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ABSTRACT

The results of a numerical study to determine the SEM parameters which
characterize the transient and time-harmonic electromagnetic scattering
from an open-ended conducting cylinder are presented and discussed. This
structure provides an interesting object in terms of which physical signif-
icance of various SEM pole constituents may be interpreted. Limiting cases
-- fat and thin -- of the structure are strongly akin to, respectively, the.
wire loop and the thin wire scatterer so that pole location and the
features of the associated modes can be tracked from one limit to the other.
One conclusion drawn from this work is the likely validation of the conjec-
ture due to Wilton connecting the so-called type III poles for the wire
loop to interior resonances for closed bodies. Further conclusions are
drawn relative to features of the poles associated with higher-order
azimuthal variation. The exterior modes associated with these higher-order
variations exhibit substantially higher damping than those of zeroth-order
azimuthal variation. This damping can be associated with radiation due to
torsional flow paths of the higher-order current modes. Results of the
SEM calculations supporting these and other conclusions are presented.
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CHAPTER 1

INTRODUCTION

This work considers the Singularity Expansion Method
{SEM) characterization of the electromagnetic scattering
by a thin-walled open-ended cylinder- The cylindrical
structure considered can range from very thin, such as
conventional "thin-wire™ theories might treat, to moder-
ately thick with length to diameter ratios.approaching
unity. The data determined through the work reported here
are ultimately to be applied in estimating the resonant
Trequencies of the induced surface current on the object
for time~harmonic excitationse.

The Singularity Expansion Method was introduced by
Baum in 1971 [l]l. Tt was originally postulated for the
prediction of transient scattering responses, however, it
nmow appears to have equal utility 1in frequency—doméin
applications. While a great deal of activity has pro-
ceeded in applying SEM to transient problems (c<f« the
reviews of [2] and 13]), less effort has been directed
toward time-harmonic applications- Tesche nsed the SEM
Tepresentation for current omn a thin wire to determine the

frequency-dependent admittance of a center-driven wire



I4]« More recently, Pearson has suggested further fre-
quency domain applications ]3] and, in work related “to
that reported here, has described the use of SEM in the
interpretation of the frequency-dependent coupling of
electromagnetic energy to shielding shells —— in partic—
ular cylindrical and cylinder-like structures —— in the
context of electromagnetic interference [6]. SEM is
particularly useful in this context because 1t allows an
all-embracing characterization of the scatterer response
over both a broad frequency range and over all spatial
forms of the excitation: for example a plane wave with an
arbitrary direction of arrival, a spherical wave, etce

The thick open-ended cylimnder 415 an iwmportant objetrt
for study because it is the canonical shape for a wide .
variety of missile structures. The shape of appropriate
cylinder models for sach structruares c£an range from moder-
ately thin to moderately thick ~— sufficiently thick that
the azimuthal variation of the current is significant. The
computational model used in this work takes the azimuthal
dependence of the current into account by way of the body
of revolution approach used previously by Mautz and
Harrington [7] and Glisson and Wilton [8] in more general
contexts. We have used the electric field integral equa-
tion characterization of the scatterer and a method of
moments procedure ‘in ‘which the electrostatic effects are
given in terms of explicitly-stated surface charge

density on the structure after Glisson and Wilton ]8].



The SEM description Tor various thicknesses of cylin-
ders are presented herein. A collection of the dominant
resonances for the SEM description of currents induced om
an open-ended cylindrical structure is reported for cylin-
der aspect ratios ranging from length/diameter of 100 to
length/diameter of 3.333 for the zeroth—-order azimuthal
variation and the first—-order azimuthal variation cases,
#nd a partial collection pf resonances for the second-
order azimuthal variation case. The second-order case 1s
included principally to show the degree of dominance of
the zeroth and first order cases in the representatiom.
The SEM parameters for a given scatterer include the com=-
Plex Tesonances along with the associated modal current

distributions and corresponding normalization constantse.
The poles are presented here for the twelve dominant res;—
nances [rthose nearest the jw axis) of the cylinder ¥For
specific aspect ratios 100, 50, 20, 10, 5, and 3.33 for
the zeroth-~order variation. TFor the first—order azimuthal
variation case the twelve counterpart resonances are pre-
sented along with the first few resonances which corre-
spond to waveguide modes on the side of the cylinder wall.
The data presented for the se?ond—order variation were
selected to provide some perspective for the higher order
azimurhal variations. Six "first-layer™ resonances are
presented for aspect vatios of 50, 10, and_3.33 For the

second order azimuthal variation. Trajectories of pole

novement with respect to variation of aspect ratlio and the



interpretations of the natural modes are discussed. A 6
complete tabulation of these data is given in a companiom
report JI9].

This dotument ~repoTts a -method T dererwination of
the Singularity Expansion Method parameters for an open—
ended cylinder. Chapter 2 presents the electric field
integro~differential equation formulation along with the
Method of Moment (MOM) [8] expansion which was used to
solve it. The wvalidation of this numerical method is
discussed there. Selected results and theilr physical
interpretation are presented in Chapter 3. Chapter 4
presents conclusions drawn from the present study and

suggests new directions toward which it may be extended.
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-CHAPTER 2
DESCRIPTION OF FORMULATION

2.1 Introduction

An electric field integro-differential equation was
used to characterize the cyiinder and was solved using a
method of moments technique. The solution to the electric
field integral equatiom for a perfectly conducting open-
ended cylindrical structure was obtained using a method of
moments formulation with subsectional expansion = colloca-
tional testing procedures. The body of revolutiom ap-
proach was used to reduce the two-dimensiomnal character of
the problem to a one-dimensional one for various order
harmonic.current variations around the cylinder. The
current and charge on the cylinder were expanded in unit
pulses and the integral equation was tested with dirac-
delIta functions. Symmetry was eiploited to reduce the
mumber of unknowns and thereby improve the efficiency of
the program for the extraction of the SEM parameters.
Z.2 Formulation of the Integral Equatiom

The following formulation follows directly from the
Bady of Revolutfon approach of Glisson and Wiltom [8]

where their general body is specialized to a cylinder.
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Consider the cylinder formed by rotating a plamar curve -
"generating arc™ - around the z-axis (the axis of rota-
tion) as shown in Figure I, where S 13 defined as the
sirface of the cylimdrical bodye. The perfectly conducting
body is fmmersed fn an fInftnite-extent homogemeous medfum,
with constituitive parameters (Ho,£0).

Boundary conditions dictate that the total fields
tangential to the surface of the body must vanish such
that
—inc'

~(AxE’) =4 x E (2.1)

-3 s
where E 1s the scattered electric field, Elnc is the

[=]

incident electric field, and E = E° + E°° 1s the total

electric field present, and n = ¢ x z is the outward
no;mal to the cylinder surface. Using the equivalence
principle, the body can be replaced by a current J flowing
in free space along the original contour of the cylinder”s
gurface. This equivalent current represents the sum af the
currents flowing on the interior and exterior walls of the

cylindrical shell in the original problem.

The scattered electric field may be expressed as

5D = -sA(D) - vo(T) (2.2)

ot The formulation of eq.(2.2) through (2.6), where the
frequency variable s=g +j, has been introduced, follows
directly from the Laphgee transform of the time dependent
form. of Maxwaell”s equationse

13



where the potentials are defined as

A(T) = (u/4m) é; J(ENG(x, "y ds* , | (2.3a)
as

o(r) = (1/4me) {J 0 (TIG(T,T") ds” (2.3b)
with

G(r,T') = exp(-sR/c)/R
(2.4a)

and

K= |T-%"| = % + 0™ - Zop"cos(d-0") + (z-2")21% . (2.4b)

The charge relates to the current through the continuity

equation

ps(r) = -divs J(r)/s = —VS'J(r)/s (2.5)

Combining (Z.I) through (2.5), allows one to express the

electric field integral equation as

-~

&ox B = 4 x ((su/bm) [[ T(EHCE,EY) ds
S

-(UMm@ﬁfv;ﬁ?NKE?)dy};
s (2.6)

14



Equatian (2.6) can be written in operator form as

Eim': -
inc
E¢ (z)y = 8,,(3) + Bzz(J¢) (Z.7b)

wher‘e. B1] are the {integro-differential coperators relating
respective current and field components as identified from
(2.6)- To explicitly express these operators the need
arises for the following transformations, in order to
express source point coordimate bases 1In observation point

coordinate bases:
at = cos(p—¢'Ya ~— sin(é —¢")a.
o) p ¢ (2.8a)

~

al’

¢ = sin(¢—¢')é'p + cos(¢-¢')5¢ . and (2.8b)
‘;z = 3 . {Z.8¢c)

Expanding the surface divergence in cyIindrical

caordinates and specialfzing it to the surface yields

Vi = (/0)3/3¢"(I.) + 3/3z7(1) (2.9)

¢

Espanding tlhe current fn (Z.6) finto observation point unit

15



vector components, we obtain

J(t*) = J¢(;")cos(¢-¢")5¢ + Jz(;')az (2.10)

Using (Z«8) and. (2«9), and camparing with (2.7), the

expressions for Bij are identified to be

B1,(3) = i% gf JZ(E')G(E,E') ds'
211 Lr (B 65,7 ds
4TTS€ 3z S az' "z > s, (2.11la)
1
81207y = =~ 3roma az ff a¢'J (r*) G(z,r") ds' , (2.11b)
B (T) = 2 21 (B GGE,EY ds’ a (Z.11
217z lnrsea 3¢ A 9z' "z ’ » an «Ilec)
8203 = 7o Q’ T, (TG(T,r" ) cos(4 - ¢") ds'
_._I___a._Hi (r') G(%,5') ds' - (2.114)
lmseaz 3¢ S 3¢’

For subsequent interpretive purposes, equation (Z.6) can

e written in the follawing dyadic operataor farm

<TIEE,s) rT(e)> = tan{E "C(%,s)}, Tes _ (2.12)

16



where the symmetric product is defined as
(2.13)

The- operator statement of the integral equation of
(2.12) constitutes a complete electromagnetic description
of the given scatter. As a consequence the operator T has
associated with 1t all of the SEM poles for the structure.
Because the structure 1s rotationally-symmetric, we may
apply the body of revolution approach [7,8] to decompose
the all-encompassing form (2.l2) into a collection of
Integral equations, which are similar in form, as;ociated
with harmonic variation orders m=0,I, 2, ... . This
procedure provides a natural subdivision of the SEM data
tntq sets associlated with the various harmonic orders.

The harmonic decomposition of (2.12) proceeds from

expanding the current inm (2.10) in a Fourier series

T L 1 v ' " oA
I(a,9",z") = E;uj:-’ I¢a(2')cos(¢-¢ )ejnqb a

&
I ¢ ‘na!

The incident electric field along with the kernel term are

alsc expanded into their corresponding Fourier series,

r‘

¢

) S inc Jmé ~
-l-g Z Ezm (z)e az_

(Z~1I53)
W

17



and

(2.16)

’

G(;,;:") = exp(~-oR/c) /R = .2_1; 2 Gm-( z,z')eim(¢'¢')
f (¢ e

where observing the evenness of the kernel with respect to

($-¢), and using Euler’s identity, we obtain

T
Gm(z,z') = [ (exp(=sR/c)/R) cos(m($ —¢')) d(d —¢") .
- (2.17)
Substituting these back in (2.11), and accounting for

the orthogonality of ejm¢ » then (2.7) decomposes to the

harmonic=-by-harmonic coupled operator equations

inc
Ezm. (z) = Bllm(sz) + BlZm(Jq)m) : (2.18a)
inc - (Z.18b)
(2) = By (T, + 8y (T
The operators for the respective harmonics are
sua
. - = J ' ?
K]_mesz) 4m —fh sz(z )G-m(z,z ) dz
a h
~ 4wse az f (z') G (z,2') dz' ,
(Z.19a)
3 h
EI.Zm-CJ ) = émss 3z jt-x f¢m(z")cm(z,z') dz', (2.19b)

18




Ir

. 1 > )
EZlm(‘r—zn): iy s % -£ g.]’n('z")’ Gm(z,z") dz® , and (2.19¢)

h
Bron o =~ Zn- _};. Jon(Z M Gy €252") +6_ (=,2")] az'

4Tsea 34

h (2.19d)
-m_ 3 f 3 _€z")G (z,2*) dz'
ey hm. m

2.3 SEM Characterization
In a fashion similar to the expression of (2.7) in
the form given tn (2.12), eq.(2.18) can be expressed on a

harmonic—-by-harmouic basis by
<T (Z,%',8);:d_(,8)> = tan{ E."C(Z,s)} (2.20)
m m m

Eqe(2.20) it1llustrates the total decoupling of each Fourier
harmonic mode, and allows the determination of each har-
monic cufrent mode independently. This fact is of major
tmportance in the determination of the SEM parameters. To
be able to totally characterize the scatterer in it”s SEM
parameters, each moie can be soIved separately and fande-
pendently. Since the total current is the infinite summa-
tion of all of the modal currents then the total SEM
parameters can now bte found.

The SEM representation for the surface current omn
thte cylinder proceeds from (2.12) and (2.20) as follows.

Lk g b

The integral equations (2.20) possess homogeneous solutiouns

19



for a collection of complex frequencies (Smi) for which F
is singular ~- the complex natural resonances, or poles,

assocfated with the th harmonfc. V{iz.
<T (r,r',s i);3 (£)> = 0. (2.21)

The associated homogeneous solutions Tﬁi(F) to (Z.Z2I) are
termed the natural modes. Tt 1s clear that the modes and
poles are associated through the indices mi. The deter-
mination and physical interpretation of these quantities
is the primary end of the work reported here. The numer-—
fcal procedure applied to (2.20) for this purpose is
discussed subsequently.

The complete SEM expansion for the induced surface
current J as expanded in the frequency domain as described

by Pearson [6] 1is

J(r,s) = 2 12 BminmiJmi(r)(l/(S-Smi)'+ I/Smi) (2.223)

m

where g , is the SEM normalization constant defined by
mi

R (2.22b)

B mi? Tt

= <3E1(F');a/as(?m(;,;',s

and where p is a SEM coupling coefficient defined by

mi

—~ -— =imc ,—
my = g (ms )3ET T (T,s > (2.22¢)

20



It shovld be pointed out at this point that solutions to
éq-(Z.ZL), which is a harmonic-by-harmonic solution to
the homogeneous form of eq-(2.7), are also solutions to
eqe(Zs7)s Therefore, poles and matural modes of eq.(2.18)
are also the poles and natural modes of eq.(2.7).

Ihre numertcal method used to determime the SEM
quantities described above follows that of GLisson and
Wilton for a general body of revolution {8]. The locatiom
tn the complex plane of the poles (natural resonances) of
the surface current density function F(z,¢,s) s 4as repre-
sented by (2.22a) 18 of primary importance, if the this
representatior is to be used in the characterization of
the induced surface current. For the purposes of compu-
tation, (2.18) may be formulated as a matrix equation by
the expansfion of the unknown current using a method of
moments formulation as described by Harrington [10].

Eqw«(2+.18) can be written as the square system of equations

(z (s)] [Jm(s) I = [V, (s) I (Z.23)

whrere Lqu(s)] kg thhe system impedance matrix and where
[Jm(s)l and [V (s)] are the response and source vectors
respectively. Im order to solve for the natural resonant

frequencies, where the incident E field is zero, eq.(2.23).

21



becomes

[z (s DIEI ;1 =0 (2.24)

to yield. & 5 whilich are the numerical estimates ta the
natural resonant frequencies for (2.24) to have a non-
trivial solution, the determinant of [Z;TETI must vanish
at these frequencies. Therefore, in order to determine
the natural resonances of the current for the open-—-ended

cylinder, the following equation must be solved

det[Zm(s)I = A(s) = 0 (2.25)

A few observations about the location and nature of the

matural resonances can be inferred from (2.25) and the
analogy to circuit theory as Tesche [11] points out. The
resonances must Ife in the left-hand portion of the
ga-plane, since the time behavior of the current is as
eSt, and an exponential growth for the current is not
physically possible on a passive scatterer. Also, since
the time domain curremt Is real, the poles must either
occur In conjugate pairs, or be purely real. It {is also
assumed that all of the poles are simple poles. Since the
natural resonances of the current can be determined from
the zeros of the determinant of the impedance matrix énd

since It is analytic 1ino s, the contour integratiom method

d¢ue to Singaraju et.al. can be appIfied to evaluate the

22



zeros of the analytic function [12]. In this approach,
Cauchy”s residue theorem is used to find the number of
zeros inm a given contour and a simple extention of this
theaorer zllows the location of the zeros to be determinedas
As stated fm (12}, the major advantage of rthrts metrhod over
the earlier methods of finding the zeros, which was an
iterative method such as Muller and Newton-Raphson ([l1l],
is that, with this method, no previous knowledge of the
approximate locationm of the zero of the complex function
is needed. The contour method of searching for pole
locations 13 exhaustive if applied carefully, whereas,
with the iterative method, one could easily overlook a
pole. Also if the complex funection has an exponential
behavior, which this one does, the iterative method is
more unreliable. All of the poles or matural resonances
presented iIn this report were found using the CONTOUR and
SEEK subroutines contained in [I2].

The current which exists for a zero forcing function
at singular points 8 , has been referred to as a current
natural mode [%ﬁfz)l which is the solution to eq.(2.24).
Therefore, to obtain the natural current mode, the homo-
geneous solution to (2.23) must be obtained. [{néz)l is in
general a complex quantity which has an arbitrary magni-
tude. For convenience, the current natural modes have
been normalized in terms of the magnitude of the symmetric
product of the modes. The symmetric product has previous

ly been defined in (2.13) as

23



<F«G> = [[ F+C ds (2.26)
S

where § is the surface af the open-ended cylinder. The

two components of current can be defined as

3, () = (U, (2)cos(ub) (2.27a)

J¢m1(¢'z) = (j/'rr)J¢mi(z)sin(m¢) , (2.27b)

substituting (2.27a) and (2.27b) into (2.26) and

specializing the surface integration to the cylinder

(2.26) becomes

: h
<J ';3;i> = (a/w) f

2 . 2 '
ni A [szi(z )y - J¢mi(z )] dz (2.28)

uasing a substitution of variable z=2hr and the definition

aof aspect ratio

o = hfa = L/2a (2.29)

where h 1s the half-length and a is the radius, then

(2.28) becomes

24



.5
<J 453 4> = (Zha/m) ___r

tr® () - 3% (w1 dc
5 zmi ¢mi

-3
- azmad | LE 000 = 30, (G dE .
-7

-(2.30)

Defining the surface area as
2

S = L(2ma) = L7 /a : (2.31)
then substituting into (2.30), it becomes
T 53> = (s/27h) J'-S (22 (cry - 32 ()1 de 2.32

'’ m i s zmi \® ¢mi ¢ . (2-32)
Choosing
wzdy [t e — ] g = 1

T Mt et

the normalized currents can themn be calculated by
~ - : (2.33a)
I, (&L) g (L) / 1]
I, (z) = T /la
Ty (L) = Wy, (L) /8] (2.33b)

25
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where e

3
z
Hoe = [ Lo 6 —Th comT az -

To complete the SEM descriptfon, the normalization
constant must be calculated. Recalling from eq.(2.22b)

the definitfion of the normalization constant
; I Y T - - - - ~I
Smi = <Jmi(r'),3/35(Fm(r,r',smi);Jmi(r')> N (2.34)

The only term in (2.34) which is still unspecified is
the term involving the derivative of the impedance matrix
with respect to s. This may be done amnalytically and the ‘ii
detailIs of the analysis for the derivative terms In (Z.34)
are given 1in Appendix A. Substituting the results of
Appendix-A, along with the natural modes, into eq.(2.34)
the normalization constant can be determined.

In order to solve eq.(2.18), a method of moments
approach which follows Glisson and Wilton“s approach in
[8] was used. The generating arc is segmented into a
sequence of Ifinear segments as shown in Figure 2, where
the generating arc Is cansidered tao be cantained in the
¢=0 plane. The segmented geunerating arc can be rotated
about the axis of rotation to produce the surface of the

P S PV Sy S

cylinder. The unknown electric currents which are induced
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Figure Z. Segmentation of the generating arc for purposes
af numerical computation.



on the surface can now be approximated by pulse functions
in the axfal (3 J direction.
z

The expansion of the electric current may be written

as
= YT pn T omen
J (p,9,2) = P (z")a_ + J P (zNa (2.35)
m n=t ZW 1 z n=1 ¢m 2 ¢
where
. ’zn-’/{('z 20+
n
Pl(z') = (2.36a)
0 ,othrerwise
and
1,z 522z
P;(z') = (2.36b)

0 ,otherwise ,

The charge contribution which comes from the derivative of

Jz with respect to z can be approximated as

y | -t

3/32"CT (z")) = I Zm > pTezny (2.37
Zsz)) n.z]. [z -2 5 (z") )
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where it ts assumed in (2.37) that

P =& -0,
Znr Zm

Tirtg ts thre so—~called "staggered zoning scheme" expansion
of the current and charge of Wiltom et.al. [13]. This
scheme has proven well-suited for numerical solutions of
probiems involving edges and two nomn-zero components of
currente. The features aof staggered zoning which provide
its utility in this context are discussed im [13].

The testing functions can be defined as

T;m(z) - 5§m(z) (2.38a)

qd Y
sz(z) sz(z)

(2-38b)
where

. 11 ,z-zq

8 (Z) - (20393)
1m 0 ,otherwise

. | 1 ’z=zq—%

8m(® = (2.39b)

| 0 ,atherwise.

Testirg eg.(2.18a) withr (2.38a) and eq.(2.18b) with

(2.38b) yields

E:{.nc

= qan
(2 = 813,

qn
I ST C ) (2.40a)

..
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irre - oI qr
E'q)m (:zq) g”ZIm(“Lzm) + &Zngfﬁm)c (2.40b) 6

The generalized impedance matrlix, cansisting af Bg_;‘m_
can now be expressed, where the subscript m refers to the
Fourier coefficient and the q and n superscripts refer to
field and source points, respectively. As a matter of

cofﬁrenience in presenting the expressions the following

integral will be defined as

z
2

K(Zlyzz,zq,m) = £: Gm(zq,z') dz' (Z.41)
1

where Gm is defined hy (2.17). The natural mades on the
structure can be partitioned into two symmetry classes -- ‘:j
one associated with a magnetice ;mage plane and one asso-
ciated with an electric image plane.

Using these symmetry properties and the previous

definitions, the operators iInm (2.19) can be expressed as

follows:

qn _ _ a
"Lim bz [K(z“'%’zn+%fzq+l’m)

- (2 +-(sAz/c)z)K(Zﬂ_%,zn+%,zq,m) + K(zn Z 4,2

_'1/2, n+i q‘-l’m)

- 2
+ K(—zu+%’-zn-%’zq+l’m) + (2 + (sAz/c) )K(~zn+%’—zn—%’zq’m)

Rt g™ (2.42a) e
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gln

12m AZ4HSE [K(z +P I’nﬂ = K(z ,z'+&,z »m)

n-%

+K(—zm+45,-zn_‘§,zqﬂ_,nr) +K‘( z, 1«' n—%’zq’m)] ; (2.42b)

BZlm‘ Azll-‘n'se [K(Zn-l"z -|-L’z »m) - K(zn_‘/,z +;,’z 1»“‘)

F r(- - - - . (2.42¢)
+ K( Zn_'_;i, Zn.!’z,zq,m) t K( zn_'_!i, zn_;i’zq_lam)] ; and

qn
822m lursa [Z—Q—[K(z ;,,.z +L«’z »mtl) + K‘('z 12 _,_;,,z ,m=1)

+ K-z +557 Bty z-q,m+1) + R~z > Bl zq,m-l}}

2
*P;_ [K(z (2.42(1)

n_;i! zn_’_;i’qum) + K(-zn"'l/z’-zn-l/z_’ Z'q,m') ]] .

The upper signs refer to the electric image plane case,
while thé lower signs refer to the magnetic case. A
detailed analysis of the handling of the singularity which
accurs in the evaluation of the self terms, when the
source and observation point coincide, is Included in
Appendix B.
2.4 validation of Computer Code

Throughout its development, the computer code which
s used to calculate the data presented here was validated
against well accepted benchmark computer codes and data.

The code used in the determination of the natural reso-—
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nances for the current was benghmarked for the zeroth and
highef order mode cases. The code developed for determin-
ing the normalization constants was benchmarked only for
the zerath mode case, since there is presently no data
available for the higher mode- ecases.

In order to validate the zeroth ‘order mode case,
which corresponds to thin wire theory, the code was run
under the driven case of an incident plane wave excitation
for an aspect ratio of 100. The induced current was
checked against accepted results. The two were in good
agreement. The code was then modified to calculate the
natural resonances. Using an aspect ratio of 100, the
first layer poles found by Tesche in [4] were determined.
The magnitude of the poles presented in this report
demonstrated agreement with the poles presented by Tesche
to within 1% of their magnitude. The natural modes were
determined far the cases presented by Tesche, and again,
good agréement was observed. Finally, for the zeroth order
case, the normalization constants were calculated and
compared to the normalization constants presented by
Tesche. The code presented inm this report calculates the
normalization constant for the current density rather than
for the total current. Therefore, for comparison with
Teséhe, the normalization constants were renormalized to
the total current rather tham to the current density. The
renormalized data compared to Tesche to within 27 in

magnitude. The code was benchmarked for the higher azi-
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nuthal orders using an aspect ratio of 3.1415, for the
inhomogeneous excitation due to an end-on incidence of the
cylinder by a plane wave. The results were compared to
the results presented by Glisson and Wilton in their Body
of Rewvolution programe The generating are in their
formulation was specitalized to represent an open-ended
cylinder. The results of the twa codes agreed ta within
three significant digits on a DEC-10 computer. The total
cpu time on the DEC-I0 for the Glisson and Wilton general
body of revolution code was 55.06 sec, compared to the
cylinder code presented here, took a total of 3.78 cpu
secs. Therefore, the specialized cylinder code is almost
15 times faster than the totally general body of revo-
Iution code written by Glisson and Wilton. This is not
surprising since their code allows dielectric or perfectly
conducting bodies, as well as arbitrarily shaped bodies.
However, to be cost—effective for the determinmation of the
SEM paraﬁeters for a thick cylinder, the present, a more
efficient code 1s required.

Further validation of the cylinder code was perform=-
ed by specfialfzing the cylinder to a ribbon Ioop. The
poles of the ribbon loop were compared to the poles or the
circular wire loop presented by Umashankar and Wilton in
{I4J~ The two loops were chosen so that they had equal
surface area as seen in Figure 3. The pole value calcu-
lated from the ribbon loop was =-0.0148 + j0.0893. The pole

value of the wire Ioop is reported to be -0.0131 + j0.0889
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after renormalizing the pole value to sL/cwn. The poles
for the different geometries cannot be compared directly,

hut the degree af proximity here is quite gratifying.
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Figure 3. Comparison of ribbon loop geometry (a) to wire loop
geometry (b), where they were chosen to have equal surface area.



CHAPTER 3
INTERPRETATION OF RESULTS

This chapter presents the SEM parameters for various
thicknesses of open—-ended cylinders. The poles are pre-—
sented for azimuthal harmonic varations of m=0, 1, and 25
Selected natural modes are presented to represent the
compiled data. These data were obtained by implementing
the formulations presented in the previous chapter.

The trajectories of the natural resonances for the
structure as its aspect ratio 1is varied from 100 to 3.33
is seen in Figure 4. Aspect ratio is defined as the
length~to~diameter ratio for the cylinder as indicated tin
the insét in the Figure. Figure 4.a shows the pole
Iocations for the m=0 case (constant azimuthal current
variation) over the range of aspect ratios. It 1is
observed from Figure 4.a that the poles tend to move
downward and outward, which correspond to a decrease in
resonant frequency and an increase in the damping facteor,
as- the cylinder gets thicker. O0f course, these results
are essentially those of Tesche [4] extended to lower
aspect ratios and this tendency in the trajectory agrees

with his observation. Said differently, the quality factor
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(Q) for the m=0 modes decreases with decreasing aspect
ratio. This decreasing~Q phenomenon i1s quite pronounced
for the higher resonances of the extremely fat cases.

The open cylinder possesses a second independent set
of m=0 modes. It i1s clear fraoam (2«19) that Bjz;g =839 = 0
so that the Jz and .Iql components of current are decoupled
in the m=0 case. Futhermore, the operators B;1g and B339
exhibit singularities with respect to s independently of
one anothers The m=0 poles discussed in the preceding
paragraph are, in fact those of Bj;;g —— 1.e. those asso~
ciated with resonances in longitudinal current flow. The
resonances attributable to Bzsp are counterpart to the m=0
resonances of a loop structure as, for example, [I4]
reports. These loop resonances cannot be excited by a
time harmonic excitatiom as a consequence of their azi-
muthal invariance. We, therefore, do not address then
further here.

The pole trajectories for the case of first harmonic
azimuthal variation are displayed in Figure 4b. The
direction of migration here is seen to be that of in-
creasing Q with decreasing aspect ratio-- the reverse of
that for the zeroth-harmonic case. This pheﬁomenon is the
result of the torsional paths which the currents follow
for the m=1 amd higher azimuthal order cases. Figure 5
displays qualitatively the paths of current over the un-
rolled cylinder surface for different rates of azimuthal

and Iongitudinal variation. (We point out that the por-
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trayals in the Figure are not computed from the modes and
are, indeed, quite simplistic representations introduced
here for interpretive purpases.) For the m=0 modes there
i3 na circumferential current component and the f£law lLines
are alorng straight ltme pathes. The involvement of the
circumferential component for modes higher than zeroth-
order introduces a torsional component to the streamlines.
The éharge movements constituting the m=0 modal currents
undergo acceleration anly at the ends of the structuree.
The modes with higher—order azimuthal variation
impose a continual centripetal acceleration on the charge.
*This acceleration imposes a continual shedding of_enetgy
to radiation at appreciable levels. Comparison of Figures
6a and 6b substantiates this observation. The data in
Figure 6 are simply the p=3.33 aspect ratio results ex-
tracted from the trajectorles given in Figure 5. (A few
additional poles appear in Figure 6 and are subsequently
discussed.) The damping of the resonances 1s observed to
lncrease with increasiﬁg azimuthal order for the lower-—
frequency resonances. That 13, the increasing of torsion
with damped resonances. A more careful observation in-
dicates, however, that this trend does not persist further
up in the complex plane. The current paths become quite
complex amrd somewlat localized due to the higher order
longfitudinal variation associated with these poles and
hRave not admitted to a consistent interpretation, to date.

The migration of the poles in a direction of increas-—
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Qualitative current flow lines for specimen natural modes plotted on the unrolled
(a) m=1 harmonic, first mode; (b) m=1 harmonic, second mode; (c) m=2
harmonic, first mode; and (d) m=2 harmonic, second mode,
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ing Q with decreasing aspect ratio evidenced by the m=1l
and m=2 poles in Figure 5 Is due to the decreasfng of
torsfon with fncreasing circumference, thereby reducing
the rate of radiation as charge flows along the cyIinder.
This trend is contrary ta the directian of migration 1in
the m=0 case.

Figure 6 includes additional sets of poles, which
are deleted from Figure 5 for the sake of clarity. These
poles are arranged in "layers" which emerge mnear the juw
axis and are those which Wilton conjectures to be interior
waveguide mode cavity resonances, radiation through the
apertures at the open ends of the cylinder [17]. They
correspond with the so-~called type III poles of the thin-
wire Ioop-.

This conjecture is substantiated by the comparison of
the pole locations with the jw axis resonances of a cylin-
drical cavity formed by an electric-walled cylinder and
terminated with magnetic walls closing the ends of the

cylinder.

TABLE L

CYLINDRICAL WAVEGUIDE RESONANCES

™ ™
Olp 11lp TMZOp mzlp
p=1 5.20 1 8.19 1 11.76 I 10.94
2 5.48 2 8.38 2 11.88 2 11.08
3 5.92 3 8.67 3 12.09 3 1l1.81
4& 6.48 4 9.06 4 12.38 4 11.99

H
H
H

Olp 11p 21p
p =1 8.19 1 4.03 1 6.56
2 8.37 2 4.39 2 6.78
3 8.67 3 4.93 3 7.1
4 9.06 4 5.59 & 7.61L
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Table I gives the resonant frequency values for the first
several modes of this cavity normalized to L/em as the’
frequency variables are in Figure 6 and for the a=3.33
aspect ratia af the Figure. Comparing the values in the
Table with the—p{ie value in figure fa we see a layer
emerging near the normalized first resonant frequency 5.18
of the TMp1; mode of the cavity. The second pole In this
Iayéf l{es sIightly to the left of the value 5.40, while
the TMg1, resonance falls at 5.48. Because of the inter-—
action of the frequency dependence of the admittance of
the radiating circular apertures at the ends of the
cylinder we would not expect a close agreement for these
"radiating waveguide poles'™ and the cavity poles. Never-
theless, the association of this layer with the TM cavity
modes 1s clear. TIn lIike fashion, we may identify the

following associations:

a layer emerging near jw =4 in Figure 6a with the

IEOlp modes;

a layer emerging near jw =4 in Figure 6b with the

TELIP modes;
a layer emergling near jw =8.35 in Figure 6b with the
™ 5

11p madess
a layer emerging near jw =6.5 in Figure 6c with the
TE modes; and

21p

a layer emerging near ju =I1 tn Figure 6c with the
™™ modes.
2ip

The consistancy of these associations strongly supports
the Wiltaon caonfecture in [I7]. One further observation 1is

appropriate here. As the aspect ratio decreases to zero,
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the structure‘collapses to a ribbon loop. The natural
resonances of a specimen ribbon loop were computed and
compared to those of a counterpart thin~wire Ioop. AII
three types described by Umashankar and Wilton [l4] were
presente

The current natural modes for the first two exterior
poles for a relatively thick cyIinder (q=I(0) are displayed
in Figures 7 through 11 and for a relatively thin cylinder
(2=50) are presented in Figures IZ through I16. *Harmonic
modes m=0, I, and 2 are presented. Figure 7 and Figure 12
present a graphical representation of the real and imagi-
nary parts of the z dependent factor of the natural modes
for the (®=10), and (@®=50) case, respectively. This
representation of the natural modes for the (m=0) case
agree well with Tesche’s modes {[4]-. It can be observed
trom these Figures that the real part of the mode for the
first pole exhibits one-half period of something akin to a
sinusoidél function, the real part of the mode for the
second pole exhibits two-half periods of something akin to
a gsinusoidal function. This well-known trend continues
for higher pole numbers In the m=0 case.

For the case where m=1, Figures 8 and 9 and Figures

* The numerical value for the mormalized pole

sL./cm and normalized normalization constant BL/c are
tabulated above each graph. The zeroth modes are
normalized on a peak magnitude basis, while the higher
order modes are normalized according to (2.33). The
normalizations are discussed explicitly and in more

detail in Appendix C.
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[T and I§ present the real and imaginary part of the
natural modes afong with the three dfimensfion pIot of the
mode above the unrolled cylinder, for (a=«l10) and (a=50),
respectively. The (a) parts of Figures 8 and 9 and
Figures 13 and 14 represent the z variation in the =z
directed current, where the (b) parts represent the
z-variation in the azimuthally directed current. No
specific pattern among the features of the various natural
modes 1s evident for the m=1 case. However, as the
cylinder gets thinner, increasing the damping factor, an
apparent spreading of the energy in the mode toward the
edges is seen. Thig is evident in the first pole for the
m=]l casea.

Ffgures II, I5, and I6 convey the same fnformation as
Figures 8,9,13, and l4 except for the case of m=2. Again
no speclfic trend is observed for the m=2 case except,
perhaps the concentrating of the longitudinal component
of curreﬁt near the ends of the structure as the damping
factor associated with the mode increases. This is

evident, for example between Figures 10 and 15.
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CHAPTER 4
CONCLUSIONS

A selective group of Singularity Expansion Method
parameters.for an open—-ended conducting cylinder are
presented Iin this work. A complete tabulation of the
data obtained for this structure can be found in a
companion report [9].

A major significance of this work is the insight
gained in comparing the features of resonances associated
with various order azimuthal current variations. Using
the frequency domain SEM description, along with a more
complete set of parameters, the resonant behaviour of
cylindriéal structures due to higher order azimuthal
current variations 1is interpretable. As stated in [ 6],
the major factors in the prediction of aperture coupling
are the dominant resomaunces, it.e., the resomances that lte
in closest proximity to the jw axis. The torsional effect
which produces contradirected pole trajectories of the m=0
pales as oppased ta the higher arder poles, introduces the
possibility of poles associated with higher-order azimuth-
al modes moving so as to compete with the m=0 poles for

dominances. That is, the resonances that lie In closest
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proximity ta the ju axis. The torsional effect discussed
in interpreting the pole trajectories of higher azimuthal-
order modes poses a possibility which deserves further
attentiaon. That is, with m=1l and m=Z pale families moving
nearer the ju a%is as the dominant m=0 family moves out,
the poles of these higher~order families begin to
"compete"” far dominances with the m=0 f£amily thereby
pre#enting a complex dominant pole constellation. It 1is
anticipated that the SEM coupling coefficients will
diminish appreciably with increasing mode number thereby
diminishing the degree of "competition". This 1issue
should be considered when coupling coefficients are
computeda.

The physical interpretation in Chapter 3 are pre-
liminary and are likely to prove superficial under closer
scrutiny. A detailed study of the phenomena evidenced in
the cylinder data may lead to further physical insight
into the.electromagnetic interaction of a wave with the
cylinder. For example, accurately plotting the current
streamlines associated with the present data is likely to
be helpful. It may be possible to relate the current flow
paths over the cylinder with the pole values on a geomet-—
rical basis as Howard has done for the sphere [18&.

Wilton“s conjecture relative to the conversion of
interior resonances to radiating resonances can be veri-
fied tmr a more precise fashion 1if the preseqf numerical

model fs expanded to incorporate end-caps. By system—
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atically opening hales in the end=-caps, one can evolve
from the closed structure and the associated cavity
resonances to the resomances of the open-ended structure

cansidered. here.
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APBENDLIX A

Derivation of the Derivative Term of

the Normalization Constant

In the determination of the SEM parameters, a term
involving the derivative of the impedance kermnel ?; with
respect to the frequency variable s appears in the nor-

malization constant derivation (2.22a). Viz.

8 . = <3mi(?);a/as(Fm('r’,r",smi);:fmj_(;')fl (A.1)

mi

where T 1is a two-by~-two dyadic over the surface of the

object i1dentifiable form (2.18):

T (F,7',8) = (A.2)

In the numerical computation of Bmi’ (A.l) goes

aver to a matrix counterpart involving the elements of
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(2.23) and (2.24). Namely,

Bay = £131 ¥/0slZ, (s, D1ET 11T (A-1a2)

where the moment matrix [E;] 13 expressable in terms of

four terms submatrices which follow fronm (A.2):

qn qn
[Bllm(s)1 [BIZm(S)]
(Z(s)] = (A.3b)
qn qn
(815()1 (855 ()]

Therefore, to compute (A.3a) we need the s-derivatives of
each of the four forms appearing as matrix elements in

(A.3b), 1.e. we need

qn - z
3/3s Bllm 3/3s[(~a/bmwschz )[K(zn-%fzn+%’zqfl’m)

2
- (2 + (sAz/c) )K(zn_%,zn+%,zq,m)
+ K( Z 1 2t zq_l,m) I1
(A.4a)
qm s
3/3s BlZm 3/3s[( 1m/4wssAz)[K(zn_%rzn+%,zq+1,m)
"‘K.(z 1 »Z »Z ’m)]l
<17 ZnH
n—-3" n+3’ q (A.4b)
qrr -
3/3s BZlm 3/9s[( jm/AnssAz)[K(zn_%,zh+%,zq,m)
-K(zn-li’zn-l-‘/z’zq-l’m) 11 (A.b4c)
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)

3/3s 812 = 3/35[(-sa/2c)[K(zn_%,zn+&,zq,m+l)

22m
#K(ﬁ_li,zn_'_ls,rq,m-].)} (A.4d)
- (mzl‘a)K'Czn_;s.z - .zq.mll'
with
%
= * ’ -
K(zl,zz,zq,m) f Gm(zq,z ) dz (A.5)
z
1
and the natural resonances will be normalized to
cz = sL/cw ' (A.6)

where ¢ 1is the velocity of I1ight and L is normalized to 1.
Substituting (A.6) into (A.5), and differentiating with
respect to s, we obtain

z

a-/as(K(zL,zz,zq,m)} - 2 3/33(Gm(?q,z')- dz'’

A

z, T
= f f 3/3s(exp(-czmR) cos(m&) d&dz'

II-‘N

z, @
- [ f (-1/¢) exp(—czwR) cos(mg) d&dz'
z; =m

) = (=1/c) [zz qn(zq,z.') dz'
i

61



where

™
gﬁ(zq,z') = ‘J; exp(=czmR) cos(mf) df -

Therefare

9/3s(K(z

l.zz.zq.m)) = (~1/C)k(zl.zzfzq,m)

where

= 22 ( r)dr
m = [ ° g (z,,2") dz
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k(ZL’ZZ’Zq

Substituting (A.6J into (A.4), where K(avzz,afm)

has been abbreviated by Km(zq)

qn | _
3/3s(83] ) =
+ B/BS(Km(zq_l) /s)1
3/3s(8], ) = =i30me/8z[3/3s(K (2 1)/s) - 3/3s(K (2)/9)]
BIBS(Bg;m) = -130me/Az[3/3s(K (z)/s) = 3/35(K (z,_;)/9)]

a/as(sggug = 15a/c[3/35(sKm+1(zq)) + alas(sKmrl(zq))]

+—30mzc/a[3/85(Km(zq)/s)I
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(A.8)

(A.9)

—30ac/A22[alas(Km(zq+l)/s) - 3/3s((2 + (sAz/c)z)Km(zq)/s)

(A.10a)

(A.10Db)

(A.10¢c)

(A.10d)



We may carry out the differentiation on the terms of the

form

Kz} /s

to obcaiﬁ
3/3s(K (2)/s) = [(~s/)k (2) =K (2)1/s° . (A.1la)

Differenttiating terms of the form

sK(z)

ylelds
a/as(sK(z)) = [K(z) - (s/c)k(2)] . (A.1l1lb)

Expanding the terms in (A.10) containing derivatives,

using the forms obtained in (A.l1l), produces

Blas(sizng = —BOac/Az?[—km(zq+l)/sc + ka(zq)/sc +-(sAzzlc3)km(zq)
-k (z .)/sc =K (z y/s? - 2% _(z y/s*
m “q-L q+l m q

+ (sAzz/cz)Km(zq) - Km(zq_l)/szl
(A-12a)

a/as(sigm) = -j30mc/Az[-km(zq+i)/sc +-km(zq)/sc

2 z
—Km(zq+1_)ls +Km,<z_q)/s 1 (A-12b)
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alas( E%tltm.) = =j30me/Az[ -k.m( zq.) /sc + km.( zq;-l.) /se

- z . Z
Kmfzq)/s #Km(zq_l) /5]
(A.l2c)

a/as(sggm) = lSa/c[-skm_l_l(zq) [e - sk_m_l(zq) [c + Kmﬂ_(zq)

+ Km_l(zq)] + 30m2c/a[-km(zq) /sc - Km(zq)/szl .

(A.12d)

-

Rearranging (A.12) and using the normalized pole term

cz = sL/cw

where L is normalized to 1 and ¢ is the velocity of light,

then

B/BS(B?Em(JZ)) = =30a/(cz) TrAzZ[(-l/c) [km(zq+1)
- (2 + ((cz)TrAz)Z)km(zq) + km(zq_l)]

- (1/(cz)mc) [Km(zq+l) - (2 - ((CZ)TrAZ)Z)Km(zq)

+E (2 D11
(A. -1 33.)-

a/as(sql‘z‘m(J¢)) = —j30m/Az(cz) T[(-1/c) [k (2 ) = km(zq)I

- (1/(cz)mc) [Km(zq+l) -Km.(zq_)]] ‘ (A.13b)
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?r/&s(qutim(Jh)) = —30m/Az(cz)ni(~t/c) [kmfzq) -k (z

n q_]_) ]

- (1/(cz)mc) [Km(zq) - Km(rq__l)‘]] (A.13¢)

335 (8355(3)) = L5alelEy,, (2) + €, 4 (2)] = 30a°/a(ca) “n2elk (2 )]
-15a(cz)w/c[kh+1(zq) +'kﬁ-1(zﬁ?]

- 30mz/a(cz)vC[km(zq)]. (A.134d)

Upon careful examinatiom of eq.(A.I3), it can be
observed that except for eq.(A;13a), the terms involving
]
the K integrals are the same integral terms used in the
determination of the pole values. Therefore, if managed
carefully, the terms above can be calculated very effi-
ciently, since part of the integrals have already been

evaluated, and can be reused. The only remaining integral

terms are non—-singulare.
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ABPENDIX B

Singularity Analysis for the Self Term

of the Body of Revolution Formulation

Upon calculation of the impedance matrix for the body
of revolution, one encounters a singularity in the inte-
grand of the integral function K, when the field point is
within the source region. The numerical treatment of this
singularity 1s presented in this appendix. This formula-
tion follows, in part, from Glisson and Wilton’s treatment
of the singularity [8], but uses the elliptic integral
treatment of Pearson [1l5].

For a self term of the moment matrix, the K integral

function of (2.42) may be written as

zZ ™

K=] z f (exp(-sRO/c)/RO)cos(mE) dedz"' (B.la)
z -7
1

where

R "2 ' 1y2q%

o = [p=p")" + 20p" (L -cosmg) + (z2-2")"] (B.1b)

As p>p’y z+2z", and g+ 0, then Rs+ 0 and the integrand of
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(B-la) is singular. K can be expressed as

where T'I. and I'.L are defined as
z, ®

IL -—f f ((exp(—sRO/c))cos(mE} —-1)/R0 dEdz' (B.3a)
z, =%
‘1
z, =

L, =[°] /R, dedz’ (B-3b)
z; -w

where the integrand af (B.3a) is no langer singular.

Rewriting Ro as

Ry = (-7 + (2-207% + bop"sta’(£/2) 1"

- 2_, 2 5
Rl[l + Blsin (e/2)1

with
R = [o=-0D7 + (z-2")2]"

and

By = Zlpo"T%/Ry _
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Thus with a simple change of variable, ]'.2 may be written as

[L6]

L
L=4[%] l/Rl[I'*'BisIn;Lz drdz’
Z

z,
6 [ % a/r 1+ 8219608,/ (L4 69T dz?
. zl

]

z2 e
& [ 7 K(8)/R, dz'
51 (B.4)

where Ke(B) is a camplete elliptic Integral of the first

kind, defined by

m/2
kK%(8) = [ 1/(1-8%sin%) % do (B.5)
4]

and

1,
R, = [(o +o')2 + (z-Z')?']2

The integrand of (B.4) is still singular. It is at this

point that the formulation presented here differs from
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J

Wilton and Glisson’s formulation. This logarithmic
singunlartty is handled as presented by Pearson [15].

Namely,

z, T
f Zf (exp(-sKo/c)cos(mE)-)/Ro dEdz® = -Zla.[(z2 -zl)
—

=~ (z.'z—z)!.n.(z:z—z) - (z-zl)ﬂ.n(z -zl)l

zZ, T
+[ 2 f (exp(-sRO/c)cos(mE) - l)/R0 dedz"
z; -7

%2 )
+ [ ¢ (2(1-8)/a)en|z—2z"| dz" + [ © (2B/a)[%n8a - &nB.
%1 %1

+ (U2)2[an(4/8") - 2/(Le2)]8'% + (L-3/2-6)2[2n(a/8") - 2/1-2

= 2/3-418"% + <ol 4zt
(B.6)

where

8 = 2[00"1¥/R, = 2a/R,

and

gt =1 - 72

Equatfon (B.6) 1is used only in the determination of the

gsingular Integrals for the self zones.
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Following the convention suggested by Wilton and
Glisson in [8], the non-self term integrals will be
evaluated by separating the integrand into two parts. The
non-self zone integrals are evaluated combining eq.(BE.3a)
and (B.4)., Therefore, for non-self zones, K is evaluated

by

z ™
K=[ z f exp(-sRo/C)COS(mE)/RO dedz!
Zl—‘"'

rA m z
[ %] (exp(-sRy/c)cosme - 1)/R dgdz’ + 4 [ 2 K%(8,)/R, dz'.
Zl - zl

(B.7)
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APPENDIX C

Normalizations

All poles presented in this work have been normalized
to L/cre However, the natural modes and the normalization
constants for the m=0, and higher order azimuthal varia-—
tion cases have been normalized differently.

The natural modes presented for the m=0 case_have
been normalized on a peak magnitude basis in order to
compare with Tesche [4]. The natural modes presented for
the higher order modes have been normalized to the norm
presented in (2.33). The norm calculated in (2.33) is a
complex quantity. Thus, the natural modes have been
normalized to the magnitude and the associated angle 1is
presented as NORM ANG on each graphe.

The normalization constant presented for the m=0 case
and higher order cases have been mormalized to L/c.
However, for comparision with Tesche [4], the current
natural modes associated with the higher order azimuthal
vartatrtor were converted to totral current modes, rather
than current density modes, which were calculated using
the preceding formulIation. The total current natural

modes are Zra times the current density natural modes,
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where a 1is the radius of the cylinder. Therefore, for the f

m=0 case, the normalization constants are associated with

the total current rather than with current density natural

madesa
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