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ABSTRACT
The propagation of electromagnetic waves through chiral media, i.e.,
through composite media consisting of macroscopic chiral objects randomly
embedded in a dielectric is analyzed. The peculiar effects that such media
have on the polarization properties of the waves are placed in evidence.
To demonstrate the physical basis of these effects a specific example,

chosen for its analytical simplicity, is worked out from first principles.
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1 A Sketch Showing Chiral Objects (Left Column) and their
Enantiomorphs (Right Column). From Top to Bottom are
Shown a Helix, a Mobius Strip, an Irregular Tetrahedron,
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of the Loop is Perpendicular to the Axis of the Straight
Portion of the Wire.
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and Scattered Waves and the Orientation Angles of the Chiral
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4 A Schematic of a Short Helix (Chiral) Evolving into a Straight
Wire (Achiral) under the Influence of Forces Produced by
Induced Currents.

5 Under the Action of Forces Produced by the Induced Currents
a Long Helix (Shown at Left) is Gradually Shortened into
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Right). -
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SECTION I
INTRODUCTION

Chirality is quite common. It occurs not only in nature but also
in works of art and architecture as well as in manufactured articles
(refs. 1 and 2). In nature we find chirality on a molar scale in, for
example, snails, flowers, and vines, and on a molecular scale in such
substances as grape sugar and fruit sugar. Moreover, chirality is an
operational feature of such manufactured articles as screws, springs,
and golf clubs.

Since chirality begets handedness and handedness begets optical
activity, it-is not surprising that the interaction between an electro-
magnetic wave and a collection of randomly oriented chiral objects can
be such as to rotate the plane of polarization of the wave to the right
-or to the left depending on the handedness of the objects.

. The concept of chirality is not new, nor has it been ignored.
Since the early part of the nineteenth century, it has played an
increasingly important role in chemistry (refs. 3, 4, and 5), optics
(refs. 6 and 7), and elementary particle physics (ref. 8). In 1811
D.F. Arago (ref. 9) discovered that crystals of quartz rotate the plane
of polarization of plane polarized light and hence are optically active.
Shortly thereafter, circa 1815, J.B. Biot (ref. 10) discoveréd that this
optical activity is not restricted to crystalline solids but appears as
well in other media such as oil of turpentine and aqueous solutions of
tartaric acid. These discoveries led to the fundamental problem of
determining the basic cause of optical activity. In 1848 Louis Pasteur

(ref. 3) solved the problem by postulating that the optical activity of




a medium is caused by the chirality of its molecules. Thus, Pasteur

introduced geometry into chemistry and originated the branch of chemistry

“we now call sfereochemistry. More recently, in 1920 and 1922, K.F. Lindman

(refs. 11 and 12) devised a macroscopic {(molar) mddel for the phenomenon
by using'microwavés instead of light, and wiré spirals instead of chiral
mo]ecu1és.” The va]idjﬁy'of the model was verified a few years later by
w.H.’Pickeringr(réf. 13).7 - '

To obtain a better understanding of chfra1ity and assay its future
role in electrical design, we shall examine in the following pages the
interaction between electromagnetic waves and chiral objects. In particular,
we sha11 study the case'ofba‘coﬁbosite'medium consisting of'randohTy oriented
chfraT conductors embedded in a dielectric. |

This work constitutes one aspect of the general problem to uncover
and expioit the symmetry propertﬁes of the electromagnetic field and of

the structures with which it interacts (ref. 14). The importance of symmetry
to the response of general scattering problems such as encountered in the
nuclear electromagnetic pulse (EMP) is becoming clearer. Geometrical
symmetry is useful for reducing the size of numerical cémputafions in
scattering problems by decomposing the problem into "smaller" parts. The
modal expansions for general Tinear scatterers which have been recently
developed, i.e., the singularity expansion method (SEM) and the eigenmode
expansion method (EEM) [20], have the modes divided into separate sets
based on the symmetry of the modes resulting from the symmetry of the
zscattererj e.g., as in the simple case of a symmetry plane [14].

Symmetry then should be regarded as one of the important areas of future
research in electromagnetic theory and computation [20]. We would like
to thank C.E. Baum for some interesting discussion concerning this general

application of symmetry.
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SECTION II
TWO CONJECTURES ON CHIRAL OBJECTS

Chirality is a purely geometric notion which refers to the lack of
symmetry of an object. By definition, an object is chiral if it cannot be
brought into congruence with its mirror image by transiation and rotation.
An object that is not chiral is said to be achiral. Thus all objects are
either chiral or achiral. Some chiral objects occur naturally in two
versions related to each other as a chiral object and its mirror image.
Obiects so related are said to be enantiomorphs of each other.

A chiral object has the preoperty of handedness; it must be either
left-handed or right-handed. If a chiral object is left- (right) handed,
its enantiomorph is right- (1eft) handed. For example, if the chiral
object is a left- (right) handed helix, its enantiomorph is a right (left) ‘
handed helix.

) The handedness of helices was made clear by Lindman's and Pickering's

experimental results which showed that a collection of randomly oriented

left-handed helices would rotate the plane of polarization of a linearly
polarized microwave one way but that a collection of randomly oriented
right~handed helices would rotate the plane of polarization the opposite
way.

Assuming that this relation between the handedness of the helices
and the sense of rotation of the microwave is not peculiar only to helices
but is a property of all chiral objects and their enantiomorphs, we are

Ted to the following conjecture: Any medium composed of randomly oriented
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equivalent (simple-connected) chiral objects will rotate the plane of
nolarization one way, say, to the Teft, while a medium composed of the
enantiomorphs of these objects will rotate the plane of polarization the
opposite way, i.e., to the right. '

In figure 1 we see common examples of chiral objects: a helix,
a Mobius strip, an irregular tetrahedron, and a glove. On one side of
the figure is the chiral object and on the other is its enantiomorph.

A type of (multiply-connected) chiral object that has recently
attracted considerable attention is the wire braid. The theory of
braids is a developing branch of topology (refs. 15 and 16) and a study
of how an electromagnetic wave interacts with a braid may help in the

development of the theory.

Examining the forces that are exerted on certain simple chiral
configurations of wire when an electromagnetic wave falls on them, we
conjecture that the forces are such as to reduce the chirality of the
configurations. This is true for the wire helix, for the three-stranded
braid, and appears to be true in general. This tendency of the forces

makes the object more nearly symmetrical.



Figure 1.

CHIRAL OBJECTS AND
THEIR ENANTIOMORPHS

A Sketch Showing Chiral Objects (Left Column) and their
Enantiomorphs (Right Column). From Top to Bottom are

Shown a Helix, a Mobius Strip, an Irregular Tetrahedron,
and a Glove.




SECTION III
THE SHORT HELIX

To demonstrate the plausibility of the above conjectures, we examine
the scattering of electromagnetic waves from a metallic chiral object. For
computational simplicity, the chiral object is chosen to be an electrically
small perfect conductor having the form of a short right- or left-handed
helix, as shown in figure 2. The calculation is simplified by referring
the incident and scattered waves to the scattering plane defined by the

At

incident and scattered wave vectors k' = k e, and k =k én, respectively

{(figure 3). The incident plane wave is composed of the electric field

_E_‘ = [aH éit + a‘Le'](S éj—]e'lkz (1)
and the corresponding magnetic field

@_' - t X E_‘/C 7 (2)

e
where ¢ is the free-space speed of light, ai{, ai’and § are real numbers
with a?l + ai_= 1, and z is the distance along én|(=é1{ X éi}. The circum-
flexed quantities are unit vectors, the primes denote quantities asso-
ciated with the incident wave, and the subscripts identify quantities
parallel or perpendicular to the scattering plane. The harmonic time
dependence exp(-iwt) (where w = ck) has been suppressed.

The scattered electric field gsc(e) depends on the observation

angle 6, defined by the relation cosé = én"én, and on the induced electric



THE SHORT HELIX
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Figure 2. TIdealized Short Helices Used in Calculations. The Plane
of the Loop is Perpendicular to the Axis of the Straight
Portion of the Wire.
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Figure 3. Vectors Indicating the Directions and Angles of Incident
and Scattered Waves and the Orientation Angles of the

Chiral Object.

11



and magnetic dipole moments p and m. It is apparent (figure 2) that .
both dipole moments are directed parallel to the axis of the helix. This

axis lies along the unit vector éd whose orientation angles are o and B

(figure 3).

The incident electric field induces currents in the straight portion
of the chiral object, and by continuity these currents must &lso flow in the
circular portion of the object. The current in the straight portion
contributes to the electric dipole moment of the object and the current in
the circular portion contributes to its magnetic dipole moment. 1In a com-
plementary manner, the incident magnetic field induces currents in the
circutar portion and by continuity in the straight portion. Thus,
also the magnetic field contributes to the electric and magnetic dipole
moments of the object. In a first-order (Born) approximation we find from

the heuristic argument above that the electric and magnetic dipole moments

of the cbject are given by

P eo[xe(éd-gf) + A% C éd-gf]éd (3)

f

= el B') ¥ iy (eEN)e, (4)

Here, as in the remainder of the report, the upper {lower) sign corresponds

to the right-handed (left-handed) helix of figure 2. The permittivity, the

permeability, and the impedance of free space are denoted by €0 My
1

n(= (uo/ao)z). The electric and magnetic self-susceptibilities, X and X
are the real positive quantities as are the cross-susceptibilities x

and X * Clearly, Xa and Xy are the usual electric and magnetic suscepti-




bilities associated with electrically small metallic bodies. The cross-
susceptibilities Xem and Xpe 7€ in a certain sense, a measure of
chirality or handedness since for archiral bodies Xem = Yme © 0.

Using known approximations, the seTf-susceptib11ities can be written

as

Xe = (20)° Cley i (5)

it

Y = (ma?)% /L | (6)

where € and L are respectively the capacitance and the inductance of the

body, and 2% and 2a represent the length and the width of the short helix

(figure 2). It can be shown that the cross-~susceptibilities are qive% by

3 (22/ma%K) (7)

Xem

>
il

e Xe(ﬂazk/ZR) ‘ (8)

From physical considerations it appears that x__ and Xpe 27 equal and

em

real, i.e.,

= Xme = Xc (9)

where e is their real common value.

It follows from (5) through (9) that the constraint

LC = w2 (10)

is placed upon the inductance and capacitance of the helix and

the common value Xe for the cross-susceptibilities is related to the

inductance and capacitance by

13



Xe = 22(ﬂa2)n/wL = 2£(ﬂa2)nw C (1) . .

From the knowledge of p and m the scattered field can be calculated

by the formula

Zeikr
Tre T [(e, x p) x e - &, x m/c] (12)

E (o) =X

To gain further insight into the problem, it is useful to find the
constitutive relations of a medium composed of randomly oriented equivalent

chiral objects. These constitutive relations must have the form (ref. 17)

P B

Yo E* Yo B (13)

M=y E+Y B ) (14)

where P and M are respectively the polarization and magnetization of the

medium.

Energy conservation dictates that for a lossless medium

Yoe = Yem (15)

where the asterisk denotes complex conjugate. If Yie and Yem not only
satisfy (15) but also are purely imaginary quantities, then the consti-

tutive relations (13) and (14) are those of an optically active medium

(ref. 17).
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To find the constitutive parameters for a medium composed of N
short helices per unit volume we compare (3) and (4), averaged over orien-

tation angles o and B8, with (13) and (14). Thus we obtain

Yo = N exg/d (16)
Yy = N X/ A (17)
Yo = 1 N Xgn/4D (18)
Ve = TN Xpe/®0 (19)

since Xgn and Xpe 7€ real and equal, we see from (18) and (19) that

vy and Yep are purely imaginary and satisfy (15). Hence the medium

me
composed of short helices exhibits optical activity.



SECTION IV
COLLECTION OF SHORT HELICES

To find the scattered field of a collection of randomly oriented

identical helices we can use one of two approaches. One approach uses
(12) averaged over orientation angles « and 8; the other approach uses
(13) and (14) directly. These two approaches give the same result.
Here we use the former of the two approaches.

Let us suppose that we have a collection of N non-interacting
helices per unit volume occupying a small volume AV. When the incident
wave is circularly polarized, the scattering cross-sections per unit solid

angle @ are found to be

2,112
(K“Nav)
dgdg ) - ——--—§-!xe-xmi2x612(1+cose)2 (20)
RCP--RCP 1024

when the incident wave is right circularly polarized (RCP) and only the

right circularly polarized part of the scattered field is considered,

2012
4] = Ixg g2 | (T4c0s6) (21)
LCP-LCP 1024m

when the incident wave is left circularly polarized (LCP) and only the

left circularly polarized part of the scattered field is considered, and

2 .2
(K“NAV) 5 9
(dcdg ) N dgdg = "————-fé-!xe+xml (1-coso) (22)
RCP-LCP LcpsRCp 1024 ‘
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when the incident wave is RCP or LCP and the scattered field fs LCP or
RCP respectively.

From these expressions we see Ehét for scaftéring in the forward
direction (6=0) right (1eft) circular polarization produces a right (left)
circularly éo]ariied scatteréd field whereas in the 5ackward direction {(8=m)
right (left) circular polarization produtes a left (right) circularly
polarized scattered field.

Next, we consider a wave normally incident on an electrically thin
s]ab'of width d which contains N randomly oriented helices per unit volume.
Using again the assumption that the helices are non-interacting, we find
from averéging (12) that the transmitted field is given by

i

Et]”: aHéH +ale é_!_ (23)

+ mgd [ag) Ogmx) + 12y e'? 2x 38y

+ 1'[ia\llZXC—iaLeT“S (Xe-xm>]éi} e1k2
and the reflected field by
- INkd . is , ).-ikz
Erer 73 Xe+Xm)L‘[{é|1+aLe éi]e (24)

where the above expressions are correct to the first order in(Nkdy) (here

x stands for ., x, or XC).

From (23) it can be shown that the plane of polarization is rotated

through the angle ¢ where



for waves which pass through the chiral medium. Here ¢ is measured from

él[ towards él. Expression (25) is again correct to the first order in (Nkdy).
This equation expresses a general result which holds for any medium composed of
objects characterized by parallel electric and magnetic dipole moments

with non-zero cross-susceptibilities. For the short helices pictured in

figure 2 we can find a Tower bound on the capacitance C by the expression

(ref. 18)

1/3

C > eo(4ﬂ)2/3(3\.’ (26)

h

where Vh ( = 2n b2(1+ﬂa)) is the volume occupied by the short wire helix
and b is the wire radius. This inequality, with the aid of (11) and (25),

yields the following lower bound for the magnitude of the rotation angle:
ol = [tan of > 4713/ 3n(ka) (20) (ma?) (31%¥, )1/ (27)

This bound is proportional to the product of the third root of the volume Vh
of the wire helix and the cylindrical volume containing the helix
( = ZZnag).
From (23) the eccentricity of the transmitted polarization
ellipse differs from that of the incident polarization ellipse by a factor
of order (dex)z. However,this transmitted field is correct only to order
(Nkdy). Therefore, the change in the eccentricity of the polarization
ellipse cannot be determined exactly from this model. To the first order
in (Nkdx) the eccentricity is unchanged.

The reflected wave (24) to order (Nkdy) shows zero rotation for

the plane of polarization and zero change in the eccentricity for the

polarization ellipse. Therefore, for reflected waves, the slab of chiral

18




medium behaves as an ordinary dielectric slab. These polarization charac-
teristics are due to the fact that in the backscatter direction, in the
first order, the éffects of chirality are not presenf in the scattered
field (equations (20), (21) and (23)).

From Noether's theorem (ref. 19) it can be shown that the angular
momentum of the electromagnetic field is conserved for a medium described
by equation (13) through (19). This implies that no torque is exerted on
a slab of chiral medium. It is not surprising that there is no torque
since the electrical properties of the slab are invariant under rotations
of the slab about éﬁ' With a knowledye of the state of polarization of
the incident wave, conservation of field angular momentum further implies
that the state of polarization of the reflected wave can be determined
from the state of polarization of the transmitted wave and vice versa.
Some experimental results indicate that there is a change of eccentricity
between the incident and scattered fields due to the chiral medium (refs.
11 and 12).

From the above considerations, the conjecture that a collection

of chiral objects will rotate the plane of polarization becomes plausibie.
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SECTION V
REBUCTION OF CHIRALITY

Assuming that the helix in figure 4 is made of flexible wire, we
can see that the currents that are induced tend to deform the helix. The
current along the circular portion tends to open up the circle and make
a planar figure out of the original helix. Moreover, interaction with
the current along the straight portion of the helix tends to elongate
the planar figure into a straight Tine. Since planar figures are achiral,
we thus see that the helix evolves into a planar figure and that the
chirality of the configuration is reduced.

Suppose now that we have a flexible helix of many turns, figure 5.
In this case the induced current forces adjacent turns toaether and at the
same time makes each turn expand into a turn of larger radius. Thus the
original helix becomes a shortened helix of larger radius. Since the
shortened helix is less chiral than the original helix, we see that here
again the induced currents tend to reduce the chirality of the configuration.

Another type of chiral object is a braid of non-intersecting wires.
Following Artin's theory of braids (ref. 15) we may describe a braid by
projecting it on a plane and expressing the projected pattern as the
product of terms, each of which is o; or 0;1. Here 0 denotes that the

strand in position i crosses in front of the strand in position i+ 1 and

g;] denotes that the latter crosses in front of the former.

Let us consider the three-stranded braid 020{102 shown in figure 6.

The bus bars L} and L2 are connected by three flexible wires at the freely

2G




REDUCTION OF CHIRALITY (SHORT HELIX)

D

Figure 4. A Schematic of a Short Helix (Chiral) Evolving into a Straight
Wire (Achiral) under the Influence of Forces Produced by

Induced Currents.
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REDUCTION OF CHIRALITY (LONG HELIX)

COE5 65
i)
MR

Figure 5.

Under the Action of Forces Produced by the Induced Currents
a Long Helix (Shown at Left) is Gradually Shortened into
More Closely Spaced Loops of Increased Radius {Shown at
Right).
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WIRE BRAID

Figure 6.

Bus Bars L1 and L2 Connected by Three Strands of the

Braid Defined by Gp01 Tp-
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movable but ordered terminals P], P2, P3 and Ql’ QZ’ Q3. Clearly, the

braid and bus bars form a chiral object. An incident wave will induce

current in the braid and bus bars and these currents will deform the
configuration, viz., will make it more nearly planar, and thus reduce

its chirality.
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SECTION VI

CONCLUSIONS

We direct attention to the interaction of electromagnetic fields
with macroscopic chiral objects. By examining the wire helix and the wire
braid as chiral objects, we obtain results which conform to the conjecture
that composite media composed of macroscopic chiral objects are optically
active, and to the conjecture that electrodynamic forces tend to reduce
chirality.

These considerations are expected to play a role in the develop-
ment of diagnostic tools for remote sensing, in the design of electro-

magnetic shields and in ths prediction of structural deformations.

25



[1]

(2]
[3]
[4]

Ls]

£e]

£7]
£e]

L9l
[10]
[11]
[12]
[13]

[14]

[15]
[16]

REFERENCES

Jaeger, F.M., Lectures on the Principle of Symmetry, Cambridge
University Press, London, 1917.

Weyl, H., Symmetry, Princeton University Press, Princeton, 1952.
Pasteur, Louis, Ann. de Chim. et Phys. 24, 442, 1848.

Prelog, V., "Chirality in Chemistry," Nobel Lecture, December 12,
1925; also in Les Prix Nobel, Imprimerie Royale P.A. Norstedt &
Soner, Stockholm, 1976.

Bunn, C.W., Chemical Crystallography, 2nd ed., Oxford University
Press, Oxford, 1961,

Nye, J.F., Physical Properties of Crystals, Oxford University
Press, Oxford, 1957.

Sommerfeld, Arnold, Optics, Academic Press, New York, 1964,

See, e.g., Alder, S.L.and R.F. Dashen, Current Algebras, W.A.

Benjamin , Inc., New York, 1968.

Arago, D.F., Mem. Inst. I, 93, 1811.

Biot, J.B., Mém.Inst. I, 1, 1812 and Mém. Acad. Sci. 15, 93, 1838.
Lindman, K.F., Ann. d. Phys. 63, 621, 1920.

Lindman, K.F., Ann. d. Phys. 69, 270, 1922.

Pickering, W.H., private communication, experiment performed at
Caltech, 1945,

See, e.g, Baum, C.E.,"Interaction of Electromagnetic Fields with
an Object Which has an Electromagnetic Symmetry Plane, Interaction
Notes, Note 63, Air Force Weapons Laboratory, Kirtland Air Force
Base, NM, March 1971.

Artin, E., Ann. Math. 48, 101, 1947 and Ann. Math. 48, 643, 1947.

See, e.qg., Lietzman, W., Visual Topology, American Elsevier

Publishing Company, Inc., New York, 1965,

26




(171

(18]

[19]

(20]

See, e.g., Post, E.J., Formal Structure of Electromagnetics,

North-Holland Publishing Company, Amsterdam, 1962.

Polya, G. and G. Szegd, Isoperimetric Inequalities in Mathematical

Physics, Princeton University Press, Princeton, 1951; also Amer.
J. Math. 67, 1, 1945. ' '

See, e.g., Soper, D., Classical Field Theory, John Wiley & Sons,
New York, 1976 or Bjorken, J.E. and S.D. Drell, Relativistic
Quantum Fields, McGraw-Hil1 Book Company, 1965.

C. E. ﬁaum, "Emerging Technology for Transient and Broadband
Analysis and Synthesis of Antennas and Scatterers," Proc. of the

IEEE, Vol. 64, pp. 1598-1616, Nov 1976, and also Interaction Note
300, Nov 1976.

27



