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ABSTRACT

In a recent paper [1], a method for the time-domain characterization of
Tossless multiconductor transmission lines with cross-sectionally inhomoge-
neous dielectrics was presented. This method is Timited to Tines with
completely nondegenerate propagation; that is, all the modes have distinct
propagation velocities. 1In this paper, a method is presented for the
characterization of lossless, partially degenerate three-conductor 1ines,
together with experimental data. The results are in good agreement with
independent frequency-domain measurements.
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I. INTRODUCTION

In general, a multiconductor transmission line (N conductors plus a
reference) with cross-sectionally inhomogeneous dielectric will have N pro-
pagation modes, each having a different velocity. A knowledge of the modal
velocities and the modal amplitudes is needed in order to obtain per-unit-
length inductance and capacitance matrices from the characteristic-impedance
matrix[1]. The characteristic-impedance matrix of the line can be measured
by the method described in [2]. 1In a recent paper [1], a method for the
time-domain characterization of multiconductor transmission lines in a cross-
sectionally inhomogeneous medium was presented. This method assumes_cpmp]etely
non@egenerate propagation on the line; that is, all the modes have distinct
propagation velocities. Degeneracy among some modes may occur due to symmetry.
For partially degenerate propagation, where some groups of modes have the same
propagation velocity in each'grbup, the degenerate modes cannot be resolved in
time. Since modes with the same velocity travel together, only the sum of
the modal voltage or current amplitudes for these modes can be measured.

Consider a lossless transmission line formed by N conductors, plus a
reference conductor (ground or shield). The line is assumed to be uniform
along its length, but with arbitrary cross section. The dielectric surround-
ing the conductors is inhomogeneous (e.g., cable made of insulated conductors
‘partially separated by air). The transmission line equations are*:

2 (2,01 = <[t 12 11 (2,1)] (1)
3 [1(26)] = [, = [V (2,1)] (2)

withn=1,2, s+, Nym=1, 2, ««+,N

where Vm and Im represent the voltage and current on the m th conductor, respectively.
[an] and [Cnm} are, respectively, per-unit-Tlength inductance and capacitance matrices.

*Note on the use of variables: the variables with single subscript in a
bracket represent vectors and the varwab1e with double subscript in a
bracket represent matrices.
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The components of the forward traveling voltage or current vectors are
components of the eigenvectors of the matrix product [anjtcnm] or [CnmJ[an],
respectively, [1], [31. A velocity matrix, which is similar to [an][Cnm] or
[Cnm][an], was introduced in [1]. The velocity matrix can be constructed
from the voltage or current eigenvectors and the eigenvalues determined
from Time-Domain-Reflectometer (TDR) measurements, using the relations:

i

[o,,] = 0V, JLw 0y, 17! (3)

n

[o; 1 = [1, 10w, 301, 17 o , N

where [vnm] is the velocity matrix whose eigenvalues are v.'s and the eigen-

vectors are [Vn}i; the matrix [vnm] is formed by vectors [&n]i as its columns.
[vém] is the velocity matrix whose eigenvalues are vi's and the eigenvectors
are Einjig the matrix [Inm] is formed by the vectors [In}i as its columns.

vi‘s are the inverse of the square root of the eigenvalues of either [an}[cnm]

or [Cnm][an].

The per-unit-length inductance and capacitance matrices are obtained from
the following relations[1]:

L, 7= [vnm]‘lthnm]'] (5)
[c, 1= tvcnmlﬁvnm3‘1 (6)
ar
“Te . 9-1
L] = D 17 logy] (7)
[c,J = [ugmj"‘[vcnmj (8)
4




where [YC 1 is the characteristic-admittance matrix of the multiconductor
line, and"%an be obtained from the TDR measurementsf2].

In the case of nondegenerate propagation, the eigenvalues are all distinct,
a set of linearly independent eigenvectors exists, and equations (3) or (4) are
applicable. 1In the case of partial degeneracy, the existence of linearly inde-
pendent eigenvectors, for a real nonsymmetric matrix, is not guaranteed in
general. It is shown in this paper that since the matrices [an} and [Cnm]
are real, symmetric, and positive definite, they can be simultaneously
diagonalized, and thus, the matrix product [an][Cnm] or [Cnm][an] can also
be diagnoalized. For this situation, it will be shown that a set of linearly
independent eigenvectors can be found for multiple eigenvalues.

In order to use equations (3) or (4), the modal amplitudes for the indivi-
dual modes must be known. For the particular case of a three-conductor line,
the modal amplitudes, for the degenerate modes, can be obtained from theijr sum.
Here, the orthogonality property of the modes is used. Finally, experimental
results for a three-conductor transmission line over a ground plane are
presented. These results are found to be in good agreement with the indepen-
dent frequency-domain measurements.

It should be noted that for a multiconductor transmission Tine with
homogeneous dielectric, all modes are degenerate. In this case, the inductance
and capacitance parameters can be obtained from the knowledge of the character-
istic-impedance matrix and the velocity of propagation, which is identical for
all modes, using the relations:

L1

nm

1
E’[Zc ] (9)

nm

e 1=5m, 17 S (10)
nm

nm

where [ZC 1 is the characteristic~impedance matrix of the multiconductor line.
mm ‘



II. OROTHOGONAL PROPERTIES OF THE MODES

Consider the transmission-Tline equations (1) and (2) in the matrix
from:

o [Va(zot) 00,1 [L I Vo (zat)
37 = - — (1)
L(zt) (Ic.] [0, 1]t [1,(z.t)

where [Onm] is a null matrix of N x N size. Suppose [Tnm] is a nonsingular
matrix. Then making the transformation

v (z,t)f [T T o] 1vp(zst) (12)

1(z,8)] [[0,] [Thd ' {17(20)

in equation (171) yields:

[Tond DOpmd | 5 | Vnlzst) | O] [ond || CTomd Onmd | 5 [Val2ot)

-1|32 - 13t
0,0 T8 37| pen | [re 1 1o, 3] {00,07 7517 T | 1z

(13)

where the supercript 't' represents the transpose. Premultiplying both sides
by the inverse of the transformation matrix leads to:

; Va(z,t)
3T (14)

a )
PRt ot e, J0r ] [0, 3 1-(2.t)

. -1 -
R [o,] [Tpmd 'IL, ILTE 77T

The matrix [anj is symmetric, as is its inverse [an]_l. Thus, consider the

term:




-1 ’
~1 t 5-1 =1
[[Tnm] [anj[TnmJ J ) [Tim][anjtg[Tnm} : (%)

v

. . t ~1 t ,
Now consider the matrices [T  JfL 17'[T ] and [Tnm][Cnm][Tnm]- Since the

matrices [an]"1 and [Cnm} are symmetric and [Cnm4 is positive definite, -
there exists a nonsingular matrix [Snm] sych that ['4]:

e ret -
[Cnm] = [SnmJ[Snm] (16a)
r[an]-1 =[S ldiag 2 OS] (16b)
substituting [Snm]'1 = [T;mj in equation (16), we obtain:
t -]
[TnmJ[an] [T

] = [diag 2] ‘; | (174)

and
A [ S R (175)

where [U] is an identity matrix, and is defined as

1T if n=m
0ifngm

[ul = [Snm]Q Snm

Spm

i

The inverse of both sides of equation (17a) yields:
v 17 1t 177 = fdvag 2,17 = [diag Ly, (18)
nm nm~+ ' nm 9 Ak ‘ kk

Therefore, the matrix [Tnm] will simultaneously diagonalize matrices
n 1 and [Cnm] and so will decouple equation (11). Note that no assumption
's Lven made about the eigenvalues of the inductance and capacitance matrices.



Now multiply equations (17b) and (18) to obtain:

T L JT e 1T T8 06, 00T, ] = Tdtag L 00T = [diag Ly (19)
and’ ’

e 00, 0T, 0T 11T I0TE 37T = [Ulldtag ] - [diag L] (20)

Simplification of equations (19) and (20) y1e1§s:

[Tl 'L JEC, 10T, 1 = [diag Ly, ] - (21)
and

[Tﬁm][cn%J[an][Tﬁm]“ - [diag Lyl o (22)

Thus, the matrix [Tnm] and [T:m]f] diagonalize the matrix products
[an][Cnm] and [Cnm][an]. Note that in equatwns (21) and (22), the right- .
hand-side of both equations is the same, so that the eigenvalues of the
matrix products [an][cnm] and [Cnm][an] are identical. Since the trans-
formations in equations (21) and (22) are similarity transformations, [Tnm]
and [Tgm]-] are the eigenvector matrices of the matrix products [an][Cnm]
and [Cnmj[an], respectively. They will be referred to as the voltage and

current eigenvector matrices. Thus:

[Tnm] N [Vnm]

and

[Tl = L1

£ 1T adect Frrn ol - B B .

1.

nm




. t t
Consider [Vnm][lnm] and [Vnm][lnm]

v 1t 1=1[7 ] i[TJc }'T§t= [T, JIT T} = [U] (23)
nm~ = "nm nm nm < Elamtt Tnm
and

t _ t 1-1r.t | 24
[, d0vED = 1789770t 5 - ) (24)

From equation- (23) and (24),
HUNRER SRR - (25)

where [ s and [In]j are the i th and j th columns of the matrices [Vnm] and
[Inm], ‘espectively. [Vn]i and [In]j are the i th and j th voltage and current
vectors, respectively, corresponding to the eigenvalues v, and vy Equation
(25) is valid in the case of degeneracy, i.e., v; = v Thus the voltage

and current eigenvectors are orthogonal to each other, including the ones

corresponding to degenerate eigenvalues.

In the preceding discussion we have established that 1) the transmission-
tine equations (1) and (2} can be decoupled, 2) there exists a matrix
[Tnm] which will simultaneously diagonalize the inductance and capacitance
matrices, 3) the columns of the matrix [Tnm] are linearly independent, 4) the
voltage and current eigenvectors are mutually orthogonal.

One way to find the matrix [Tnm] is as follows:

Since [Cnm] is a symmetric positive-definite matrix, there
exists an orthogonal matrix [Anm] which will diagonalize
[Cnm], so that:

(A JIC, J0A T = [diag C..] (26)



and
t 4 -1
[ 1= [Anm] (27)

Furthermore, there is another diagonal matrix [Yii] which reduces the matrix
[diag Cii] to the identity matrix; i.e.,

£ _ .
v, 30AE 30, A 10v..1 = [u] (28)
Making these same transformations on the matrix [Lﬂm}'T we obtain:
I S N 20 R s e (29)
i1 m m nm-t' 4 nm
Since the matrix [an]_1 is symmetric, then from equation (29), [L;m]—] is
also symmetric. Now, since [L;m] is symmetric, there exists an orthogonal
- 0 . IS - X - - -% .
matrix [an] which will diagonalize [an] , S0 that:
[Pt 0L, 17'CP 1 = [diag L] (30)
nm=="nm nm kk
from equations (29) and (30), we obtain:
[pE 30y, 308 30 37TfA I0V., 1P T = [diag Ly, ] (31)
nma 3 am T am nm= i nm kk

Since the matrix [an] is orthogonal, we can write equation {28) in the
following form:

[pE 10, J0AS I0c, T0A 0¥, I0P 1= [PL 0UILP, T = [U] (32)

From equations (16), (17), (31), and (32) o
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[Tnm:l N [Anm][Yii][an] (33)

A congruence transformation to decouple equation (11) was discussed in [5].
The method described above is general, and the orthogonal properties of the
modes for the partially-degenerate case have been established.

TII1. DETERMINATION OF THE VELOCITY MATRIX FOR
THREE-CONDUCTOR LINE (PARTIALLY DEGENERATE CASE)

Consider a lossless 1ine formed by three-conductors, plus a reference
conductor (groundj. The dielectric surrounding the line is inhomogenous
(elg., the lielectric insulation on the conductors ahd air). 1In genevral,
for thic inhomogeneous case, there will be three propagation modes traveling
with difrerent velocities. Degeneracy among modes may occur due to symmetry.
Consider the three-wire Tine shown in figure 1. The 1ine is made of identical
conductors with identical insulations. In this case degeneracy occurs among
the two differential modes. The common mode can always be separated from the
differential modes, since it has the largest propagation velocity. This is
due to the fact that for the common mode, a substantial amount of the electric
field resides outside the dielectric sheaths of the conductros, thereby
lowering the dielectric constant seen by this mode. The differential modes,
on the otherhand, have large electric fields between the individual wires
and thus see a larger effective dielectric constant.

The voltage and current eigenvectors of the Tine can be measured using
the method described in [1]. Let us denote the common mode as mode 1, and
the differential modes as modes 2 and 3. Since the propagation velocities
of modes 2 and 3 are assumed equal, i.e., v, = Vs fhese modes cannot be
resolved in time and we can only measure their sum. Thus, we can measure
[anl’ [Vn]2 + [Vn]3, [Injl’ and [In]2 + [In]B' From the knowledge of the
.oove measured qualities, we need to determine all the elements of the

11



voltage and current eigenvector matrices. The voltage and current eigen- .

vector matrices can be normalized in the following form:

11T 11
Vo1 Voo Vo3| and Ly I Ipg (34)
V31 V3p Vi3 I3 I3 I3

From the orthogonal properties of the modes, described in Section II, we
‘have: '

V.1« D10, = 05 [V 1y - [1.1, =0 (35)
Vply = [0 0y =05 v 1, - [I13=0 (36)
[V.1y - [1,]y =05 [VI, - [11,=0 (37)
These result in the following relations:
Vorlpp + V3113, = -1 (38)
Vorlaz + Vgqlgg = -1 (39)
Vpploy * Vgolyy = -1 (40)
Voolpg + V3plag = -1 (41)
Vogloy + Va3lgy = -1 (42)
Vozlpp * V33l35 = -1 (43)

12




In addition to the above we have following relationships from the measured
eigenvectors 2 and 3:

Voo + Vpa = A (Measured) (44)
V32 + V33 = B (Measured) (45)
Iy, + I3 = C (Measured) (46)
132 gy = D (Meagured) . - | (47)

In equatior (38) thru (47), there are eight unknowns, namely, V22’ Voas V32,
V33, I, 1935 I30, and 133. The nonlinear equations (38) thru (47) can be

/7
solved - r the above unknowns, to obtain the voltage and current eigenvectors.

IV. EXPERIMENTAL RESULTS

For the purpose of demonstrating the validity of the methods described, a
three-wire cable (over a ground plane) 10 meter in length was constructed
using three identical wires insulated with polyvinylichloride. Thé inner
and outer diameters of the wires are 0.42926 cm and 0.6096 cm, respectively.
The cable was supported with styrofoam blocks above an aluminum ground
plane in the configuration shown in Fig. 1.

13



7.62 cm

AHIHIHTi

Figure 1. Cross section of a three-wire Tine over a
ground plane.

The Time-Domain-Reflectometer (TDR) method described in [2] was used
to determine the characteristic-admittance matrix of the multiconductor line.
TDR recordings obtained by driving each wire in turn with the others grounded
at the input end and with the Toad end shorted, are presented in Fig. 2. TDR
recordings obtained by driving wires 1 and 2, 2 and 3, and 1 and 3 in parallel
with the other wire grounded at the input end and with the Toad end sHKorted,
are presented in Fig. 3. The diagonal and off-diagonal terms of the charac-
teristic-admittance matrix are given by the following relations [2]:
Y.. = 1/I"

i ii

—<
Y

= m m m ’

14
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Figure 2. Waveforms measured with a time-domain reflectometer to
determine the impedance ZTi and the modal velocities.
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Figure 3. Waveforms measured with a time-domain reflectometer

to determine the impedance ZTj and the modal velocities.
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(a)

s

voltage on wire 1 (b) voltage on wire 2 (c) voltage on wire 3

Figure 4. Voltage waveforms at the load end when wire 1 is driven at the input end.
Vertical scale 0.5v/div; horizontal scale 5 ns/div.

current on wire 1 (¢) current on wire 3

Figure 5. Current waveforms at the load end when wire 1 is driven at the input end.
Vertical scale 5 ma/div; horizontal scale 5 ns/div.



where Z?i is the measured impedance of wire i with all other wires grounded .
at the input, and Z?j is the measured impedance of wires i and j connected in
parallel at the input end with all other wires grounded at the input.

The reflected pulses shown in Figs. 2 and 3 exhibit three time-delayed
step functions corresponding to the two discrete propagation modes on the
line. The first mode is the common mode and the second mode is a combination
of the two differential modes.

The speed of propagation of a mode is determined from the ratio of the
Tength of the line to one-half of the round-trip travel time for that mode.
The measured round-trip travel time for the two distinct modes corresponds
to propagation speeds of 2.88 x 108 and 2.13 x 108 meters/sec.

Measurement of the eigenvectors was accomplished by driving one of the
wires with a short-duration pulse from a 50-¢ source and terminating the ends
of each wire in 50-0 resistive loads. The output voltage and current pulses
on each wire were recorded using a high-impedance voltage probe and a low-
impedance current probe, respectively, with a 200-MHz oscilloscope. The
recorded voltage and current pulse data are shown in Fig. 3. .

The modal voltage amplitudes were‘computed from the measured Toad voltages
using equation 9 in [1]. The modal current amplitudes were computed using a
similar relation for current pulses.

The characteristic-admittance matrix calculated from the TDR data is:

1.60 ~0.724 -0.716
[y, 1= |-0.724 1.587 ~0.709| x1072 mho (49)
i -0.716  -0.709 1.578

The voltage and current eigenvectors calculated from the Toad voltages
and currents are:

18




v,

[In]1

—

| 6.518
1.346

1.401

6.428.1

6.491

1
1.359

v, 1,

(1.3,

¥ [vn]3 }

* |:In:}3 -

3.567
-1.882 (50)
-1.786]
12.96T
-6.536 (51)

-6.13 |

g’ The voltage and current eigenvector matrices computed from these eigen-
vectors, using the method described in Sect10n I11I, are:

o

LV

[1

nm

nm

i

1
1.009
1.014

1
1.009

1.04

E
0.828
-1.828

] .
0.1078
-1.1078

-
~1.8495
0.8495 |

-
-1.1168
0.1168

The inductance and capacitance matrices obtained from the voltage and
current eigenvectors are:

(a

(L

)

nm

nm

From voltage eigenvectors

~

0.8792

0.6775

0.6760

74.54
-34.63

-34,29

0.6791
0.8827
0.6774

-34.57
73.87
-34.0

0.6787T

0.6785

0.8829 |

-34.2
-33.96

73.41

19
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(b) From current eigenvectors

0.8775 0.6782 0.6779
[an] = 0.6773 0.8831 0.6791} uH/m
0.6763 0.6785 0.8841
. 74.48 -34.61 -34.23
[Cnm] = -34.64 73.89 -33.91 pF/M
[34.28 -33.96 73.45

These results show that the voltage and current eigenvectors give almost
identical results. Further, the inductance and capacitance matrices are
known to be symmetric (e.g. Afj = Aji’ i # 3). The asymmetry present in

the inductance and capacitance matrices and difference in results obtained
from the voltage and current eigenvectors must be attributed to the measure-
ment and data-reduction errors.

Independent measurements of the per-unit-length parameters were also
carried out in the frequency domain using the technique described in [6].
The Tine parameters determined from the time-and-frequency-domain techniques
are compared in Table I. The time-domain results are averages of the para-
meters obtained from voltage and current eigenvectors, and symmetry has
been imposed by replacing fhe off-diagonal matrix elements Aij with average
values (Aij + Aji)/z‘ In the calculation of the propagation velocities
from the experimental data using the frequency-domain method [6], the velo-
cities do not turn out to be nearly equal, not exacfly, due to numerical
approximations in the computations.

20




Paramcters

L] (uH/m

[, ] (pF/m)

LY. - 1(mho)

nm

TABLE T

COMPARISON OF PER-UNIT-LENGTH PARAMETERS FROM
THE TIME-DOMAIN AND FREQUENCY-DOMAIN MEASUREMENTS

0.8783
0.6779
0.6772

74,51
-34.61
-34.25

1.60
-0.724

-0.716

Time Domain

0.6779
0.8829
0.6784

~34.61
73.88
-33.96

-0.724
1.587
-0.709

0.6772
0.6784
0.8835

-34.25
-33.96
73.43

-0.716

~0.709 | x1072

1.578_

21

Frequency Domain

0.8797

0.6554
0.6547

77.15
-35.53
-35.73

1.571
-0.7089
-0.7039

0.6554
0.8622
0.6470

-35.53
78.59
~35.82

-0.7089
1.598
-0.7041

0.6547
0.6470
0.8655

~35.73]
-35.82
77.44]

-0.7039
-0.7041

1.579 ]

%10
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CONCLUDING REMARKS

A measurement technique for the characterization of three-conductor
~lossless 1ine in a cross-sectionally inhomogeneous medium has been presented
for the case of partially-degenerate propagation on the line. The orthogona-
Tity properfies-of the propagation modes have been established for the
degenerate case.

The results obtained from this method are found to be in good agreement
with frequency-domain results. The method described in this paper can be
applied to the case where two modes have nearly equal propagation velocities.
In practice, due to symmetry in the configuration, the propagation velocities
of the modes will be nearly equal, rather than being exactly equal.

The method described here can be extended to N conductor lines, where
several groups of modes, but not all, have the same velocities,

22
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