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Abstract

In this note are described the results of an investigation
concerning the low-frequency electromagnetic penetration of an
impedance-loaded circular aperture in a perfectly conducting ground
plane. The loading impedance is that representing a bonded-junction
wire mesh; a special case of this loading impedance is that which
represents a purely resistive sheet impedance. The existence of a
non-zero contact resistance between the aperture loading and the
rim of the aperture is also included in the formulation. Both the
relevant magnetostatic and electrostatic boundary value problems
are formulated as dual integral equations. It is shown that the
solution of each of these sets of dual integral equations can be
expressed in terms of the solution of a single Fredholm integral
equation of the second kind, to which both numerical and variational
solutions are obtained. The effectiveness of the loading in reduc-
ing the field penetration through the aperture can be described in
an approximate but accurate way with simple formulas and equivalent
circuits.




Acknowledgement

It is a pleasure to acknowledge many useful and stimulating
discussions of this subject with my colleagues at Dikewood, espe-

cially K.S.H. Lee, L. Marin, and K. D. Granzow.




I. INTRODUCTION

The problem of determining the electromagnetic penetration
through a loaded aperture in a conducting plane surface has not
received a great deal of attention, although the problem is one
of much practical interest for shielding applications. Latham
and Lee developed quasi-static magnetic boundary conditions for a
resistive sheet [1,2], and Baum and Singaraju [3] have considered
Babinet's principle as it applies to problems of this type. How-
ever, the aperturé—penetfation problem seems not to have been
considered.

When the aperture loéding is a bonded-junction wire mesh
screen, the sheet impedanée‘is actually a dyadic operator. Fur-
thermore, in contrast to purely resistive loading, the mesh allows
electric-field penetration in the dc limit. These features add
complication and interest to the aperture-penetration problem. In
this note we describe thé mesh.boundary conditions to be applied
in the low—freduency limit and consider the canonical problems of
guasi-static electric and magnetic penetration of a mesh-loaded
circular aperture in an infinite perfectly conducting plane. This
particular geometry is analytically tractable and the results are
indicative of those to be expected when more general aperture
shapes are considered.

The principal results to be obtained are those which describe
the effect of the aperture loading upon its eguivalent "imaged"

electric and magnetic polarizabilities and upon the penetrant flux.



For ease of practical application, these results are expressed in
terms of simple equivalent circuits and wvariationally derived
approximate formulas.

In the next section of this note we discuss the guasi-static
boundary conditions appropriate for a bonded-junction wire mesh.
These boundary conditions are then used in Sections III and IV to
formulate the relevant magnetic field (Section III) and electric
field (Section IV) interaction problems. Both of these problems
are shown to reduce to that of solving a certain integral equation,
which is discussed in Section V. A numerical solution technique
is outlined and variational expressions are obtained for the dipole
moments and penetrant fluxes. Equivalent circuits based on these
variational expressions are given. Numerical results are dis-
cussed in Section VI and the exact and variational solutions are
compared; the agreement is found to be very good. The results of

the study are summarized in Section VII, which concludes- the note.




II. QUASI-STATIC BOUNDARY CONDITIONS
FOR A BONDED-JUNCTION MESH SCREEN

A wire mesh screen wifh bonded junctions can be described
electromagnetically by an equivalent sheet impedance operator ﬁs
when the mesh dimensions are small in comparison to the wavelength.
The operator ﬁs relatesrthe space~averaged tangential electric
field to the spaceQaveraged surface current density on the screen,
viz.

(I - nn) - ES'= ZS . JS (2.1)

in which I denotes the unit dyad and n is the unit vector normal
to the screen surface. Es and js are respectivély the electric
field and surface currentldensity in the screen surfape, averaged
over a single mesh. The tangential electric field is assumed to
be contiquous through the screen surface.

When the meshes are square, the equivalent sheet impedance
is [4] (the time dependence exp(st) is assumed)
a2
S vy (2.2)

sCs s 8

7 = ! =__—_ -
ZS (ZwaS + SLS)(I nn)

in which ag denotes the mesh size, Z& is the internal impedance
per unit length of the mesh wires, and VS denotes .the "surface"

del operator. The parameters LS and CS are given by
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where T is the radius of the mesh wires, Mo and €, are respec-
tively the permeability and permittivity of free space, and

€1 and €9 deﬁote the relative permittivities of the media on
either side of the screen.* The internal impedance per unit length

Z: 1
w 1S

Vst I (VsT_)
z! = R w_ o W (2.4)
21 (/sT_)

in which R& is the dc resistance per unit length of the mesh wires,

T is the.diffusion time constant of the wire material, and Iv

denotes the modified Bessel function of the first kind. Denoting

by u_ and O the permeability and conductivity of the wire

w

material, we have

1
't =
RW rzc
%%
(2.5)
Tw = "% w

Substitution of eg. (2.2) into eg. (2.1) and use of the con-

tinuity equation

*
It is assumed that the thicknesses of the dielectrics on either
side of the mesh are at least as/2 [4].




V - j + sp = O (2.6)

) s s s
yields a2
= —— _..— — _—§-‘
(I - nn) ES = ZSJS + Cs Vsps (2.7)
where we have introduced the abbreviated notation
- t
ZS = Zwas + sLS (2.8)
Eq. (2.7) can be rearranged as
2
T o= AT - cE - o5 v, © (2.9)
S Zs s ZSCS s’ s

which may be interpreted as indicating that the surface current

density contains a "drift" component 2;1(7 - nn) - Es and a

"diffusion" component aizglc;;vhps resulting from the gradient of

the surface charge density.

‘Quasi-static magnetic boundary conditions

A boundary condition involving only magnetic fields may be
obtained from eq. (2.7) by taking the surface curl of both sides

and using the result that

n+«vV xE = -suoﬁ - = (2.10)

which is a consequence of Faraday's law. We find

N
-su

— = 0~ . = ‘
T vs % JS = — I o } (2.11)
S :
or, equivaléntly,
_ L -su,
no. Vg x‘[n x (Hg - Hl)] = n -+ H (2.12)



from which it is easy to show that

v, oc (H, - ) = o H ©(2.13)

ﬁz and ﬁl denote the magnetic fields on either side of the screen
surface and n is taken to be positive in the direction from the
1" gide to the "2" side. TFurthermore, n + H is continuous through
the screen surface.

In the quasi-static limit, the magnetic field in a current-
free region can be calculated from the magnetic scalar potential
Vm via

H = -VV_ (2.14)

so that eq.'(2.13) is written in terms of Vm as

2 _ “SHy aVm
VelWna = V1) = 7 73 - (2.15)

S

This result,rtogether with the requirement that

W o BV 4 OV,

5n. - Sn. -~ 3n (2.16)

at the mesh surface, constitutes the quasi-static magnetic boundary
condition for the bonded mesh. A related result applicable to the
case in which the sheet impedance is purely resistive has been
derived by Latham and Lee [1].

It is important to note that the result in eq. (2.15) is a
necessary but not sufficient boundary condition. As a consequence,

an additional ccndition on sz - le is required in order to specify




this quantity completely. This additional cordition is developed
in Seetion III, in which we formulate the quasi-magnetostatic
boundary value problem for a mesh-loaded circular aperture.

Electrostatic boundary conditions

In the electrostatic limit, there is no current flow and the

electric field can be derived from the scalar potential V via
E = -VvV (2.17)

Setting js = 0 and substituting eq. (2.17) into eq. (2.7) yields

a2

S _ -
V(V + o pg) = O (2.18)

which may be integrated at once to yield

s (2.19)

where Vo is a constant. The surface charge density pg may be

expressed in terms of the normal derivatives of the scalar poten-

tial_on either side of the mesh as

8V2 8V1
Ps = “%2 5n *t €1 T (2.20)
yielding 9
ag 3V2 avl
V= VO + ES— (82 Sn " €1 —-é—z-l—) (2.21)

which is the required electrostatic boundary conditioﬁ. The other
condition follows from the fact that the tangential electric field,
and thus the scalar_potential itself, must be continuous through
the mesh surfacsa:

V2 = V1 =¥ ' (2.22)



In the applications toc mesh-loaded airc:iaft windows which
we shall consider in Section IV, the mesh itself is embedded in
the window material (typically Lucite or Plexiglas). However, it
is convenient to consider only the fields outside the window
material. Assuming that the medium on either side of the window
is free space, we may readily show that the appropriate boundary

condition is

2
a"e 3V LAY

- s o 2 1)

V = V, Cs ( T (2.23)
where 5
-1
a_t a -27r_Ja
= g zn<1 -e ¥ S) (2.24)
s rw

in which € denotes the relative permittivity of the window
material.

The constant VO can be shown to be equal to the potential
of the mesh wires themselves. Since the junctions are bonded,
the mesh structure is an equipotential in the static limit. It
is important to note, however, that this does not imply that thé
space-averaged potential V is constant in the mesh surface. It
will, in general, be a function of position.

We turn in the next two sections to the formulation of the
static (or quasi-static) boundary wvalue problems which character-
ize the field penetration of a mesh-loaded circular aperture in
an infinites ground plane. The quasi-static magnetic problem is
formulated in Section III and the electrostatic problem in

Section IV.
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III. FORMULATION OF THE QUASI-STATIC
MAGNETIC BOUNDARY VALUE PROBLEM

In this section we shall formulate the relevant quasi-static
magnetic boundary value problem for the determination of the mag-
netic polarizability and flux penetration of a mesh-loaded circu-
lar aperture in a perfectly conducting plane surface. It will be
shown that the problem reduces to that of solving a Fredholm
integral equation of the second kind and that the physical quanti-
ties of.interest can be expressed in terms of moments of the
solution of this equation.

The geometry of the problem is shown in figure 3.1. The
perfectly conducting plane sheet is ldcated at z = 0 in circular-
cylindrical coofdinates (p,¢,2), and the z-axis passes through the
center of the aperture, whose radius is a. A uniform gquasi-static
magnetic field Hoa% is applied in the region z > 0. The aperture

is loaded with a bonded-junction wire mesh. It is assumed that
2
S,
small in comparison to the aperture area ﬂaz, in order to justify

the meshes are square and that the area of a single mesh, a is
our modeling of the screen by an equivalent sheet impedance ZS.
It is further assumed that there exists a net dc contact resistance
Rc between the outer edge of the mesh and the rim of the aperture.
Such a contact resistance could arise because of gging of the
junction between the mesh loading and the surrounding conductor,
or because of improper installation of the mesh loading.

The fact that the quasi-static magnetic boundary condition

given in eq. (2.15) is necessary but not sufficient indicates that

11
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aperture
radius a

Figure 3.1. Geometry of the magnetostatic problem
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an additional condition must be applied in order to obtain a unique
solution to the problem we wish to solve. Such a condition can

‘be found by evaluating the line integral of the electric field E
around the closed path C shown in figure 3.2. The region

p < a-w, 2 = 0 contains the mesh ioading, which is described by

the sheet impedance ZS; the region a-w < p < a, z = 0 contains a
material of sheet resistance RS; and the region p>a, z = 0 is the
perfectly conducting planre. The width w of the junction region
between the mesh loading and the rim of the aperture will be

allowed to approach zero, so that the magnetic flux linking the

closed path € will vanish in this limit. We thus obtain
_ . aJsp
éC E « d2 = -A¢d st 56 ah¢ ZSJS¢7= 0 7 (3.1)
where the surface current density component Js¢ﬁ£;evaluated at
, *
p = a-w, and w > O+. The contact resistance Rc is defined as
RSW '
R = lim &— (3.2)
c R o 27a
s
w0

The boundary condition just inside the rim of the aperture is

therefore
BJS '
ZWRC —553 + Zst¢ = 0 at p = a-, z =0 (3.3)

*
It is easy to show from the continuity equation (2.6) that the
component Jsp must be continuous at p = a.

-t
(@S]



contour C

Figure 3.2. Contour for determination of auxiliary
boundary condition
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If the magnetic field is expressed in terms of the magnetic scalar
potential Vm as H = —VVm, then the surface current density compo-

nents are given in terms of the discontinuity in Vm, AVm, as

_ 13
JSp =5 3% AVm
(3.4)
5 -8
Js¢ = 56 AVm

Thus the boundary condition of eq. (3.3) is given in terms of AVm

by

3 N 3 _
ZTTRC ;b—z-' A\fm = Zsa -a-b— AVm at p = a- (35)

We shall express the magnetic scalar potential Vm in terms

of Fourier-Bessel integrals as

z >0: V_= sz = —Hop cos¢ + cosd J Fm(A)Jl(Ap) e
o)

-Az di
, A

(3.6)

Az di

z < 0: V = le = ~-cos¢ JO Fm(A)Jl(Ap) e 3

where Jv denotes the Bessel function of order. v and Fm(k) is to be

determined. It will be noted that the requirecment that the normal

component of the magnetic field HZ = —an/Bz be continuous at
z = 0 is satisfied by this representation. Specifically,
o :
E,(p,9,0) = coso J Fo(0)J33(he) db (0<p <) (3.7)
o

and since the surface z = 0 is a perfect conductor for p > a, we

require that

15



j Fm(A)Jl(Ap) ax =0 (o > a) (3.8) ‘

o]

In the region 0 < p < a, =z = 0, AVm = sz - le must be a

solution of the equation (cf. eq. (2.15))
V2(AV. ) = =2 H. (0 < p < a) (3.9)
s m’ ° = ’

The general solution of eq. (3.9) is easily shown to be

AV = (Ap + E) cos¢ - cos EEQ ? F (A)J, (A g (0<p<a)
m P 0 ¢ ZS o W 1 0) A2 =P

(3.10)
in which A and B are constants to be determined. Now since AVm
cannot be singular at p = 0, we set B = 0; and the constant A is

determined from eq. (3.5):

o 2nR_ J, (Aa)
-1 , c “1 ! dx
A= (27R_+ Z_) “su J F (A) - + J,.(ra) = .
c s o o m ZS ia 1 A (3.11)

From eq. (3.8), we hLave

AV = -H_p cos$ + 2cost fo F_(0)J; (ho) %A. (0<p<w) (3.12)

so that, using eqs. (3.10) and (3.12), we obtain

® SHo tax _ 1
— = = = 4
fo Fm(A)Jl(Kp) 1+ 228} 5 Z(Ho + A)p 0<p<a) (3.13)
in which the constant A is given by eqg. (3.11).
Equations (3.8) and (3.13) constitute a pair of dual integral

equations from which the unknown function Fm(k) can be determined.

16




These equations can be put into a more conven.ent form by defining

. normalized variables & and u and a new transform function Am(u) by
£ = p/a
1 = Aa (3.14)
&) = & -1
Am(u) ~.a(HO + A) Fm(K)

We thus obtain as dual integral equations for Am(u)

- B
fo A (I g+ =B Lo o< <1)
(3.15)
Jo Am(u)Jl(gu)du =0 (¢ > 1)
in which
° et
8. = 27, (3.16)

denotes the magnetic loading parameter of the aperture. The limit-

ing case Bm + 0 represents an open or unloaded aperture, while the
limit Bm + o« corresponds to an aperture which is completely
blocked. The gquantity HO+A is expressed in terms of Am(u) by

H SIS ZWRC Jl(u)

00 t du
H =& =~ 7 2iR, + 7 fo (W=7 A
S (3.17)

This completes the formulation of the quasi-static magnetic
boundary~value problem. When Aﬁ(u) is determined from eqgs. (3;15),
the constant A can be found using eq. (3.17) and Fm(k) evaluated

using eq. (3.14). We now turn to the reduction of the dual

17



integral equations for Am(u) to a single Fredholm equation of the

second kind, and show how the physical quantities of interest can

be expressed in terms of the solution to this Fredholm equation.
The reduction propedure is given by Sneddon [5] and briefly

outlined below. Consider the dual integral equations

Il

f u-20‘[1 + k(u)}A(u)J\)(Eu) du = F(§) (0 <& <1)

o)
© (3.18)
f A(u)Jv(gu) du = 0 (£>1)

o

in which o and v are parameters and k(u) and F(f£) are known func-
tions. The unknown function A(u) is expressed in terms of another

function hl(t) as

1
Afu) = 27¢ u1+“[ 17 gtk (t) at (3.19)

where hl(t) satisfies the inhomogeneous Fredholm equation of the
second kind

-

hy(x) + j” hy (WK(x,u) du = H(x) (0 < x < 1) (3.20)
(@]

The kernel K(x,u) is given by

(o]

K(x,u) = x~ % it j £k()J,_ (xt)J_ (ut) dt (3.21)
. _
and the free term H(X) is
H(x) = 92%x"20 F(x) (3.22)
%V s =0

18




in which In ¥ is the Erdélyi-Kober operator defined by

3

ZX“Z(Y+W> jx ) 9 y-1 u2n+1

VA €D G- )

I f(u) du (3.23)
n, o

when v > 0. When y <0,

o =2 {yt)-1 n _2(n+n+y )+l
In,Yf(X) X DX X In,Y+nf(X) (3.24)

where n is a positive integer such that n+vy > 0 and

14 1,
DG = § & [ £ eto) (3.25)

Now identifying A(u) = Am(u)% v =1, a=1/2, k(u) = Bm/u,

and F(&) = £/2, and carrying out the various manipulations, we

find that
2u 1
A (u) = 7;[ g(t) sin ut dt (3.26)
- o)
where g(t) satisfies
Bm 1 t+T
g(t) + 7;'j g(t) 4n Fo dr = t (01t < 1) (3.27)
o ;

The magnetostatic =wroblem thus reduces to that of solving eg. (3.27).
We shall consider the soluticn of this eguation in Section V. We
conclude this section by giving expressions in terms of g(t) for

the various physical guantities of interest.

The magnatic field in the aperture, Hz(p,¢,0) is

: -2H_ (H_ + A s
H,(p,0,0) = —2 12 ) cosy = j g(x)dt (5 <& < 1) (3.28)

19



The equivalent "imaged' magnetic polarizabilily of the aperture,

a_, is
m 1 J'ﬂ' .o a 9
o = cosé d¢J H, (p,9,0) p dp
m HO - o 2
HO + A 1
= %o "*ﬁ;-' 3 JO tg(t) dt (3.29)

where Ao = 4a3/3 is the magnetic polarizability of an unloaded
circular aperture of radius a. The magnetic flux @m linking the

aperture is

rﬂ/z a
q)m h Llo J_ﬂ-/z d¢ JO HZ(D’¢’0) de
Ho + A 1
=9 = 2 f g(t) dt (3.30)
O £ O

in which @m = uoa2HO is the magnetic fiux linking the aperture

o
when Bm = 0. The factor (HO+A)/HO is found from eq. (3.17) to be

2mR
1 + c
Hy + A Zg
H T oTR, oTR_\ 48_ (1 (3.31)
1+ — +<1_Z )-——J tg(t) dt
b
S S O

Thus the normalized magnetic polarizebility am = am/amo and the

normalized penetrant flux Sm =9 /@ are given by
n R

mo

Iy(8,)

®m T 1= r \[4B,, ' (3.32)
e (e (e2) e

20




I, (6,)

o = = V745 (3.33)
oA (1 + rc)( 3m ) Il<6m)
in which r, = ZﬁRc/ZS'and
: T, .
Io(8) = (& + 2) J t7g(t) dt (3.34)
o

are simply moments of the solution of the Fredholm equation (3.27).
We turn now tc the formulation of the electrostatic boundary—

value problem.

21



I1V. FORMULATION OF TIIE ELECTROSTATIC
BOUNDARY VALUE PROBLEM

In this section we shall formulate the relevant electro-
static boundary value problem for the determination of the electric
polarizability and flux penetration of a mesh-loaded circular
aperture in a perfectly conducting plane surface. It will be
shown that the problem reduces to that of solving the same
Fredholm equation which arose in connection with the quasi-static
magnetic boundary value problem considered in the previous section.
The electric polarizability and the penetrant electric flux will
be shown to be expressible in terms of a single moment of the solu-
tion to this Fredholm equation. We shall consider the two cases
in which the mesh wires are either connected to, or isolated from,
the aperture rim.

The gecmetry of the problem, which is shown in figure 4.1,
is identical to that considered in the previous section except
that the applied field is ncw a uniform electrostatic field EOEZ.
The electric scalar pctential V is expressed in terms of Fourier-
Bessel integrals as

=

z > 0: V= V2 = —Eoz + jo F(A)JO(AQ) e

—Az dx

(4.1)
iz

N
In
(@)
<
fl
<3
fl

1 Jo F(A)JO(AQ) e dx

in which F(X) is to be determined. It will be noted that the
requirement that the potential be continuous at z = 0 is satisfied

by this representation. Specifically,
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Geometry of the electrostatic problem

aperture
radius

Figure 4.1.




V(p,0) = j F(A)d (Ap) dA (0<p <) (4.2)
e}

It is assumed that the conducting plane is at potential V = 0, so

that ©
{ F(M)J (hp) dr =0 (p 2 a) (4.3)
O

The surface charge density pS in the plane z = 0 is, from

eqs. (4.1),

Pg = sOEO + 280 jo F(A)JO(XQ) AdA (4.4)

and from the electrostatic mesh bouncdary condition of eq. (2.19),

we obtain for the region O srg <a, z=20

O

©
n
|
1
0ol

J F(M)J (Ap) dr + o (4.5)
G

a

n which Peo is a constant. This constant is related to the poten-

tial V_ of the mesh wires by

A - (4.6)

The total charge Q on the mesh can be computed from eq. (4.4) or

(4.5); it is, via eq. (4.5),

9 QﬂCS oo a
Q = ma Peo ™ az Jo F(x)dx jo pJO(Xp) dp
S .
27C_&a ¢
2 dx
= ma’o g, -~ | FOOI 00 R 4.7)

a o
s
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Now from egs. (4.4) and (4.5) we cobtain the relation wvalid

for 0 £ p < a

©
o

|

[\v]
o}

: j F(A)Jo(kp)<l + ____§.2__) AL = - 5+ g (0<p<a)
o 2€Oask (4.8)

Equations (4.3) and (4.8) constitute a pair of dual integral equa-
tions from which the function F{A) can be determined. Defining

normalized variabies £ and u and & new transfcrm function A(u) by

£ =p/a
u = Aa
2 pSo -1
A(u) = - S5 (E - ~—~) F(r) (4.9)
- az 0 &o

we obtain as dual integral eguations for A(u)

o B
j A(u)JO(gu)<1 + —f—) udu = 1 (O<E<1)
O

™ _ (4.10)
f A(u)JD(Eu) du = 0 (¢ » 1)
Q
in which
C .a
B, = ——5 , (4.11)
€ 2e a
o”'s

denotes the electric loading parameter of the aperture. The limit

Be =+ 0 corresponds to an open or unloaded aperture; the limit
Be » @ represents an aperture which is completely blocked.
As in the previous section, we reduce the problem of solving

the dual integral equations (4.10) to that of solving an

25



inhomogeneous Fredholm equation of the second kind. Specifically,

we can show that

2 1 |
A(u) = = j h(t) sin ut dt (4.12)
o

in which h(t) satisfies the integral eguation

B 1
h(t)+—ﬁ‘3f h(r)zn%i—; dt =t (0 <t <1) (4.13)

o

It will be noted that h(t) satisfies the same integral equation as
does g(t) for the quasi-static magnetic problem, except for the
change in the definition of the parameter Be. Thus the electro-
static and quasi-static magnetic problems are effectively solved
simultaneously when the solution to the integral eq. (4.13) is
found.
There remains the problem of determining the unknown constant ‘

o = CSVO/ai. As was mentioned at the beginning of this section,

SO
we distinguish two cases: the mesh screen either is or is not
connected to the rim of the aperture. In the first case, when
the mesh wires make zlectrical contact with the surrounding con-

ductor, their potential is the same as that of the conductor,

which is zero. Thus VO = 0 and

p = 0, when the mesh wirss are connected (4.14)

S0 to the conductor

In the second case, when the mesh wires are isolated from the sur-
rounding conductor, the total charge on the mesh must be zero.

Thus, from ecs. (4.7), (4.9), and (4.12), we obtain
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488

o 3w II(Be)

48@

37

e E

-1
0 s - 1)

[

when the mesh wires are isolated
from the conductor

(4.15)

'The potential in the aperture V(p,0) is expressed in terms

of h(t) as

E a p

SO

T n(ydt

(2 -

and the equivalent "imaged"

V(p,0) = - —~ -

OEO

(4.16)

)fg /t_?‘:z—;?

electric polarizability of the aperture

ag is given by
[ :
o = - 2L | oV(p,0)
o ‘o
= q (1 _ Dso ) I.(8.) (4.17)
eo sOEO 1"e
in which Cog = 2a3/3 is the electric polarizability of an open
circular aperture of radius a. The total electric flux @e pene-
trating the aperture is
a 8V1
¢ = -2me, j P 5z de
0 z=0
- Pso V4 [T th(t)at
%0\t "TE T —_—
o o e} ﬁ _ t?
p 48
- _ _'so _ e
= Qeo (1 % ) [1 T Il(se)} (4.18)
o070/
where éeo = ﬂaéeoEo/Z denotes the electric flux which would pene-

trate the unloaded aperture.

The relacion
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1 _ 48, (1
% th(t)dt _ ; _ —e j th(t) dt (4.19) .
o ﬁ _ t2 o

which has been used in the last line of eq. (4.18) can be derived
either directly from the integral equation (4.13) or by equating
the expressions for the charge Q calculated from egqs. (4.4) and
(4.5).

We conclude this section by presenting the formulas for the
normalized electric polarizability &e = a _fa and the normalized

e’ eo

penetrant electric flux 8e = ®e/@eo in the two cases described

above.

Case 1: the mesh is connected to the aperture rim

Og = Qg = El(Be) (4.20a)
f s 48, a8,
‘I’e = @ec =1 - —3—7“:" Il(Be) = 1 - '-BT'Otec (4.20b)

Case 2: the mesh is isolated from the aperture rim

I,(8.) a a
A A _ 1‘re - ec _ Tec
Og = Cgy = 48e = 4Be N = 5 (£.212)
1 T 3n I1(Be) 1- ar Yec ec
B, =8, =1 (4.21b)

It is thus apparent that all the electrostatic guantities of
interest can be expressed in terms of the single nioment’I1 of the
solution of the Fredholm eq. (4.13). We address the problem of

solving this equation in the next section.
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V. SOLUTION OF THE FREDHOLM INTEGRAL EQUATION

It has been shown in the previous two sections that both the
magnetostatic and the electrostatic problems reduce to that of
solving an inhomogeneous Fredholm equation of the second kind, viz.

t+T
t-1

Ft) + 2 Jl znl | F(rydr =t (0 <t<1) (5.1)
o i
in which F{t) = g(t} and B = Bm for the magnetostatic problem and
F(t) = h(t) and B = Be for the electrostatic problem.’ We shall
take up the solution of thiS‘integral equation in this section.
We begin by extending the domain of definitiocn of F(t) to

(-1,1) and that of the kernel gn|(t+t)/(t=1)| to (-1,1) x (-1,1);
the extensionr of F(t) is such that F(-t) = -F(t). Then we find

that F{t) satisfies

: 1
F(t) - % { F(t) fnlt-t|dt = t (-1 <t 1) (5.2)
-1
It has been shown by Davis [6] that an efficient approach to the
problem of determining the eigenvalues of a homogeneous equation
of the form of eq. (5.2) is to expand the unknown function F(t) in
a series of Legendre polynomials of odd degree. We shall apply

this approach to find the solution of the irhomogeneous eq. (5.2).

Let

tes18

1 AR, .
L VAR =T P, .(t) F (5.3)
Y3 n=1 2n-1 n



in which Pk denotes the Legendre polynomial of degree k and the

coefficients Fn are to be determined. Substituting eq. (5.3) into .
(5.2), multiplying through the result by Pzn—l(t) and integrating
with respect to t (interchanging orders of integration and summa-

tion as appropriate), we obtain the system of linear equations
(m 2 1) (5.4)

in which 5m 1 = 1 ifm=1 and 6m,1 = 0 otherwise; and

2

>
I

== Llam - nEan - 1 [_1}_1 P, (t)Py . (x) fnlt-t| dtdr

X ey
(4m - 1)%(4n - 1)%
(n + m)(n +m - 1)[1 - 4(m - n)?]

(5.5)

Equation (5.4) can be solved for the expansion coefficients

Fn on a computer. The normalized gquantities describing the effect
of the loading on the electric and magnetic polarizabilities and

the penetrant fluxes are expressed in terms of these coefficients

A 48_ [ 7 - 2R -1
& = F£m>[l + ”1< s C) F§m)J (5.62)

as |

m 37 Z 4+ 2mR
s c

. [1 . 48, {zs - 2ch) F(m)]-l .
m 3n \Zs + 2ﬂRC 1

o>

3
(-1yP~1(4n-1, Fém) (2n - 3)!! (5.60)

3 2n—ln!

fe~18

n=1
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dg, = FL&) (5.72)
B = 1 - é;?»Fge) - » (5.7b)
aei = Fge) [1 - \;: Fie)} i (6.7¢)
$ei =1 (5.7d)

in which the (e) superscripts imply 8 = Be and the (m) superscripts

imply B = Bm. Also,
(2n - 3)1! = 1*3'5--~(2n - 3)

(LI = =1yt = 1 (5.8)

The results given in egs. (5.6) and (5.7) above constitute the
exact solutions for the physical quantities of interest, in that
they can be calculated to any desired accuracy from eq. (5.4).

It is also useful to obtain approximate expressions for these
quantities. Such approximate expressions may bg thained by apply-
ing variational methods. It is well known that if F(t) is a
solution of eq. (5.2) and that if Fa(t) is a solution>of

g (1
F () - E(f—l F, (7)) 2nft - 1]dt = n(t) | (5.9)

then a variational formula for the quantity

1
f F(t) n(t) 4t
1
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is

1 1

J F(x)h(x)dx J Fa(x)xdx
-1 1

1 |
J F(t)h(t)dt = -
-1

T
F(x)F, (x)dx -§f J F(x)F. (y)2n]|x-y|dxdy
-1 TJ1)-1 a

(5.10)
Using F(x) = X and Fa(x) = h(x), which are the exact solutions of

egs. (5.2) and (5.9) in the limit 8 - 0, eq. (5.10) becomes

1 2
1 ' [ J xh(x)dx]
J F(t)h(t)dt = — 1 (5.11)
-1 xh(x)dx - % J J xh(y)en|x-y|dxdy
-1 -1) -1

We therefore obtain the following approximations to the integrals

required for the evaluation of the physical quantities of interest:

1 3 1 38 -1
3 j tF(t)dt = 5 J tF(t)dt = (1 + EF) (5.12a)
0 C -1

1 1 48 1 -
2 f F(t)dt = J F(t)sgn(t)dt = [l * oy (£n2 + E.H (5.12b)

0 -1
4 (1 tR(t)dt _ 2 1 tF(t)dt 48\t
= = = = |1 + e (5.12¢c)
0 ,& _ t2 -1 ﬁ _ t2
Appruximate expressions for &m, ém’ &e’ and ée obtained [rom the

defining eqs. (3.32), (3.33), (4.15), (4.17), and (4.18) and the

variational expressions in eqs. (5.12) are

A 3p 1-r, 4g 7
S - r, 37 - (5182
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m
1+ 2m

WS>
12
Q>

(5.13b)
m

3m

(4n 2 + =)

(5.13c)

QL
12
———
=
+
l w
™w
\\_/I
g

ec. -

(S
R
P
j—t
-
l S
w
@
I
-

ec (5.13d)

Q>
R

B_\-1
<1 + ”) (5.136)

em

The result for éec is obtained from the second of the lines in

eq. (4.18). Also, since

3 _ ,
Gr 0.47746. .. (5.14%)
A on 2 + Ly = 0.50638 o (5.14b)
o 5 . .

we have
8 = a (5.15)

These approximate variational expressions can be used to
represent the aperture and its loading by equivalent circuits.
The quantit —s@m, for example, is the maximum electromotive
force. (emf) which could bte induced in any 1loop behind the aperture.

. . . m
Defining an open-circuit voltage Voc as

m - -
oc s (5.16)
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and noting that when the aperture is unloaded,

_ 2
@m = H 2 HO
H_a
_ o}
(—5—)(2H a)
_ m
= LaIsc (5.17)
in which La = uoa/2 is an equivalent aperture inductance and
Igc = 2Hoa is the short-circuit current flowing across the aper-
ture when it is shorted, we have
ve o= 1" sL §
oc sc am
Z.,7
m 172
= I sL (5.18)
sc a lez + sLa(Z1 + 22)
in which -
i
Z1 = 3 (ZS + gﬂRC) (5.191a)
Z2 = 6ﬂZS (5.19b)

The relationship in eq. (5.18) can be represented by the equivalent
circuit shown in figure 5.1.
Similarly, we can construct an equivalent circuit for the

electric-field penetration. We define a short-circuit current

e
sSC

I by
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+
m 37, m
ISc La 3;(23 + ZWRC) GﬂZS Voc
-O

Figure 5.1. Equivalent circuit for guasi-static magnetic
field penetration. The short-circuit current
Igc = 2Hpa and the aperture inductance '
L

q = uoa/Z.



I = g%
sc e

: E
2 o %
sTa EO '—2—- &

e .
svastEo/Z
= : - (5.20)
8 asrw
1t 33 n g
as» Q
—Zﬂrw/aé -1 5
where Q@ = (1 - e Yy . Now @eo = Ta eOEO/Z can be written

as the product of a capacitance C1 and a voltage Vl' Thus

) -1
e C1 '
ISC = SC1V1 1+ Qg (5.21)
where
C - ac
1 8 W
—_-— = & —a— (5.22)
-C2 3 ag &n Q

It is not possible to specify C1 and V1 separately; but it is
possible to represent eag. (5.21) by an equivalent circuit of the
form shown in figure 5.2.

An alternate descriptor of the electric field shielding
effectiveness of the aperture loading would be a '"charge transfer
frequency" QT such as is used in cable coupling calculations [7].
We would have, simply,

8 2 rw . :
@ =S(l+§m (5.23)
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Figure 5.2.

Equivalent circuit for gquasi-static electric
field penetration. The product

C1Vy = ma2eyEL/2.  The ratio C1/Cg is given
in eq. (5.22).
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8 2Crw
The quantity QT/S = (1 + % L

-1
e _ T rw .
where IS 3 7 i Q) is the

c Ur¥eo
charge coupling coefficient.
In the next section we present the results of representative

numerical calculations in order to compare the exact and the vari-

ationally derived solutions for the physical quantities of interest.
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VI. NUMERICAL RESULTS

Extensive numerical calculations of the quantities o @m,
~

Oy and @e have been carried out using the approach outlined in
the previous section in egs. (5.3) to (5.7). Some of these exact
results are discussed in this section and compared to those
obtained by variational means given in eqgs. (5.13).

Fér simplicity.we shall confine ouf‘attention to the special
- case RC = 0 and concentrate on the'normaliéed magnetic aperture
polarizability &m" In this case the variational expression for

ocm is written

R 1+ STé
°n T T ¥ s(t_ + 1) (5'1)
IS a
in which _
L
T =—§.
s RS
(6.2)
17l
a 67 R
s
Defining T = Tg + T, W€ have
~ 1+ ST
“m T TEeT, (6.3)

An asymptotic Bode plot of the magnitude of &m(jw) as a function
of normalized frequency wT is shown in figure 6.1.

In figure 6.2 are shown exact (solid) and variational
(dashed) curves of ]&m(jw)] vs. wr for various values of the
parameter TS/TO. The pdrameter Bm = SLa/Zs is written in terms

of T and T _, when s = Jjw, as
o) S ’
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A~ v slope: -20 dB/decade
la (Jw) |
(log scale)
T
5 -
T
o
¥ T
1 ‘o
T
s
wT (log scale) .

Figure 6.1. Asymptotic Bode plot of ]&m(jm)]'as a function of

normalized frequency Wl .
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10O
1071 ]
10724
l&m(jm)] exact solution
- == variational solution
1077
: contact resistance RC =0
~4
10 T T T T L
1071 10° o' 107 10° 10%
e
Figure 6.2. ]&m(jm)] as a function of normalized frequency wti, . Solid curves show

the exact solution and dashed curves the variational solution.



jout (1 - 1t _ /1)
g = <6ﬂ) o s’ ‘o (6.4)

m 17)1 + ijO(TS/TO)

The agreement between the exact and variationally derived expres-
sions for i&m{ is- very good. Similar agreement has been found

~ A~
for @m, Og>

and @e, from which we conclude tﬁat the variationaily
derived expressions are adequate.for the practical utiliZation of
the results developed in this nofe.

The excellent-agreement between the exact results and those
obtained by variational means caﬁ be at least partly explained by
consideration of the poles and zeros in the complex B-plane of,
for example, the cocefficient Fl,(éf' eqs.r(5}3) and (5.4)). The
poles are, of course, the eigenvalues of the integral eguation

(5.2). The first twenty of these poles and zeros have been cal-

culated and are given in tables 6.1 and 6.2, together with

approximate formulas for their locations, -Denoting the poles by

Bk’ we have "a; ' 7 ] o
e omk -3y oL (k=1,2,...5 (6.5)

k 8 8k P e * ’

and the zeros Bkl are approximately located at
3 15
B8 = —ﬂkk-+1)-——]4-——~——~—- (k = 1,2,...)
k1l 8 8n(k + 1) (6.6)
th

Now the separation dk between the k zero and the (k + 1)St pole,

normalized by w, the separation between the kth and (k + 1)St

poles for large k, is

d

2,...) (6.7)
T 22k o+ 1)

42




Table

6.1

EIGENVALUES *Bk/ﬂ AND THEIR APPROXIMATIONS

3 3 1
g P/ £8 8 " otk
1 0.63857 0.62500 0.63767
2 1.63143 1.62500 1.63133
3 2.62923 2.62500 2.62922
4 3.62815 3.62500 3.62817
5 4.62751 4.62500 4.62753
6 5.62709 5.62500 5.62711
7 6.62679 6.62500 6.62881
8 7.62657 7.62500 7.62658
9 8.62639 8.62500 8.62641

10 9.62625 9.62500 9.62627

11 10.62614 10.62500 10.62615

12 11.62605 11.62500 11.62606

13 12.62596 12.62500 12.62597

14 13.62590 13.62500 13.62590

15 14.62584 14.62500 14 .62584

16 15.62578 15.62500 15.62579

17 16.62574 16.62500 16.62575

18 17.62570 17.62500 17.62570

19 18.62566 18.62500 18.62567

20 19.62563 19.62500 19.62563
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Table

6.2

ZEROS —Bkl/ﬁ AND THEIR APPROXIMATIONS

k -Bkl/w + % k+= -~ 215
817 (k+1)
1 1.51781 1.62500. 1.53001
2 2.55841 2.62500 2.56167
3 3.57628 3.62500 3.57751
4 4.58648 4.62500 4,58700
5 5.59311 5.62500 5.59334
6 6.59777 6.62500 6.59786
7 7.60123 7.62500 7.60125
8 8.60391 8.62500 8.60389
9 9.60604 9.62500 9.60600
10 10.60778 10.62500 10.60773
11 11.60922 11.62500 11.60917
12 12.61044 12.62500 12.61039
13 13.61149 13.62500 13.61143
14 14.61239 14.62500 14.61233
15 15.61318 15.62500 15.61313
16 16.61388 16.62500 16.61382
17 17.61450 17.62500 17.61445
18 18.61505 18.62500 18.61500
19 19.61555 19.62500 19.61550
20 20.61600 20.62500 20.61595
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which approaches zero as k increases. Thus all but one of the
pbles (the k = 1 pole) are approximately cancelled by adjacent
Zeros, leavinguthe pole at'Bl = ~-0.638571 = -2.00613... as, in a
sense, the '"dominant'" pole. The 'equivalent! location of this
pole as it appears in the variational expressions is (cf. eq.
(5.12a))

61 ~ 20.666671 = ~2.09439... ' ' (6.8)

The dominance of this single eigenvalué leads to the accuracy of

the variational expression for F, and the consequent accuracy of

1
a

the variational expressions for m and for the other normalized

polarizabilities and the penetrant fluxes.
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VII. SUMMARY AND CONCLUDING REMARKS

In this note we have formulated and solved the gquasi- .
magnetostatic and electrostatic problems of penetration of -a:mesh-
loaded circular aperture in a ground plane of infinite transverse
extent. It has been shown that variationally derived expressions
for the aperture polarizabilities and penetrant fluxes are excel-
lent approximations to the exact results for these quantities and
that the loaded aperture can be represented by simple equiva}ent
circuits.

The application of these results to fhe analysis(gf ﬁeﬁetra—
tion through more realistic apertures (i.e., apertures which‘are
not circular and/or which are not situated in an infinite ground
plane) would be facilitated by

1. an assessment of the effect of curvature of the
surface containing the aperture

2. knowledge of, or bounds on, the eqguivalent induc-
tance Ly of non-circular apertures in an infinite
ground plane

The first item is not as important as the second, for the effect
of surface curvature is small and, in any event, the penetration
is maximized for a flat surface [8]. Thus the analysis given in
this note should be applicable in an "upper bound" sense. The
evaluation of the equivalent inductances of apertures of, say,
elliptical or rectangular shape would be use}ul in develcping

approximate expressions for, or bounds on, the equivalent induc-

tance as functions of the aperture area and/or perimeter.
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Also useful would be a study of a loaded non-circular
aperture. . Of particular interest in this problem would be the
method employed for incorporating the aperture-rim boundary con-
dition in an integral-equation formulation. This problem is

presently under investigation.
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