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Abstract

The magnetic field inside a conducting spherical shell with
a resistively loaded circular aperture is found when the structure
is excited by an external magnetic dipole located above the aper-
ture on the axis of symmetry. The dipole moment is oriented
parallel to the symmetry axis. DBoth exact (numerical) and approxi-
mate (variational) results are obtained; it is found that the
agreement between the approximate and the exact results is very
good. Implications of the results as they pertain to the measure-
ment of the properties of the resistive loading are discussed.
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I. INTRODUCTION

The problems to be discussed in this note and in the com-
panion Part II deal with the interaction between a point source
and a conducting body possessing a resistively loaded aperture.

The frequency range is such that the body is electrically small,

so that a quasistatic analysis is appropriate, and the source is
taken to be a magnetic dipole. This choice is made because the
magnetic-field penetration is the dominant effect in the low-
frequency limit. In both Parts I and II of this note, the conduct-
ing body is taken to be a spherical shell with a ecircular aperture.
The source is placed above the aperture-on the symmetry axis of the
structure. In Part I, the dipole moment is taken to be oriented
parallel to this axis; in Part II, it is perpendicular to the axis.

The motivations for this problem are two: first, we wish to
consider the effect of surface curvature on penetration of a loaded
aperture. Penetration of an unloaded circular aperture in a spheri-
cal shell has been discussed in [1] and penetration of a loaded
circular aperture in an infinite ground plane was considered in
[2]. In these notes the combined problem of a loaded circular aper-
ture in a curved surface is addressed.

The second motivation has to do with assessing a measurement
technique for certain advanced composite materials [3-6]. It is
our intent to investigate, by means of the canonical problems men-
tioned above, the relation between the fields at (or near) the
center of the spherical shell with and without the resistive load-

ing, and to determine how this relation is affected by such
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quantities as the opening angle of the loaded aperture, the posi-
tion of the source dipole, and the contact resistance between the
resistive locading and the conducting spherical shell.

In the next section, the axial-dipole problem is'formu—
lated in terms of dual series equations, using the magnetic vector
potential. These dﬁal series equatioﬁs are reduced in;Section III
to an inhomogeneous Fredholm integral equation of the second kind.
Numerical and approximate variational solutions are obtained in
Section IV and numerical data are discussed in Section V. Section

VI concludes the note.

= .
The contact resistance is important only for the transverse dipole
orientation and is considered in Part II.



IT. FORMULATION

The geometry of the problem is shown in Figure 2.1. A
perfectly conducting spherical shell of negligible thickness is
located at r = a, 0 £ 6 < o in the spherical coordinates (r,8,¢).
The aperture--in the shell 1s covered by a spherical segment of an
infinitesimally thin conducting layer of sheet resistance Rs
extending over the surface r = a, a < 6 £ 7. The structure is
excited by a magnetic dipole located outside the sphere at r = Ty
B =7 (ro > a). The axis of the magnetic dipole coincides with the
symmetry axis of the aperture in the spherical shell. It is
assumed that all field quantities vary with time as eXp(st) and
that the sphere is electrically small, so that a quasistatic
analysis 1is appropriate. Furthermore, it is assumed that over the
freguency range of interest, the lcading in the aperture is elec-
trically as well as physically thin so that the equivalent sheet
impedance model is appropriate. It is easy to show in general
that as the-frequency is increased, the effect of the encloéure
geometry becomes evident before that of the skin depth in the
loading material; this point is elaborated in Section VI.

We shall represent the magnetic field H in terms of an azi-

muthal vector potentiai A = A a,, where A, is independent of ¢ and

o ¢ ¢

H = V><%¢a¢

- 1 3 .
H. = ¢+ Sins 36 (SlneA¢)

(2.1)
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Figure 2.1. Geometry of the problem



Furthermore, for r # a and (r,8) # (ro,w), A¢ satisfies

A¢

VA, = ———— = ( (2.2)
2 ., 2

r sin 6

The vector potential A, is conveniently written as the sum of a

¢

"primary’ and an "induced' contribution as

A = aP 4+ al 2.3
o = A T Ay (2.3)
where
mo i n-1 T n 1
r<rr AY = —25 (-1 (55) Pr(cosd)
4dnr” n=1 o
m ® -n-1 .
r>r o AP = 9 7 oyl o Zy plicoss)
o} o] & n
47r n=1 o
(2.4)
i mo § r n 1
r < a AT = a (=) P (coshH)
¢ drr_ n=1 n-a n .
i o § p ool 4
r > a: AL = a (=) P (cost)
¢ arr° p=1 22 n

Pi(.) denotes the associated Legendre function of degree n and
order 1 and mg denotes the magnetic dipole moment of the source.
The coefficients a, are to be determined.

Over the perfectly conducting surface of the shell, the nor-
mal magnetic field component Hr must vanish. This can be guaran-

teed by forecing A, itself to vanish there, yielding the relation

0]

21 bnpi(cose) =0 (0< 68 < a) (2.8)
n:
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On the resistive cap, the normal component of the magnetic field

must be continuous and [2,7]

_ . - —Ssyu
v . (H - H. ) = °u (r = a, o <06 < 7) (2.7)

where VS - F is, on a spherical surface of radius a,

¢ T 1 oy
S 2 sinf 236 Lo}

1

(sin® Fo) + =57

(2.8)

Now substituting from eqs. (2.1) into (2.7) and using (2.8), we

obtain the relation

94 34, . su '
1 3 . ¢,out _ ¢,in 0 ) -
Sind 39 [Sme< 57 5T B % 0 (2.9
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from which we conclude that

A oA sSu
_¢ - _ 9% = _0
or or RS 'A¢ (2.10)
r=g+ r=a-
(r = a, a < 98 < 1)

Substitution of eq. (2.4) into eq. (2.10) yvields the relation

= Sy a <«
Y (2n + 1) ani(cose) + RO ) ani(cose)
n=1 ' s n=1
o n
= 7 "1 &y (an + 1) pl(coso)
n=1 s n
(2.11)
= G(9) (o0 < 8 < m)



Equations (2.5) and (2.11) constitute a set of dual series
equations from which the coefficients bn can be determined. We
shall be most interested in the induced magnetic field near the
center of the sphere; this quantity depends only on the coeffi-
cient bl' Specifically, the ratic of the vector potential near
the center of the sphere to that which would exist there if the
sphere were absent is simply (ro/a)bl. The solution of the dual
series equations is addressed in the next two sections of this
note. In Section III, the dual series equations are reduced to
a single inhomogeneous Fredholm equation of the second kind; and
in Section IV, this Fredholm equation is used to obtain both exact
(numerical) and approximate (variational) solutions for the coeffi-

cients b_.
n




III., REDUCTION OF'DUAL SERIES EQUATIONS TO AN INTEGRAL EQUATION
We begin by expressing the coefficients bn.in terms of an

unknown function h(u) as [8]

_ /T r@m) [T 3 u ,(1/2,3/2)
bn = m JO' H(U. - O()h(U) cOoSs § Pn-—l (COS u) du
(3.1)
in which Pé?ie) denotes a Jacobl polynomial and H is the unit step

function. We define two functions Fl(e) and F2(6) over the inter-

val 0 £ & < m as

_ v 1
F (0) = g b P (cos8)
n=1
(3.2)
_ v 1
F (8) = Z (2n + 1) b P_(cosé)
n=1
so that the dual series equations (2.5) and (2.11) become
respectively
F (8) =0 (0 £ 68 < a)
(3.3)
spoa
—'R—S— Fl(e) + Fz(e) = G(8) (o0 < 8 < 7)

The function Fl(e) is obtained by substitution of eg. (3.1)
into eq. (3.2), reversal of the order of integration and summation,

and use of the relations [9]

pl(cose) = - 2(n + 1) sine P{1:1) (coso) (3.4)

and



u S T nl! I(a+B¥n+l)(2n+a+B+1)
g (cos 3) nio T(a+n+1)T(p+n+1/2)
i 1 ~-2¢ _
Pga’g)(cose) Pgm_§’6+2)(cos u) = (sin g) . (O u)
Ycos u - cos6
(3.5)
We obtain
T
F, (8) = = cot %-J h(u) X8 - wda (3 6
/2 a /cos u ~ cosé

which is indeed zero when § < o, satisfying the first of egs. (3.3).

In a similar fashion, using the relations

20 20 -2
é% [(Sin %J Péa’s)(cos u)] = %(n + o) sin u(sin %) .
Péu_1’6+l>(cos u) (3.7)
and
J@f( . E)2a+1 § B! I(a3Bintl)(ontors+l)
g St g/ 120 T(a+n+3/2)T (R+n+I)
-28 :
P(a’8>(cose) P<a+%’6_%)(cos u) = (cos g) H(u - 0)
n n 2
. vYcos® - cos u
(3.8)

we find that

Fo(8)

e

s
V2 tan % j h(u) cot2 é% H(u - 8) du
o Ycosd - cosu

T
= - ;L»secz % é% j h{(u) cot
vz o

2 u H(u-6) sin u du

Ycos8 - cosu

(3.9)

The second of egs. (3.3) is thus written
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7 h(u) cot2 2 sin u du Vol 5

~id J 2 = 22 cos® § G(e)
8 vYcosB - cos u : ,
3 g g Su,a (8 h(u) du
- cO8 F CSC 75 —% (3.10)
2 2 TR :
s ‘o Yecos u - cosSB

(a0 < 8 2 1)

Equation (3.10) is an integral equation for the unknown func-
tion h(u), but it is not in a particularly convenient form. To
convert it into a more useful form, we make use of the integral

equation/solution pair [10]

b
f f(t)dt _;g(x) (Oia<x<bi'ﬂ’)

X Ycos X — cos t

(3.11)

f(t) = -

1 4 b g(u) sin udu (a <t <Db)
T

d

o

t Ycost - cosu

to obtain

h(u) K(x,u) du

wie

Sy a ¢’
cot % hi(x) + O J cot
o

. m cot = G(t) sintdt

= tan 2

J (3.12)
/2 - X Vcos x - cos t

WSl

(o < x < m)

The kernel K(x,u) is given by

2

cot sin t dt

K(x,u) = tan fan

ol
vl

t
I :
max(x,u) Ycos x - cos t VYcos u - cos t

X
cCOoSs - COS 7=

it

tan tan &n

N X
o] fr

o | fs

2
X
cos + cos 3

sin %(X - u)
(a<x, usm) (3.13)

- sec 5 sec 3 2n

sin %(X + u)
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We shall find it convenient in what follows to extend the domain
of definition of K(x,u) to (0,m) x (0O,n).

Equation (3.12) is the integral equation which must be
solved'for h(u) in order to evaluate the coefficients bn' We
shall take up the problem of determining the coefficients bn by

solving this integral equation in the next section.

12




IV. SOLUTION OF THE FREDHOLM EQUATION

The exact solution of the integral equation (3.12) is not
known, so that numerical or variational techniques mﬁst be
employed in order to solve it. Béth numerical and variational
approaches are described in this section.'

4.1 Numerical solution for coefficients bp

Equation (3.1) for the coefficients bn can be "inverted,"

using the orthogonality property of the Jacobi polynomials (9]

20

T 28
JO (sin %) (cos %) P(&’B)

me1 (cos x) sin xdx

(a,B)
1

(cos x) Pn—

2T (n+a ) T(n+B)

= 6mn T'(n)(a+8+2n-1) T (n+a+B) (4.1
in which Gmn is the Kronecker delta-function. We obtain
u S S T _I(n+2) |
h(u) cot 3z H(u - a) = cos 5 sin u Z Tt 1/2)
T n=1
(1/2,3/2)
bnpn—l {cos u) (4.2)

Now multiply the integral equation (3.12) through by the step func-

tion H(x - a) and substitute equation (4.2) as appropriate. There

results
© ’ Su_a
X . r(n+2) (1/2,3/2) o L
cos 3 sin x nzl NECTSVE) b PrTh (cos x) + SrR_ H(x-a)
T r(n+2) T _(1/2,3/2) u
r£1 T+ i1/2) b Jo P (cos u) K(x,u) cos 3 sin u du
-1 7T cot % G(t) sin t dt
= —— H(x-a) tan 5 J (0<<x<T)
V2T X Jcos X - cos t

(4.3)
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in which the order of summation and integration in the second term

has been reversed.

The integral on the left-hand side in eq. (4.3) can be evalu-
ated by writing K(x,u) in its integral form and making use of the
relations [9]

5 2

u ’ .
{O (sin §) sin6 d8

Ycos8 - cos u

o
Pé%is)(cose)

o %
- 2 7°T(n + o)
F(n + o + 1/2

and (4.4)

) (1 - cos u)a+% ng;%,@—%) (cos u)

sin x dx

T 2R3
j (cos %) PS?&B)(COS X)
v

Jeos v - cos X

-B_% 3
_ 2 "7°T(n + B) B+% (o-3,8+%)
S Tmores Ijzy (P TeosvT T Pply (cosv) (4.5)

We find that ' .

kD
j Pé}£2,3/2)<cos u) K(x,u) cos % sin udu
O

= E—:ET7§ cos % sin x Péiéz’S/z)(cos x) (4.6)

and eq. (4.3) thus becomes

X o _I(n + 2) (1/2,3/2)
cos 5 sin x nzl NCEEEY) b P T4 (cos x)
Sy _a ©
o X s T'(n + 2) (1/2,3/2)
+ 5q H(x - o) cos 5 sin x Z T(n ¥ 372 ann_1 (cos x)
s n=1
1 x [T cot £ G(t) sin t dt
= — H(x - o) tan 5 J 2 (4.7)
T X

/cos X - cos t
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If we now multiply eq. (4.7) through by the factor

P(E{2’3/2)(cos x)

.0X 2
sin £ cos
2 n

DY 4

and integrate with respect to x over the interval 0 £ x < T,
“making use of the orthogonality property in eq. (4.1), there
results a system of linear equations for the coefficients bn’ viz.

ST 5 (=)
b+ Tﬁi; 21 anmn = bm (m > 1) (4.8)

where

I ' 1
5o o /§[m+_1>]2b
m -~ a 2 2m + 1 m

(4.9)
e - i
~(w) _ 1 _inl 1,72
R SO S I LU SO L] e,
Q _ 3 m+ 1 3 n + 1 3 T'(m + 1) T'(n + 1)
w2 am o+ ] [hm o+ D] ottt
il
J sin % cos3 % Péiéz’s/z)(cos X) Pé}{2’3/2>(cos X) .
o
sin x dx (4.10)

[

_ =3 1 .
o [m<m + $)(m + Ln(n + $)(n + 1)]

1
2

1 o

[E tan 5 [Cos(m - n)a + cos{(m + n + l)a]

mtn, sin(m-n)a m+n+1

+ (mn + =) —— - (m + —35—)

sin(m+n+1)a

m+n+ 1 } (m#n)

15



Q = 3 Em(m + 1Y (m - o)

mnoorm (m o+ %)(m + o1y |

2 1, sinCmt+lde 1 a |
+ (m~ + m + 2) B e 5 tan 5 [l + cos(2m+1)a]‘
It will be noted that
r

b, = 2p
a

1 (4.11)

1

(cf. discussion following egq. (2.11)). Furthermore, the coeffi-
cients bém) are those appropriate for an open or unloaded aperture
(Rg = =)

We have reduced the problem of evaluating the coefficients
bn to that of solving the system of equations (4.8). The coeffi-
cients so obtained can be considered exact, since they can be
calculated to essentially arbitrary accuracy on a digital computer:
Numerical results will be considered in Section V.

4.2 Variational expressions for coefficients by,

It is well known that if K(x,u) is symmetric and if

T
f{x) + A f f(u) K(x,u) du = g(x) (¢ £ X £ 7)
o
(4.12)
T
fa(x) + A Ju fa(u) K(x,u) du = ha(x) (o £ X £ )
Then a variational expression for the quantity
kil
I = J f(x) ha(x) dx (4.13)

ol
is [11]
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T T - :
J f(x)ha(x) dx J fa(x)g(x) dx
o

I = o : (4.14)

i . TrT C
J f(x)fa(x)dx + A f [ f(x)fa(u)K(x,u) dxdu
o o

o2
Identifying K(x,u) with the kernel given in eq. (3.13), setting

A= suoa/2ﬂRS and

£(x) = h(x) cot 3 H(x - a)
t .
1 « (T cot = G(t) sin t dt
g(x) = —— H(x - o) tan 5 J
T2 x Ycos X - cos t
(4.15)
h (x) = =/m I(n) cos £ sin x p{1/2, 3/2) (cos x)
a 1 2 n-1
2T'(n + =)
2
and using as a trial solution
f(x) = g(x)
(4.16)

f (x) = h (%)

which is exact in the limit Rs + o  we obtain after some manipula-

tion the following variational formula for the coefficients En:

()

S n

bn "1+ st T (4.17)

o' n
in which
an'

'L'O:ST (4.18)

s
N S ~ (o)
F =—— 7 Q b (4.19)
n bé ) pe1 mnom
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In the special case n = 1, a/ro = 0, we have .

)2 (4.20)

[e0)
1
F,=5— 1! Q
T Qpq g ™
Curves of the '"time-constant factor" Fl as a function of
60 =7 - ¢ for three values of a/ro are shown in Figure 4.1.

Numerical values of Fl are also given in Table I. As one might

expect, F., increases essentially linearly with eo for '"moderate"

1
_ o
values of eo [2]. When a/ro = 0, eo < 907,
580

If we interpret the quantity an/S as the equivalent inductance

of the spherical cavity, then the equivalent resistance of the cap

is
R 4TR q"
IS s o
R = == = (6 < 907)
eq Fl 580 o
so that _
Leq
T4 T T TR
eq

where Leq = poa/B = uOV/S, in which V and S are respectively the

volume and the surface area of the Spherical shell.
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Figure 4.1. Time-constant factor Fl vs. © a/r = 0, 1/4, 1/2



Teble 1. Fy vs. 8 (8 < 90%) for a/r = 0.00, 0.25,
GO a/ro = a/ro = 0.25 a/ro = 0.50
0° 0.0000 0.0000 0.0000
5° 0.0345 0.0345 0.0346
10° 0.0692 0.0693 0.0696
15° 0.1036 0.1039 0.1055
20° 0.1390 0.1397 0.1418
25° 0.1736 0.1749 0.1786
30° 0.2086 0.2108 0.2168
35° 0.2433 0.2466 0.2552
20° 0.2784 0.2831 0.2944
45° 0.3135 0.3198 0.3341
50° 0.3485 0.3567 0.3739
55° 0.3834 0.3937 0.4139
60° 0.4186 0.4311 0.4539
65° 0.4531 0.4681 0.4936
70° 0.4868 0.5044 0.5321
75° 0.5326 0.5430 0.5720
80° 0.5583 0.5798 0.6101
85° 0.5923 0.6160 0.6472
90° 0.6274 0.6525 0.6838

20

0

.50




V. NUMERICAL RESULTS

In this section we present curves of bgm) as a function of
60 =T - o and of a/ro, and compare the exact and variational
solutions for the quantity Bl/ng)_

In Figure 5.1 are shown curves of Bgm) as a function of Bo
for a/ro = 0, 1/4, and 1/2. Figure 5.2 shows curves of 5§m> as a

O, 600,.and 90°. 1t is evident from

function of a/rO for eo = 30
these plots that, as one would certainly expect, 6§®>'is an
increasing function of both eo and a/ro.

Extensive computations of Bl/ﬁgm) have been carried out for
various values of 6, and a/rag as a function of no?malized fre-
quency wrt . For eo < 90° and a/rO < 1/2, the dependence of
El/Bgm) on a/ro is very weak:; this is to be expected from the
results shown in Figure 4.1, Figure 5.3 shows curves of !El/ﬁgm)l
VS. WT for a/ro = Q and various values of eo. Both the exact and
the variationally derived results are shown and it will be noted
that the agreemeﬁt between these is quite good, indicating the
utility of the variational results.

An approximate expression for b useful for engineering

13
purposes, is

(5.1)

(of
1

~ () a -1
by 708, ;;)(1 + S"fl)

in which

?
|
@
Q

T1 ° I27R, R (5.2)
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Figure 5.2.
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and eo < 90°, a/rO < 1/2. This approximate result indicates that

~

the time constant T4 is essentially independent of a/ro when
a/ro < 1/2; this is to be expected because unless the source
dipole is very close to the surface of the sphere, the current

distribution on the resistive cap is essentially that for the

case a/r_ = 0,
0
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VI. CONCLUDING REMARKS

In this note we have formulated and solved, both numerically
and by variational means, the problem of the interaction between an
axial magnetic dipole and a spherical shell with a resistively
loaded aperture. It has been shown that the effect of the shell
on the magnetic field at its center can be approximately factored
into two parts, one of which depends only on the sheet resistance
of the loading and the aperture angle eo, and the other only upon
the angle eo and the source distance factor a/ro.

It has been assumed in the analysis that the resistive
sheet is electrically thin. This assumption is wvalid only for
frequencies below that at which the diffusion time constant for

the loading,

Tg = uOOd (6.1)

is such that wT 4 < 1. 1In equation (6.1), o and d denote respec-

tively the conductivity and the thickness of the loading material.

When WTy = 1, the normalized frequency wt, is given approximately

1
by

- 0
WT4 & (6.2)

from which we conclude that, since a/d >> 1 in any realistic situ-
ation, wrl >> 1 when Wiy = 1 except for very small aperture angles
60. Thus the macroscopic enclosure effect is manifest at frequen-

cles far below that at which skin-depth effects become important.
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The determination of the properties of the aperture loading
material via frequency-domain measurements involves primarily the
experimental determination of the critical frequency w, = 1/T1.
Having found this frequency by measurement, one could then use
Figure 4.1 and Table 1 to determine RS knowing eo, a/ro, and the

sphere radius a. This issue will be discussed further in Part II.
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