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SECTION I
INTRODUCTION r

1. BACKGROUND

1

" This report discusses the adaptation of a linear section of transmission
line to a time-domain code. The linear section is described by frequency-
domain parameters appropriately transformed into the time domain. On both
ends of the linear section, the time-domain code employs difference equa-
tions to describe regions which may exhibit a nonlinear response. The inter-
faces between the linear and potentially nonlinear sections of cable produce
boundary conditions joining the variant mathematical descriptions of the
regions.

2. OBJECTIVES

This document reports on the formulation (in the time domain) of a
two-port representation for a linear transmission line, and the joining
of this result to a nonlinear, time-domain, transmission-line code.

In general, the nonlinearities can occur in two regions: The first,
or primary breakdown region, close to the burst, results from the high
intensity fields associated with the nuclear device. The second, or
secondary breakdown region, can occur at a discontinuity in the line far
from the area of detonation. These are caused by signals propagated by
the 1ine and reflected at the discontinuity. These two regions are sep-
arated by a linear section of cable.

0f course, this central line section is quite compatible with the non-
linear codes; that is, the difference equations representing the transmission-
line equations are compatible with linear, as well as nonlinear, line
behavior. Unfortunately, however, the computational time, and thus the
computer cost, is greatly increased, due to the large number of spacial
increments which must be devoted to the 1inear section. The question’



naturally arises as to whether the difference equations for the linear sec-
tion can be replaced by a less time-consuming scheme. r

+

" As we shall show, the linear section can be replaced by a twonort
ne?work section in the time domain. The most obvious formulation leads to
cofivolution integrals relating the input and output voltages and currents.
The convolution- integrals, however, require an integration over all previous
time at each time step.

The convolution integrals can be replaced by equivalent, ordinary dif-
ferential equations. The advantage of this form is that the differential
equation solution can be numerically stepped forward at each time step,
based only on the value of the variables at the previous time step. Ob-
viously, this procedure is less time consuming that that of convolution,
particularly at long times.

In the following materials two approaches will be shown. The first
derives the convolution integrals which relate the currents and voltages

at the two ends of a linear transmission line, and the second approach derives

the differential equations relating the same quantities. Because the dif-
ferential equations are most easily formulated from rational polynomials in
frequency, the following method is used to achieve the desired representa-
tion.

The network parameters are irrational functions of frequency; so,
using Prony's method, we approximate the irrational functions by rational
ones. Then, introducing the concept of network state, the rational fre-
quency functions lead to a set of first-order, ordinary differential
equations relating the two-port voltages and currents. These equations
are in the desired form.

Finally, the state equations are integrated into the nonlinear dif-
ference equations to complete this goal.



To test the validity of the convolution integral and differential
equation concepts, comparisons are presented between the unmodified time-

+

domain code BLINE and the two approaches.

* In section 111, the convolution integrals for a lossless, linear line
are incorporated into a modified time domain code and compared with the
results from BLINE. In this example, field strengths are limited to pro-
duce a linear result.

The first example of the differential equation procedure is shown 1in
section IV, Here, the transmission line is a coaxial cable driven from one
end, and again, is contrained to be linear. Comparisons with the solution
predicted by BLINE are shown.

The final example occurs in section V: it uses distributed sources
and the differential-equation approach to propagate a signal inducing sec-
ondary breakdown. A comparison is made with the results predicted by BLINE.

A11 the examples use the same format of modifying BLINE. Specifically,
the Tinear section appears as a single cell in the time-domain code inserted
between two regions described by difference equations.



SECTION 1I
THEORY '

Jd. THE TRANSMISSION LINE AS A TWO-PORT NETWORK

In this section, we consider the Laplace transform of the transmission
1ine equations and their general solution in terms of the input voltages
and currents.

The initial formulation is in terms of the two-port, general circuit
parameters (ref. 1) which express the output voltage and current in terms
of the input voltage and current. Since, for this problem, the admittance
formulation (ref. 1) is more convenient, the equations are rearranged to
this form. The admittance formulation expresses the input and output
currents in terms of the input and output voltages.

Transmission Line Equations

The Laplace transform of the single transmission line egquations is
(ref. 2)

d_ Y(z,s)] - [ 0 -Z(s)] V(z,s)] . e(z,s)} (1)
dz 1I(z,s) ~Y(s) 0 1(z,s) i(z,s)
or, in more compact notation,
& V(2.8) = A F(z,5) + §z,8) (2)
0 -2(s)
where A= -Y(s) 0



l.»..,\

: a(z,s)

e e - i T T T Y

Z(s) and Y(s) are the series impedance per unit length and the
shunt impedance per unit length, respectively, .

e(z,s) and i(z,s) are the distributed sources per unit length,

-

[e(z,s), i(z,8)],
V(z,s) = [v(z,s), I(z,)]

s js the Laplace variable.

The general solution to equation (2) is (ref. 3)

A(z-2 Z A

N i o) » (z-2)
y(z,s) = e Y(zgs) + ] e 9(z,s)dz (3)

z
o]

A(z-zo)

Here, e is an exponential matrix which will be determined shortly.

Equation (3) is the two-port, general circuit-parameter matrix (active
because of the source term) for the transmission line.

Since the eigenvalues of matrix A are distinct, tﬁe Sylvester ex-
pansion theorem (ref. 4) can be used to evaluate eA(Z'ZO). The eigenvalues
of A are determined by

-2 =Z(s)
Y(s) -

The two eigenvalues of A are therefore

>
"

1 N(sVZ(s) = ¥

}\2"-' S)Z(s) = =¥



The Sylvester expansion theorm states that

2 r
Alz-z ) R
3 e O =2 f1F0) ()
‘ i=1
- Ai(z-z )
where f(xi) = e
A-A, 11
_ 2 1
FOy) = [xi-x }
=1t 1
J#i

Il is the identity matrix,

Ai are the eigenvalues of A.

Substituting each equation (4b) into equation (5) yields

Alz-z,) Y(z-2)) [ 1 -z ¥(z-z)) [1 2

e =& © e ©

= + (6)
v(z-z_) -y(z-z,) -y(z-z_) v(z-z_) ]
e 0" 4 o ol 0’ _ o 0 ,
. 2 2 °
-v(z-z_) v(z-2_) v(z~-2_) ~y(z-2_)
e o" e 0 y e ° + e 0
0
2
L 2 _
where ZO = %— = Z(s)
0 Y(s
10



A(z-z_)
The elements of the matrix e °" are the general circuit parameters

for a two-port representation of a transmission 1ine of length (2-20). For
the problem at hand, the admittance formulation is more convenient, and can
eas11y be obtained by algebraic manipulation of the variables in equation (3).
Rssum1ng the 1ine is of length 2, the admittance form is

I,(z_,%,s) V(2,s) I.(z_,%,s)
ve - M £ 10 (7)
Izo(zo,z,s) V(zo,s) 12(20,2,5)
where TR ‘W
e‘Y -i'e.Y y -2 %
eYR_ YR 0 e-YR_eYR 0
[yl =
2 Y eY2+e v y
e-Y!i_e-YR 0 Rt Y& o
Y&, =YL ‘
- _e te
Il(zo,ﬂ,s) '—ZYE—;?I' YO Gl(zo,z,s) + Gz(zo,l,s)
I.(z_,2,s) = _2__y g (z_,2,58)
2'°0™? e-y&_eyz o 1'%’

2 +2

61(zgs2s8) © Az re-t),
= e 9(z,s)dg

Gz(zo,z,s) Z,

11



2. TRANSFORMATION OF THE ADMITTANCE FORMULATION TO THE TIME DOMAIN

The admittance formulation of equation (7) can be expressed §s

Ig(zo,ﬁ,s) Yll(s)v(ﬂ,s) + le(s)V(zo,s) + Il(zo,ﬁ,s)
. (8)

Izo(zo,i,s) YZl(s)V(ﬁ,s) + Y22(s)V(zo,s) + 12(20,2,5)

Here Yll’ le, Y21 and Y22 are the elements of matrix [Y].

Using the fact that the product of the Laplace transforms of two functions
is equivalent to their convolution in the time domain, equation (7) can be
directly converted to the time domain; that is,

£ t
AL /; yp(t-th)v(z,th)at! +fo Yp(t-t' Izt )dt" + 4z ,0,1)

¢ . (9)

'i ,Q’t = . t t 1 1 .
zo(zo ) _/c: Yoy (t-t')v(e,t")dt +[) Yoo (t-t )v(zo,t')dt' iz ,0,t)

Here, the lower-case letters stand for the inverse Laplace transforms of
their upper-case counterparts. In general, the inverse transforms of Yll’
le, Y21, Y22, I1s and 12 cannot be obtained analytically, and must be.ob-
tained numerically. The nature of the inverse transforms for the admittance
parameters will be discussed more fully in section II.3. The inverse trans-
forms of the equivalent current sources I1 and 12 are discussed more fully
in section V.

Equation (9) is one form of the desired current-voltage relationship
in the time domain. In a numerical context, however, the convolution integrals
have a serious disadvantage; because, for each increment of time At, a num-
erical integration must be done over all previous time. Therefore, as time
progresses, the integrations become longer and longer.

12



As is known from the theory of linear differential equatidns, a con-
volution integral can represent the solution of a differential eguation
(ref. 3). If the convolution integrals in equation (9) can be replaced by
equivalent differential equations; then, from a numerical standpoint, the
solution to the differential equations can be stepped forward in time,
based only on the value of the variable at that time. Thus, the computa-
tional requirements at each time step are greatly reduced from those re-
quired for convolution. '

As we shall see, if the admittances in equation (8) are rational func-
tions of frequency (ratios of polynomials in frequency) then ordinary dif-
ferential equations can be obtained which replace the convolution integrals
(exactly) for all time. If these functions are irrational functions of
frequency (as is true in the present case), differential equations can be
found which replace the convolution integrals, arbitrarily closely, for any
finite time. In the following material, we present a method to determine
these differential equations.

Prior to further consideration, it is convenient to transfer the source
terms, I, and I,, to the left-hand side of equation (8), so that

12(20,2,5)-11(20,2,5) = Yll(s)V(R,s) + le(s)v(zo,s)

Izo(zo,l,S)-Iz(zo,z,S) = Yio(s)V(8,8) + Y, (s)V(z ,s)

The motivation for this change is that the self and transfer admittances
of equation (10) describe the response of the system initially at rest.
Therefore, the left-hand side currents are those which result from driving
a system initially at rest with voltages V(%,s) and V(zo,s).

Consider a typical term in eguation (10), i.e..,
I(s) = Y(s)V(s) (11)

13



We assume initially that Y(s) is a rational fraction of the form

n n-1 .

s “t+...tb i
= n-l © 5 a fo (12)
a s +a, 45 t...ta

o

Note that the degree of the numerator can be at most equal to the degree

of the denominator. If such is the case, then the impulse response y(t)
corresponding to Y(s) contains an impulse of value bn/an. Indeed, for the
transmission line, this is the case. It is possible to extend this analysis
to cases where the degree of the numerator can exceed the degree of the
denominator; however, such an extension is not necessary here.

Following reference (3), we postulate that the differential equation
relating i(t) and v(t), in equation (10), is

i (t) a? (t) (t)
a i(t) + a i(t) +e-ta i(t
n dtn n-1 dtn-l 0
(13)
i (t) QE:E—- (t)
=b v(t) + b — v(t) +---+b _v(t)
n dtn n-1 dtn 1 °

The Laplace transform of equation (13) should be reducable to equation (12).
The Laplace transform of equation (13) is o

n n-1, n-2d . dn‘l )
a_4s"1(s) - s"Mi(o) - s C gpilo) - .ee - — (o)
n { dt dtn 1
n-2
tan {S"'ll(s) - s"24(0) - s S d(o) oo -:tn_z i(o)}

14



_ n n=l o n-2d o -g"-}
= b, {s V(s)-s" “v(o)-s ajg.v(o) o] V(O)} :
(14)
Lo+ by 4s"TIES) 5" B (0) 5" (o) 2
L n-1 V(s)-s"""v(0)-s""" gxv(o)---- e v(o }
+o
Solving equation (14) for I(s), the result is
I(s) = géé%-v(s) + E%ET'{SH-I [ani(o)-bnv(oﬂ
+ g2 [an %E-i(o) - b, %%-v(o) +a. (o) - bn_lv(o)]
e (15)
-t gn-! .
+[an tn'l i(o) - bn m v{o) -f---+a11(o)-b1v(o)]}

Here N(s) and D(s) are defined in equation (12).

If the transfer function of the system is to be that of equation (12);

then all other terms in equation (15) must be equal to zero. These con-
ditions form the interrelationship among the initial conditions on the
variables. However, rather than using these initial conditions directly
(v(t) is the source and i(t) the response), it is more convenient to make
use of the concept of system state.

15



Basically, the state of a system is a property of the system which,
together with system inputs, determine the future state of the system.
For present purposes, the state can be a set of new variables défined as
linear combinations of the original variables, i(t) and v(t), and their
derivatives. Since the transmission line is initially at rest, and the
fact that we wish equation (15) to follow from equation (14), a very con-

venient definition* of the state variables Xi(t) is

x;(t) = a i(t)-b v(t)

xp(t) = a, S i(t)-b S v(t)va yi(t)-bv(t) (16)
: dn-l _ dn-l )

xn(t) = a ! i(t)-b, 1 v(t) +eeetapi(t) - blv(t)

It is easily seen that if the initial state (xl(o), xz(o),...,xn(o)) is
zero, then equation (11) will result from equation (15). We have thus
arrived at a set of variables whose initial value is zero, and which re-

sults in the desired relationship.

We now determine the differential equations which these new state
variables must satisfy.

Equation (16) can be written

x;(t) = 2, i(t) - b v(t)
xp(t) = 5 x,(1) + 2, i(t) - b _v(t) (17)

xp(t) = Se x4 (8) + agi(t) - byv(t)

* System state is not unique.
16
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The last state variable xn(t) in equation (16) can be combined with
equation (13) to yield

4

: %g X (t) = - {aoi(t) - bov(t)} (18)

Finally, solving equations (17) and (18) in terms of %t xk(t) and
i(t), and using the first relationship in equation (17); i.e.,

. 1 bn
1(t) = g_ xl(t) + 'a— V(t)a
n n

leads to the result

%{ x,(t) = %; {-an_lxl(t)+anx2(t)+(anbn_1-an_1bn)v(t)}
4 x(t) = %—n- {-an_le(t)+anx3(t)+(anbn_z-an_zbn)v(t)}

%? xn.1(t) = %;»{-alxl(t)+anxn(t)+(anbl—albn)v(t)}

d 21
a Xn(t) = 'a—n- {-aoxl(t)+(anbo'aobn)v(t)}

i(t) = {xl(t)+bnv(t)}

en

Equation (19) is a set of first-order, ordinary, differential equations,

which with zero initial conditions, describe the desired voltage current
relationship between i(t) and v(t).

17
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3. IRRATIONAL ADMITTANCE ELEMENTS

In the previous section, a technique is described which replaced a
géhvo1Utibn integral with a set of ordinary differential equatidns. The
method is useful, however, only if the individual admittance elements are
Tational functions of frequency.

For the transmission line, the admittance elements are irrational
functions of frequency, so it is necessary to approximate them by rational
ones, if this method is to be used. There are many ways to make this
approximation (see, for example, reference 5). A particularly convenient
method and the one that is used here, is Prony's method (ref. 6).

Using Prony's algorithm, it is possible to represent a time function,
arbitrarily closely over any finite time, by a finite sum of decaying
sinusoids*, Thus, the representation

N

.1
f)r 2 A el (20)

i=1

is obtained. The Laplace transform of this expression is

F(s) = L{f(t)} = 4 S-;- = D(s)

which is a rational function.

To use the Prony procedure it is necessary to inverse transform the
admittance functions. For the transmission Tine, most of the admittance
functions are sufficiently complex that the inversion must be done numer-
ically. In addition, these inverse transforms contain impulses. The
value of these dimpulses must be removed before numerical inversion.

* Simple decaying exponentials are included.

18
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To illustrate the procedure, consider the characteristic admittance
of a transmission line with Jumped series resistance and inductance and
only shunt capacitance (perfect dielectric). The characteristic admittance

*

for this line is

. _ sC (22)
Yo(s) - YR+sL

We note that

Tim Y(s) = \[—_

S=bco

Lt T

and since the Laplace transform of an impuise is a constant, the inverse

transform of Yo(s) contains an impulse of value ‘JET. Therefore, if
L
we were to numerically inverse transform Yo(s), we would remove this im-

pulse and inverse transform

The prony procedure would then be applied to the result. Of course, an
impulse of vaTuellg would then be added to the exponential approximation
L

of equation (20).

It turns out that eguation (22) can be analytically inverse trans-
formed, however, and the result is

R
-t
v (t) =yE & ’ e 2t (& t)‘ (24)

The impulse occurs in equation (24), because of the unit discontinuity of
the expression in parenthesis at the origin.

19
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Equation (24) cannot be entirely represented by a sum of simple expo-
nentials. However, a Prony procedure applied to the first 30 mi;roseconds

of this function with the values '
L R = 1.3611 x 1072 ohms/meter

L = 5.8322 x 1075 henry/meter

C = 4.3878 x 10720 farad/meter

indicates that two simple poles form a good approximation.

The following poles and residues result from the Prony analysis:

Pole Residue
-5.7362x10% 1.826x10°
-2.0056x10° 8.298x10°

A comparison of the resulting approximate function with the original ir-
rational function is shown in figure 1. Actually all values are within
.1% except for the last several values which are within 1%.

The approximation to Yo(t) is then

vo(t) =4S s(t)+1.826x10%Exp(-5.7362x10%)48. 298x10 Exp( -2, 0056x10%%)

Here the impulse has been added to complete the expression. The Laplace
transform of this function will form a rational approximation to Yo(s).

20
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@
4, ANALYSIS OF THE ADMITTANCE MATRIX

- It is instructive to analyze the admittance matrix [Y] in éhuation (7)
in more detail, by expanding the individual elements in the following way:

.
-

oYy YR v = . 14e72YL v
e-y2~eyz ) l_e-Zyi 0
- . -2v4 -2v%, =4Y%, . ..
(1401 (1+e™ e 1) Y (25a)
= (1420 0 ape™ e L) Y,
2 _ -y ~2v%, =4v%
—_— Y = -2e '%(l+e +e $eee) Y
e-yﬁ_eyﬁ 0 0
'Z(E-Y2+e-3Y£+e-5Y2+"') YO (25b)
{
. Therefore, the admittance matrix can be expressed as
-1 0 01 -1 0
Y] = [ ] YO+2e'Y£[ ]Yo+2e‘2YR [ }Yo+--- (25¢)
01 -1 0 0 1

We note that the multiplicative factors of 2 in this expression are due to
the fact that this is a short-circuit admittance matrix, and the current
reflection coefficient under short-circuit conditions is 2.

Due to the multiplicative factors of e ™ *(n=0,1,2,...) in equation (25),
each matrix in the sum undergoes a delay (in the time domain) of multiples
of a line length delay. If the 1ine is lossy, this delay is of course
dispersive; nevertheless, it is there. Therefore, the problem can be sub-
divided (time-wise) into a number of distinct parts, each of which is
additive to the total result. Furthermore, since we are usually interested

| §



in results on the transmission line for a fairly short time, only the first
several of the terms in equation (25) need be considered. ’
As an example to illustrate the time behavior of equation (25), we

consider a lossless transmission line of Tength £ with parameters C and L.

In this case,

oy
Yo “NL
Y =Ns°LC = s /T

so that the exponential factors represent only time delay; i.e., multi-
plication of a Laplace transform by e'StO delays the ensuing time function
by to.

Since Yo =1¢%- is constant, its inverse transform is an impulse of

va1ue'vg-. Therefore, the inverse transform of equation (25) is

-8(t) O 0 &(t-t.) -&(t-2t ) 0
Y{t)|= ‘19 2 { c’] C 4 [ o ]\ﬁi ces
[ ( ] { 0 é(t)] L’ -8(t-t,) A 0 L

0

In this equation, to =vLC 2

Each term in equation (26) is a simple impulse, so that the convolution
integrals in equation (9) are easily evaluated. The result is

$(2,8) =qS {-v(R,0)42u(20 bt )-2v(n,t28 ) + oo fo 44(8,)

(27)
i(zo,t) =\G?{v(zo,t)-2v(2,t-t0)+2v(zo,t-2to) - e }+ iz(ﬁ,t)

23



Equation (27), then, is the current-voltage relationship for a lossless
line. In this expression all voltages are zero if t-kto is nega;ive. In
section III a different derivation of the voltage and current relationship
and numerical results are pfesented for a lossless transmission Tine.

When the 1ine is not lossless, the inverse transform of equation (25c¢)
is more complex. In general, each term contains an impulse plus a dis-
persive term, so that the convolution integrals must be numerically eval-
uated.

5. BURIED CABLE CONSIDERATIONS

The motivating problem for this study requires that we determine the
voltage across thé dielectric of a buried, insulated conductor; that is,
we must determine the dielectric voltage to determine dielectric breakdown.
In the previous sections, we have analyzed the behavior of a single trans-
mission 1ine, with no special consideration for the dielectric portion of
the total line voltage. It is the purpose of this section to present the
procedures to be followed to determine the dielectric voltage.

It is common practice in the analysis of buried cables to represent
the dielectric and ground in the way illustrated in figure 2. Typically,
Yd and Yg each consist of a parallel resistor-capacitor combination; so
that, in the time domain, the transmission Tine equations can be written

o(v +v ) ) .

d g’ _ _, 31 _ ps inc

57 L 5T Ri + E (z,t)
i . vy
37 =" a3t - GaVg (28)

3V

31 - ., 9.
52 Cost - Bg¥g
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Here, the subscripts d and g refer to dielectric and soil, respectively.

*

UNIT LENGTH OF BURIED
- TRANSMISSION LINE

f

)
é

Z = SERIES IMPEDANCE/UNIT LENGTH
Yd = SHUNT ADMITTANCE/UNIT LENGTH OF THE DIELECTRIC
Yg = SHUNT ADMITTANCE/UNIT LENGTH OF THE GROUND

Figure 2. Section of Buried, Insulated Conductor.

Indeed, the present nonlinear, time-domain, difference equations are re-
presentations of these partial differential equations.

To proceed, we again resort to the Laplace transform versions of the
single transmission line eguations which are

Vv .
Fra
(29)
ol _
A
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Here, however, to conform to figure 2, the line parameter Y is the series
combination of Yd and Y_3 i.e.,

g .
1 1 1
—_— 2 e 4 =
. Y Yd Yg
Y.Y
- _dg
> v

Now the dielectric voltage can be written in terms of line voltage

as follows:
1
Yd _y
+

Therefore, in terms of dielectric voltage Vd’ the total 1ine voltage V is

Y, + Y
V = -ELjr—jl Vg (30)

g

Similarly, the line voltage V can be expressed in terms of ground voltage
Vg; that is,

v (31)

Expressions (29) and (30) are the desired relationships to convert from
Vd or Vg to V and vice-versa. However, since V = Vd + Vg, it is only
necessary to use one of these expressions. Both of these expressions are
Laplace transforms, so that, in general, the methods of parts 3 and 4 of

section must be used to obtain the corresponding time domain relationships.

We mention in passing that the transmission line equations can be
written solely in terms of dielectric voltage V4. This is accomplished
by substituting equation (29) into the transmission line equation (28);
the result is
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d. g . .
- 9z Yd + Yg I=-771 .
(32)
: R
- 37 = “YaVq
Y 7
where ' = 7_—%_V—
d g

Equation (31), while having different line parameters than equation
(28), has the same propagation constant. Therefore, the linear section
of transmission line can be modeled either with total voltage, or with
dielectric voltage.
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SECTION III
LOSSLESS LINEAR SECTION .

d. LIMITATIONS OF THE APPLICATION

This section of the report uses the straightforward approach of con-
volution integrals (equation 9) to find the relationship between the
currents and voltages at the ends of the linear insert. With no distri-
buted sources, equation (9) becomes

t t
i(zyt) f yll(t-t')v(z,t')dt‘+f yplt-tivlz ,t)att (338)
8] 8]
t t
i(2,t) =f y21(t—t')v(2,t')dt'+/ yzz(t-t')v(zo,t)dt' (33b)
0 0

To calculate the admittance matrix as a function of time, the inverse
Fourier transform of the frequency representation must be found. As dis-
cussed in section I1.3, both the self and transfer admittances contain im-
pulses; as a result, if the impulses are not removed, the inverse Fourier
transform is not defined. Another method to find the current-voltage
relationship is the following. Examining only the first integral in
equation (33a),

t
f Y1 (E-tIv(L,)de” = FTL(Y) ()V(2,9)
° (34)

-1 (32) fes)]- 2 [yt
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The quantity Yll(s)’ has no impulse behavior and therefore a well defined
inverse Fourier transform; it contains instead, discontinuities_in the time

domain. The voltage part of the integral, G(l,s), simply repre%ents the
time-domain derivative of the voltage. The equation now appears as

t

t t
J/‘ yll(t-t')v(z,t')dt' =.}/. §ll(t-t') %E-v(z,t')dt' (35)

o 0

The other elements of the adTittance matrix, ;IZ(t)’ ;21(t), and~§22(t)
will have properties similar to yll(t); the following discussion of yll(t>
can be applied to all other admittance terms and their contributions to the
currents.

The time behavior of ;11(t) consists of a discontinuity at t = 0
(t = Y%, one delay length for the transfer admittance terms) and at each
subsequent 2nY2. Between the discontinuities at the reflection times,
yll(t) ii monotonically increasing. If the 1ine is lossy, then in the Timit
as to+, yll(t) = constant. If the line is not lossy, the monotonic sections
are flat, the discontinuities do not diminish with time, and there is no
limit to yy;(t).

The only case analyzed with the admittance matrix in this form was
for a lossless line; the size of the discontinuity was then a constant
equal to the characteristic admittance of the line (occuring at t = 0 and
each two line delay lengths). In this form it was possible to include all
reflection terms and signals propagating in both directions.

2. ADAPTATION TO BLINE

The junction of the linear section with the sections described by dif-
ference equations employs the solution of the dielectric and ground voltages
at the junction points. The transmission-line equations (equations 28)
employed by BLINE are
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3z(Va*Vg) = L3 Rl
. 3V
91 _ d
5z bast - CGVy

when no sources are included.

(35a)

(35b)

(35¢)

An examination of figure 3 shows the spatial difference equation for

the current employing the self and transfer impedances is

31 2 ]
3z Az (Ij+2 3+1+’)
2 g (2,t')
- £ _ ~ gt 3V z,t' 5
Y (Ij+2 f ¥ (t-1") g dt
e]

t N av(zo,t‘) ‘
0

on the right end of the linear section (j+2) and

sl _ 2 -
3z Az (Ij+‘/z IJ')
t
ov(z _,t')
- 2 - W o6 " " '
'A—z</ yp(tt') —ggr— 4t

~ av(sat) )
fy (t-t") vy dt' - 1
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¢ —————— —l d Linear Insert l g '————-

V. .
1 h V2l il Y 5+2 1ye2 Vies Vn

Figure 3. Placement of Current and Voltage Cells in
BLINE and the Linear Insert in BLINE.

on the left end (j+1). In both cases v is the total voltage as given

in section II.1.

Approximating the convolution integrals as
t n
N dv(z .t') ~on+2-k .
f 0 - ->- k 1
0 =1

where the k and n indices represent time; equations (36a), (35b), and (35c)
then give the boundary conditions on the right side of the linear section

~ 1 ~ 1
ne1 [ Ca, B4 Y22 nel Y22
Vo \m*7 "8 /- iz (382)
j+2 95+2
~ 1 ~ 1
- - . 2
i 0J+2 At 2 Az gJ+2 Az
~ 1 ~ 1
Vn+1(£g_+ig__y_22.)_vn+1 Y22
9542 At 2 Az dj+2 Az
~ 1 ~ 1
C G y y
=vn (.ﬁ.-_.g.- 22 )_Vn ._Z_g + S (38b)
9542 At 2 Az dj+2 AX 2
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where the quantities subscripted by d and g indicate capacitances, conduc-
tances and voltages across the dielectric and ground and .

= _2 [1~nn 1 n+2-k /., k k-1
52 % iz [ 7 Y01V :E: Y21 ( j+1 " Vi1 )
(38c)

150+l 1 :E: n+2-k k-1 n+1
T 5 Yoo VJ+2 Yoo ( 3+2 VJ+2 ) - Ij+2 ]

where V = Vg + Vd.
The equations (36b), (35b), and (35c) give the left end boundary con-
ditions of the linear section,

J+
) (39a)

and
~ 1 ~ 1
’ n+1(59+§a- _11> C v 2
9541 At z 341 z
: . (39b)
P A T NS VI WO S
0\Bt T2 T &z 4511 2z 1
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where
o2 (1m0 :E: n2-k k-1
5% &z [2 Y12 Ve Y12 < 42 7 Vi )
L (39¢)
+ Lo+l 1 Z ~ n+2-k k-1 n+1
*o Y Y Y11 ( i+ 7 Vin > - 1 }
The resulting boundary conditions are simultaneous equations in Vz 1
and Vg *l '

3. COMPARISON WITH BLINE

The comparison problem run by BLINE and BLINE modified by the convol-
ution-integral approach consisted of a 201 meter cable; the linear insert
consisted of the center one meter. The other parameters are shown in

in table 1.

TABLE 1
r Core radius ‘ 2.5x10™%m
ro Dielectric radius 2.627x10™m
€ Soil dielectric constant 10 e farads/meter
o Soil conductivity 1073 mhos/meter
€4 Sheath dielectric constant 2.3 g, farads/meter

The observation points used in both analyses are at the two ends of
the cable. The line was pulsed by a voltage excitation at the left end
of the line with

v(t) = 1.0 - e 0°F (40)
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Figure 4 shows the total voltage as a function of time predicted by
BLINE and BLINE with the modification of the 1 meter linear sec;ion.

: Figure 5 compares the tota1'vo1tage at the end of the cab]e'opposite
from the source.

The voltage comparison at the source end of the cable shows that no
reflection occurs at the interface between the linear and difference-
equation described sections. The voltages at the far end of the cable
show a Tower amplitude after the pulse travels through the linear section
when compared to the unmodified BLINE predictions; the cause of this dis-
crepancy is presently unknown.
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Figure 4, Predicted Voltage at the
' Source End of the Cable.
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SECTION IV
LINEAR SECTION IN A COAXIAL LINE

4. LIMITATIONS OF THE APPLICATION

The reason for the insertion of a linear section into the analysis
is to save the computer time necessary to propagate the signal in the
linear section. In this region, the time domain analysis is not necessary
since no breakdowns are expected; parameters linking the voltages and
currents at the ends of the linear section are all that are necessary.
Also, since the prediction of secondary breakdown phenomena is desired,
one actually needs only the signal propagating from the source through
the Tinear section. In the region of secondary breakdown, this signal is
used to drive the nonlinear section and, analyzed by the time domain code,
can reflect from the end of the Tine causing nonlinearities. This reflected
signal, returning to the source region, cannot reasonably be expected to
traverse the entire cable and add nonlinearities to the primary break-

down region; in this analysis its presence in the linear region is ig-
nored.

Examining only the first pulse from the source end of the line, the
current and voltage relationships from equation (25c) are

1(%,s)

- e
Y0 V(g&,s) + 2e Y0 V(zo,s) (41a)

I(zo,s) =Y, V(zo,s) (41b)
This form is used since all subsequent admittance terms in equation (25c)
represent delay Tengths associated with signals propagating toward the
source and their reflections. The terms of the admittance matrix which
are present are: the self admittance for both I(%,s) and I(zo,s) and the
transfer admittance delayed by one line length for I(%,s).
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The analysis of a coaxial 1ine was chosen as the next step in order to
introduce losses into the linear section via a nonzero resistance of the
center conductor. The shield was chosen to have a zero resistance so the
entire system would be represented by a single voltage; ordinarily, the
talculation of two voltages are necessary, one across the dielectric and
one across the soil. Inserting a large soil conductivity into the time
domain code, resulted in the approximation of a coaxial cable with no
shield resistance and no voltage drop across the soil.

Constant R, L, G, and C (section I.3) parameters were also used in
the analysis to allow the subsequent steps in the development of the pro-
cedure to be more easily understood.

2. PRONY REPRESENTATION OF THE ADMITTANCES

The representation of Yo by an impulse term and decaying sinusoids
was shown in section 1.3. The procedure to find the representation of the
transfer admittance term is identical. First, the impulse must be identified

and handled appropriately.

Assuming the coaxial cable contains only a shunt capacitance term, the
characteristic admittance and propagation constant are

Yo (s) = Yesr (42a)
Y(s) =<WsC(R+sL) (42b)

At high frequencies, the Tlimits of these are
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. C
Tim Y (s) =47 (43a)
S+ © L T
Tim v(s) = 3R4E - sVIT (430)
- S0
Thus the impulses of the admittances are
. Impulse (YO) =‘q? (44a)

and

'Y‘Q' = J(—:T - l .(_’:._ ‘
Impulse {2e YO) 2941 exp[ (ZR 3 s\?LC)Q] (44b)

Next, the Prony process is applied to

Fl [Yo(s) -

o

] (45a)

and the transfer admittance advanced by one delay length,

F'lg [ze‘ﬂ v, - 24fE exp ({—é— RYS - s\ll?}sa)]e‘s Le ; (45b)

It is worthwhile to notice here that the Prony results of the self
admittance term are independent of the line length, whereas the transfer
admittance term is a function of the 1ine length. The Prony analysis is
done on the transfer admittance advanced by one delay length to reduce
the number of poles necessary to achieve an adequate fit. The inverse
transform of the transfer admittance is near zero until one delay length
in time; at that time, the admittance is discontinuous to a finite value
after which it decays. This type of time function can be represented by
a sum of decaying exponentials, but far fewer poles are required if the
discontinuity in the funciton is shifted back to the time origin.
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Another difficulty arises in the inverse transform of a discontinuous
function; Gibbs' phenomenon is present in the transform resulting in an
inaccurate answer at the time origin. Two approaches are used to reduce
this effect: the first is to calculate the frequency domain function to
£requencies far higher than would appear necessary to resolve the actual
behavior, f-10°1
decreases the decay time. The second method is to analytically calculate
the inverse transform at t = 0. This can be accomplished by taking the

Hz. This increases the Gibbs' oscillation frequency and

timit,
Tim _ +
coe SF(S) = T(07) (46)

where f(t) is the inverse transform of F(s). These limits for the ad-
mittances are

] (oo AE)) 5 4E e

and

;.12 .{s {-Ze'mYo(s) + 2\/? exp [-(%R{g - LT l]]}
(47b)
oo sV 1) [24E (5 - £ (2)

2

1 C
VLC exp(- -Z-R‘/; 2)]
Again, the delay time, WLC 2 shows in the 1imit of the transfer admittance.

Using the 1imit as s goes to infinity of sF(s) as the value of f(o),
the two admittances were approximated by the Prony program as

s, t s,t :
-1 ‘IC' - 1 2
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or

where

and

or

where

! 4
v(s):,j--———--——- . (a8d)
0 L s-s1 s-s2 '
3 3
a1 = 1.82602x10 a2 = B8,29867x10
s, = -5.7362x10" s, = -2.00559x10°

2 s) + 24 exn[-(3RyE - V)
s,t

s,t (49a)
. 1 2
~a, e *a,

2¢77* Y (s) = 2\@? exp [-( % R\@? - syLC )2]

S-S1 5-52
- 3 - 3
a; = 1.9269x10 a, = 5.98615x10
5, = -4.68392x104 S, = -1.93015x105-

The values of the two impulse terms were

and

Impulse (Yo) = 8.6737x10°%

Impulse [Ze'wZ Yo(s)] = 9.6134x10°%

In both cases, a fit using two poles and residues achieved an error of
less than one percent at all except the last two time points.
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The admittances can now be represented by ratios of polynomials in s,

- ) 2 '
: N.iSZ + NyoS + N
v (s) = M de 13 (50a)
L D115 * Dpps *+ D3
and 5
Noqa8~ + Nons + N
Ze"vaYO(S) = 21 22 23 (SOb)

7
Dpys™ *Dpps +Dp3

where the numerator and denominator in both cases are of the same order 1in
s because of the impulses present (section 11.2). The transfer admittance
is understood to be delayed in timeigy one line length.

With the ratios of polynomials known for the two admittances, the state
equations can be derived. From section 11.2, the state equations and
initial conditions are

‘ XII(O) =0, XlZ(O) = 0

%, (0) = 0, Xp(0) = 0

X1 = - g‘ﬁ’ X11 v X2 * (le - N gﬁ‘) v (60a)
X1p = - %% 11t (le - Ny D‘i‘i‘) v (600)
Xo1 = - gﬁ— Xoq + Xop +<N22 - Noy %)v : (60c)
Xpp = - g—i—f- X1 * <N23 - Nog %)V (60d)
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where the first subscript refers to the self admittance (1) or the transfer
admittance (2). The current as a function of the voltage is now given by

+

===+ = v (self admittance) ' (61a)

I3

j=fty Ll (transfer admittance) (61b)

for the transfer admittance portion. The quantity ; represents the voltace
delayed by one propagation length of the linear section. Because there is
interest in only the signal propagating from the source in the linear portion,
the voltage-current relationship is given by only eauation (6la) for the end
of the linear section nearest the source. At the other end of the linear
section, the voltage-current relationship is represented by the sum of the

two current contributions.

3. ADAPTATION TO BLINE

The reason for the formulation of the equations giving current as a
function of voltage was compatibility with BLINE. The boundary conditions
in BLINE always employ a current as a function of voltage.

The solution of the state equations is easily realizable in BLINE
using the formulation

x(t+at) = x(t) + x(t)at. (62a)
This gives
X,,(t+at) = (t) (1 0—12~ At \+ (t) at
11 *11 ( "By, ) X12
5 (62b)
12
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_ 13
xlz(t+At) = xlz(t) --EII xll(t)At
D
: | P11

Do

21

D
22

and

Xon{t+at) = x,n(t) - 223
22 22 Dy

D

23
+ <N23 - N21 B‘g{)&‘t v(t)

x21(t)At

The current is now found from

N
i(that) = g xgq (1) + Ell v(t+at)

D11 11

for the self admittance current contribution and

1 Noy -~
i(t+At) = == x,,(t+At) + 5 v(t+At)

2] el 21

for the transfer admittance current contribution.

x21(t+At) = x21(t) <1- 5~—-At> + xzz(t)At

(62¢)

(62d)

(62e)

(62f)

(62g)

In the case of a coaxial cable, the voltage across the shield is zero
and only the dielectric voltage remains. The boundary condition present
in BLINE can then be derived from equation (28b) of the transmission line

equations,
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31 d _
57 = C4 3 - Bgvy (63)

An examination of figure 3, which shows the relative placement of the
Current and voltage cells at the source end of the linear section in
BLINE, indicates that equation (63) can be differenced as

13

i C G
2 e+l _on+l\_ _Md fontl o on )\ Pd (,n+l )
AX <Ij ) Ij+1/2> Bt (Vj+1 Vj+1) "~ 2 <Vj+1 t Vi) (64)

where the superscript designates the time index, the subscript the position
index and
N

ntl _ 1 . n+l . "11 0 on+l ‘
L DR A 3 (65)

is the current-voltage relationship at the source end of the linear section.
This gives the voltage at the source end of the 7linear section as

yhtl EQ+EQ.+2_§1_1_=V’7 Eﬂ_.G_Cl
J*l\ At 2 AX 011 j*riyat 2

(66)
2 n+l 1 n+l
*H(Ia' Thyp M >
A similar analysis at the far end of the linear section shows
Y L R T
jt2\at 2 AX D11 TYi+2\AMt 2
' (67)
B O S WY U5 S W S B
bx \"J*2 D13 713 Dy el Dy M
which uses a current at the far end of the linear section of
e WS W Lo s R NS S5 WS W W
j+2-4 D11 11 011 j+2 021 21 021 J+1
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The vo]tagg term V is the voltage occuring at the source end of the linear
section. V has been time delayed by the length of time it takes the signal
to propagate along the linear section of the cable. )

i These voltage and current relations were then put into BLINE relating
two adjacent voltages. The effect of this was to separate the two cells
by the length of the inserted linear section.

4. COMPARISON WITH BLINE

To compare the approximation of a linear section by the differential
equations, the following problem was run by the new method and BLINE. A
coaxial cable was chosen with the parameters

R

.013611 ohms/meter
L = 5.8327x1078 henries/meter
G =0.0

C = 4.3878x10710 farads/meter.

These were derived from the physical parameters

P = 6.35x10"° m
ry = 8.5><10"3 m
o, = 5.8x10° mhos/meter

gy = 2.3 €y farads/meter

where ry and r, are the radius of the core and dielectric, O is the con-
ductivity of the core, and €4 is the dielectric constant of the core in-
sulation.

A transmission line of 1.2 km length with these parameters was driven
at one end with a triangular voltage pulse of one volt amplitude and
0.5 psec duration. For the first comparison, the spatial cell size was
chosen to be 10 m and observation points were made at distances of 100 m
and 1100 m. The section .of line represented by the differential equations
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was 1 km in length and was inserted between two 100 m sections. The ob-
servation points were taken at the two ends of the 1 km insert.. The rep-
resentation of this section used the poles and residues discussed in
section I11.3.

T
-

Figure 6 shows two voltages: one predicted by BLINE 100 m from the
source end and the other predicted by the modified BLINE code at the same
place. Figure 7 shows the voltages predicted by BLINE and the modified
BLINE code at the junction of the insert 1.1 km from the source. It can
be seen that this agreement is not good when BLINE uses a cell spacing of
10 m, but improves when the spacing is reduced to 5 m.

The discrepancy js probably due to the superjor description of the
transfer admittance by the differential-equation technique; agreement
probably occurs in the limit as the cell spacing goes to zero. This is
shown by the 5 m cell spacing resulting in a pulse more closely resembling
the pulse of the differential-equation approach.
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SECTION V
LINEAR SECTION IN A BURIED CABLE

..

. To model a realistic situation of cable breakdown, two more effects
must be included. The first is to add a voltage drop across the soil so
the entire voltage is not across the cable dielectric. The second addi-
tion is the effect of a distributed source along the linear insert. With
these additions, the regions of primary and secondary breakdown separated
by a linear length of cable can be described by the differential-equation
technique and compared to the predictions of the unmodified time-domain
code, BLINE.

1. DISTRIBUTED SOURCES

In the formulation described in section II, the effect of the dis-
tributed sources is to add currents at the ends of the linear insert
(equation (7)). The solution of the differential equations then repre-
sents the sum of the currents induced by the distributed sources and the
currents resulting from signals propagating to the linear section
(equation (10)).

In the frequency domain, it is convenient to represent the E-field
excitation of equation (2) as

e(z,s) = 3 A (s)eion(s)? (69)

n

The current sources will be assumed to be zero.

For a general E-field, as a function of time, the Fourier transform
has to be accomplished numerically to achieve the frequency domain repre-
sentation of equation (69). However, if the field as a time function is
a sum of double exponentials, the Fourier transform can be found analyti-
cally; in this case,
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cg (2R) { =a (t-1)  -b (t-T)
fzt) = 9 epe (0l )y

r

n .
where C, is the amplitude, 9, is the spéf1a1 decay constant, Tn'is the
time delay, Ro is the data range, and 2, and bn are the temporal decay
constants of the double exponential. The Fourier transform of this

field gives

z : 9Ro 2(g = 99) 574 1 1
e(z,s) = S e e P (71)
- n n
which gives
gnRo *Th 1 1
A(s) =cee e I (72a)
n n
and
= S
an(s) =<t g, (72b)

by comparision with equation (69).

With the distributed source in the form of equation (69), the integra-
tion over the length of the linear insert can be easily accomplished;
from equation (7), the integrals are
z 42

o ew(zo+2-c) . e-*{(z0+z-c) o 2
Gy(z,,%,s) = 5 A dz (73a)
n
%o
or
eianzo ) 10Ln2 )
Gl(zo,z,s) = E An ;~3TTF:F§ -io @ + o cosh(Yg)
n n -
(73b)
+Ysinh(Y)
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+'ian sinh(Yi)J (74b)

The currents which must be added to account for the distributed sources
along the linear section are then

YL o4 oYL n“o )
I.(z_,0,s) = -Y 1&_——~¢& io e n
1Y0*™? oe-‘Yz_eYﬁz:n2+Y2[

Q
n

. + o cosh(Ys) + Ysinh(\'l)]

10 *+ ¥ cosh(rg) + i sinh (75a)
A ._____75{ -Ye *n Y cosh(Yg o sin (Yzﬂ a

n a2 +y

n

( ) 2Y0 e NO Tanl
1.{z ,2,8) = ————r A ———s | -ja_e
2'%o YE_ Y2 E : e n

n

and

+ ian cosh(ye) + v sinhCYQ)](?Sb)

At this time it is useful to display the sources in a manner similar
to the admittance formulation in equation (25); the terms as functions

of the delay lengths are
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and
ia z
ALY e MO
_ n o . -2Y% =4YQ .
IZ(ZO,Q,S) = E Z 2 Y+ o, (1 + 2e + 2e +
- o
(ia "Y)E’ =2 _

-20 e n (1 + 2e e + 2e YL, eee) (76b)

These show that the first term of Il, the current addition at the end
of the linear section farthest from the source, has a delay of ian(zd+2),
the 1ight travel time from the source to the far end of the linear section.
The next term of I1 has a delay of ianzo-Yz, the 1ight travel time to the
near end of the linear section plus the propagation time along the linear
section. A1l other terms are equivalent to reflections at the ends of
the linear sections with subsequent additional delays of 2nY2.

The first term of 12, the current addition at the end of the linear
section closest to the source, has a delay of 1anzo, the light travel time
from the source to that end of the linear section. The next term of 11
has an additional delay of (iun-Y)z; this represents the delay of light
traveling from the near to the far end of the linear section plus the
propagation delay along the cable back to the near end.

As in section IV, the interest in predicting secondary breakdown only
necessitates the use of those terms representing signals propagating away
from the source. With this restriction, the sources can be approximated as
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2. ADAPTATION TO BLINE

Two further modifications to the code used in the analysis of the
previous section were necessary. The first involved the addition of the
source terms I1 and I2 into the boundary conditions at the ends of the
linear section. The second was the calculation of the dielectric and
soil voltages at the ends of the linear section. The voltage propagated
through the linear section is the total voltage, the sum of the dielectric
and soil voltages, which necessitates the separation of the two at the
boundaries of the linear and nonlinear sections.

Because of time limitations, a case was chosen where the soil con-
ductivity was zero; the ultimate reality of this case was accomplished
by choosing lumped parameters R, L, and C identical to those of a realis-
tic case with frequency dependent parameters at a given frequency; the
parameters were then assumed to be constant. The reason for choosing
the soil conductance equal to zero was to allow a simple relationship
between the dielectric and soil voltages. From figure 2, it can be
seen that this relationship is

v o=-dy (78a)
g Yy
and
c
=9
v, > v (78b)
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where V is the total voltage and the d and g subscripts refer to the
dielectric and ground.

- The capacitance across the ground, Cg, was calculated by aséuming that
the total capacitance, C, of the realistic calculation was the result of
the soil and dielectric capacitances in series.

The boundary conditions at the junction of the linear and nonlinear
sections are modifications of equations (66) and (67) including the cur-
rent source and voltage fraction Vd/V. The dielectric and ground voltages
were found from

vy nFl (gg + 2 N1y ) =y " <Eg>
d‘j+1 At Ax Dy VF dJ.+1 At

xn+1
2 [ n+l 11 _ 0+l _ n+l
* i <I. -5 > 32 ) (79a)

at the end of the linear section nearest the source and

yrifSe o2 M\ o (G
dspp \BE T Bx B VF) 7 Vie2 \Bt

Xn+1 xn+1 N
2 n+l 11 21 21  wn+l n+l n+1
I v - I1 - S

T AX

Jj+2 011 021 021 VF "j+1 1
(79b)
at the other end of the Tinear section. In both cases
€
VF = —3 — (80a)
Cd + C
g
_ 1 - VF

The source terms, S1 and 32, are the inverse Fourier transforms of
equations (77a) and (77b). A1l other terms are identical to those of
equations (66) and (67).
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3. COMPARISON WITH BLINE

_. The comparison problem to be done by BLINE and the different%ﬁ] equa-
tion method was ‘determined by first finding the lumped parameters of a
buried cable at a frequency of 1.45 x 105 Hz. The frequency chosen was
ag estimate of the frequency of the pulse which is responsible for the
generation of secondary breakdown. Even though the conductance was non-
zero at this frequency, its effects were ignored. The input parameters

were
. = 5.8 x 107 mhos /meter
ry=6.35x107°m
r,=8.5x107m

m
]

d 2.3 Eo farads/m
% water content of the soil = 10%.

At a frequency of 1.45 x 105,Hz, the lumped transmission line parameters
were

R = 1.4878 x 107> ohms/m
L = 1.4906 x 10'6 henries/m
C = 4.3379 x 10710 farads/m.

These parameters were then used as constant R, L, and C for the linear
section of the 1ine to be represented by the differential-equation tech-
nigue.

In the sections on either end of this linear region and the entire
cable represented by BLINE, the voltage is divided into voltage across
the dielectric and voltage across the ground; in this case the parameters
are
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1.4878 x 107! ohms/m

R =

L = 1.4906 x 107° henries/m :
T ¢y =4.3878 x 1070 farads/m '
. Cg = 3.8175 x 107° farads/m
where

Cq = 2m €y / &n (rl/rz)

and Cg is calculated from

Using these parameters and a dielectric breakdown voltage of 107 v/m,
BLINE was run to find the breakdown regions of a 4 km cable. The network
was terminated at the source end by a 10 ohm resistor and at the far end
by a 104 ohm resistor; this mismatch was purposely chosen to enhance
secondary breakdown.

With this input, BLINE predicted a primary breakdown region of 2.6 km
and a secondary breakdown region of 60 m, 4 km from the burst.

The region from 2.8 to 3.8 km remained linear. This was chosen as the
section to be replaced by a 1ine represented by the differential-equation
technique.

To obtain the differential equations, the Prony analysis was done
on the inverse Fourier transforms of the self and transfer admittances.
As in the case discussed in section IV, the admittances were limited to
the terms representing the signals traveling away from the source. The
poles, residues, and impulse terms for the self admittance were
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1.63148 x 10° 2,

4
s1 -2.5697 x 10 So
2

Impulse = 1.7059 x 107 .

2

6.88527 x 10

a3
-8.64688 x 10%

The terms representing the transfer admittance were

1.14429 x 10° 6.04022 x 10!

e
2
Sq -8.20423 x 10 Sy
Impulse = 9.5908 x 107° .

a
1
-1.421511 x 10%

As in the previous case (section IV.2), a satisfactory fit was achieved
for both admittances with two poles and residues. Because the breakdown
phenomenon involves longer cables, the Prony fits were found to a time of
60 us.

The computation of the source terms was done in the frequency domain
and inverse Fourier transformed at times that could be directly utilized
by the time-domain code at the two junction points.

To compare the two processes, observations were made of the dielectric
voltage at the two junction points, 2.8 km and 3.8 km along the cable, and
at the end of the line where secondary breakdown was expected. Because
the primary breakdown region is essentially described by the same coding,
no differences in this region were found between the two predictions.

Figure 8 shows the responses predicted at the junction of the primary
breakdown region with the linear section of cable. The dotted line (at
70 us), in this figure and the following two, is the limit to which the
Prony approximations of the admittances were made. At larger times, an
extrapolation is indicated. In figure 8, the variation between the pre-
dicted responses at 80 usec, is the result of a reflection from the end
of the cable; because only signals traveling from the source were handled
by the differential equations, the reflection is not seen with this analy-
sis. Figure 9 compares the response predicted by BLINE 3.8 km from the
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Figure 9. Dielectric Voltages Predicted by BLINE and the
Differential-Equation Technique at the Linear-
Nonlinear Interface Farthest from the Source.
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source with the response generated by the differential equations. The
last comparison between the two approaches is shown in figure 10. This
shows the predicted responses at the end of the cable 4 km from the source.
jhe oscillations are due to reflections off the end of the cable and the
?econdary breakdown region.
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Figure 10. Dielectric Voltages Predicted by BLINE and the Differential
Equation Technique at the Cable Termination.
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The starting time and extent of secondary breakdown predicted by the
two methods are

- L Time Extent
BLINE 49.54 us 40 m
¢ Diff. Egn. 49.34 us 60 m

The earlier time and greater extent of secondary breakdown predicted
by the differential equation approach is probably a result of a more
accurate representation of the propagation of the pulse through the 1 km
linear region. A similar difference in pulse propagation was shown in
the coaxial Tine comparison in section IV.4.

61



SECTION VI
CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

Two methods have been employed to represent a Tinear section of cable
between the regions capable of describing nonlinear behavior.

The two methods employ a relationship between the currents and voltages
at the ends of the linear section. The first uses convolution integrals
to relate the frequency-domaih response of current and voltage and presents
the relationship in the time domain. The disadvantage of this approach
is the necessity of the calculation of convolution integrals at each time
step. The second approach recognizes that the convolution integrals in
this case are the solutions of differential equations. Once the differential
equations are obtained, each time step requires the addition of one incre-
ment to the differential-equation solution rather than the calculation of
an entire convolution integral.

The use of convolution integrals has shown the ability of this method
to describe the self and transfer admittances of a Jossless line and account
for the reflections of pulses in the network.

The differential equation method has satisfactorily described the prop-
agation of a pulse through a 1 km section of coaxial cable. In all prob-
ability, the pulse exiting the cable described in this manner is closer to
reality than the pulse described by a pure time-domain approach.

This procedure has also been used to predict the secondary breakdown
occurring in a buried cable 4 km in length. The time and extent of the pre-
dicted nonlinearities and the breakdown described by BLINE are essentially
in agreement.
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2. RECOMMENDATIONS

The use of constant R, L, G, and C parameters to describe the Tinear
section is most 1ikely inadequate for most applications. However, the
use of frequency dependent parameters to describe the admittances is dif-
%icu]t because of the lack of well defined impulse behavior. It is rec-
ommended that further study be made of the three media problem to determine
the high frequency l1imits of the self and transfer admittances of a linear
transmission line.

The technique of using differential equations to describe convolution
integrals can be applied to each spatial cell of a nonlinear time domain
code to achieve a significant increase in the predictive capability of such
a code. This coupled with the previous recommendation would enable the
time-domain code to be as accurate as a frequency-domain code but still
enable it to describe nonlinearities.

An easily achieved improvement on the present use of differential
equations in this report is the addition of soil conductivity to the pro-
cedure. A simple relationship between the total voltage propagated by \
the Tinear section and the dielectric volitage needed ai the junction to
the nonlinear section is

BVd

(Gd+Gg) Vg ¥ (Cd+cg) 3t g g ot

where the d and g subscripts refer to the dielectric and ground respectively

and V is the total voltage, Vd+Vg.
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