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I. INTRODUCTION

Electromagnetic energy penetration through apertures in conducting screens
and its subsequent coupling interaction with bodies behind apertures is studied
recently [1] from the transient analysis point of view. Such detailed analysis
based on an integral equation formulation, in principle, leads one to character-
ize effectively and accurately interaction between complex aperture shapes and
the coupled bodies behind it.

Certain aperture coupled geometries have been analyzed in the past [2-6],
specifically to mention a few, modal analysis of braided shield cables [3], ex-
citation of a terminated TEM transmission line through small apertures [6] and
excitation of an infinite length cable behind narrow slot in a conducting screen
[5]. Also a wire passing by a circular aperture in an infinite ground plane is
discussed in [7] which follows the formulation based on the integral equation
approach similar to the one derived in [5]. A lumped equivalent circuit is also
obtained in [7] for a wire transmission line in the presence of an electrically
small circular hole.

This note considers basically extensions of the work in [5, 7] dealing with
thin wire structures placed behind protective screens. The excitation of an
infinitely long loaded cable behind a narrow slot in a conduction screen [5] is
extended to the case of arbitrary shaped apertures. A procedure is given to
account for multiple parallel loaded cables behind a given aperture shape. A gen-
eral formulation is discussed for obtaining the field distribution in an aperture
with interaction with an infinite cable taken into account. The transfer admit-
tance function obtained, allows one to further calculate the induced current on
the infinitely long cable and also the portion of the power leaked along the cable
from the aperture excitation [9].

Using quasi-static approximations [7], the Tumped equivalent circuit (with
appropriate source terms to account for the excitation), is given for the trans-
mission-1ine cable in the presence of a narrow rectangular aperture. The aperture
polarizabiiities considered in the equivalent circuit do take into account the
presence of the cable on the aperture distribution. Minor discrepancies found in
the previous derivation of the equivalent circuit element values in [7] are cor-
rected, and the appropriate equivalent circuit element values and the source terms
are indicated.




IT. FORMULATION

An expression for the electric current induced on an infinitely long loaded
thin cable placed behind a general shaped aperture-perforated conducting screen
is derived systematically by taking 1nt6 account fully the interaction with the
aperture. Also derived is a set of coupled integro-differential equations for the
determination of the magnetic current or the tangential-electric-field distribution
in the aperture for an arbitrarily polarized external incident field on the aperture
by fully taking into account the presence of the infinitely long cable. The expres-
sions obtained are in a form suitablie for circuit modeling of the aperture-cable
coupled region. When multiple parallel infinitely long cables are present behind
the aperture perforated screen, a method is given to take into account their cor-

responding mutual coupling with the aperture.
V]
A. Expression for the Electric Current I(z,s)
on the Infinitely Long Loaded Cable

V]
>
Referring to Figure 2.1, the electric vector potential Am(?,s) in the shadow
. side of y > o of the aperture is given by [1],
N v
- {otse) T Y > lgg !
Am(r,s) = ot Jsm(ra,s) G(r,ra,s) dxa z,
a
N y > 0, (2.1a)
-
where Js {r',s) is the magnetic current distribution and
" yIv-v!]
oS e~ -
. = a
G(r,ra,s) ——T?tETT—— (2.1b)
a
1
FF = [xex )2+ 32+ (2-2))%77 (2.1¢c)
a a a
and the propagation constant
1

Y = [su (otse)]” (2.1d)
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Figure 2.1 Infinitely Long Cable Behind an Aperture




which is applicable to both upper y > o and lower y < o half spaces having the
same medium characteristics of permeability u, permittivity e and conductivity o.
Using the identity [8],

A\

e—YlF_?A|_ 1 z(z-2!) )
“‘TiZ%TT'— Ir Ky (u¥)e a’ dg (2.2a)
a C
g
L
u = [y2-g27" (2.2b)

(2.2¢)

where KO is the modified Bessel function of second kind, zero order and C_ is the
Bromwich contour of integration in the complex z-plane as shown in Figure 2.2.
Substituting (2.2a) into the expression (2.1a) we have,

Y Y .
An(Fss) = @ff asm(F;,s)[f K, (u)et(272a) dc:] dx! dz!
S C

Jjen s
a C

y>o (2.3)

In obtaining the above potential expression an est variation is considered for
field quantities, s being the two sided Laplace transform variable,

s = 0+ jw (2.4)

In the above integral representation and in the analysis to follow, the Laplace
transform definition given below is followed for the z coordinate variable,

fe < RAV) -(:
(z,s) =f T (z,s) e ’ dz (2.5a)

R

which has the inverse transform, Fig. 2.2,

v

I
T (z:5) = 53 o T zs) e de (2.5b)
c’\:
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Figure 2.2 -
Contours of Integration in y- and z-planes




The same definitions hold good for all other field quantities. The z component
of the primary electric field due to the aperture magnetic current distribution
is given by [1],

~(p) . 3,
EZ (x,y,z38) = Torse) VxAm(r,si]-Tz (2.6a)

According to the expressions (2.3), (2.5b) and (2.6a),

~(p) 1~l}ﬁh > uy -zz! (o
EZ (x,y,238) = ¢ JJ I (r »s) |5F Ky (u¥)e™™%al dx dz_

S my
a

y>0, (2.6b)

where K, is the modified Bessel function of the second kind, first order. Similarly
the z component of the secondary magnetic vector potential due to the induced electric
current on the infinitely long cable and its image is given by [9],

Xz(x,y,z;S) - 71%] E (z,s) [KO(UW1)-KO(u‘P2)] e*? dg’

R: y>0, (2.7a)
f - Lem? + ) | (2.76)
¥, = [x-h)? + (y+d)?1"/7 (2.7¢)

It can be easily verified that the secondary magnetic vectgr potential as given

by the expression (2.7a) has the rngt boundary condition AZ(x,y,z;s)]y=0 =0.

We also note that the spectral term E(c,s% in (2.7a) is a quantity proportional

to the transform of theme1ectric current %(c,s) on the infinitely long cable. The
total electric current I(z,s) at any point along the cable can be determined from

the line integral of the magnetic field evaluated on the surface of the cable

4
n : 2m 3A_(F)s)
o1 I A , (2.8)
I(z,s) = 'E‘[b;O ¥ —“WF dojy'=a

where ¥ and ¢' are the local cylindrical coordinates about the cable axis and a
is the radius of the cable {(wire).



Hence from the expressions (2.5b), (2.7a) and (2.8), the transform of the
electric current is given by,

I (cis) = &2y [K](u a) - K1(2ud)]' E (2,s) (2.9)

v(s) :
If EZ (x,y,z3s) is the z component of the secondary electric field due to currents
on the infinitely long cable [1]

N

(s) s 5

E, (x.y.238) = = [V(v.._A)(?,s))-vz%(F,s)]-

z (2.10)
Y

1

On substituting the expression (2.7a) and using (2.5b), its transform is obtained
as,

N 2 y
gis)(x,y,c;S) = —355 [Ko(u‘l’]) - KO(uWZ)] £ (z.s)

y>0, (2.11)

av}
We can now determine the spectral distribution f(z,s) by enforcing the cable

impedance boundary condition that on the surface of the cable

v(p) m(s) T Y
E, (zss) + 7" (g,s) oo =z, (s) 1(z,s) (2.12)

where %¢(s) is the impedance per unit length of the infinitely long cable which
depends on the cross sectional geometry of the cable [10]. By substituting the
expressions (2.6b), (2.9) and (2.11) into the impedance boundary condition (2.12),
the spectral function %(;,s) proportional to the transform of the electric current
on the cable is given by,




ﬂ (x ,z :s) [ . (u‘i’ ) e-CZ;] dx;i dz;1

,E (C S) = - (2.]33)
P (z,s)
N 7'(s)
R (z,s) =u [Ko(ua) - Ko(Zudj] + 2may [F](ua) - K](Zud)] —g (2.13b)
0
where
v = [(h- X;)z + d271/2 (2.13c)
Zy = [oﬁzeﬂ/z (2.13d)

Only the x component of the magnetic current distribution which is perpendicular
to the cable axis has the direct coupling to the infinitely long cable; even though

Js (xa,za,s) are intercoupled. Hence, the electric current distribution induced on
mx,z

the infinitely long cable can be obtained by the expressions (2.5b), (2.9) and (2.13a),

v v 1 | v | i l |
I (z,s) =~17- Jsm (xa, za;s) T (z, Xy za;s) dxa dza (2.14a)
X
Sa
where
i i 1 v z(z-2")
T (z, xa,za;s) = ot I (gsx ,za,s) e a’ dr (2.14b)
CC
Y
' N (z,s)
T (caxliziss) = 7 (2.14¢)
D (z,s)
v
N | d
N (z,s) = 2a (o+se) u (WZ) K](uwc) [K](ua) - K](Zudi] (2.14d)

The expression (2.14a) gives the electric current Y(z,s) on the infinitely long
cable in terms of the aperture magnetic current distribution Hsm (x;,z;;s) and reduces
X
to the iorm derived in [5] if the special narrow slot case is introduced for the aper-

ture. I(z,s) can be evaluated only after first determining the aperture magnetic cur-

rent distribution s (F;,s) for a given shaped aperture. The expression (2.14b) for
m



v i
T (z,xa ‘l’
mines the amount of electromagnetic coupling between the aperture and the infinitely

long cable placed behind it.

,z;;s) is well known as the transfer admittance function and clearly deter-

B. Coupled Integral Equations for the Magnetic
Current Distribution in the Aperture

In the following a set of coupled integro;differential equations are derived
by treating the magnetic current distribution jsm(?;,s) as an unknown distribution
to be determined, taking into account the complete coupling of the infinite cable,
for an external excitation incident on the aperture in the lower half space y<O.
This is accomplished by writing down the corresponding expressions [1] for the
total magnetic field H'+(?,s) and ﬁ"(?,s) in the half space regions y>0 and y<0
respectively, and enforcing the remaining aperture boundary condition [1] that the
transverse-to-y-direction components of the total magnetic field should be contin-
uous in the region containing the aperture perforated conducting screen, i.e.,

Yo7 v
Tim H, x 1 = TimH x 1
oy -0 (2.15)
y >0, y~>0_
(x,z) € Sa

n, v
The total magnetic field ﬁ+ (r,s) valid for the region y>0 and ﬁ_ (¥,s) for the region
y<0 are given by [1],

r,s)
Y > 2,-¥ > l
[%(v-Am+(r,S)) -y Am+(r,5ﬂ (2.16a)
> v
X ]Z AZ (?ss)
y>0
r—\; > __S__ 2& =
Ho (F.s) = S5 [W(V.A L (F,s)) - YA, (F,s) (2.16b)
v } -
+ ﬁ(sc)(;’s)
y<0

10



¥
where the electric vector potential Am (¥,s) is exactly given by the expression
+

(2.1a), since both half spaces have tae same media characteristics (u,e,o) and

in (2.16b) the term H(SC)(?,S) is the short-circuit magnetic field. On applying
the boundary condition (2.15) to the expressions (2.16a and b), we obtain the
following coupled set of integro-differential equations, valid in the aperture Sa’

2 ~ 2 n
2s )13 2 > ] >
S -yl A (¥,s) + A (r,s)
YZ{IBXZ J m. 9X3z mZ

1 i
- 3y z(r,s) = -2 Hy (r,s) (2.17a)
>
r e Sa
Y 2 ~ N
asffo? A A (F.5) + 52z AL (Fus) = - 2 Hy (F.9) (2.17b)
Y2 322 z X
¥ e Sa
Y] ")
' where the potentials Am (r,s) and Az(?,s) are given by (2.1a) and (2.7a).
XsZ

o, [AVIS
Hl (r,s) and H; (?,s) are the x and z components of the incident magnetic field

excitation on the aperture. If a plane wave is assumed to excite the aperture with
its direction of propagation making an angle by and 65 with the x and z axes respec-
tively, the incident magnetic field can be written as,

34 [;'mi- > -yf(x,z 8 ¢.)
H (x,z38) = 1XHXO(S) + ]szé] e i7" (2.18a)
f(x,z,ei,¢i) = x sin 6; cos ¢; + z cos 05 (2.18b)

+ y sin ei sin ¢i

‘ . 11



s s
where H;O(s) and H;_O(s) are the amplitude factors in the x and z directions and .

are determined by the plane wave polarization. Further substituting the potential
expressions defined in (2.1a) and (2.7a) the coupled equations (2.17a and b) take the
form,

2 v
9 2 N L S l 1, l |
3x2 -y ‘l]p Jsm (xa,za,s) K(x,xa,z,za,s) dx,»dz,
S X
a

n V]
il I L P
+~17. Jsm (xa,za,s) Gm (x,xa, z, za,s) dxadza
X

Sa
32 v 1o " 1 i 1 1
+ 525;_~l7szm (xa,za;s) K (x,xa,z,za;s) dxa,dza
z
Sa
Vi
= - 2nyZOHx(x,z;s)
(x,z) e S, (2.19a)
2 N n
3 2 o, I - Ly
5;2 -y ~l]ﬁ Js . (xa,za,s) K (x,xa,z,za,s) dxadza
S z
a
+ 82 3 (xI z"s) ¥ (x X!,z z"s) dx'dz!
X3z S a’~a’ KX, a’“’%a’ a ‘a
X A
sa
Vi
= - 2ﬂyZoHZ(x,z;s)
(xsz) e S (2.19b)
wheri
i I, - ~~YR
K (xsx_ 52,z 35) = @ . S (2.19¢)
S
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R = [(x-x;)2 + (z—z;)z]]/z (2.19d)

v
Gm(x,x;,z,z;;s) =
Ly (& kwe) K (ue) eC(Z_Z;) dz
_]_quz\wc gt et s
Jm n
c R (z,s) (2.19)
c

¥ = [(x-h)® + ¢/ (2.19f)

The coupled 1ntegro—diifere2tia1 equgtioni (2.19a and b) for the unknown mag-

netic current distribution Jsm (r,s) and Jsm {(r,s) are in a more convenient form
X z
for further analysis using numerical methods [4,11]. The second integral term in
(2.19a) has inherently built in the transform of the electric current on the in-
finitely long cable and thus completely accounts for the interaction between the
aperture and the infinitely long cable. With cable removed this particular integral
term with (2.19e) as kernel vanishes, resulting in the coupled integral equations
for the general shaped aperture [1]. The equations (2.19a,b) further reduce to a
simple form for the case of excitation of the infinitely long cable through a narrow
rectangular aperture [5]. Suppose the narrow slot, w<<®, is oriented along x axis
in the screen, Fig. 2.3, then the magnetic current Hs (x,s) is predominant; and
My

as far as a narrow slot and infinite cable is concerned, the integral equation
(2.19b) is ignored and the integral term involving the distribution JS is deleted

Mz

in the integral equation (2.19a). 1In fact the resulting one dimensional integral
equation is identical to the one obtained in [5]. If the narrow slot is oriented
along the z axis, then the axis of the cable is parallel to the slot axis and there
is negligible coupling between the narrow slot and the infinitely long cable [1].

13
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C. Extension to Multiple Cables

In Section A an expression for the total electric current on the infinitely
long cable placed behind an aperture perforated conducting screen is obtained in
terms of the magnetic current distribution in the aperture, and further in Section
B, a set of coupled integro-differential equations is obtained for the magnetic
current distribution in the aperture with full account of the interaction between
the infinitely long cable and the aperture. Further extensions of the problem when
multiple cables are present behind the aperture perforated conducting screen are
now considered. In Fig. 2.4 is shown the configuration discussed in this section.
A set of thin infinitely long N parallel cables of radius a, are placed in the
region y > 0, and are located at x = hn’ y = dn’ n=1, 2 ....Nwith the distance
between any two cables at least a few radii apart. Without loss of generality,
it is assumed that the axes of the parallel infinitely long thin cables are oriented
along the z axis. The total z component of the secondary magnetic vector potential
is obtained by the superposition of the individual cable contributions.

gy N LN
ALY (x,y,z 5s) P ?%jl!T Fn (005) k(¥ ) - K, (v )] e g (2.20a)
n:
g
where
Wn] = [(x—hn)2 + (y-dn)ZJ]/2 (2.20b)
T e (2.20¢)

En (z,s) are the spectra1-distributions proportional to the respective induced
electric currents on the corresponding cables [10]. According to the expressions
(2.5b) and (2.8)

- 2ma "\
(z,s) = — - u [K(ua)) - Ky (2ud )T F o (c,s) (2.21)

Y]
An

15
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Figure 2.4
Infinitely Long Parallel Cables Behind an Aperture
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The corresponding total secondary electric field due to the currents on the various
cables is obtained with the substitution of the expression (2.20a) into (2.10).
Hence using the definition (2.5b), the transform of the secondary electric field is

o (t) N2 ~
Ey  (oyezss) =3 - S5 [k (uy, ) - Ky(uy, )1 E (z,s) (2.22)
n=1 v 1 2
Y]
The spectral distrubtions in (z,s), n=1,2, ...N are determined by enforcing the

impedance boundary condition on each of the cables

" (t) " .
EP),s) + £ (2,9 o Tun() g (28) (2.23)
m
form=1,2 ..... N

Y]
where Z¢ m(s) is again the impedance of the mth infinitely Tong cable per unit

length. On substituting (2.6b), (2.21) and (2.22) into the impedance boundary
condition, the following matrix equation is obtained for the spectral distribution

En (z,s),

5] - i e

where

N
émn =y [Ko(uan) - KO(2udn)]

N,
_ 71 (s)
+ 2may (K (ua ) - K (2ud )] —%éﬂ (2.24b)
m=n
=y [KO(qun]) - K, (ZUWmnz)] (2.24c)
m#n

17



: - NRY _q 24 1/2
Wmn1 [(h,-h, )" + (d -d )7] (2.24d)
- Y 1/2
Wmnz = [(h,-h )" + (d _+d )] (2.24e)
vV = ¥ 1 J | (r!,s) [gm~ K, (u¥ ) e-CZé] dx! dz! (2.241)
m s T S a’ Wm 1 m. a “a
g X c
a
- 1,2 241/2
wmc = [(h -x )" +d “] (2.249)
V]
Hence the spectral functions En (zys), n =1, 2 ....N are obtained as the solution
of,
N n -] n
’En = '\SJmn ) '\\l,m (2.25)

- J

The electric current induced on the infinitely long loaded cables is given by
substituting (2.21) and (2.25) into the expression (2.5b),

% " o v Pl b
In(z,s) =~l}~ Jsm (Xa’ z s s) Tn (z,xa,za;s) dxa dza (2.26a)
a X
where
v N D v I c(z—zl)
Tn (z,xa,za,s) =73 ln (c,xa,za;s) e a’ dg _(2.26b)
CC
v
[in (;,x;,z;m]:
-1 dm
Zanu (o+se) [K](uan) -.K] (2udn)] {fsmn] .[WE— K] (uwmc)j} (2.26¢)
c

18



n
Again ln is the transfer admittance function which gives the amount of

coupling between the aperture and the nth infinitely long cable. The induced currents
can be evaluated only if the aperture distribution is known. One can use the integro-
differential equations (2.17a and b) derived in Sgstion B for determining the aperture
distribution with the expression (2.20a) used for Az (¥,s).
D. Alternate Form of Integral Equation

for the Aperture Distribution

The coupled set of integro-differential equations (2.19a and b) derived in
Section B are in a proper form (1) convenient for numerical applications [4,11] to
determine the aperture magnetic current distribution. These integral equations are
formulated based on the aperture boundary condition (2.15) that the transverse-to-y-
direction components of the magnetic field should be continuous in the aperture
region. In this section an alternative integral equation is obtained by enforcing
the obvious aperture boundary condition that the normal component of the total elec-
tric field in the aperture should be continuous in the region containing the aperture
perforated conducting screen,

¢ £
11 1 = -1 2.27
im E, y _ y ( )

y~0

y=0, _

y N
The total electric field E+ (¥,s) valid in the region y>0 and f_ (¥,s) for the
region y<0 are given by [1],

(2.28a)

y>0

19



>

_(F,s) = TOTS—JV x A (r‘ s) + ESC (¥,s) (2.28b)

y<0

Y
where ESC(?,S) is the short circuit electric field. On substituting the expressions
(2.28 a and b) into the aperture boundary condition (2.27), the following integral
equation is obtained,

n, VY]
S 2s 3 > 3 >
Y_Z B.YBZ (r S)] (o+se) A (r‘,s) WAmz(r’s)]

>

r,s) (2.29)

i

vy
2
Ey

Sy
m
w

n Y
where the potentials Am (¥,s) and AZ(?,S) are given by the expressions (2.la) and
X,Z

£,
(2.7a) respectively, and E1(?,s) is the y component of the incident electric field.
On substituting (2.1a) and (2.7a) into the expression (2.29), we have .

) " b v i 1 I,
—_ . / .
+ azdl]ﬂJsm (xa,za,s) K \x,xa,z,za,s) dxadza
X
v n
3 (I l I, It
- SE;Z]ﬂdsm (xa,za,s) K (x,xa,z,za,s) dxadza
X

Y
= 27 Ey (x,235s)

(x,z) € S (2.30a)

20



where

Y] V]
i boey = _ 1 1 I,
Gn(x,xa,z,za,s) = Y2 Gm (x,xa,z,za,s) (2.30b)
N N
The two components JS and JS are to be solved from the integral equation
m m
X z

(2.30a). Since there are two éomponents, the solution is obtained in conjunction
with the integral equations, either (2.19a) or (2.19b).



ITI. NUMERICAL RESULTS AND APERTURE CHARACTERIZATION
IN THE PRESENCE OF INFINITE CABLE

In the previous section, the interaction with an infinitely long cable placed
behind an aperture perforated conducting screen is discussed. A set of coupled
integral equations are obtained for determining the tangential electric field
distribution in the aperture in the presence of the infinitely long cable. For
a given specific aperture shape, the numerical solution of the integral equations
(2.19a and b) even though elaborate, is straight forward [12-14]. The Green's
function (2.19e) should be carefully evaluated [15] noting the proper branches of
u as discussed in Appendix A. As an example, for a narrow slot in a conducting
screen Fig. 2.3, the integral equations (2.19a and b) simplifiy to one dimensional
form [5]. The distribution JS {x,z) for a narrow slot can be written as

J. (x,z) = m(x) &(z) (3.1a)

2 24-1/2
me g2 Ve (3.1b)
The magnetic current distribution %(x) along the center Tine of the narrow slot

"
is plotted in Fig. 2.5 for a few locations of the perfectly conducting (ZQ(S) = 0)
infinitely long cable of radius a = 0.005m. Both half spaces are assumed to have
free space characteristics with 1ng1dent plane wave exciting the narrow slot nor-

AVE v
mally ei=90°, ¢i=900’ and H;0=1, H;O=O. Since it is a resonant slot, there is not

marked asymmetry in the distribution, but the interaction of the infinitely long
cable alters the magnitude of the field distribution; the closer is the location of
the cable, then the stronger the interaction with the narrow slot.

The current induced on the infinitely Tong cable Y(z) can now be evaluated
using the expression (2.14) and the appropriate magnetic current distribution obtained
in Fig. 2.5. The results of the induced current distribution are shown in Fig. 2.6.
Away from the axis |z| = 0, the current on the infinitely long cable does exhibit
a small damping behavior and oscillates approximately at the wave length of the
incident plane wave field. For large valuesof |z|, the current on the wire has a
TEM distribution (which is discussed in the next sections) and all the higher order .

TM modes in the localized infinitely-long-cable narrow-slot region are evanescent

in nature.
22
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Once the integral equations (2.19a and b) are solved for the aperture mag-
netic current distribution, the fields scattered from the aperture into the two
half spaces can be calculated using the expressions (2.16a and b) and (2.28a and b).
For electrically small apertures [13,16] the fields scattered can be obtained in

terms of the imaged aperture magnetic m, and electric Pa dipole moments [1,6]
n a im im

> >
(with H5C and E3C short circuit fields in the y<0 illuminated side),

3 1 T (!
= — J d .2
maim s sm(ra) x4z, (3.2a)
Sa
n
:: r}‘»S(_‘ =1
- am' H (ra) (3.2b)
3 (otse) 3 e >1 L |
ﬁa. = St [js (ra) X ra] dxadza (3.3a)
im m
S
a
Y
- {otse) = Esc i
S Qg E (ra) (3.3b)
and
v o= T x! + T z! (3.3c)
a X “a zZ "a :
n

where Gy and &m are the imaged electric and the magnetic polarizabilities. The
characterization of apertures in terms of the aperture dipole moments introduces
errors [1] in the localized near field region and holds good only for large
distances away from the aperture.

In a conventional method of moment technique [5,11] for a given shape of
aperture, the coupled integral equations (2.19a and b) are solved by dividing the
aperture surface into a number of small rectangular patches (Ax;, Az;) and expanding
the two unknown aperture magnetic current distributions in terms of suitable piece-
wise functions,
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N
~ X ™(n)

Jsmx(xé’ 2.3s) =ng]; Jsmx (s) P (ix;-x;nl) Q, (lz;—z;n[) (3.4a)
Ny
g 0g238) = 3 (s) v, (Ixgrg D) @y (2572, 1) (3.4b)
z =1 z

where Pn’ P2 and Qn’ QR are piecewise functions defined within patches (Axé, Az;)
n
;)

and (Axl Az)). .

n
0 0 and Jéz) are the numerical amplitude factors at the center

My m,
of patches which are determined in the solution of the integral equations. Once
the field distributions are known in the aperture, the fields radiated can be cal-
culated using (2.16 and (2.28). Also for small apertures, the aperture dipole

moments can be calculated using the expressions (3.2) and (3.3).
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IV. EQUIVALENT CIRCUIT FOR THE APERTURE
INFINITELY-LONG-CABLE COUPLED REGION

This section is mainly devoted to representing the coupled region of the
arbitrary shaped aperture and the infinitely long cable in terms of simple Tumped
circuit elements, and the excitation of the aperture in terms of simple equivalent
sources. If the aperture is removed by short circuiting it in the conducting
ground plane, we are left with a simple transmission line consisting of the infin-
itely long cable and the infinitely long ground plane. Hence the presence of the
aperture acts 1ike a transition and in the localized coupled region perturbs the
otherwise TEM mode by exciting the higher order TM modes. The higher order TM
modes are evanescent in nature. For large values of |z| away from the aperture,
there exists only the TEM mode between the infinitely long cable and the conducting
ground plane.

A detailed follow-up procedure to arrive at the equivalent circuits from the
field theory as applied to wave guide transitions is discussed in [17]. Based on
this technique the braided-shield coaxial cable [3] was analyzed and the appropriate
equivalent circuit for the coaxial line was obtained. As such the same technique
can be extended to arrive at the equivalent circuit for the transmission 1line over
a ground plane in the presence of an aperture, or one can use the procedure of [7]
where in an infinitely Tong cable passing by a small circular hole is discussed.

But, as far as the lossless coupled region of the arbitrarily shaped aperture
and the infinitely long cable is concerned, we arrive at the appropriate equivalent
circuit from a straightforward and simple evaluation of the expression (2.14) derived
in Section II for the current induced on the infinitely long cable. Relevant
equivalent-circuit element values and sources are obtained for the case of a rectang-
ular aperture and further specialized to the case of a narrow slot in the conducting
ground plane. For the case of an infinitely long cable located close to the ground
plane, appropriate correction terms affecting the distribution are also obtained
which do not appear in the derivation of [7] due to nature of approximations intro-
duced.
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Referring to the expression (2.14) the current on the infinitely long cable

is given by

} ( _ v by . Pt bt
Z,S) = JS (xa,s) T (z,xa,za,s) dxadza (4.1a)
m
S X
a

where the transfer admittance function is
Y]

I o_i. 1
T (Z:Xaazaas) - 2,”']‘[

z

(z,s)
£:® eC(Z'Z;) dr (4.1b)

(z,s)

e ocie =<2

In the above integral CC is the Bromwich contour in the complex z-plane, Fig. A-1b.
For (z—z;) > 0, the contour CC is closed in the left half of z-plane and applying
the residue theorem, the complex admittance function simplifies [9] to,

n
A N (z .s) ¢ (z-z)) "
_ n a Pl (4.2a)
T (z,x!,zl5s) —E AL + T, (z,x,,2.3S)
R (L) e T anE
N

in which ¢, are the poles of the admittance function integrand and are also zeros

of the modal equation

Rz .s) =20 (4.2b)

and in the expression (4.2a),

R 2 0! . (4.2¢)
n

v
and the term TbC is the branch cut contribution (continuous spectrum of higher

order evanescent modes) associated with the branch point z=-y shown in the Fig. A-1b.

For the case of perfectly conducting, infinitely Tong cable, the impedance
V]
loading function ZL(S) is zero, and the TEM part of the solution which exists for
large values of [z| is obtained by evaluating the integral expression (4.1b) at the

branch point z=-y. Hence, for (z-z;) > 0, around the branch point z=-y we have
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; (z,x!,z}3s) = Ce d e‘Y|Z-Z;| (4.3a)
> a) a, 2d
ZZozn(?

IZl—) oo

Ce= (1 - 59) (4.3b)

where the term C
for the closer location of the infinitely long cable relative to the ground plane.
The correction factor Ce can be taken equal to unity if the vertical distance d of
the cable is large compared to the radius of the cable. Hence, the TEM excited
current on the infinitely long cable js obtained by substituting (4.3a) into the
expression (4.71a)

Y]
" J ] I 1 1
I (z,s) = > ‘l]ﬂ —y[z—za[ JS (xa,za,s) dxadza (4.4a)
va m
X
and
Z
Z, = 5o gn -Zaﬂ) (4.4b)

is the characteristic impedance of the infinitely long lossless cable transmission

line over the ground plane.
)

Similarly, the TEM voltage V(z,s) across the infinitely long cable and the
ground plane can be calculated [3,17] using E(W)(?,s) in the expression (2.28a) or
the well known TEM relationship between the voltage and the current [6,18]

n

V(z,s) = Zé?(z,s) (4.5a)

and thus we have the voltage expression

} V)
_ -Y|z—z | o 1
(z,s) [[ a Jsm (xa,za,s) dxadza (4.5b)
X
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a¥}
N It is interesting to note that, to arrive at the solutions of V(z,s) and

I(z,s) for the infinitely long cable, no approximations have been made (except for
thin wire model wherein uniform current gensity js assumed around the cable). For
a given aperture shape the distribution Js (x;,z;,s) is to be determined as a sol-
My

ution to the coupled integral equations (2.19a and b).
A. Quasi-Static Circuit Representation

(Lossless Coupled Region)

In the quasi-static approximation |yA|<<1, where A is the largest dimension
of the aperture, the exponential term in (4.4a) and (4.5b) can be written as

I
e_Y(Z_Za) = e Y2 (1 + Yz;) (4.6a)

and if
A << [wg = (h2 + dz)] (4.6b)

then the expressions (4.4a) and (4.5b) for the TEM line current and voltage can be
written in terms of the imaged magnetic and the electric dipole moments,

N -YZ \ 2s7 0~
[(2,5) = & [ n0)) - 2 o)) (D (4.72)
2 nzg Mgy’ TRz Pl N2
Y -yz oy 2s7 m(x) d
Viz,s) = & [_s_u_ 2x)y _ o (pg )] (%) e (4.7b)
> 2 i a. b im Y
im 0
where referring to the dipole-moment definitions (3.2) and (3.3),
%(X) = —lll]p 3 (x' z'ss) dx'dz! (4.7¢)
a. su S a’~a’ a “a ’
im m
S X
a
m(x) £ P I 1,1
paim =5 [-za Jsm (xa,za;s)] dxadza (4.7d)
X
S
a
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which are assumed to exist at the "geometric center" of the aperture. Since the
lossless coupled region formed by the infinitely long wire and the aperture is
lTinear [18], referring to the Appendix B for appropriate Green functions, the TEM

current and voltage solutions (4.7a and b) satisfy the linear transmission line
equations with sources,

—!éi’s) = —sL'?(z,s) + E](S) §(z) (4.82)
d12,5) - _c(z,s) + By(s) 6(2) (4.80)

where L' and ¢! are the inductance and capacitance per unit length (Appendix C)

gf the sing]e wire transmission line over the conducting ground plane. The terms
B](s) and Bz(s) are the coupled region coefficients from which the equivalent
sources and the transmission line-aperture parameters can be determined,

I sy, (x)y ,d
By(s) =3 (m') (%) Cp (4.9a)
im ¥
0
" 2sZ  ~
d
B,(s) = - —2 (p{X)) (L) ¢ (4.9b)
2 wZC s Wg f
¥ (x) ~(x)
In the above expressions, the imaged dipole moments m and Pa account for the
im im

short circuit fields due to the external excitation as well as the fields radiated
by the infinitely long wire. - For very small apertures, the dipole moments can be
written in terms of aperture polarizabilities. We again note that the imaged dipole
moments %a. defined in (4.7¢) and %g%) defined in (4.7d) are in fact obtained solely

im m
(s)
>m

X
electric dipole moment defined in the expression (3.3a) is actually obtained both
from the x and z components of the magnetic current distribution.

[y

by the magnetic current distribution A word of caution is to note that the
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The imaged dipole moments can now be written (for small apertures) in terms
of aperture polarizabilities,

V(x) L V(xx) [ysc ()
n*) = ol [HX (0,) + H' (o+)] (4.10a)
im
v (x) %(X)[”sc T(w)
p = -gq ECV(0,) + E }
a;- e y U+ y (0+) (4.70b)
Tx) o ()
The maX and pax are in fact referred to the y>0 shadow region in the above expres-
im im
sions. aéxx) is the x component of the imaged magnetic polarizability and aéx) is
n
the imaged partial electric polarizability in the y- direction. Further, K€ (o+)

and ESC(0+) are the short circuit magnetic and electric field components. Similarly

v Y]

Hiw)(0+) and E§w)(0+) are the scattered magnetic and electric field components set up
due to the induced currents on the infinitely Tong wire. Since we are interested
with TEM circuit characterization, referring to Appendix C,

v N N Z N
E)(,w)(O,L) =V, (2) e (x,y) = [zf][ﬂ—i—g] V(z) (4.11a)
0
and
1" (0,) = 1 (2) h(x.y) = - [;f%]'1<z> (4.11b)

Hence substituting the expressions (4.10) and (4.11) into the coefficients (4.9),
the 1inear transmission line equations take the form,

V]

Mé_ésl = -sl' {\Il(z,s) - SLa r})(Z,S) §(z)
, Veq(s) 5(2) (4.12a)
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"]

di(z,s) . -sC"\\Il(z s) + sC V(z s) 6(z)
dz i a ?
n,
+ qu (s) &(z) (4.12b)
where
Ly = v [—d?]2 3#]"") Ce (4.12¢)
'lT‘:l’o
C. = 2 [2—0- d 4250 ¢ (4.12d)
a ZC ﬂWZ e f
0
v 5 d w(xx)msc
Veq(s) = 5 —5 Loy "H,7(0,)] C¢ (4.12e)
\FO
" 2se’ v
- o d pv(x)gsc
. eq(s) il [6g Ey (0,)7 ¢ (4.12F)
0

The above equations give the complete TEM circuit representation, Fig. 4.1, of the
coupled region formed by the electrically small aperture and the infinitély long
wire for the TEM mode on the wire transmission l1ine. The e]emgnt values La and Ca
account for interaction between the TEM transmission line aqg the aperture. Further

the equivalent voltage source Veq(s) and the current source I_ (s) corresponds to the

eq
excitation of the aperture in the y<0 region.
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Figure 4.1

Equivalent Circuit for the Infinitely Long
Wire-Aperture Coupled Region, T-Form
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V. REMARKS

A systematic treatment of the excitation of an infinitely long loaded cable
behind an arbitrarily shaped aperture is obtained in this note. Extension of the
analysis to multiple parallel cables is also considered. In the quasi-static limit,
an equivalent circuit'consisting of lumped elements and sources is obtained for the
coupled regions.
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APPENDIX A

Branch of Parameter "u" in g-Plane

Consider the following integral (expression (2.7a)) for two dimensional
field representation in z-plane

v 1 ~ zz
F(z,s) = Eﬁﬁ-c Flzas) K (u¥) e”" dg (A-1)
C
where
u = [Yz _ C2]1/2 f (A-2)

and CC is the Bromwich contour, Fig. 2.2. The radial wave number u is a double
valued function and hence its branch should be properly defined in the complex
g-plane in order that the integral (5-1) uniquely represents the function

F(z,s). Assuming the spectral term E(g,s) can be an artibrary distribution, we have

Tz -uy¥ cz
Ko(ullf) e voe e (A-3) .

For z>0, the contour CC is closed in the LHS of the z-plane and for radiation
condition to hold,

Re [ul>0 (A-5)

Im [u]>0 (A-6)
To uniquely define the double valued function u, the complex z-plane is viewed as
two Riemann sheets in which the top or proper sheet has the value of Re u>0 and
in the bottom or improper sheet has the value of Re u<O. The branch points are
located at ¢ = £ v as shown in Fig. A-1. Further

2 .
u2 = (Y] ‘_Yg) - (C? - Cg) + 2] (Y]YZ _ C]Cz) (A-7)

- IUIZ ej¢ (A-8)

The plots of Re[uz] and Im[u2] separating the various regions in the z-plane are
shown in Fig. A-la. The horizontally shaded region corresponds to Re[u2]<0 and the
vertically shaded region corresponds to Im[u2]<0, and in the remaining region of the
z-plane Re[u2]>0, Im[u2]>0. For Re u>0 on the top proper Riemann sheet, the angle
6| <m which dictates the choice of the branch to be ¢=m or Im[u2]=0 and Re[u2]<0.
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Plot of u2 in Complex z-plane
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Figure A-1b

Branch Cuts of u:(y2~c2)1/2 in Complex

y Plane; y=Y;*JYp» =z*3%s
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. In Fig. A-1b is shown the appropriate branch cuts for the function u in the
complex z-plane.
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APPENDIX B

Green Functions for Transmission Line
with Sources

A detailed analysis of a TEM transmission line with sources based on a
Green's function approach can be found in [18] with linearity and superposition
assumed. With general current and voltage sources, one has to solve the first
order linear differential equations,

N\
a¥ n
dVéz) = _71(z2) + v(S)(z) (B-1)
z
v R u
aiz) - _yy(z) + 1080 () (5-2)
where
7' = R' + sL' impedance of transmission 1ine
per unit Tength
v' =g+ sc! admittance of transmission line
", per unit length
V(s)(z) voltage source distribution
Y
I(s)(z) current source distribution
av] v

V(z) and I(z) are the TEM voltage and current responses. The general problem can
be split into two by invoking superposition and Tinearity. The voltage and current

can be written as

v(z) = ¥V (z) + vl () (B-3)
1(2) - 12y + 100 () (8-4)

z)
where V(V) and I(V)
solutions of, Fig. B-2,

are solutions with voltage sources acting alone and are
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Figure B-1

Matched Transmission Line With Current Source
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(v)
Vog

z=0 y 4 L

Figure B-2

Matched Transmission Line with Voltage Source
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v

v (z) L 10,y 4 V) )

dz (B-5)
91£22151-= v () (B-6)

VI LA VP
Similarly V(1) and 1(1) are solutions with current sources acting alone and are
solutions of, Fig. B-1

V(i) Ir
dv & Z) = _Z|I(1)(Z)_ (B'7)
QJE;;iEl.= vy 4 108) () (-8)

The two sets of equations (B-5), (B-6) and (B-7), (B-8) form simple linear dif-
ferential equations and the solutions can be obtained by a straightforward method
once the appropriate boundary conditions are specified.

The specific transmission Tine problems with current and voltage sources
treated separately are shown in Figs. B-1 and B-2. To obtain appropriate Green's
functions point or delta function sources are assumed and the Green's functions
are given in the following.

Referring to the Fig. B-1, wherein a transmission Tine of length L is shown
with both ends matched, and a unit delta function current source located at z=z',
the equations (B-7) and (B-8) yield the Green functions,

V}(é)'(z) - ZTC eY(z-2") (B-9)
W) = o evizzh) (B-10)
I%é)(z) - . %_eY(z—Z' (8-11)
10 = Lev(z2") (8-12)
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with
L'\,(s) | 1 1
f 1) 21y §(z-2") dz' =1 (B-13)
(0]

Similarly, referring to the Fig. B-2, with a unit delta function voltage source
located at z=z', the equations (B-5) and (B-6) yield the Green functions,

W) = - perlzz) (8-14)
Cég)(z) ] %_E'Y(Z-Z‘) (B-15)
}gé)(z) = é%__ev(z—z') (B-16)
o]
~(v) _ 1 y(z-z) (B-17)
15:7(2) = 55—
26 \Z 27, €
with
L’\J
_f V(s)(zl) 5(2-2') dz' =1 (B-18)
0

In fact the above Green functions are applicable even for an infinitely long
transmission line with appropriate sources. For any other source distribution
along the transmission line, the soiution is obtained by constructing the super-
position integral since the transmission line is Tinear [18]; with general current

source distribution,

1) =u/.¥(s)(z') W) (2.2') e (B-19)

HOM =f?(5)(z') 11 (2,21 a2 (B-20)
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P

. and for general voltage source distribution,
vO)(z) .=fr\7(s)'(2') v (z,2") a2 (B-21)
10 () =f“\u!(s)(2') i(;")(z,z') dz' (B-22)

The above results are utilized in Section IV for deriving the equivalent
circuit of aperture-infinitely Tong wire coupled region. The above solutions
can also be written in the combined voltage and current form discussed in [19].
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APPENDIX C

Normalization Considerations From Field
to Circuit Quantities

A systematic reduction of the field equations to the corresponding circuit
equations is rigorously discussed in [17]. As applied to TEM representative
quantities, the transverse field vectors are written as

Eto(?) = v (2) & (x.y) | (C-1)
ﬁto(?) = 1,(2) hy(x.y) (C-2)

n ~ v
xhere Vo(z) and Io(z) are the modal veltage and current quantities; Zb(x,y) and

->
ho(x,y) are the TEM distributions in the transverse plane and are chosen in such a
way as to satisfy the power orthognality condition

ﬂ‘(go x h) - TZ dz = 1 ) @

Also we have

Too-

h0 = 12 x e, (C-4) ..
The Equation (C-3) helps us to choose proper normalization cons%ants in reducing
ihe field equations to the circuit form. The terminal voltage V(z) and current

I(z) in a TEM line satisfy the relationship

V]

%—Z)-= ZC (Tine characteristic impedance) (C-5)
i(z)

= NZ0 (C-6)

= Z0 (medium characteristic impedance) Cc-7)
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where N is the normalization constant. Also the condition (C-3) gives the power
flow expression
-I v -l VIV

P = E-Re (VI*) = E-Re (VOIO*) (C-8)

which yields the basic relationships between 1ine and modal voltage and current
quantities,

Uy(2) - W2 (c-9)
/N
}0(2) = t(z)/Tr (C-10)

For the case of an infinitely long wire over a ground plane, we refer to
Fig. 2.1 with the aperture short circuited,

X - VO(Z) " > " -

Eto(r) = " (eXo ]x + ey0 ]y) (C-11)
® N = o tn (2 (c-12)

€xo ~ 2(§—h) d (C-13)

Xy

Z _ -d [(x—h)z_; y2 + d2:| (C-14)

Yo dxy

dyy = [x=m)® + (y=d)?] [x-m)% + (y+d)°] (c-15)

Hence for the infinitely long transmission T1ine over a ground plane, we have

nggl-= sl 1(z) (c-16)
dI((é) ) _sle\\;(Z) (c-17)
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with the circuit constants

(C-18)

(C-19)
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