A t L N o .
P o ~ et . 2l
e : Aoy

Interaction Notes
Note 400

September 1980

ELECTROMAGNETIC TOPOLOGY: A FORMAL APPROACH TO THE ANALYSIS
AND DESIGN OF COMPLEX ELECTRONIC SYSTEMS

Carl E. Baum
Air Force Weapons Laboratory
Kirtland AFB, New Mexico 87117

Abstract

This paper summarizes several of the concepts included in the new and
expanding subject of electromagnetic topology. Beginning with the elementary
concepts of volumes and boundary surfaces, these entities are specialized to
layers and shields, and sublayers and subshields, and also associated with
equivalent graphs. Next one defines a set of indices associated with the vari-
ous levels of topological decomposition.” The general supermatrix equation
describing electromagnetic propagation is partitioned according to these
indices. The partitioned equation leads to useful approximate solutions which
can be used to bound signals, relate the performance of the system to its
parts, and allocate shielding to various subshields so that a system of inter-
est can be protected against various electromagnetic environments.

Approved for public release; distribution unlimited.

CLEARED FOR PYSLIC RELEA$E

AFQMD[PA, 80-~271
2, Och 8O

\
)




Interaction Notes
Note 400

September 1980

ELECTROMAGNETIC TOPOLOGY: A FORMAL APPROACH TO THE ANALYSIS
AND DESIGN OF COMPLEX ELECTRONIC SYSTEMS

Carl E. Baum
Air Force Weapons Laboratory
Kirtland AFB, New Mexico 87117

Abstract

This paper summarizes several of the concepts included in the new and
expanding subject of electromagnetic topology. Beginning with the elementary
concepts of volumes and boundary surfaces, these entities are specialized to
layers and shields, and sublayers and subshields, and also associated with
equivalent graphs. Next one defines a set of indices associated with the vari-
ous levels of topological decomposition. The general supermatrix equation
describing electromagnetic propagation is partitioned according to these
indices. The partitioned equation leads to useful approximate solutions which
can be used to bound signals, relate the performance of the system to its
parts, and allocate shielding to various subshields so that a system of inter-
est can be protected against various electromagnetic environments.

Approved for public release; distribution unlimited.



I. Introduction

In designing or analyzing the response of an electronic system to some
kind of electromagnetic interference such as the nuclear electromagnetic pulse
(EMP), one is often overwhelmed by the complexity of the problem. There are
too many individual components with an enormous number of interconnections.

The corresponding numbers of variables and equations make it very difficult to
get simple insights into how to control the system performance in an electro-
magnetic environment.

To deal with this complexity one needs ways to identify and deal with a
set of important variables which, if controlled, control the system perfor-
mance. An approach to this problem has been developed [9] which can be referred
to as electromagnetic topology. This concept involves the definition of prin-
cipal surfaces and principal volumes which divide up the space occupied by the
system. These surfaces and volumes are further divided corresponding to vari-
ous features of the system design or analysis. One can show that electromagnetic
topology is related to and is a generalization of graph theory used in electrical
network analysis.

Having defined the electromagnetic topology and the related interaction
sequence diagram (graph) one can write a general matrix equation (a form of the
BLT equation) which 1is partitioned according to the topology which has been
defined. The resulting supermatrix equation admits an approximate solution
which directly shows the dependence of the interior signals on the shielding
properties of the principal surfaces. Certain approximate bounds for the inte-
rior signals result from norm concepts. Other aspects of the electromagnetic
topology can be used to control low-frequency grounding and undesirable signal
transport within the system.

Electromagnetic topology can then be used as a synthesis technique. Given
some requirements for signal attenuation (isolation) one can choose an appro-
priate electromagnetic topology and allocate performance specifications for the
design of each important part of the system.



IT. Volume/Surface Topology

Let us divide three-dimensional space into a set of volumes {VG} as
indicated in fig. 2.1A. The common boundaries between two volumes are

+ +
S50 = V5 12, (2.1)

with the superscript + indicating that the volumes are augmented by their
boundary surfaces. This begins the elementary basis for electromagnetic
topology for describing signal propagation through complex systems [9].

Related to the volume/surface topology it can be shown [2] that there is
an equivalent bipartite graph as in fig. 2.1B with vertices (o) to represent
the volumes and a second set of vertices o to represent the connecting sur-
faces. This graph can be referred to as the interaction sequence diagram
[2,4,9]. The edges represent the electromagnetic signal transport through the
system.

One of the uses of this topological description involves the identifica-
tion of selected closed surfaces as "subshields" which attenuate unwanted
signals passing through these surfaces. As indicated in fig. 2.2A such sub-
shields are closed surfaces separating an "inside" from and "outside."
"Shields" are the unions of subshields including all subshields which do not
surround one another. Shie1d§ are nested in the sense that every pair of
shields has the property that one surrounds the other.

Define some indices

A= 12, (layers)
u=1,2,3 (layer parts)
2 =1,2,...,2 __()x) (sublayers)
max (2.2)
T = 1,2,...,Tmax(x,2) (elementary volumes)
o = 1,2 (dual-wave index)

An elementary volume would be designated V while in fig. 2.2A the decom-

AsR,T
position is carried to sublayer VX 2 Tevel. Further decomposition of a sublayer

into elementary volumes significantly increases the complexity of the interaction
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sequence diagram from that in fig. 2.2B [2]. Note that the indices u and o are
not used with the volumes but correspond to the waves connecting.between volumes
and surfaces on the edges of the bipartite graph as in fig. 2.2B. Within a
layer three sets of such connections are 1denfified, u = 2 corresponding to
connections between elementary volumes and surfaces within a sublayer. The
dual-wave index o indicates the two possible wave directions on an edge. Con-
sidering & in (2.1) as an index set (such as (A,%,t)) the various types of sur-
faces can be generated.

The various types of volumes are related by

ILmax“‘)
V; = LJ | V;’g (layers from sublayers)
2=1 .
- (2.3)
Tmax"( X,L)
V;,Z = V;,K,T (sublayers from elementary volumes)
=1

The corresponding surfaces aré found from (2.1). Some interesting relations are

+ ) .
SA;A+1 = VA.(] Vie (shields from layers)
| (2.4)
S L bshields f b1
Mol t1LL, AL 1,8, (subshields from sublayers)
%@aX(X) 80 (AF1)
SA;A+1 = SA,Q A+1,0 (shields from subshields)
= p 1 2
2' —1 22—1

“1
From the viewpoint of protecting electrical equipment the shields and subshields
are the important.entities in this hierarchical electromagnetic topology.



ITI. Supermatrix BLT Equaticn for Scatterers

Partition an N-component vector (xn) into a set of vectors (xn)x where
(xn)1 is the first N1 components of (xn), (xn)2 is the second N2 components,
etc. Write this as a divector ((xn) ). Continue this process by partitioning

each (xn) as a set of (xn)u;x giving a trivector (((Xn)u)x)' This process

A
can be continued indefinitely and the general types of vectors so defined are
all referred to as supervectors [1,2,5,6]. Using the indices in section 2 one
can have

((((((Xn)o)r)z>u)x) = hexavector

(3.1)

b S individual vector components
N303T325U3A

The elementary vectors (xn)c;r;l;u;

individual variables (such as voltage, current, etc.) at that Tevel of topolog-

A have an index n corresponding to the

ical decomposition, as on an edge in the interaction sequence diagram. Super-
matrices are similarly defined from matrices as (An m) is partitioned as
[1,2,5,6]

((((((An,m)o,o')T,T')Q,i')u,u')A,X') = hexamatrix
(3.2)
An,m;a,o‘;T,T';Z,l';u,u';k,x' = individual matrix components
Now it is important that the partitioning be done in such a way that the
usual addition and dot multiplication operations carry through in generalized
form. Some combination of supervectors and supermatrices combined by such

operations are said to be of compatible order with respect to such operations.

In particular for supermatrices it is necessary that partitioning according to
rows be done uniformly across the columns at every level of partition, i.e.,
every column is partitioned, or assigned, an index set such as n;o;T;23usA in
exactly the same way. Similarly the partitioning according to columns is done
uniformly across the rows.

While these concepts can be applied to rectangular matrices our concern
is with square matrices which are partitioned in exactly the same manner for
both rows and columns. Such symmetric partitioning of square matrices leaves



the diagonal blocks square at every level of partition. With all supermatrices
under consideration of the same size and square with identical symmetric parti-
tions we refer to these as being of symmetric compatible order; together with

this we require the supervectors to have the same size and partition for com-
patibility. Then the generalized addition (commutative) carries through as
illustrated on dimatrices

(A o)+ (B ) )= (e ) )

n,mu,v n,mu,v n,mu,v
= + B
(Cn,m)u,v (An,m)u,v ( n,m)u,v (3.3)
= +B
Cn,m;u,v An,m'u,v n,ms;u,v

and similarly for generalized dot multiplication (non-commutative in general)

(A ). )@ ., ) )=(0D ) )

n,mu,v n,mu,v n,mu,v

(o ), =1 (A )

n,miu,v o LM u,ut (Bn,m)u',v (3.4)

D

n,m'u,v = ) An,n';u,u'Bn',m;u',v

u''n
which is readily generalized to any order of partition. Note that addition
(or subtraction) is immediately carried to the smallest partition, while gen-
eralized dot multiplication corresponds to successive dot multiplication at
each level of partition. The above ((3.3) and (3.4)) also apply to supervectors
by the deletion of appropriate indices.

These supervectors and supermatrices are used in the BLT equation which
was originaily developed to describe the response of transmission-line networks
[1]. By shrinking the tubes (multiconductor transmission lines) to zero length
the BLT equation takes the form [2,5,6]

[ uy) = (G nl$)y )1 @ (T (D))

n,mu,v
= ((Z, ols), ) © (g (s)))
n

((1. ) ) = identity supermatrix




((Zn,m(s))u,v) = scattering supermatrix (3.5)

combined voltage supervector (response)

i

(¥_(s)),)

((\7s (s))u) = combined voltage source supervector
n

~ above a variable = Laplace transform (two-sided)

[72]
th

Q + jw = complex frequency

where u,v can be further partitioned as in (3.1) and (3.2) to correspond to the
levels of the hierarchical topology. The index u (or corresponding index set)
corresponds to the waves on the interaction sequence diagram which take on two
directions on each edge. Accordingly for use with the scattering matrices
corresponding to the vertices, the supervectors are wave variables combining
voltages and currents which we write as

Wsn, = 0 By v @ 0y - 1,
n,m
Y - o) 7(+)
(g (1) = 100, + (2 (), - (7o), e
(Zc (s))u = chosen normalizing impedance (matrix)
n,m

where the quantities superscripted with a + are true voltages and currents with
the + indicating that current is positive in the direction of the wave indicated
by u (or specifically one of its component indices o). The source terms are
voltages in series with the wire(s) and currents from local ground to the wire(s)
in a transmission-1ine interpretation. Voltages and currents are appropriate
for "conductive" penetrations where wires or other conductors pass through
metallic sheets (bulkheads, etc.). In the case of apertures other interpreta-
tions need to be given to these variables.

While this form of the BLT equation can be used for detailed calculations
of signal transport through complex systems, a perhaps more important applica-
tion is for bounding signals in complex systems. Consider the form of the
scatterer BLT equation (3.5) as



((I m(s)) )= (1. . ) ) - ({(Z_ (s)) .) = interaction supermatrix
(3.7)

((En(s))u) ((Zn,m(s))u,v) ® ((V (s)),) = source supervector
This places (3.5) in the form of a standard vector/matrix equation which is
readily solved for the response voltage supervector. The interaction super-
matrix can also be diagonalized in terms of eigenvectors and can be expanded
in terms of jts singularities in the complex s plane (SEM) [1].

The interaction supermatrix has some important properties [2,5,6] based
on the structure of the identity and scattering supermatrices. Writing u as

an index set as in (3.2) we have

(T (80 g)e o)y andy )y e = O, D0 00 g )y

for |A - A'| > 2 (3.8)

i.e., the interaction supermatrix is block tridiagonal at the layer level of
partition.

Starting with this block-tridiagonal property let us next assume that the
off-diagonal blocks are small (in the norm sense) compared to the diagonal
blocks. Then one has an approximate solution of the scatterer BLT equation
((3.5) or (3.7)) which can be called the good shielding approximation [2,5,6]
in

A=2 ~
((((To(s)) ) ) )y = (<D { © [(CTS S P MY RS NED I AR

© <(<(<fn,m(s)>0,o.)T,T.)Q,l.>u,u.>k_k.,A_A._l]}

© (T, n(s))g o)e o)y po)y )Ty © (U () ) 00000,

C,0 n g'T

for A > 2
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(T () ) )0 = LT, s 00 g )y 0T

© ((U(Fy ($))g 60 xt)g, g D)1 @ (T, (810,000,

where the generalized dot product ® is now also used in a continued product
form (as in T]) with order of multiplication having ascending X' from left to
right. For this result only external sources (in Vl) are assumed present.

Having the scatterer response in terms of a product of the blocks one
can now consider the influence of the individual blocks (corresponding to
specific layers and shields) on the response. In particular, though, one can
use this result to obtain an approximate bound for the signals in a layer by
the use of norm concepts [3,8] in

A=2

HOCCCCVs) L) o hIl 2 ATIO ”(((((Tn,m(s))c,c')T,T')Q,Z‘)u,u');-]:)\',.X—)\'”
[ISCEYGAREYD S BIUTS FRUoD MUY NPETPRPRIN |
NOCCCCE, alSVg oide 2dy o)y )] H H(((((Vs(s))a)r)g)u)lll
for » > 2 (3.10)

The norms (|| ||) give positive scalars for non-zero vectors and matrices to
characterize the response and layer and shield transfer properties. Various
vector (and associated matrix) norms are possible, such as maximum element
magnitude and euclidean (length).

This approximate result is carried further by noting the decoupling
between sublayers in the same layer. For example, in fig. 2.2B one can define
a path from Vl,l to V3,1 which does not pass through the vertices 52’1;3’2 and
V3’2. This is accomplished by associating a particular value of £ with each A
along the path P as 2(A,P). Then (3.9) is simplified by only considering the
response of particular sublayers on the path P in

11



(T (s)),)

(o T;Z)u
A=2

A+l ¥
('1) {}‘@0 [(((((In,m(s))o,c' )T’TI ;l()\_xl’P) ,Z(A-K' 9P))]Jsul ))\_)\l A=A'

)y =

@ <((((fn,m(s))0,0')T,T';Q(A-Al ,P),Z(A-A'-I,P)))\,X')l-}\',A-)\'-l]}

© (((((Tn,m(s))o,c')r,r';2(1,P),£(1,P))u,u‘)1,1

® ((((Vsn(s))o) )1 for A > 2 (3.11)

T;l)u
Constraining 2(\,P) has effectively removed one level of matrix/vector parti-
tion by specialization to one path in the interaction sequence diagram at
sublayer level. Just as in (3.10) this result (3.11) can be used to give an

approximate bound on the signals in the V sublayer as a product of norms

corresponding to the sublayer and subshie?&zcharacteristics along path P.

This concept can be carried a step further by extending the path P to be
any path in the sub]ayer.}nteraction sequence diagram. Instead of considering
signals from exterior sources to an interior sublayer, one can place the
sources ((((Vsn(s))c)r;l)u)x at some other sublayer Vx,n and consider the
response at yet another sublayer. In the example of fig. 2.2B this might be
a path from say V3’1 to the exterior V1,1‘ By reciprocity this should have
the same attenuation as the signal transport from exterior to interior.

Another type of path begins at one sublayer, goes toward the exterior, but

then returns toward another interior sublayer; in fig. 2.2B this is illustrated
by the path from V3’1 to V3’2 (or conversely). By a topological transformation
(inversion) any beginning sublayer can be transformed to the exterjor so that
(3.11) appliés to this path. In this topological transformation various indices
are changed to correspond to the transformed topology. Viewed in a simpler way
one looks at the norms of the blocks of the scattering matrices in (3.11)
corresponding to the sublayers and subshields along P; it is the product of
these norms which is important, and these can be identified by inspection of

the appropriate interaction sequence diagram.
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1v. Electromagnetic Design and Specification

Having characterized the signal transport through the electromagnetic
topology of a system in terms of norms of sublayer and subshield scattering
matrices, the process can be turned around for design purposes [7].

1. Consider some elementary topology defined to at Teast sublayer

level (e.g., fig. 2.2).

2. Identify the sources in each sublayer corresponding to electro-
magnetic environments of interest.

3. Identify the allowed maximum signal levels in each sublayer of
concern associated with each electromagnetic environment.

4. Identify the paths P associated with each pair of source sub-
layer (2) and response sublayer (3) of concern.

5. Allocate "shielding" along each path P, such that the sources
(2) produce no more response than allowed in sublayers (3).

6. Partition the shielding along each P, among the corresponding
subshields encountered on Pp. This gives maximum allowable
values to the norms of each corresponding subshield scattering
matrix.

7. For each subshield consider all paths P, that pass through it.
Choose the scattering matrix norm to be the least of those
chosen for all P, as in 6.

This procedure recognizes the dominant role played by subshields in
reducing unwanted electromagnetic signal transport through systems. However,
the sublayers as indicated by the diagonal blocks in (3.11) also have a role
to play in the signal attenuation. If the norms of any such diagonal blocks
are greater than one, then one will have to allow for somewhat greater atténu-
ations (smaller norms) for the off-diagonal blocks corresponding to the
subshields.

With the reguired subshield norms specified one next needs design and
test procedures to ensure that these norms are as small as specified. Appro-
priate scattering-matrix measurements for conductive penetrations, small
apertures, small antennas, etc. need to be standardized for this purpose.
Having all the measured scattering-matrix parameters for a given subshield,
these can be combined to give a computed norm of the desired type. This pro-
cedure can in principle give a system design procedure in which the meeting of

13



subsystem (subshield) electromagnetic specifications implies the successful
passing of system environmental specifications.

The signal bounding here has been cast in complex frequéhcy domain as
in (3.9) and (3.11) which of course impiies linearity. While this is an
important simplification, not all is lost if one remains in time domain. The
matrices in the good-shielding approximation become convolution operators in
time domain. In a more general case they may even be nonlinear time-domain
operators. Norms of such time-domain operators then also need to be

considered.
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