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APPENDIX B .
: TIME-DOMAIN REPRESENTATION OF
: FREQUENCY-DEPENDENT PARAMETERS
1. THEORY

In this appendix, the theory necessary for the representation of fre-
quency-dependent, transmission-line parameters in the time domain is dis-
cussed.

The general formulation of the telegrapher's equations with nonconstant
R, L, G, and C in the time domain involves convolution integrals of various
functions of time. Because the nonlinear, transmission-line analysis
employs the standard differencing techniques in the time domain, the re-
sultant convolution integrals require large amounts of computer time and
storage. This results from the backstoring of time function values at

each cell in the transmission Tine, plus the necessary computation of the
convolution integral.

This computer resource expenditure can be reduced by expressing the
convolution integrals as solutions of differential equations. With this
expression, the backstoring is unnecessary. However, the solution to the
differential equations is still required at each cell in the differencing
of the transmission line equations.

The development of the differential equations starts with the frequency-
domain telegrapher's equations,

V(x,8) = - 2(s)1(x,8) + E(x,5) (B1a)

g—x I(x,s) = - Y(s)V(x,s) (B1b)
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where V(x,s) and I(x,s) are the voltage and current as functions of the
Laplace transform variable, s, and distance, x, along the transmission
line, and E(x,s) is the distributed voltage source. The quantities of
interest are Z(s) and Y(s), the series impedance and shunt admittance
per unit length.

The convolution-integral, time-domain representations of these equations
are

.
%Wx’t) = - f L7 z(s)] (t-1) i(x,7)dr
(8]
+ e(X,t) (Bza)
t .
L i(x,t) = - f ULY(8)] (t-1) vix,7)dn (82b)
0

where v(x,t), i(x,t), and e(x,t) are the inverse transforms of V, I and E,
and L’1 is the inverse Laplace transform operator.

As is the technique of Reference 1, the inverse transforms of Z and Y
are represented in the time domain as a sum of decaying exponentials via a
Prony analysis. This representation allows the formulation of the differen-
tial equations to which the convolution integrals are solutions.

Let N .
s
-t [Z(s)] (t) = :E: ae n (B3a)

and

(B3b)

[}
M=
o
=
(1]
o
o }
ot

L™ tv(s) (¢)

1. Price, H., R. H. St. John and D. Merewether, Two-Port Representation of
a Linear Transmission Line in the Time Domain, Mission Research Corpo-
ration, AMRC-R-170, January 1979.
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With this form of the inverse transforms, Equation B2 is now

N t
s _(t-1)
.g—x- v(x’t) = o E / ane n 'i(X,‘I')dT
n=1 "o

+ e(x,t)

A similar expression is obtained for Equation B2b,

9 . _ i ' pn(t'T)
Lt =- f b e v(x,t)d
n=l1 “o

If we Tet ¥
y Sn(t-T)
.Yn(X,'C)= / a.e i(x,T)dT
0
and
t p,(t-1)
zn(x,t) =f b,e v(x,t)dt

(8]

then the transmission line equations (B2a and B2b) become

N
.g_i.v(x’t) = - Zyn(x,t) + E(Xst)
n=1

..

(B4a)

(B5a)

(B5b)

(B6)

and similarly for Equation B2b. The differential equations can now be
found from the expressions for yn(x,t) and zn(x,t) in Equation B5. Taking

the derivatives of Equations B5 with respect to time, and obtains

3 C
5% Yn(%st) = a ilx,t) + sy (x.t)

B5
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and a similar expression for %E'Zn(x’t)' These results are compatible with
those obtained from the state-variable procedure of Reference 1. The dif-
ference is that the present differential equation may be compleX if the
poles and residues obtained from the Prony representations of L'l[Z(s)]

and L7} [Y(s)] are complex. This is not a problem since the complex poles
ére residues resulting from the Prony analysis are always in complex con-
jugate pairs, with the result that Zyn and Zzn are real. . The telegrapher's

equations (Equation 2) are now

N

Eovlxt) = - Doy (xt) +e(xt) (B8a)
n=1

%E-yn(x,t) = ani(x,t) + snyn(x,t) (B8b)
M

& i(xt) = - Z z,(x,t) (B8c)
n=1

and .
%%-zn(x,t) = b, v(x,t) + Pz (Xst) (B8d)

This derivation shows the most straightforward application of this
method for the transmission-line equations. However, the transmission
Tine equations in this form have problems when the numerical inverse
transformations of Z(s) and Y(s) are to be made.

For a cable buried in an infinite lossy medium, the propagation con-
stant, h, is the solution of a transcendental equation (Ref. 2). With
h known, the characteristic impedance, ZC, of the 1ine can be found as
shown in Reference 3. From the propagation constant and characteristic
impedance, the series impedance and shunt admittance are defined as

2. Stratton, J. A., Electromagnetic Theory, McGraw-Hi11l, 1941, p. 547.

3. Hill, J. R. and M. R. Wilson, Buried Cable Transmission Line Parameters:
A Comparison of Two Theoretical Models, Mission Research Corporation,
AMRC-N-5, March 1973,
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Z(s) ih(;)ZC(s) (B9a)

Y(s)

ih(s)/ZC(s) . (B9b)

Figures Bl and B2 show the real and imaginary parts of Z(s) as functions
of frequency for a typical buried cable (Y(s) displays similar behavior).
The next step is to find the inverse transform of a function with this
frequency behavior,

To demonstrate this, et us examine the simple L-R series circuit shown
in Figure B3.

i(t)—

Figure B3. Simple L-R series circuit.

The time domain relation between the current and voltage is
v(t) = Ri(t) + L ¢ i(t) (B10a)
The Laplace transform of this equation is

V(s) = (R+st) I(s) (B10b)
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Imaginary (Z(s))
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By comparison with Equation Bla, the series impedance is Z(s) = R+sL. The
imaginary part of Z(s) for the simple L-R circuit displays the behavior shown
in Figure B3, but the real part is constant, unlike the real part of the
actual series impedance of Figure B2. This form of the actual series im-
éedance makes it difficult to separate the behavior which results in the
fMpu1se, doublet, and inverse transformable time domain aspects.

The intractability of this problem can be surmounted by the realization
that all that is needed is a relationship between the current and voltage,
not necessarily the one implied by Equations Bla and Blb. To clarify this,
a comparison using Equation BlQb can be made. Written in the form

1(s) = g V(s) (B11)
the inverse transform of this admittance has no frequency-domain behavior

which prevents the immediate numerical (or analytical in this case) inverse
transformation into the time domain

t R
YT
i(t) =%f T e | (812)
o

This same process can be applied to Equation Bla by setting

EoV(x,8) = - U(x,s) + E(x,8) (B13a)
where
U(x,s) = Z(s) I(x,s) (B13b)
or 1
I(x,s) = ZTET'U(X’S) (B13c)

Figures B4 and B5 show the real end imaginary parts of 1/Z(s); these
have no high frequency behavior which indicates impulses or doublets in the
time domain and can therefore be numerically inverse transformed. The fre-
quency behavior of 1/Y(s) has similar real and imaginary parts.
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Figure B5. Imaginary part of the inverse of the series
impedance as a function of frequency.
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The utilization of this form of the series impedance and shunt admittance
requires a form of the telegrapher's equations which is different from that
shown in Equation B8. o €

f Examining the voltage equation (Equation B13a), the inverse transform is

t

g; vix,t) = - u(x,t) + e(x,t) (B14)

The voltage term u(x,t) now appears in the differential equation resulting
from the inverse transform of Equation Bl3c,

t
i(x,t) = [ UL 11/208)7 (t-1) u(t)dr (B15)

0

If L'1 [1/Z(s)] (t) is represented as the sum of decaying exponentials as
was done with L'1 [Z(s)] in Equation B3a, one obtains, by an analagous der-
jvation,

N
i(x,t) =Zyn(x,t) ' (B16a)
n-1

where yn(x,t) is now related to u(x,t) by

3_ _
5T yn(x,t) = anu(x,t) + snyn(x,t) (B16b)

By solving for the unknown u{x,t), the telegrapher's equations now have
the form
N

i(x,8) = ) yp(xt) (817a)

n=1

Sy, (xst) = a, [e(x,t) - S v(x,t)] + sy, (xst) (B17b)

B13



and by a similar analysis involving 17! [1/v(s)1,

M
v(x,t) =Z zn(x,t) . (B17¢)
‘ n=1 ' %
: 2. = b i (B17d)
= 5t Zn(X,t) b, 7% i(x,t) + P zn(x,t)

2. RELATIONSHIP TO ELEMENTARY CIRCUITS

The series R-L circuit of Figure B3 gives considerable insight into
the physical interpretation of the Prony poles and residues of L'1 [1/2(s)]
of Equation B15. The current-voltage relationship for the series R-L
circuit is shown in Equation B12. In this case the Prony analysis would
give one pole and one residue of a = 1/L and s = - R/L. From this, one
may expect that the dominant pole and residue obtained from L1 [1/Z(s)]
for the actual buried cable would be related to a constant L and R of the
simple circuit in Figure B3.

A similar analysis of a parallel R-C circuit gives analogous results

for the dominant term in the Prony analysis of L'1 [1/Y(s)]: b =1/C and
p = - G/C where G is 1/R in the simple R-C circuit.

Depending on the relative importance of the first few terms in the
expansion of L'1 [1/Z(s)] or -1 [1/Y(s)], it may be possible to represent
the transmission line with constant parameters. If the energy of the second
term obtained by the Prony analysis is three or four orders of magnitude
less than the energy of the first term, an adequate representation of the
transmission 1ine may be made with constant R, L, G, and C.

In the case where there is one dominant term in the expansions, this
procedure gives the best constant R, L, G, and C which can be used. Of
course, when this is true, the differencing of the telegrapher's equations
can be achieved by either the method discussed here (Equations B8) or by
the differencing of the time-domain representation of Equations Bl.

3. COMPARISON TO THE FREQUENCY DOMAIN SOLUTION

To test the accuracy of the new representation of the telegrapher's
equations, several comparisons were made between the predictions of the

B14
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frequency-domain solution and the time-domain solution. A1l comparisons
were made with sources driving the cable such that the response was linear.
Under this condition, the frequency-domain prediction is assumed to be
"correct".

The transmission Tine to be analyzed consisted of a 46 mete{ long,
single, insulated conductor buried in an infinite soil medium with the
parameters shown in Table 1. The termination impedances are 50 ohms on
the "source" end of the cable and 106 ohms on the "load" end.

TABLE 1
CABLE AND SOIL PROPERTIES

Conductor Dielectric Soil
Radius (r) 3.937x107° meters  1.270x10™° meters ---
Permittivity (e) €5 farads/meter 2.3xeo farads/meter frequency dependent4
Permeability (u) o henries/meter My henries/meter u, henries/meter
Conductivity (o) 5.8x107 mhos/meter 0.0 frequency dependent4

The solution of the three media problem with the parameters listed in
Table 1 resulted in the quantities L'1 [1/Z] (Fig. B6) and L'1 [1/Y] as
functions of time. A Prony analysis on these functions resulted in the
decaying exponential representations

5

L1 [%] ~ 5,32x10° exp(-1.197x107t) + 1.12x10° exp(-2.022x10%¢)  (B18a)

9 9

LY [§] = 9.24x10° exp(-1.073x10%t) + 1.69x10° exp(-4.502x10%)  (B18b)

The coding of Equations B17 was done as shown in the next part of
Section II. Two comparisons were made between this formulation of the
telegrapher's equations and the frequency-domain solution. The first em-
ployed a source, e(t), at the "source" end of the line with the following

form

4, Longmire, C. L. and K. S. Smith, A Universal Impedance for Soils,
Mission Research Corporation, MRC-N-214, October 1975.
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1.0 - ot

e(t) (B19)

where
o = 1070

: Figures B7 and B8 show the voltage and current given by the two ap-
Proaches at a distance of 26 meters from the source end of the cable.
Comparisons of results at the ends of the cable resulted in similar cor-
relations between the two techniques.

The second comparison involved a distributed source of the form

e(t,x) = A(e-at - e'Bt) o~Bx (B20)

8 1

where A = 10° volts/meter, o = 4.0x107° sec'l, B = 4.76x10°° sec T,
6 =103 m'l, and t is the retarded time. This distributed source re-
presents a field traveling at the speed of 1ight from the source to the
load end of the cable.

Figure B9 shows the voltage across the source impedance predicted by
two technigues. The discrepancy between the two responses results from
inconsistencies inadvertently introduced into the analysis. These can be
avoided in the future but, because of time limitations, must remain pre-
sent in the calculations of this report.

The problem arises from the inherent time resolution of time-domain and
frequency-domain analyses. The time step, At, employed in the time-domain
calculations results from the Courant stability condition, At < Ax/2v where
Ax is the cell size and v is the velocity of propagation of a signal along
the cable. The time resolution employed in the Prony analysis of L'1 [1/Z]
is not as good as that implied by At of the time-domain analysis; thus the
reflections of the pulses are not modeled as well in the frequency-domain
analysis and the poles and residues employed by the differential equations
in the time-domain analysis do not give a true representation of the voltages
and currents. As can be seen in the comparisons (Figure B9), the discrep-
ancy is not major and can be ignored.
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The last comparison used the distributed source of Equation B19 and com-
pares the time-domain coding modified by the differential equation approach
and a time-domain code employing constant R, L, G, and C transmission-line
parameters One case of constant R, L, G, and C chosen was the dominant-
Qole -and residue parameters discussed previously. The other case used
R, L, G, and C parameters derived without benefit of the frequency-domain
analysis. If one expects a response near a certain frequency, a common
derivation of the constant R, L, G, and C parameters is

-1
R = [n(zrcsc - acz) cc] (B21a)
L = 2—,{2 (s /r,) (B21b)
C-= Zneslln(és/rc) (B21c)
[e)
_ S
G = o C (B21d)

where & = v2/wuo, the skin depth in the soil (65) or the conductor (8.)>
e and o, are the radius and conductivity of the conductor, and Uy and 2
are the permeability and permittivity of the soil.

The three voltage responses shown in Figure B10 represent predictions by
(1) the differential-equation-modified, time-domain code, (2) a straight
time-domain code employing the constant R, L, G, and C derived from the
dominant poles and residues as discussed earlier and (3) the time-domain
code employing the constant R, L, G, and C of Equations B21.

Reasonable agreement is found between the time-domain predictions em-
ploying some benefit of frequency-domain analysis. The code using the

' constant, R, L, G, and C of Equations B21 disagrees mainly because of the

Jarge shunt admittance given by Equation B21d.
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4. DIFFERENCING OF THE TELEGRAPHER'S EQUATIONS

The equations to be differenced implicitly contain the differential-
equation representation of the frequency-dependent variables. In the case
of the regular telegrapher's equations there are two equations involved.
The modified equations not only contain two equations to be diféerenced
(Equations B17b and B17d) but two auxilliary equations (Equations B17a
and B17c) which represent summations to obtain the current and voltage.

Using a central-differencing scheme where n and j are the time and posi-
tion indices, it can be seen from Figure B1l that Equation Bl17b becomes

X - X ol

Y] b 2 ¥
a S ¢ K '\ B rl

iy 1y Vi@ 1@ vs) V'(M-2) T"(M-2) YM(M-1) T0(M-1) VT(M)

(v & ¥ o
N Bad [aY

Figure B1l. Relative placement of currents and volitages for
differencing of the telegrapher's equations.

LIt w - o]-2s [ )+ 9} )]

+a, {e"*l (3) - = [V (g+) - (j)]} (B222)

or

S, S.
ntl .y (1 iY_oon oy (L _1)
Y3 (3)(3?'2)"5’1‘ (3)<At+2

i {e"+1 (9 - & [V” (3+1) - V" (j)] } (B22b)
by a similar process the z's of Equation B17d are found to be
N+l ;. (1 ”i,n.(_l__ pi)
2 (3)(51?‘2") 2y D\ * 7
el NPT (3-1)] (823)
T X
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After the y's and z's have been found, the currents and voltages are the

sums shown in Equation B17a and B17c. The arbitrary placement of the voltage
nodes of the ends of the transmission line results in the ca1cu§ation of
Equation B22b before Egquation B23. This places the currents pné-ha]f time
stop ahead of the voltages. The relationship of the discrete voltage and

turrent representation to the continuous representation is therefore

"(3) = i[(j - %)Ax, (n-1) At] (B24a)
V(i) = v [(3-1) AX, (n - %)At] ' (B24b)
" (5) = ef(3 - 3) 8% (n-1) at] (B24c)

where e(x,t) is the voltage driving term in Equation B6.

The boundary conditions of the ends of the transmission 1ine determine
the end voltages. At the source end

V) = - o, (n - 3)et] R+ V's[<n - 3 at] (B252)

where R and V are the source resistance and voltage and the current is
def1ned to be pos1t1ve flowing from the source to the load end of the cable.

At the load end of the transmission line, only a resistance, RL’ is
assumed so

V(M) = i[z, (n - %—)At] R, (B25b)

where 2 is the length of the line.

Using central differencing, Equation B25a becomes
i [0, (n - %—)At] = {vs'[(n - %)At]-%— [v"”(n ¥ v“(l)]} (B26)
3
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Because V(1) is a sum of z's (Equation Bl7c), the boundary condition for

Z?+1(1) is found from Equation B23.

b b
n+1 1 Py ) i n+1
. 2 m(ﬁ'z P Rax ) T RAX Zzz (1)
; %71
) b: \ 2b
= o, Ay, iy o L
= 2;(1) (At * 3 RSAX) | Ry Ve
, N
+ 55— 2" 1)]
2Rs Z z(
2#1

. . . . n+
This results in a set of linear equations for the unknown Z;
source boundary,

b

A; Dy Dy ---- D, zg+1(1)\ 20(1)By - €, - Dy D 2
A D D N1y "(1)B, - C, - D &K z
Dp Ay Dy === D1 2, | z2(VBy - €y - Dy S
- - - = - 272
- - +1 - n
Dy, =mmmem———- A 2N (1) z, (1), - C, -D :E: z,(1)
N N} N / NVETEN TN TN SR }

. b.
. R
I Roo%
B =L+El-;_b...i_
i At 2 RSAx
. n 1
Ci =5 [I (1) - R, Vs]
D.=_Ej_.
i RsAx
B25

(B27a)

1) at the

(B28a)

(B28b)

(B28¢)

(B28d)

(B28e)



A similar matrix equation is found for the unknown z?+1(M) at the load end

of the transmission line,

: /Al Dy Dy ---- DN\
- | D2 Az Dy === Dy
K "

n+l n
{zl (M)\ zl(M) B1 + Cl
n+l n
n+i n
\zN (M) \ZN(M) By + Cy
A. = .1— - .p_i + bi
i At 2 RLAx
. b.
21 p1 i
81 7T " Rax
2b.
C; = Zil 1" (M-1)
D, = i
i RLAx
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