can be calculated from

vo = IchTl : (59)

where Isc is the short-circuit current on the outermost surface of the

double shield, and Z is the localized transfer impedance of the outer

T1
shield. This voltage source gives rise to V; and I; which are the

voltage- and current-sources exciting the wires inside the inner shield.
By defining a combined effective transfer impedance per unit length z!

v
and a combined effective charge transfer frequency per unit length Qév as

t - '
ZTV Vs/Isc

ti

1 ] 1
QTV JMIS/ISC
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~n

@.

or¢ can fully describe the coupling through the bonded double shield due to

s
a voltage source VO (or Isc’ see Egq. 59). Z%V and ?%V are averaged over

the period d via Equation 20. The averaged quantities Z%V and 5“ are

given in Equation 21 and plotted in Figures 8 through 11 after normallzed
/np and Z_.Q /n s

-1/2

7‘

A t1%7271
respectively, where np'-l for Figure 3b and np"2 for Figure 4, ZT2 and Q Qs

to their values for no bonding strap (Z

are the coupling coefficients of the inner shield).

b. Current source (Ii, see Figs. 3b and Ab)

The current source can be calculated from

15 = Q! L . L

o chTl (60)

where Q is the short- circui; charge density on the outermost surface of
the double shield and Q T1 is the localized charge transfer frequency of the
outer shield. This current source gives rise to different Vé and I'
(different from those due to Vi). By defining a combined effective tramsfer

impedance Z and a combined effective charge transfer frequency QTI via

TI

Zpp = Vol (GuRl)

= 1 1
QTI IS/Qsc

one can describe the coupling through the bonded double shield due to a

current source I {or Q;C, see Eq. 60). Z_. and QTI are also averaged via

TL

averaged quantities E&I and QTI are given in Equation 26

and plotted in Figures 12 and 13 after normalized to their values for no

s
o}
Equation 20. The

bonding strap (0 . L /(n Jw), ok /(cn ) respectively).
J A AV

T1 “2
Figures 8 thruugh 13 (or, more generally, Egs. 21 and 26) show that

the absolute values of the normalized transfer quantities are less than one
(where the bonding straps improve the shielding effectiveness) at some
frequency ranges and greater than one at the others. The figures also show
that the transfer quantities become infinity at wd/c = n% (n=1,2,3, .. .).
The transfer gquantities, however, are not given in the stopbands (also see
Figs. 6 and 7) where they are extremely small far away from the penetration

oint.
P 55



From the above observations, one concludes that in order to have a
better shielding effectiveness, the periodic bending should be emploved
such that the important part of the EMP spectrum lies inside the first
stopband. This can generally be realized by chocsing an appropriate d

when Y4 and Zi are specified. Also, in order to have a broader first

stopband and a greater decaying constant, one should try to make Z!¥Y, larger.

i7d
c. Examples

For a coaxial double shield with outer radius (b) = 5 cm and

inner radius (a) = 3 cm, one has
juu b -7
2y = sony = e an(2) = 2075 qarm) (e
i.e.,

Li = lO—7henry/m

Also, suppose that highly conducting wires of radius t=1 mm are to be

used for bonding, then,

. -1 -1 27 1
=~ = j N 2
Yd (Jde) (jw) uo(b-—a) an(2(b~-a)/t) (62)
= 6.7x10" Gu) b (@)
i.e.,
-8
Ld = 1,5%x 10 Thenry
Thus,
-1
2i¥, = 6.8 (@ )

The question now arises as to the spacing d to be used, Take i = 0.6m

and 0.3m as given in Table 1. Both cases give rather wide fi:st stopbands
which cover the important EMP spectrum. However, the case o¢f d=0.3m
gives a wider first stopband and a larger decaying constant (note that a

decaying constant of l(m_l) corresponds to an atteunation of 8.7 dB/m).
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1

1
possible for better shielding effectiveness. If the double shield is

Another impertant quantity is Z Yd, which should be made as large as

coaxial, one can use a smaller (b-a) to obtain a larger Zin (Eqs. A1 and 62},
The case of b=4 cm and d=0.6 m is also given in Table 1. From the
table, it is observed that the first stopband is wider and the decaying

constant is larger for b=4 cm, d=0.6 m than the case for b=5 cm, d=0.6m.

TABLE 1. EXAMPLES OF BONDED COAXTIAL-CABLE SHIELDS

b=>5cm, a=3cm, t=1lmm b=4em, a=3cm, t=1lmm

—_ — ! - —
(L:‘L— duh/m, Ld—15 nh) (Ll—37 nh/m, Ld—6nh)

Period of Bondings d=.3m d=.6m d=.6nm
7 - LR _l _l
led ( Ll/Ld) 6.7m 9.6m
lst Stopband 0205 Mz | 0137 MHz 0160 MHz
-1 -1 -1
{Tm(k) | ,Below 10 MHz 4 4n 2.%n 3.4m

2. DISTRIBUTED EXCITATIONS

Given the distributed transfer parameters of both the inner and
outer. shields (Figs. 2 and 14), the effective overall transfer parameters
of the double shield can be represented by simple circuit diagrams. These

circuit diagrams are summarized below.

a. Schelkunoff's circuit (Ref. 6)

When the shields are solid tubular conductors whose skin depths,
linear cross-sectional dimensions and the period of the bonding straps
are much smaller than the wavelength of the EMP disturbance, the effective
transfer impedance of the double shield Z% (the effective charge transfer
frequency QT is, of course, zero) is independent of the bonding straps
and can be calculated from the circuit depicted in Figure 15 or from
Equation 30. The circuit elements in Figure 15 and Equation 30 are
given in Equations 28 and 29, and also Equations 32 through 36 for some -
special cases. The circuit can be easily extended for a N-surface solid

tubular shield with N > 2.
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b. Casev's circuit (Ref. 7)

When (a) the skin depths of the shields are much greater than
their thickness (& >> A, thin shields), (b) the linear cross-sectional

dimensions of the double shield are much less than the wavelength of the

EMP disturbance (hb = —Yizi b << 1}, and (c) there is no bonding strap,
then, Z% and QT can be calculated from the circuit of Figure 16 or from

Equation 42. The circuit elements in the figure and the equation are

given in Equations 37, 38, 39 and 41.

When the shields are not thin, the circuit of Figure 17 (called
the generalized Casey's circuit) can be used to replace that of Figure 16
for calculating Z% and QT; Equation 42 is still applicable, except that
the circuit element Zi, originally given by Equation 41, becomes

7! =z' 4+ z! + 7
c

1 al b2 1

Here, Z;l and 2!_ are defined in a broader sense than Equation 28 to include

b2
all kinds of penetrations. Both circuits in Figures 16 and 17 can also

be easily extended to describe a N-surface shield with N > 2.

c¢. General circuit

When there are periodic bondings connecting the shields, E} and
QT (the average values of Z% and QT over the period of the bondings) can
be calculated from the circuit in Figure 26 or from Equation 55 (or
equivalently, Equation 52). The constant g (qu/d may be named the
effective shunt admittance per unit length of the bondings) in Equation 55
and Figure 26 is a complicated function of the shield and bonding para-
meters (Egs. 56 through 58). However, when the conditions given in
Equations 53 and 54 are met, g is zpproximately egual to 1, i.e.,
Equation 55 reduces to Equation £3. The truth of this statement is
further supported by the curves in Figures 27 and 28 for "q" and the
curves in Figures 18 through 25 for the normalized Z& and 5& (normalized
to their corresponding values for no bonding strap, i.e., Equation 55

with g=0). Actually, in Figures 18 through 25, the curves of Equation 43
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agree with those based on the exact Equation 55 even in the region where
hd < dgq (i.e., the condition hd >> dg in Equation 53 is violated, and g
is quite different from one as shown in Figures 27 and 28),, provided hd
is not close to nw. One thus concludes that when 9g 2 0.1, |hd -
/:§£Ez'd l<<l and hd is not close to nm (n=1,2, ...) Equation 43

or the circuit in Figure 26 with g=1 is a good approximation for

. _‘ ~
calculating ZT and QT.

From the results presented, one concludes that in order to shield
against the distributed excitations more effectively, the periodic
bondings should be implemented in such a way that Zéle is large and

wd/c < 7 for the important parts of the EMP spectrum.

d. Examples

Consider a coaxial double shield (Fig. 2) with outer radius
b = 5 cm, inner radius a = 3 cm and with highly conducting bonding straps

=Y' /Yl = 0.004

of radius t = 1 mm. Also, take the practical values dy e/ Y11

= A ! =
and q, ZTl/zcl 0.01. Then,
-1
¥ =~
chYd 6.7 (m ™)
from which
: 2 for d=0.3m
= ' =
qS chY d

d 1 for d=0.15m

From Figures 20 and 21, one immediately sees that the normalized transfer

functions are less than 0.1 (i.e., the bonding straps reduce the EMP

penetration by more than 20 dB) for

470 MHz when d=0.3nm
frequencies <
940 MHz when d=0.15m

Both 470 MHz and 940 MHz are extremely high to be important.
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However, if the bonding straps between the coaxial double shield give

a much smaller ZélY value, sav,

d

«

-1
1 ~ "
chYd 0.67 m
then, when d = 0.15m is used the same quality in the shielding effective-
ness as that of Zéle = 6.7 m_l and d = 0.15 m can be obtained only for
frequencies up to at most 300 MHz (see Fig. 18). Thus, bonding straps

with greater Zéle are preferred,
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