Interaction Notes
Note 395

15 July 1980

" QUASISTATIC INTERACTION BETWEEN A MAGNETIC DIPOLE AND
A RESISTIVELY CAPPED CONDUCTING SPHERICAL SHELL,
I1: TRANSVERSE MAGNETIC DIPOLE™

K. . Casey
The Dikewood Corporation
1613 University Boulevard. N.E.
. —-Albuquerque, New Mexico 87102

Abstract

12 The magnetic field inside a conducting spherical shell with
@ﬁemstlvely loaded circular aperture is found when the structure
Melexcited by an external magnetic dipole located above the aper-
V on the axis of symmetry. The dipole moment is oriented
.enmndlcular to the symmetry ax1s and a non-zero contact resis-

Extensive numerical results are presenfed and dimplications
hese results as they pertain to the measurement of the prop-
,r,es of the resistive ]oadlng are dlscussod Comparlsons are

e research reported in this Note was performed under Subcontract
{0, SC-0082-79-0005 with Mission Research Corporation, under Con-
ram;No. F29601-78- C 0082 with the Air Force Weapons Laboratory.

LL.E.AHED FOR PUsLIC RELEASE
AFCUD/PA  al-3




I. INTRODUCTION

In Part I [1] we considered the quasistatic magnetic field
interaction between a magnetic dipole antenna and a conducting
spherical shell with resistively loaded circular aperture. The
dipole was located above the aperture on the symmetry axis and was
oriented éarallel to this axis. In this note a’similar problem is
considered, with the change that the magnetic dipole is oriented
perpendicular to thevsymmetry axis of the structure.

With the chénge in orientation of the source dipole, the
penetration of thevunloaded aperture is greatly'ihcreased 21;
furthermore, the surface current density on the spherical shell
now tends to flow across the junction between the aperture loading
and the spherical shell, making contact resistance effects impor-
tant. It is our objective to investigate the relation between the
fields at (or near) the center of the spherical shell with and
without the loading and to determine how this relation is affected
by the geometrical and electrical parameters of the problem.

In the next section the transverse-dipole problem is formu-
lated in terms of dual series equations using the maghetic scalar
potential. These dual series equations are reduced in Section III
to an inhomogeneous Fredholm integral equation of the second kind.
Exact and variational solutions are obtained in Section IV and
numerical results are discussed in Section V. Section VI concludes
tne note with comments regarding the use of this configuration for

measuring the properties of the aperture loading material.




. IT.  FORMULATION
The geometry of the problem, which is showﬁ in Figure 1, is
identical to that considered in [1}, exeept that the dipole moment
is oriented parallel to the x—axisr As in Parf I, a perfectly
conducting spherical shell of radius g'peseessipg a resistively
loaded circular aperture is excited by an external magnetic dipole
located above the aperture on the axis of symmetry. The object of
~the analysis is to determine the quasistatic magnetic field inside
the spherical shell. -
The magnetierfieldris given in terms of a magnetic scalar

potential,Vm by

H = -VV
m
: BV,
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where for r # a and (r,8) # (ro,ﬂ), Vm satisfies Laplace's equation
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V2V =0 (2.2)

The scalar potential Vm is conveniently written in terms of a

. . . . . . i
"primary" contrlbutlonrva and an "induced" contribution Vm as

v o= v o+ vt (2.3)
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Figure 1. Geometry of the problem



in which Vg is the.potential due to the source dipole, whose
magnetic dipole moment is mOEX, and V; is due to the presence of

the spherical shell:
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in which Pi denotes the associated Legendre function of degree n
and order 1, and the coefficients a, are to be determined. It
wi%l be noted that these‘representations for Vm are such that
%;? is continuqu§ aﬁ T = a.

Over the perfectly coﬁducfing ﬁéftion of the shell, the nor-
mal component of thé‘magnetic‘field must vanish. Using egs. (2.1),

(2.3) and (2.4), we obtain the relation

le~18

cnPi(cose) f 0 (0 < 6 < a) (2.5)

n=1

where

n n
ey Tag v (-1) n(gh) (2.6)
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On the resistive cap, the normal component of the magnetic field

must be cdntinuous, and [3,4]
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where Vm and V; denote the scalar magnetic potentials at r = a+
and r = a- respectively and RS is the sheet resistance of the cap.

On a spherical surface of radius a,

1 3%F
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(2.8)

Substituting from egs. (2.3) and (2.4) into (2.7) and using (2.8),

we obtain the relation

[ Lo & (sins &) - ~L——] nz 2l 2 pl(cost)

sin® qe sin26 =1 n{n+1)
sua
= R “*'Z cnPn(cosﬁ) (oo < 8 < 7) (2.9)
s n=1
Solving this differential equation yields .
oo -S| a c 1 -
y _2n+l a'Pl(cose) = S ) — B PT(coss)
net n(n+l) “n n RS ne1 n(n+tl) "n
+ A tan %4+ B cot % (o < 6 < 7) ’ (2.10)

* .
in which A and B are constants to be determined. Upon rearranging

eq. (2.10) and setting A = 0 to remove the singularity at ¢ = 7w, we

find that
* e : .
can % and cot %»are the solutions to the homogeneous equation
1 d . af £
——— Sz(s8ing ==%) - = 0
sing dse .de sin29
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The constant B is.determined from the boundary condition at
8 = g of the partial diffe?ential equation (2.7). Specifically,
it is not difficult to show that if there exists a net contact
resistance Rc,between,the aperture loading and the rim,vthen*

82' ' 3 > < o
(Z'ITRC —'—2— + RS sinb ﬁ)(vm - Vm) = 0 (r = a, g = OE.+) (212)
o¢ =

Equation (2.12) yields the condition

Suoa _i o d
B == Zs'i<2ﬁRC " RS)  tan 5 v (ZHRC - Rg sind E§)
E “n 1
. —— P (cosf) (2.13)
21 n(n+l) "n f=q

Equation (2.13) is an implicit relation from which B can be deter-
mined, since the‘coefficients Cy will clearly depend on B.
It will be useful in What follows to rewrite eq. (2.5) as an

equivalent‘serio~differentia1 equation

|
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and obtain
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* . - - -
See the Appendix for the derivation.



Setting D = 0 to remove the singularity at 6 = 0, we have

c

Zi Ezﬁgij-Pi(cose) =Ctan 2 (0 <8 <a) (2.16)
n= :

2

The constant C is evaluated by noting that eg. (2.5) must be

satisfied. Since as n + «, 0 < § < 7,

(=

2n
Tsiné

K
Z] (2.17)

Pg(cose) nvo( )§ cos[{(n + %)6 +

it is necessary that the coefficients c, decrease as n_1 for large

n. This condition implies that the function

C
n

Fi(8) = Zl wta+1y Palcos®) , (2.18)

n

is continuous and has.a continuous first derivative at 6 = o. Thus,
using egs. (2.13) and (2.18), we obtain a relation between the con-

stants B and C, viz.,

B =2C

suoa 27TRc - R
( (2.19)
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Equations (2.11) and (2.16) constitute a set of dual series
equations for the coefficients c,- Specifically, defining

.C'

dn N n(nzl) ' . - A (2.20)
and
Gey = T (1)t i%g;%l(gi)npi(cose) (2.21)
n=1 o
we have
?1 ani(cose)'f C tan g, (0 £ 8 < ) (2.22a)
n= - -
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where C remains to be determined. The solution of these dual

series equations is taken up in the next two sections of this

note. fn Section III, egs. (2.22) are reduced to a single inhomo-
éenedus Fredholm equation-of the second kind; and in Section IV,

' this Fredholm eqﬁatidn is used to obtain both exact (numerical)

and approximate solutions for the coefficients d,-



ITI. REDUCTION OF DUAL SERIES EQUATIONS TO AN INTEGRAL EQUATION
We begin by defining two functions Fl(e) and Fz(e) over the

interval 0 < 6 < 7 as

[es]

Zl dnpi(cose) . (3.1a)
n:

1]

F.08)

oo

1
0~

Fo(0) = (2n+1)ani(cos8) (3.1b)

n=1

Then the dual series equations (2.22) are written

F,(8) = C tan % (0 <8 < a) (3.22)
Sy _a V Su _a 2WR - R
o _ 0 c S 2 a g
~5 Fl(e) + Fz(e) = G(8) + C T 5TE T & tan 5 cot 5
S : s c S
(¢ < 8 < 1) (3.2b)
The coefficients dn are expressed in terms of functions
hi(u) and hz(u) as [5]
dp = dyq * dg (3.3)
where
o ‘
d - =/T I(n) h,(u) cosS 2 p(1/2,3/2) (cos u) du (3.42)
nl 1 18 2 "n-1 :
T (n+-2—)
m
d, = I 1y 0y 0B B p(1/2,8/2) (Lociyau (3.4p)
n2 1 2 2 "n-1
F(l’ﬁ'é‘) o

in which Pé?iﬁ) denotes a Jacobi polynomial and the functions
hl(u) and hz(u) are to be determined. Since dn must decrease as
n_3 for large n, hl(u) and hz(u) must be continuous, and in

particular

10




hl(u) = hz(u) (3.

Substituting eqs. (3.3) and (3.4) into egs. (3.1), we can

*
readily show that

6
Fl(e) = L cot % J h(u)du o (3
V2 o Ycosu ~ cosb '
h t2 u . d
_ 1 o9 q (7 (u)co 5 sinudu
Fz(e) = - — SecC -2“&—5 - (3.
Ve ' 8 Ycosf - cos u

where h(u) = hl(u) for 0 £ uw £ o and h(u) = hz(u) for a £ u<sm.

The first of the dual series equations thus becomes

3] hl(u)du 9 8
J = V2 C tan 5 (0 £ 6 <2 @) (3.
o Ycosu - cosh
whose solution is
s ut'anzésintdt
o Vcost-cosu
= % sec % tan % (u + sinu) (0 £ u < o) (3
Using eq. (3:4a) and the fact that
(1/2,3/2) —2T(n+%) d cos(n+%)u
Pn_1 ’ (cosu) = ———=—— cscugp|—¢ — (3
YT T(n+2) cos 5

we obtain an expression for the coefficients dnl’ viz.

C cos(n+%)a sin na sin(n+1l)a
dpg = Tn(n+1) [(a *+ sina) o n n+1i
cos 3 -
(3.

K
See [1], pp. 9, 10 for details.

11

3)

.6a)

6b)

7)

.8)

.9)

10)



The second of the dual series equations becomes, using egs.

(3.6) and (3.2b),

su 2 . 8 o hl(u)du . sk 2 t'g 8 hz(u)du
—§;~ cot 5 Rs cot 3

o Ycos u- cosh 0 ¥Ycos u - cost

= /2 G(9)

2 u .
. sec2 8 d T hz(u) cot 5 sin udu
2 ds

8 /Ycos8 - cosu

suoa <2ﬂRC - RS‘)tan2
R
s

rv2c 2TtR_ + R
c IS

(a0 < 8 2 m)
(3.11)

Dj @

Cl
§ cot

This integral equation for the unknown function hz(u) can be put

into a more convenient form by using the integral equation/solution

pair -
b ,
: [ f(t)dt = g(x) (0<a<x<bsgm) (3.122a)
X Ycosx - cos t
14 [P Yy sinud
F(t) = - ———J g(u) sinudu ;¢ op) (3.12b)
T dt
‘ t Yecost -cosu
We obtain
X SHo2 T u
cot 5 hZ(X) + SR { pot 5 hz(u)K(x,u)du
s ‘o
1 m G{(t) cot L sin t dt
_ D4 2
= —— tan 3 {
™2 X YCcos X —cos T
Su a {27R, - R T cot2 t sint dt
1 o c s 2 o X 2
* C—x \gzg_+ 8§ | ten 3 tan g
T2 S The S X VYcosx -cost
2t .
sua Jw cot 5 sin t dt Ja hl(u)du
=—=— tan
2WR;, 2 X VYcosx ~cost Jo Yeosu -cost

(o0 < x 2 @) (3.13)
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in which the kernel K(x,u) is given by

< U T . _ cot2 % sin t dt
K(x,u) = tan 5 tan §-f ;
‘ max(x,u) vYcosx-cost Ycosu-cost
(o0 < x, u<sm)y (3.14)

It will be useful in what follows to extend the domain of defini-
tion of K(x,u) to (O0,m) x (0,w).
Now we may obtain from eg. (3.13) an integral equation for

the unknown function h(x) cot X, defined by

2
> X . X -

h{(x) cot 5 = hl(x)-cot 5 H(a-x) + h2(x) cot 5 H(x-a) (3.15)

We multiply eq. (3.13) through by the step function H(x-a), extend-

ing its domain of definition to 0<x <7, and add the function

hl(x) cot % H(o~x) to both sides of the resulting equation.* We

obtain
Su_a ™ :
h(x) cot % + EE%—.H(X—Q) J h{(u) cot % K(x,u)du .
S o ;
s . (T G(t) cot £ sintdt ‘
= ——— H(x-0) tan 5 J
TS X vcos x - cos t

T cotz % sin t dt

X Ycos X — coS t

* 5

c SH.a <2WRC - RS

2 o X
> tan” 5 H(x-a) tan % {
T3 RS ZTFRC + RS 2 .

+ % H(a-x) sec %(X + sin x) (0 < x £ 1) (3.16)

By forecing h(x) cot % to be continuous at x = o we obtain the

following implicit expression for'the constant C:

'3
See eq. (3.8).
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T .
T G(t)cots sin t dt Sy a T ) , .
2 sin%»f ' . 2 —»25) cos% J h(u)cot%K(a,u)du
Vo a. +Jcosa - cost s 0 ,

‘ , sy _a f27R_ - R
: D s e c S 2 qa
ﬂv— (Wj-a-—s1na) [1 + Rs '<2ﬂRC s Rs)tan 2]

C .=

(3.17)

We have now obtained an integral equation for the function

h(x) cot %;'the coefficients d, can be evaluated via the relation

— T
g = ¥E ) J h(u) cot = sin 2 cos? 1 P(l/z’s/z)(COS11)du
n 1 2 2 2 "n-1
. I’(n+—2-) O

(3.18)
We take up the problem of evaluating these cocfficients in the next

section.
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Iv. SOLUTION FOR COEFFICIENTS dn

The relation (3.18) can be inverted by making use of the

orthogonality property of the Jacobi polynomials

Sy
=
[0)]
| et
=]
I
Q
o}
n
w
Nof M

_ s Iri/2)
mn T'(n)T'(n+2)

in which émn denotes the Kronecker delta-function. We obtain

7oL 5(1/2,3/2)
nn

P 2o _ 1 L
h(u) cot 5 = - cos 3 sinu L T 1

VT

x 92342,3/2)(098;X)péiéz’g/z)(éos:x)sin><dx

(4.1)

(4.2)

Now substituting eqg. (4.2) into eqg. (3.18) and making use of the

relation [1]

T (1/2,3/2) e '

J Pn-—l ’ (cosu) K(x,u) cos%sinudu
o)

T X . (1/2,3/2)
= ———-—n+1/2 cos 5 slnxPn_1 (cos x)
we find that

cos —}25 sin x zl Mr?é-an-;?%) dnpél/z ,3/2) (cos x)

n -1
SH _&a ©

o x T (n+2) (1/2,3/2)
+ 5 Hix-a) cos 5 sin x Z F(nF3 72 a P74

S n=1

1 < (T G(t) cot%sintdt
= - — H(x~-a) tan§ J

Yam ' X Ycos x -~ cos t

c SIS ZﬂRc - RS
/— R 2'3TRC + RS

m s
C X ,
- — H(o-x) Sec-2—(x+sln x) (0 < x 2 m)
=
m

15

tan2 % sec %{-H(x——a)('ﬂ—x—sin X)

(4.3)

{cos x)

(4.4)



If we now multiply this equation through by the factor

zi-cos P(l/2 3/2)(cosx)

sin
2

2

and integrate with respect to x over the interval 0 < x £ T,
making use of the orthogonality property in eq. (4.1), there

results a system of linear equations in the unknown coefficients

d , viz.,
n
d + st nzl Q.4 =R~ (mxz1) (4.5)
in which
2 r
~ m(m+1) o)
O = 9’3 [m] 2 (4.6
u_a
- ) .
To = ﬁ; (4.7)
_ 3 T(mr1)T(n+1) mbt 1E [ _a+1 %
an T2 T(m¥1/2)T(n+1/2) |m(m+1/2) n{n+1/2) .
T
. f 0083;{81n2P(1/2 3/2)(003 X) P<1/2 3/2)(005 x) sin x dx
¢ i
(4.8)
R =2 Y (1 n-1, a "1 n(n+1/2)]% l
m /3 o1 -1 (ro) n+1 Qn
I’oC 1‘ %
o3
- V3 — [m(m+1/2)(m+1)] {ﬂcos(m+1/2)cxsec§-

- {1+

SH 2 (2WRC - R

) S) tanz g {(Tr -g-sina) cos{mtl/2) o sec = 2
S

2rR_ + R
C IS

+

sin mo | sin(m+1)a]§ (4.9)

m m+1
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The coefficient al is the ratio of the magnetic field HX at the
center of the sphere to that which would exist there if the sphere
were absent. The time constant T is that which would be charac-
teristic of the problem if o were equal to zero, that is, if the
spherical shell were entirely resistive. Explicit expressions
for an are given in [1].

The constant C is given in terms of the coefficients 5n by

(see eq. (3.17))

-1
spaf{27R_ - R
C = @é {'ﬂ' ~ (ﬂ—u—sipa) [1 + RO (ZTTRC - RS) tanz%}}
o S c S
. sin 2 cos® & § Llarl)  p(1/2,3/2) (o050 2(:§)n—1
2 2 L. T(n+1l/2) " n-1 T
n=1 o
1 n+1 3 osua |
_ 7§ [n(n+1/2)} F_ d, 5 (4.10)

If we substitute this expression for C into eg. (4.5) and rearrange

the resulting system of equations, we obtain

d + st zl.andn = R (m > 1) (4.11)

in which ___

Q= Q. - F.C, | (4.13)
o= [m(m+1/2)(m+1)]’%{sec%«xs(m+1/2)a
TR (1ig?;(a+sina)[812nma'+ Sinéle)a]g (4.14)

17



1
_ 3 n(n+1)}2[sin no. sin(n+1)a]
G 2 |:n+1/2 n + n+i (4.15)

and

B t

21R - R )
c S

B _ 2o
¢ = 387, tanm §<2WRC - R

(4.186)

fhe system of equations (4.11) can now be solved for the coeffi-
cients am on a computer.

We may also develop variational expressions for am by stan-
dard means. It is not difficult to show that a variational

expression for dm’ derived from the use as a trial solution of

= - = 5(=)
dn trial = Pm R e d (4.17)
s
is
. B d()
d_ = L (4.18)
TG BN °§ 5 al=)
goq MDD
Thus, for example;
d R
T ° () E (=) e
1 d ®) 4 ST Z @ d °
1 net Anm
where
o) - I
=) -2 (:é)n 1[£££i1122]2@(®) (4.20)
m /3 n=1 Yo n+1 mn i
a(e) _ (=)
8.5 = Q. - F. G, (4.21)
Féw) = [m(m+1/2)(m+1)]—% sec%&xﬁ(m+1/2)u
1 [sin mo sin(m+1)a}
T o + sina m + m+1 } (4.22)
18




In particular, when a/ro + 0,

& . : (4.23)

Unfortunately, these variational results are not sufficiently
simple to be very useful. We shall return to the problem of
obtaining simple approximate results for the penetrant field in
the next section;-wherein numerical results are presented and

discussed.
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V. NUMERICAL RESULTS
In this section we present numerical data for the quantity .
agm) and for al/agw) in order to illustrate the behavior of the
penetrant field under various conditions of excitation and aper-
ture loading. ‘
In Figure 2 are shown curves of agm) as a function of the
aperture angle 60 (¢ = 1 - 80) for various values of the ratio
a/ro. It is'interesting to note that, in contrast to the axial-
dipole case, &gw) can exceed unity when a/rO is sufficiently close
to unity. This is easily explained by considering the limiting

case a/rO + 1+, 8 =+ 0+, in which half of the magnetic flux pro-

o
duced by the dipole source is trapped by the spherical shell, so
that the field at the center of the shell is actually enhanced in
comparison to that which would exist there if the shell were
absent. .
In order to compare the penetration into the spherical shell
through an unloaded circular aperture for the axial and transverse
dipole orientations, we show in Figure 3 the quantity agm) as a
function of eo for a/rO = 0 and for both source orientations.
The penetration of the transverse-dipole field is greater than
that of the axial-dipole field for all angles S [27.
The effect of the resistive aperture loading on the pene-
tration of the spherical shell is shown in Figures 4 and 5, in
which the magnitude of the ratio &l/égw) is plotted as a function

of normalized fregquency Wt (s = jw) for various values of the

aperture angle B when a/ro = ZWRC/RS = 0. It is evident from

20
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these curves that al/a§“> can be expressed in the approximate

form

= (1 + qmo)'1 (5.1)

when a/rO = 0 and ZﬁRC/RS = 0. The "time counstant factor' g is
plotted as a function of eo in Figure 6. The same quantity for
the axial-dipole problem is also shown on that figure. The maxi-
mum of g which occurs at Go = 90° (where the spherical shell is
half perfectly conducting and half resistive) can be interpreted
in terms of a maximum disruption of the surface current density
with respect to its distribution on a homogeneous spherical shell,
and thus a maximum equivalent inductance and time constant. When

eo < 30° and a/ro = zﬂRC/RS = 0, an approximate formula for ¢ is

q = 5 (5.2)

[
(N

Contact—~resistance effects are shown in Figures 7-11, where
(s = jw) for various values of ZﬂRC/RS, at fixoo aperfure angles
80 and for a/rO = 0. The effect becomes less pronoonced as
eo » 180° for obvious reasons. The.increaSe in the penetrant
field when ZWRC/RS>> 1 is striking. Under this condition, the
resistive loading in the aperture is effectively isolated from
the remainder of the conducting sphere and the "inductive shielding"
behavior (desoribed by an equation of the form of eg. (5.1))

effectively disappears. It is clear from the curves in Figures 7
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Figure 6. Time-~constant factors g and g' for transverse and
axial dipole orientations, a/ro = 0 and ZﬂRC/RS =0
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through 11 that when ZwRC/RS >> 1, the frequency-domain behavior

of ai/agm) is much more complicated than the (1 + ST)—l behavior
characteristic of the case Rc = (0. It is also interesting to
note that for some ranges of values of Wt and 2WRC/RS, the

penetration of the shell is lower than that for ZﬂRC/RS = 0.
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VI. IMPLICATIONS FOR SHIELDING AND MEASUREMENT;
. CONCLUDING REMARKS

When an aperture in the wall of a closed region is hardened
by means of resistive loading, the effectiveness of the loading
is described by a factor of the form (1 + sr)”l, where 1 depends
on the enclosure and aperture sizes and upon the sheet resistance
of the loading material, and where it is assumed that ZwRC/RS << 1
and that the frequency. is far below the first resonaﬁce of the
enclosure. The presence of a contact resistance Rc which is com-
parable to, or greater than, RS/2W significantly degrades the
shielding afforded'by the resistive 1oading df the aperture.

This behavior is similar to that seen in the planar—éperture
problem [3]. Thus in a shielding application, the following
points should be noted:

. 1. The contact resistance between the loading and the
aperture rim should be as small as possible;
specifically, ZWRé/RS << 1. |

2. The sheet resistance of the loading must be

sufficiently small that the 'break frequency"
1/t lies well below the lowest frequency at
which the aperture loading must be effective.

If a structure which is topologically similar to that ana-
lyzed in this note is used to determine the sheet resistance RS
of the loading by means of measurements, then again the contact
resistance must be as small as possible. This is necessary in
order to ensure the simple and predictable (1 + ST)-; behavior

of the internal field as a'funotion of frequency. For a given
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geometry (say, a rectangular box with one face made of the

material to be tested), one would have

Hx,loaded _ 1
H T 1+ st (6.1)
X’unloaded 1
where
Leq Leq Rso Rso
LT R &~ o R (6.2)
S SO s IS

and where RSO is the known sheet resistance

in which Ty = Leq/RSO

of.a "calibrating'" material. One would determine the time constant
To by measiurement with the known calibrating material in place;
this effectively determines the equivalent inductance Leq' Then
replacing the known material with the sample to be measured one

wonld determine the time constant Ty- Then RS is given by
R =R -2 (6.3)

Clearly, the dipole source orientation should be transverse
to the axis of symﬁetry of the structure, in order to obtain
maximum field penetration of the sample (see Figure 3). _Addi-
tionally, the source dipole should probably not be placed closer
to the sample than a distance corresponding to a/ro = 1/2, in
order that the sample be reasonably uniformly illuminated (see
Figure 2).

In this note we have formulated and solved the quasistatic
maghetic~-field boundary value problem of a conducting spherical

shell with a resistively loaded circular aperture illuminated by
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. a transversely oriented magnetic dipole on the structure's
| symmetry axis. The formulation of the problem in terms of the

magnetic scalar potential leads to a set of dual series equations
involving a constant C whose‘determination follows from a require-
ment on the behavior for large n of the unknown coeffigients dn,
or, equivalently, on the continuity of the function h(u) satisfy-
ing the Fredholm equation to which the dual series equations are
reduced. We have also been able to include a non-zero contact
resistance at the aperture rim in the formulation. Although a
variationai solution for the penetrant field can be constructed
by standard means, the expression which results is not sufficiently
simple to be very useful:; accordingly, we have constructed an
approximate solution empirically from the exact numerical results

. for the cases in which the contact resistance is zero. Further-
more, variational solutions can be expected to be accurate only
when the contact resistance RC is small compared to RS/2ﬂ, since
when the contact resistance is large, the loading is effectively
isoclated from the rest of the structure.

In applying the results of this analysis to other topologi-
cally equivalent geometries, one assumes that the shielding
behavior, when the contact resistance is zero, is described by
a factor of the form (1 + sr)—l, where the time constant
T = Leq/Rs' This "inductive shielding' behavior of the enclosure
and its loaded aperture can be used in an experimental configura-
tion to medsure the sheet resistance of a given material, pfovided
that the structure is calibrated (i.e.,'L is determined) through

eq
. the use of a material with known sheet resistance.
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APPENDIX

THE APERTURE-RIM CONDITION

Consider the line integral of the electric field arouﬁd the
'confour C.shown in Figure 12. Thé surface r = a, 0 < 8 < ¢ is
perfectly conducting; for r = a, aks g < a'+*Aé, the sheet resis-
tance is Rsc;land for r ='é;;u ; A8 < 8 < mw, the sheet resistance
is RS; The angle A8 will be allowed to approach Zero in the fol-

lowing, so that

lim é E.-W=0 o (A.1)
AB~0 - C
Furthermore, Rsc will be allowed to approach infinity in such a

way that

1im ASRSC = 2ﬂRC sinog ‘(A.Z)

where RC denotes the net contact resistance across the junction
between the aperture loading and the rim.

It is easy to see that

é E+d? = a sina A¢ E, (a,0+A0,d)
C

¢

—ahBhd f% [Eg(a,a+h6/2,0+06/2) ~ E (a,a+08/2,6-00/2)]

(4.3)
or, as A¢ =» O
sina B (2,0740,0) = 48 = E (2,0+08/2,¢) (A.4)
Now
E¢(a,u+Ae,¢) = RSJS¢(&+A8,¢) ' (A.5)
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Y,

Ee(a,a+A6/2,¢) = RséJse(d+Ae/2’¢> (A.6)

so that, substituting Equations A.5 and A.6 into Equation A.4 and

using Equation A.2, we obtain upon taking the limit A8 - 0

N 3
RSJS¢(C€+VT@> - ZﬂRC 55 Jse(ayd)) (A"?)

since Jse is continuous at 6 = ao.

The current-density components JS and JS® are expressed in

8

terms of the discontinuity in the magnetic scalar potential

v.o- VS oas
m m
B S N
Jso T a sin@ 99 Vo = Vi) (A.8)
I A s T
Js¢ = - 338 (Vm - Vm) , (A.9)
so that Equation A.7 becomes
82 > < 3 > <
2'rrRC 5—@)—2 (Vm - Vm) + RS sind —a—e'(Vm - Vm) = 0 (A.10)
at 8 = a+. - This is the reduired aperture-rim boundary condition

> <
on V. - V .
m m
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