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Abstract

The effectiveness of wire-mesh loading as a hardening technique for
apertures in otherwise closed shield surfaces is assessed for electric field
penetration by considering a canonical probiem of potential theory in which
the shield surface is spherical and the aperture is circular. Exact and
approximate solutions to this canonical problem are obtained and are found to
agree closely over a wide range of aperture opening angles.
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I. INTRODUCTION

In previous Notes [1-4], we have considered several problems of Tow-

frequency or quasistatic electromagnetic field penetration of apertures.
Electric and magnetic penetration of a loaded circular aperture in an infi-
nitely extended ground plane was considered in [1], and of an open circular
aperture in a perfectly conducting spherical shell in [2]. Quasistatic mag-
netic field penetration of a resistively loaded circular aperture in a per-
fectly conducting spherical shell was discussed in [3] and [4]. As the results
in [3] and [4] can be readily adapted to mesh Toading by replacing the sheet
resistance Rs with Zs’ the sheet impedance of the mesh [1], the remaining
problem to be considered is that of electrostatic penetration of a mesh-loaded
circular aperture in a perfectly conducting spherical shell. We address this
problem in this Note, considering the case where the external applied electric
field is parallel to the symmetry axis of the structure. The penetrant field

is maximized for this orientation of the external field [2].

As in [2-4], formulating this problem in terms of a scalar potential
leads to a pair of dual series equations which are then reduced to a Fredholm
integral equation. This integral equation is converted into a set of linear
equations in the expansion coefficients for the potential; these are then
readily solved on a computer. In this Note, we also introduce a "pseudo-
variational" approach to the solution of the dual series equations and compare
the results with the numerically computed exact results. We shall see that
this approach yields a relatively simple closed-form expression which is also
accurate over a wide range of parameters.

The formulation of the problem is carried out in the following section,
and the solution of the dual series equations is presented in section III.

Numerical results are discussed in section IV, and section V concludes the Note.




II. FORMULATION OF THE PROBLEM
The geometry of the problem is shown in Figure 1. A perfectly conducting

open spherical shell is centered at the origin of the spherical coordinates

(r,6,6). The shell has radius a and extends from © 0too =a(a<m). The
remainder of the surface r = a (i.e., a < 6 < w) is a bonded-junction wire
mesh. The individual meshes are square and of size ag3 the wire radius is
ry, << ac. It is assumed that the mesh is electrically connected to the per-
fectly conducting shell at 6 = a. The structure is immersed in a uniform
electrostatic field EOEE. The object of the analysis is to determine the
electric field everywhere; in particular, we wish to find the electric field
inside the spherical shell and to evaluate the electric polarizability of the

structure.

We express the electric field E in terms of the scalar potential V as

E = -w (1)
in which
V(r,8) = -Eor cosf + Vl(r,e) (2)
where
V=0 (r#a) (3)
Tim vV, = Q_/4ne (4)
oo 1 0 o]
Vi =V, + Eja cosb (r=a,0<6c<a) (5)
oV oV
1 1 3K
T - = = = [V(a,8) - V.1 (a0 <6 <m) (6)
ar r=a+ Lol a 0

The derivation of the boundary condition (6) is carried out in {[1]. Q0 and V0

denote respectively the net charge and the potential on the structure and K is

a parameter given by
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Figure 1. Geometry of the problem.
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Now Vl(r,e) can be expressed as

o n

r<a: Vl(r,e) = -an nZO an(§) Pn(cose) (8a)
oo r -n-1

r> a: Vl(r,e) = -Ea Z a,(3) P (coso) (8b)

n=0

in which Pn(-) denotes the Legendre polynomial of degree n and where the
coefficients a, are to be determined. Applying the boundary conditions (5)
and (6), we obtain the following set of dual series equations for the unknown
coefficients:

I

L ann(cose) =0 (0 <6 <a) (9)

o]

o v
_ (0]
nZO (2n+1)b P (coso) + 3K nZO b P, (coso) = E;E‘* 3 coso

(0 < 8 <) (10)

in which the coefficients bn are related to a, by

vo
b0 =a, *tpg (11a)
0
b1 =a, + 1 (11b)
b = ag (n > 2) (11c)
and, from (4),
v Q
bo=E0a' > 2 (12)
o 4ﬂ€0an
We shall be concerned with the case for which Q0 = 0, so that a, = 0 and
= _0
b E a (13)

olq on
QO 0 0



IIT. SOLUTION OF THE DUAL SERIES EQUATIONS

We express the coefficients b in terms of an unknown function h(u) by ‘

(5]

m 1
b, = Jo cos(n+§)uh(u)H(u-a)du (14)

in which H(-) denotes the unit step function. Then making use of the relations

[6] -
y cos(n+%)uPn(c058) -1 H(B-u) (15)
n=0 V2 J/cos u - cos8
sin(n+l)uP (cos8) = 1 W) (16)
2 n
n=0 V2 V/cos6 - cosu
we find that
o 0
J b P (cose) = —L-f h(u)H(u-g)du (17)
n=g " V2 ‘0 Vcos u- cosh

@ m
I (2n+1)b P (coso) /2[ h(u)H(u_a)a%[ H(u-6) ]du

vYcos8 - cosu

n=0 0
T .
= -/7 coso é%.j h{u)H(u-a)H(u-6) sinudu (18)
0 Ycos6 - cosu

for 0 <0 <.
It is evident that the first of the dual series equations (9) is satis-
fied by this representation for bn; and the second of these equations will be

satisfied if h(u) is the solution of the integral equation

i) . . v
) %_é%_J h(u) sinudu__ sing (E(L ‘3 cose)
8 V/cos® - cosu M2 0
3K . © h(u)du
_Z—WS]neJ —_— (o < B8 <) (19)
T vCOS U -C0S0




Ld

Now making use of the integral equation/solution pair [7]

b
J f(t)dt = g(x) (0<a<x<bz<m) (202)
x /Cos x - cos t

b .
f(t) = - %f—tf g(u) sinudy ;. ¢ <) (20b)
t Vcost- cosu

we convert the integral equation (19) into the inhomogeneous Fredholm integral

equation of the second kind

il v
h(x) + %K?J K(x,u)h(u)du = %(f% cos} + cos32—x) (0 <6< ) (21)
o 0

in which the kernel K(x,u) is given by

T H(t-x)H(t-u) sintdt (22)
0 /Jcosx-cost Ycosu-cost

K(x,u) = J

for a<x <m, a<u < w. It will be useful in the following to extend the domain

of definition of K(x,u) to (0,7) x (0,m). Thus we obtain

m

h(x)H(x-a) + %%—H(x-a) J K(x,u)h(u)H{u-a)du

)
2 Vo X 3x
= E;E-cos§-+ cos>- H{x-a) (0 < x <) (23)

We now convert the integral equation (23) into a system of linear equa-

tions in the unknown coefficients bn' The relation (14) is equivalent to

h(u)H(u-a) = %— E b cos(n+%) u (24)

Substituting (24) into (23) and making use of the easily demonstrated fact that

kb
J K{x,u) cos(n+%)11du =T i cos(n+%) X (25)
0 n+§



we obtain

oo o b
1 n 1
nZO bn cos(n+§)x + 3KH(x-a) nZO Eﬁ—;—i-cos(n+§)x
V 3x
= H(x-0) E—E'COS?'+ cos% (0 < x<w) (26)

Now multiplying equation (26) by %cos(m%)x and integrating with respect to x

(0 < x < ), we obtain a system of linear equations in the coefficients bn’

viz.
co bn V0
bm + 3K Z n+ 1 Imn = Ea ImO + Iml (mZ 0) (27)
n=0 o]
where
2 ™
In = E—[a cos m+—)x cos(n+—)xdx
1 sin 2n+1)a] _
‘n['” ST 2n + 1 (m = n)
_ _ 1fsin(m-n)o . sin(min+l)a ]
T [ m-n o omtn+ 1 (m #n) (28)

When the structure carries no net charge, b0 = VO/EOa; thus the system

of equations (27) becomes

b I 8
n mn no | .
b + 3K z on t 1 (1 - jﬁ(-) = Iml (m=>0) (29)

where sno =1if n=20 and 6no = 0 otherwise. The system of equations (29) can
be readily solved for any of the unknowns bm by numerical means. We shall
presently discuss numerical results; before proceeding, however, we consider a
"capacitive shielding" hypothesis to obtain an approximate analytical solution.
This approximate solution will be compared with the "exact" solution in the

following section.




*
We hypothesize that

b = bg(l + gK)7L

0 (n > 0) (30)

where B is a parameter to be determined and the coefficients bz satisfy the

dual series equations

[oe]

ZO ban(cose) =0 (0<6c<a) (31)
n:

co Vo |

Y (2n + 1)b% (cos6) = =%+ 3 cosd (a <6 < ) (32)
n=0 nn an

Substitution of (30) into (9) and (10) and making use of (31) and (32) results
in
5 b2 (cos8) = Bcos® H(6-0) (0 <6 <) (33)
n=0 " "
This relation is not exact; we define the error e(8) as
e(6) = ) ban(cose) - Bcos6 H(8-a) (34)
n=0

for 0 < 8 < m and minimize the mean-square error

- m
e’ = %—f e?(8) sine de (35)
0
*
We term this hypothesis a "pseudovariational solution." Variational methods
will yield a solution of the form
R
b = —0

n 1+anK

where the expression for ap can be rather cumbersome [3,4] and, as a conse-
quence, not very useful. OQur "pseudovariational" approach will, as will be
seen, yield a relatively simple and accurate result.



with respect to the parameter B. The resulting relation for 8 is

T o
I cos® sing ) ban(cose) de
p=t "0 L (36)
J c0526 sing do
o

Now the integral in the denominator is easily evaluated; we have

ki1
cosze sing do = l-(1 + cos3a) (37)
o 3
From (17) and (21), we obtain
oo g [ VO
) ban(cose) = é? J (EJ%-cos%-+ cos%#)-——-—gg-——~ (38)
n=0 a \o vCOS U - coso
from which it is easy to show that
T oo ™ yo
cos® sing § b (coss)de = Z =2 cos¥ + cos3Y |dy
Sonn Bl E a 2 2
o n=0 o o]
T .
. J cos6 sine do (39)
u /cos u - cosf
and since
T .
J cosh sine de _ g%g cos%; (40)
u v/cos u - cos8
we find that
" cosf sin® E b%P (coso)de = Z jg;—l + 1 (41)
4 nn 3\E a "01 11
o n=0 0

Now for the case which we are considering where the sphere carries no net

charge,
vo I
0 o] 01
e = b= T — (42)
an 0 1- Ioo

10




Thus 2

-1 I
3 01
B =2(1+ cos”a) — =4 I
‘ 1 - I00 11
1 2
2 3 -1 | (sino + §-sin 2a,) 1 .
= E'(l + cos”a) o F sTna tm-a-3sin 3a (43)

A plot of B as a function of the aperture opening angle eo = -0, 1$ shown in

Figure 2. When eo < 30°, a simple approximate expression for B is

It is interesting to note that B has a maximum near eo = 90°, where the struc-

ture is a perfectly conducting hemisphere joined to a wire-mesh hemisphere.
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Fioure 2. R as a function of aperture angle 60.




Iv. NUMERICAL RESULTS
The Towest-order coefficients bg, b?, bg, and bg are plotted as functions
of eo in Figure 3. The coefficient b1 is the ratio of the electric field EZ

at the center of the spherical shell to the applied field Eo:

Also, the dipole moment of the shell is given by

3

P, = 4ma eoEo(l - bl) (46)

so that the coefficient b1 is the one of the greatest interest to us. The

dipole moment Poo of a closed spherical shell of radius a is

_ 3
Po = Ama N (47)
so that
0

p b

ya 1
— =1-b, =21 - "= (48)
Poo 1 1+ BK

in which b? and B depend upon the aperture opening angle eo and K depends upon
the loading.

In Figures 4 and 5 are shown curves of bl/b? as a function of the param-
eter K for various values of the angle eo. Both the "exact" and the
"pseudovariational" results are shown and the excellent agreement between
the two sets of results should be noted. The important point to note insofar
as the effectiveness of the mesh shielding of the aperture is concerned is
that BK > 1 in order for siﬁhificant reduction in the penetrant field to

occur. For 8 < 30°, gK > 1 implies that

8ap —21Trw/as -1

0] -1
3as an (1 - e )

Vv
—

—
o
o

~—
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Since aeo/as >> 1 in any practical case, we conclude that the mesh loading

will significantly reduce the penetrant electric field in the enclosure.

‘l' 17



V. CONCLUDING REMARKS

In this Note we have formulated and solved the last of a serijes of

canonical boundary value problems concerning low-frequency electromagnetic
penetration of loaded apertures. A contribution of the present Note, in
addition to the solution of the problem itself, is the demonstration of the
utility of the "pseudovariational" approach to the solution of the dual
series equations which have arisen in connection with this problem. This
approach seems to yield good resu]té for the present problem and would
appear to be worthy of further study in applications to related problems,

including those considered in [1], [3], and [4].
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