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Abstract

Results of a study of the feasibility of using Singularity Expansion Method
(SEM) data to synthesize broad-band equivalent circuits for loop and wire
structures are reported. The positive realness of admittances derived are
studied, on the basis of both pole~pair groupings and eigenmode groups within
‘ the SEM formalism. Synthesized circuits are given for a center-driven and a
quarter—driven straight wire antenna, and for a circular loop. Results are
compared with those derived by means of numerical solution of the time-
dependent integral equations for each structure. The sensitivities of the
response to changes in the values of poles and to circuit element values are

considered.
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CHAPTER I

INTRODUCTION

1.1 Description of SEM

Much attention has been focused on the use of the singularity expan-
sion method (SEM) to solve broad-band transient electromagnetic field problems
involving scatterers since its formalism was developed by Baum [1,2] in 1971.
SEM formalism grew from the experimental observation that the transient
response of scatterers is dominantly composed of one or more damped sinusoids.
Since such damped sinusoids correspond to conjugate pole-pairs in the complex
frequency plane (or s-plane), Baum postulated that a complete representation
of the transient response could be obtained by knowledge of all s~plane sin-
gularities of the object's response. Such s-plane singularities potentially
include poles, essential singularities, branch cuts, and entire functlons. A
complete SEM representation of a scatterer consists of a set of singularities,
the modal current distribution associated with a singularity, and a normaliz-
ing coefficient., Marin [3] showed that perfectly conducting objects in free
space, such ags are dealt with in the present work, have only pole singular-
ities. Hence only pole singularities are considered in this work.

Because the SEM approach reduces the problem of finding a transient
response for a given object to that of finding the object's singularities, the
associated modal distributions, and the coupling factors which weight a given
singularity's‘contribution to the response for a given exciting waveform, we
see that SEM offers a more compact and efficient way of representing transient
responses than previous methods. These methods include numerical solutions of

differential/integral equations in the time or frequency domain, and integral




operator modal approaches. The connection of the latter approach, sometimes
referred to as the elgenmode expansion method (EEM), to SEM has been demon-
strated by Baum [4]. In the present work extensive use of EEM in conjunction
with SEM is made. The utility of SEM lies in the low and intermediate fre-
quency ranges, and is particularly useful for studying the response of scat-
terers to the nuclear electromagnetic pulse (EMP) because of the presence of
frequencies whose wavelengths range from long to short compared to scatterer
dimensions in such pulses. In addition to compactness and efficiency, SEM

offers greater physical insight into a probiem than other methods.

1.2 Scope of Present Work

The motivation for the present work derives from the insight that
it may be possible to construct passive RLC (resistor, inductor, capacitor)
circuits from the pole and residue data of SEM. Such circuits might then be
used to predict the transient current response of an object to various wave-~
forms. This idea has been formalized by Baum [5,6] and the present work
centers on the feasibility of this approach for the construction of some
realizable equivalent circuits for radiation-gathering structures - in par-
ticular on the positive real considerations of realizability for convenient
formalisms.

In a previous work Hess [17] has performed an EMP coupling analysis
using transfer impedances derived from SEM. Schaubert [16] has recently con-
structed lumped—-element equivalent circuits for a center-driven dipole and a
Yagi antenna, using experimentally derived SEM data. Schaubert extracted SEM
data by means of Prony's algorithm from the antenna terminal voltage wave-
form due to a step—~like excitation, and used this data to construct the total

impedance of the antennas., Schaubert then used Brune's synthesis method to



derive equivalent circuits. The present work uses theoretically derived SEM

data and addresses the problem of realizing the antenna impedance by indi-

vidual, transformerless, circuit modules which can be related to the SEM data.

Baum [5,6] suggested the construction of equivalent circuits on a
pole at a time basis, a conjugate pole-pair basis, and an eigenmode basis, ‘and
gave generalized formal circuits for each type of synthesis. The realizabil-
ity of the formal circuits was not treated in detail. The formal development
of SEM leading to equivalent circuits is left to Chapter II. The case of
conjugate polefpair synthesls is examined briefly and related to earlier work
by Guillemin [7], in order to illustrate some of the salient aspects of the
current work. A more detailed consideration of this and related problems is
given in Chapter III,

The physical realizability of a given impedance or admittance
quality hinges on whether or not that quantity is a positive real (PR) func-

tion of the complex frequency s. A positive real function is defined as a

function that is real for s real, is analytic in the right half-plane, and
whose real part is positive along the jw axis. Additionally, any poles on

the jw axis are simple with real and positive residues. It is instructive to
study the conditions under which a conjugate pole-pair exhibits positive real-
ness ("PRness").

The admittance associated with the nth SEM pole is written as

- 1

Yn(s) = s — g > <l~l)
= 1 = t »

where S, o, + Ju, is the complex pole and a, o + jﬁn is the complex

residue. A modified form of this admittance, which has the property of being

zero at zero frequency, 1s written as

10



W)
W)

+ 2 (1.2)
s
n n
so that Yé(o) = 0 is physically consistent with the terminal admittance of a
simply—-connected scatterer.
SEM poles are either purely real or occur in conjugate pairs. The
conjugate pair case is the more general one. The admittance of the nth con-

jugate pole~pair is then, in unmodified form,

cp 2, aﬁ
Yn (S) = s~ S -+ — S* (1.3)
n n
or
o 2 Real(an)s -2 Real(aﬁsn)
¥ P (s) = (1.4)

52 -2 Real(sn)s + lsn[2 )
In this form we see that the coefficients of ng(s) are real valued, as they
must be for circuit realizability., The other criterion necessary to ensure
realizability of ng(s) is the non-negativeness of its real part along the
jw axis.

Guillemin [7] showed that for an unmodified admittance function
formed by conjugate pole;pairs to be PR, certaig conditions must be met. If

we let

, (1.5)

with

11



dl = 2an bl = -20n

= - i = 2:
dO = =2 Real(ansn) bO |sn| g+ w .
= - 1.6
2(a o+ B o) (1.6) .
We see that bl and bO are positive for a pole in the left half-plane, while v

dl and dO may be of either sign. In order to find what conditions need to

apply to d, and do for Ysp(s) to be realizable, we need to find its real part,

1

and check for non-negativeness at s = jw. This leads to the condition

&by + (dyby = dJu’ 2 0 . ~oan
This requires
dby 24520, (1.8)
which leads to the PR conditions
~a o +Bu 20 (1.9)
and
-0 = ann 2 0. (1.10)

We can combine these conditions into a single expression which reflects the
necessary restriction on the residue for a PR function to result. This

expression is

> . (1.11)

12




This condition is illustrated graphically in Figure 1. These and similar PR
conditions are used extensively in Chapter III. For Y;p(s) to be PR, the
residue must lie within the shaded portion of the a-plane. Unfortunately, it
is seen that most SEM poles and residues fall to meet this criterion, and
ways of circumventing this difficulfy are devised., The parameter tests which
are required for modified conjugate pole-pairs have been derived, and are
presented in Chapter III.

In Chapter II, the formal development of SEM in conjupction with
EEM as applied to equivalent circuits is given, and the sources of SEM data
used in this study explained. Chapter IIL deals with PR considerations of
functions derived from SEM data on conjugate pole-pair and eigenmode bases,
and examines pole/residue error considerations. Chapter IV encompasses some
synthesized circuits for wire and loop objects, and compares the results
obtained from these circuits and analyzed by a SCEPTIRE circuit analysis pro-
gram to results obtained from a thin wire-time domain (TWTD) program. Also
in Chapter IV the sensitivity of these circuits is considered. Chapter V
gives the conclusions reached by this study, and points out areas which need

further consideration.

13
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CHAPTER II

FORMAL DEVELOPMENT OF EQUIVALENT CIRCUITS

2.1 Introduction

In this section we consider the problem oflthe broadband admittance
of an arbitrary scatterer or antenna at a gap region in the object. The
approach is to cast the object's terminal pair formed by the gap into the
form of a Norton equivalent circuit. Then, using SEM, the equivalent admit-
tance is found in the form of a residue series in the complex frequency
_variable. Subsequently, network synthesis techniques are applied and equiva-
lent circuits constructed. Three different generic circuit configurations
are considered, corresponding to three different levels of grouping the SEM
poles. In the first circuit, the admittance formed from the individual poles
is the basic module. In the second the pole-pair admittance formed by group-
ing a conjugate pole-—pair together is the basic module. Finally, the admit-
tance formed by grouping the poles according to eigenmodes ﬁith which they
are associated, as directed by EEM results, provides the basic module. The
admittance formed by eigenmode grouping we term a "terminal eigenadmittance".

In the last part .of fhe chapter the sourCeé of the SEM data used in

this study are discussed.

2.2 Formulation of the Norton Equivalent Problem

Figure 2 gives the steps required in defining the Norton equivalent
for an active circuit with a single port. The active circuit can be replaced
by a single equivalent admittance and a current generator in parallel, as in

Figure 2a. 1In Figure 2b the methods for finding the current generator and
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Defining the Norton equivalence admittance and

short circuit current.
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equivalent admittance, both necessary for the replication of the active cir-
cult as seen by the port, are illustrated. The short-circuit current is found
by shorting the port of the active circuit, and the equivalent admittance is
found by setting the sources of the active circuit to zero and measuring the
admittance seen by the; port. The following development is essentially that of
Baum [5]. It is reproduced here for the sake of completeness.

The single port scatterer problem is defined in Figure 3. 1In this
figure, Sa is the surface of the scatterer, all of which is not shown. The
gap which is formed by parting the scatterer with a plane is aenoted by Sg'
ag is a unit wvector defining gap orientation and A is the gap width.

Using this geometry, we desire to find the Norton equivalent repre-
sentation of the antenna as seen by the gap (feed-point). The method is
illustrated in Figure 4. The equivalent admittance is found with the aid of
Figure 4a, The first step is to specify an electric field at the feed point.
The ratio of gap current response to the voltage associated with the specified
field yields the terminal admittance. We choose a field that is divergence-
less in the gap volume, i.e., a quasi-static electric field. The field is

represented then by

Eg(?,t) = +V(t)gp(?) , (2.1)
where e (r) = A V(t) is the gap voltage.

Having defined the electric field across the gap, we need a suitable
definition of the current I(t) through the gap. For this we integrate the
current density over the surface Sg of the gap and average over the longlitu-

dinal direction of the gap.

17



Figure 3: The scatterer/antenna gap geometry.
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Figure 4: The scatterer/antenna admittance and short
circuit current formulations.
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I(t) 3(r,e) - Zg(?:’) ds dz

e

g

> > > >
<J(r,t) ; e _(v)> (2.2) v
g g
> > . +,-
where J(r,t) 1s the surface current density, z denote the edges of the
gap, and the notation <>g denotes spatial integration over the cylindrical
surface forming the gap.

The equivalent admittance of the gap is then

SOOI O R, 760 - G LI (2.3)
& V(s) V(s) & 8
where ~ represents the two-sided Laplace transform.
The prbcedure for finding the short-circuit current is detailed 1n

Figure 4b. Here the sources are represented by an electric field incident on

the antenna. The short-circuit current through the shorted gap is then cal-
> > . > e~
culated from Equation (2.2), with E, r,s) = e .
q (2.2), ine(®®) = €OV ()
The present work 1s concerned entirely with the equlvalent admit-
tance depicted in Figure 4a and the positive real considerations of that
solution. Therefore the derivation of the short-circuit current generator is

not given here. Readers interested in this subject are referred to Baum [5].

2.3 Equivalent Admittance Circuits

We construct formal equivalent admittance circuits using the singu-
; . > ]
larity expansion of the current J(r,s) as a tool. Three such circuits are

constructed., These circuits, in order of the complexity of the modules from

which they are constructed, are composed of

20




~ pole at a time admittances
- pole-pair admittances .-
- terminal eigenadmittances
The singularity expansion of the current in the frequency domain is
1¢3

( Eni(¥)<s - snij"l + ﬁe(¥,sﬂ , (2.4)

,8) = V(s) [z % Er'li

n i
where %(s) is the voltage across the gap, E;i is the class I coupling coeffi-
cient, and 3n1(¥) is the natural current mode. The index n indexes over the
eigenmode sets of poles, and the index 1 indexes the individual poles in an
eigenmode set. ée(¥,s) is a possible entire function contribution. Several
researchers [8] have conjectured this contribution to be zero when the sum—
mations are ordered over eigenmodes as indicated in (2.4). The entire
function contribution is not considered in this work.

Inserting this form of 3(?,5) in Equation (2.3), we obtain

~ _ ~yp o= > -1 e - LT
Yg(s) = <:[Z b) nniJni(r)(s - sni) + J (r,si] 3 eg(r)>g (2.5)
n 1
or
T () =32 a.(s~-s_)"T+3%6) (2.6)
. s a ;(s i ) 7 2.
n i
~ ze
=3 X Yni(s) + Y (s) , 7 Q2.7
n i
where B
VYl - - > >
3p1 = Mpidpg (O eg(r)>g (2.8)
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and §e(s) is the entire function contribution, i1f present, The term a ; is
termed the residue associated with a pole Shi°

Equation (2.7) is now used to construct formal circuit diagrams. The
first of these is given in Figure 5, in which the modules are formed from one
pole at a time., In this figure the port representing the antenna gap is on
the right, with voltage G(s) across it and current E(s) into it, The modules
are placed in parallel as dictated by Equation (2.7), and the entire function
modules are also shown,

Many objects, such as dipole antennas, exhibit a zero admittance at
zero frequency. It is desirable to modify the above admittance forms to

exhibit this property. We do this by subtracting off the value of the adnit-

tance at zero. Writing the admittance in this form gives

[}

-1 —1] ~e'

§°(s) T, a 4y [ s - sni) + S.1 + Y (s) (2.9)
© n

z
i
il |

v (s) + Y€ () , (2.10)

Lz
n i
where Y;i(s) is termed the modified admittance module by Baum. This form
differs from the unmodified form by only the addition of & constant term.
The equivalent circuit construction with modified admittances would take the
same form as Figure 5, We note that the modified form is inappropriate to
the pole at zero for multiply connected objects because the subtractive
factor is undefined.

Since in general both the residues and poles in Equation (2.6) are
complex, pole-at-a-time modules may contain unrealizable elements. This is
demonstrated in the next chapter. As a step toward the development of real-

izable circuits, modules formed by grouping conjugate pole-—pairs together are

22




€C

/ / /
7 / / /
/ /
Y21ls)/ Yiats)/
—T
+
~ ~ ~ Zy
Yz'o(S) Y1,0(3) v OR
SOURCE
~ % ~ W
Y2,|(5) Y1'1(S)

Figure 5: Pole at a time equivalent circuit.



studied. This can be done for both modified and unmodified admittances. In

the unmodified case we have, for the pole-pair module,

sep,_y _ ot ~-
Yni(s) Yni(s) + Yni(s) , (2.11)
where
. a .
¥ (o) = nl (2.12)
ni s - s
ni

and %;i(s) is the conjugate. Figure 6 illustrates this circuit arrangement,
In this figure admittances whose poles have no imaginary part are designated
by §n0<s).

The final circuilt considered consists of terminal eigenadmittance
modules, and is represented in Figure 7. Here all poles belonging to an
eigenmode are‘gathered into one module, and the complete circuit is the
parallel sum of these modules. Again, either modified or unmodifiedrforms

may be used. The module for the nth unmodified eigenadmittance is

velg - SCp hyd
Yn (s) i Yni(s) + Yno(s) . (2.13)

In Chapter IIL the PRness of these different circuit constructions
is discussed, and in Chapter IV passive, realizable circuits are built to

give the admittance of straight wire and circular loop antennas.

2.4 Sources of SEM Data

2,4,1 Straight Wire Data

In a previous work Tesche [9] has derived the SEM data for the

straight wire, using a method of moments (MoM) solution to Pocklington's
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integro-differential equation for the axial current flowing on the wire

I1(z,s). This equation has the form

inc 82 32 L
=s g B (z,8) = | =5 - =5 I(z',s)K(z,z',s) dz' , (2.14)
0 2 2
3z c 0
where
S .
K ! - L J’Zﬂﬂ d 2.15
(Z,Z ,S) - md 0 4R a ¢ ( . )
and
1/2
R = [(z - 2% + 4% sin? c%)] (2.16)

and L is the length of the antenna and d is the wire diameter,

When Equation (2.13) is cast into MoM form, the result is

z(s) I(s) = V(s) = (2.17)

Here Z(s) is the syétem nxn métrix; where n is the number of zones on the
antenna, and T and V are, respectively, the response and source vectors, each
of dimension n. Using this formulation, then the SEM poles are found by

solving

det ETE;;? = 0 (2.18)

for the nontrivial solutions. The natural current modes are found from the

set of equations

Z(Sni) I(sni) =0 . (2.19)
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The normalization coefficient Bni is found by computing

1
B = . —— (2.20)
ni -— 3 Z(5)

Ini '5_5-;

I .
s_, ni
ni

Using these equations, an SEM data base was constructed for a straight wife
with an aspect ratio (diameter/length) of .0l. It was found convenient to
use 64 zones for the MoM equations. The resulting data agrees with the
results reported by Tesche [9].

The SEM poles for the wire fall in layers in the left-~hand s-plane,
indicated in Figure 8. Poles are indexed by (m,n), where m is the layer and
n is the pole, numbered sequentially by distance from the %% axis, where C is
the speed of light. Layer one consists of those poles closest to the jw
.axis, layer two of the next closest, etc. Reference to this iayer scheme of

ordering poles will be made freguently.
2.4.2 Circular Loop Data

The SEM loop data is an important complement to the numerical data
derived for the wire, in so much as the electric field integral equation for
the loop can be approximately solvea analytically due to symmetry by expand-—
ing the current into a Fourier series, as done by Wu [10]. Also the loop
represents a doubly-connected object, as opposed toc the singly-connected
wire, and the difference in the SEM representation of the admittance for
these two objects can be investigated. Namely the wire evidences zero admit-
tance as s -~ 0 while the loop admittance does not. Due to the analytical
tractability of the loop integral equation it is possible to identify and
group the poles by eigenmodes, which will be useful when the investigation

of eigenadmittances is made in Chapter III.
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The SEM current expansion given by Umashankar [11], based on Wu's

results, is : -

I(s,s) = N & S L (2.21),
where n is the index over modes and i the index over poles in a mode and ﬁ is
the free space impedance. %(s) is the transform of the input waveform. The
modal currents are of the form,e_jn¢. Equation (2.21) is the representation
from which the gap admittance for the loop is derived., Figure 9 gives the
loop geometry.

When discussing the poles of an eigenmode for the loop, Wilton and
his co-workers break the poles into three groups [11,12], and this practice
will be followed here, Figure 10 shows this classification. The type I pole

for a mode is that pole which lies closest to the jw axis. Type II poles, of

which there are a finite number, lie in a semicircular arc veering towards

the negative real axis. Type III poles, which are infinite in number for a
mode, lie along the jw axis. The SEM data for the loop used in this study
was computed by Blackburn [12], and has been fully corroborated by Umashankar

[117].
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CHAPTER III

POSITIVE REAL CONSIDERATIONS

3.1 Introduction

In this chapter the three different modules (pole-at-a-time, pole-
pair, and terminal eigenadmittance) used to constrﬁct the equivalent admit-
tance circuits are examined to determine their PRness and hence theilr
realizability., Admittance modules from both the straight wire and circular
loop are examined, Parameter tests for PRness, as defined in Chapter I, are
constructed and used extensively., Also, the admittances of some modules are
studied by graphs depicting the real part along the jw axis. The question

of the effect of numerical errors on the PRness of modules is addressed.

3.2 Pole-at~a-Time Circuits

Ideally, it would be desirable if the admittance at the feed point
could be realized by constructing individual circuit modules on a pole at a
time basis, as illustrated in Figure 5. A consideration of the individual
modules in detaill shows that such a realization is untenable, The admittance

of an unmodified module in SEM terms is given by

(3.1)

This is recognizable as an RL series circuit, with the values of the inductor
and resistor given by

L
a

L = (3.2)

ni



and

R= - . (3.3)

However, since the SEM data consists generally of complex poles and residues,
then the L and R elements take on complex values, and are hence unrealizabie.
Only in the case where a SEM pole lies on the negative real axis is the cir-
cuit realizable.

A consideration of the modified pole at a time circuit module

reveals the same situation. Here we have

1 ani a'}:1i an is
Y .(s) = + = . (3.4)
ni s ~ s . s . s .(s = s .)
ni ni ni ni

The general complex form of the residue guarantees unrealizability.

Given that some SEM poles lie near the jw axis, the question might
be asked: Will the imaginary parts of the circuit elements, Iin either modi-
fied or unmodified form, be negligible? Taking the pole which is closest to

the jw axis for the wire, for the center-driven case we obtain the following

values:
Unmodified Modified
L = 833.61 — §233.97 C=-1.36x10"2 - j1.32 x10™%
R = 146.39 + j782.47 R = 146.39 + j782.47

We can see from this example that the imaginary parts are not negligible.

3.3 Conjugate Pole~Pair Modules

From the results in Section 3.2, we see that for realization of a

circuit, it is necessary to have real coefficients for the powers of s in Yni'
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This can be done by combining conjugate pole-pairs into one module.

data, this is done as follows for the unmodified case

~c ®ni ®ni

¥P(s) = +

ni s — 8
nl nl

where * indicates conjugation. Simplifying, we have

2 Real(a .)s - 2 Real(a®.s .)
ni. ni“ni
2

s -2 Real(sni)s + ]snilz

~cp _
Yni(s)

Similarly for the modified case we have

b3 2 % 2
' 2 Real(anis s o~ 2 Real(ani(sni) )s

SO o 5
(s7 -2 Real(sni)s + ,Sni, )

For SEM

(3.5)

(3.6)

(3.7)

We see that in both cases the coefficients of s are real. 1In addition, all

coefficients in the denomlnators are positive, since all poles lie in the

left-hand part of the complex plane.

In the Introduction, the conditions placed on the residues for the

unmodified admittance of Equation (3.6) to be a PR function are given. The

conditions for the modified admittance to be PR are derived in the following

paragraphs.

Rewrite Equation (3.7) as

where
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g 2
= A = £
d; = 2 Real(a_;s%,) by '“nil
d, = -2 Real(a* (s_.)%) b, = -2|s_.|” Real(s_.)
2 ni " ni? 2 n
- 4 )
b3 - Isni[ *
Then the real part of %(s) at s = jw is )
4 2
) dbow” + (d.b, - d;b.)w
Real Y(s) = 2141 5 2 2 123 7 . (3.9)
blw + (b2 - 2blb3)w + b3

Because the denominator formed in this way is the square of an absolute
value, it is always positive. Thus the question of Y(s) being positive real

devolves to

A 2
dlblw + (d2b2 - dlb3)w 20 for w 2 0 . (3.10)

Setting the first derivative of this function to zero to find the extrema
yields such a point at w = 0. Since this point must be a minimum for a PR
function, evaluating the second derivative at w = 0 ylelds the first, low
frequency, PR condition

2(d2b2 - dlb3) =0, : (3.11)

The other PR condition is obtained from observing that Equation (3.10), to be
PR at high frequency, must have a nonnegative coefficient for the w4 term.

This yields the condition

d.b, 2 0 . (3.12)
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These conditions are seen to be necessary and sufficient for Equation (3.7)
to be PR. Translating the coefficients of these two conditions into the pole

and residue terms, where a ., =« ., + j8 ., and s = ¢_, + ju_ ., we get
ni ni ni ni ni

2(a

Zfs LT .
ni ' ni

+6 0 )20 (3.13)

| .
ni ni ni

and
4)s .[ZEL o . (02 - 3w2.) + e v .(362, - wz.)] >0.  (3.14)
ni ni ni \ ni ni nini ni ni

Equation (3.13) is called the high frequency parameter test for
modified pole-pair admittances and (3.14) is the low frequency parameter
test, also for modified pole-pair admittances. Both of these tests must be
met (i.e., > 0) for the modified pole-pair admittance to be PR. The parame-
ter test for unmodified pole~pair admittances is derived in Chapfer I and
repeated here as

lo ;20 (3.15)

~-a .0 . - ]8 ,
ni ni ni

For convenience we name Equation (3.15) parameter test I, the low frequency
condition of Equation (3.14) parameter test IIA, and the high frequency con-
dition of Equation (3.13) parameter test IIB.

The usefulness of these tests is i1llustrated in Figures‘ll through
15, These figures display the parameter tests for both modified and unmodi-
fied pole-palr admittances for the first five poles of the first layer of the
straight wire, and illustrate how the values of the tests vary as a function
of the gap location on the wire. The solid line is the parameter test for
unmodified pole-pair admittances and the dashed lines are for the modified

admittances. PR regions for both admittance forms are marked by shading.
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The x-~axis 1s the normalized distance from one end of the antenna, and the
y-axis is the value of the parameter tests. For the equivalent circﬁit corre-
sponding to a particular feed location to be realizable on a pole-by-pole
basis, the pole-pair admittance for each pole-pair must be PR.

Note that for these first layer poles, which are the primary con-
tributors to the circuit admittance due to their proximity to the jw axis,
only the important case of pole 1 seems to be PR (in modified form) over a
wide region of the wire. Also note that in no case for the first layer poles
ié the unmodified form of the admittance realizable, and for the modified
form, apart from pole 1, only isolated spots on the antenna appear PR.
Figures 16 through 19 indicate the parameter tests for the first three pole-
pair admittances of the second layer which lie off the real axis, and the
second pole-pair admittance of the third layer.

These graphs indicate only a qualitative measure of positive real-
nesé, however, 1If we look at the real part of the modified conjugate pole-
pairs directly, greater insight into the realizability is available. Figures
20 through 27 display the real part of the modified admittance along the jw
axis for the first five poles of the first layer for the center and quarter
locations of the wire. Figures 28 through 32 show the real part of the pole-
pair admittances of the second layer poles.

In these graphs the solid line indicates the modified pole-pair
admittance real part. The dashed line indicates the amount of shift between
the modified and unmodified admittance. In other words, the dashed lines
indicate the zero axis for the modified form. Several facts can be observed
from these graphs. The first layer poles are the primary contributors to the

admittance, as their peaks are 25 to 100 times greater than the peaks of the
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Figure 23:
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more deeply embedded poles. The level shift due to the use of modified
admittances for first layer poles is positive, indicating that without modi-
fication these poles would all have substantial negative regions for frequen-
cies below the admittance peaks. All of the first layer poles except for
pole 1 at the 1/4 point are non-PR. This result, as well as the PR quality
of pole 1 at the 1/4 point, is predicted by the PR condition curves of the
last section. However, now we can see that the violation of PRness is small
in some cases, and consistently has the same character for first layer poles;
i,e., the negative portion occurs as a result of the low frequency violation
of the PR conditions and results in a small negative dip before the main peak
of each admittance. This behavior suggests two questions: 1) Is the small
negativeness attributable to numerical error?:; and 2) If there are no numer-
ical errors, can the admittance still be realized with perhaps some negligible
negative components? It is shown subsequently that the answer to question 1
is "yes" only for a few isolated and predictable cases. The second of these
questions is addressed in Chapter IV.

It 1s worthwhile at this point to examine the PR character of the
conjugate pole;pair admittances formed for the circular loop. The type I
modified pole-pairs for modes one through five are shown in Figures 33 through
37. These poles are the major contributors to the overall admittance of the
loop. These admittances are quite similar in charécter to the first layer
pole-pair admittances for the wire. Except for mode 1, these admittances are
slightly non-PR, exhibiting a negative low frequency behavior. The loop,
unlike the straight wire, has a nonzero admittance at w = 0. This gives rise

to an SEM pole for the loop at s = 0.
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The character of the modified pole-pair admittances formed using
the type III poles of mode 2 are shown in Figure 38. Similar admittance
curves characterize all type III pole-palr admittances. The characteristics
are an initial positive value rising to a peak, which then falls to a nega-
tive peak and a negative final value as frequency goes to infinity. The
peak value for the first type III, mode 2 pole is 240 times lower than the
peak of the type I, mode 2 pole.

The modified pole-pair admittances for the type II poles of mode 2
are shown in Figures 39 and 40. The figure for the pole lying on the nega-
tive real axis is not a pole—pair,'of course, but only a modified pole con-
struction. The peak admittance from this pole is some 130 times lower than
the type I pole of mode 2, The character of the type II pole lying closest
to the jw axis is entirely negative, with a peak value some 50 times lower
than the type I pole peak., This negative behavior is a characteristic of the
type II pole closest to the jw axis, as Figure 41 indicates.

In summary, the following conclusions regarding pole-pair PRness
are established:

- For the straight wire

~ Dominant layer 1 pole-pair admittances are non-PR in unmodified
form, exhibiting a negative wvalue at zero frequency.

- Modified layer 1 pole-pair admittances are in general non-PR,
exhibiting only a very slight negative value in the low frequency
region, Exceptions occur at-isolated locations on the wire for
all pole-pairs, and pole-pair 1 is PR over most of the antenna.

- Deeper embedded pole-pairs, which contribute much less to the
total admittance, are PR on various intervals, sometimes in modi-
fied form and other times unmeodified.

- For the circular loop

- The dominant type I pole-~pairs are non-PR in unmodified form,
exhibiting a negative value at zero frequency.
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- Modified type I pole-pairs are in general non-PR, exhibiting a
slight negative value in the low frequency region. An exception
is the pole~pair of mode 1, which is PR.

— Type 1I pole-pairs, which contribute much less to the total
admittance than do type I, exhibit a range of PRness. The type
IT pole-pair closest to the jw area is non-PR in unmodified or
modified form, and the pole admittance {(not a pole-pair) which
lies on the —g axis is PR. Other type II pole-pairs are not PR
in either form. -

-~ Type III pole-pairs, which also have small contributions to the
total admittance, are non-PR in modified or unmodified form.

3.4 Eigenmode PR Considerations

When the synthesis of equivalent circuits is carried out on a ter-
‘minal eigenadmittance basis, the theory of the eigenmode expansion provides
some very useful insights into the problem of finding PR functions. First we
note that the inverse eigenvalues k;l(s) are positive real functions, as they
derive from an impedance integral equation for a passive object [6]. The

. . -1 . . .
PRness of the inverse eigenvalues An (s), which are termed eigenadmittances

by Baum [4], has been demonstrated by Wilton [13]. This proof is reproduced
in the Appendix for the sake of completeness. However, the PRness of these
elgenvalues does not insure the PRness of the associated terminal eigenadmit-
tances of Equation (2.13), as we demonstrate in the Appendix. Additionally,
the comstruction of terminal eigenadmitfaﬁces depends on the availability of
the eigenmode groupings of:poles. For analytically tractable objects, such
- as the loop or sphere, such groupings are available; however, for objects
such as the wire, where the poles are found numerically, the task of grouping
the poles by eigenmodes is much more difficult. For a complex object where
the poles are experimentally derived, if at all, complete grouping information -
is not likely to be available. |

Wilton and his colleagues [13] have derived eigenmode groups Qf

poles for the wire on a numerical basis. They have used these groupings as
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the basis of conjecture for the general grouping scheme indicated in Figure
42, ©Note that there are only a finite number of poles belonging to each
eigenmode in this represenfation. The circular loop manifests an infinite
number of poles associated with each eigenmode.

In the case of an infinite number of poles per eigenmode, the
question arises as to whether all poles are necessary for PRness and, if not,
how many poles must be included to have a PR function. In the case of mode 1,
where the type I pole-pair forms é PR modified admittance by itself, inclu-
sion of the type II pole of this mode destroyed this PR character in the low
frequency region, although the maximum negative‘value is only —--5><lO—8 mhos ,

3 mhos., The systematic addition

'compared to the positive peak value of 7.5%10°
of type III poles reduced the maximum negative value, and pushed the fre-
quency at which this maximum occurred closer to zero until, with the inclu-
sion of four type III1 poles, the admittance was again PR. The inclusion of
these poles is found to have little effect on the appearance of the admit-
tance when compared to the type I pole~pair admittance, except for introduc-
ing some small high frequency variations due to the type III poles. The peak
admittance value of the eigenmode grouping has been lowered by some .75 per-—
cent,

An interesting feature is observed when the eigenadmittance group-
ing is performed. As more type III poles are included, the difference between
the modified and unmodified forms becomes smaller, and in the limit would
appear to give the same admittance. In other words, the constant terms intro-
duced into the modified form sum to zero for a glven eigenmode.

A similar examination of mode 3 where the type I pole is not PR

revealed the same behavior as that for mode 1. Increasing the number of
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type III poles systematically reduces the negative portion of the admittance.
However, inclusion of all seven type IITI poles available did not produce a PR
result, although the maximum negative value was reduced to only —.25X10~8. For
higher modes a similar result also holds. 1In general, to make an eigenadmit-
tance PR requires the inclusion of many type ILI poles, making the circuit
realization more complex, since the additional poles entail more circuit
elements,

It is worthwhile to point out that if the problem at hand were
merely to synthesize the total admittance of the wire or loop using SEM data,
then the PR character of the admittance is assured. The mathematical reason-
ing leading to this conclusion is as follows. If the pole of the lowest
frequency for the structure is PR or can be made PR; then when all the poles
for the structure are grouped the low frequency non-PR character of the
higher poles are negated by the large positive peaks of the lower poles.
However, to include simple Norton generators in the synthesis, it is neces-
sary to try to realize the admittance by some group of recognizable modules.
Further, it is desirable that these modules be as simple as possible,

When the terminal eigenadmittances for the straight wire are con-
sidered, the results are found to be ambiguous. For eigenadmittance group-
ings using conjugate pole-pairs at the center of the wire, the results are
IPR, as indicated in Figures 43 and 44. However, when such groupings are
attempted for a terminal taken at the quarter point of the wire, some non-~PR
results are discovered. These groupings are indicated in Figures 45 through
49, The postulated eigenmode groupings for eigenmodes 2, 3, 4, and 6 are
non-PR, and in the case of modes 3 and 6 the negative part is not negligible.

This result could have been foreseen by reference to the parameter test
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results. Taking the case of mode 3, poles 3 in the first layer and 2 in the
second layer, we see from the PR condition graphs that at the quarter point
for these poles the PR conditions for the modified admittance form is vio-
lated for both poles. Since the real part of each pole adds algebraicallyK
to produce the total real part admittance, then the grouping of non-PR poles
cannot produce a PR result. Similarly the unmodified admittance formed by
grouping these two poles is non-PR.

While the discussion in the Appendix indicates that the terminal
eigenadmittances are not demonstratively PR, it is interesting to speculate
as to alternative reasons for the non-PR result. That numerical errors in
pole/residue data is the source of departure from PRness is unlikely in
light of the general error analysis discussed in the next section. Other
possibilities include improper groupings of poles associated with the eigen-
values and missing components of the Mittag-Leffler expansion of the eigen-
values. Wilton's groupings are based on similarity of modal features and
the topological kinship of the straight wire to the sphere. We are inclined
to trust Wilton's conjectured groupings. Therefore it is difficult to draw

more specific conclusions at the present time.

3.5 SEM Pole/Residue Error Effects on PR Considerations

The SEM data for the wire is numerically derived. This éives rise
to the question as to how strongly numerical errors influence the PRness of
the admittances derived from this data. This is especially important in
light of the very small negative values encountered in the modified conjugate
pole-pair admittances for first layer poles. We have elected to investi-
gate this question in terms of the parameter tests given in Section 3.2.
Errors in the real and imaginary parts of both the poles and the residues

were introduced, and new parameter test curves were produced. In sudh a way
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the sensitivity of these conditions to errors in the poles and residues can

be observed. The study is centered on errors in the real part of the pole.

The real part of a numerically derived pole is generally less trustworthy
than the imaginary part. -
Results for pole 1 of the wire are given in Figures 50 and 51. 1In
these curves, the solid line is the original value, and the dashed lines
indicate the changed values. Figure 50a shows the effect of a +5 percent
change in the pole real part on the high frequency condition for pole 1. The
change in this condition is very slight. Figures 50b through 50d indicate
the effect of changing the other parameters by 5 percent., The largest change,
of some 30 percent, occurs when the imaginary part of the pole is changed.
Since this parameter is accurately known (within 2 percent) in the numerical
data, this is not bothersome, MNote that in none of these graphs is the basic
character of the condition changed; that is, the shape remains the same and

the condition remains positive.

An entirely different situation occurs when we modify the parame-
ters by 5 percent for the low frequency test. These effects are illustrated
in Figures 5la and 51b. In Figure 5la, a change of +5 percent in the real
part of the pole results in an entirely positive condition, This change
corresponds to forcing the real part of the pole slightly away from the juw
axis. The remaining figures indicate a similar occurrence when the imaginary
part of the pole is forced towards the real axis, when the imaginary part of
the residue is forced towards the real axis, and when the real part of the
residue is forced away from the jw axis.

The real part of this pole is modified to produce a PR function,

both to study the effect on the admittance and for latter use in circuits.
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Because an error of +5 percent for the real part of the pole is within the
computational uncertainty of the data, a value of this pole with a real part
changed by 3.5 percent is used, which allows the modified form of this admit-
tance to be PR over the entire wire. When this is done, it is found that the
peak value of the modified admittance formed from this pole decreases by 3
percent over the original wvalue,

In light of these results for pole 1, the other poles were studied
in the hope of producing PR results for the entire wire with adjustments in
the pole value within the limit of numerical error. It was found however
that all the other poles retained the essential characteristics of the non-PR
conditions under as high an error as 10 percent. Figures 52 through 57 indi-
cate these results for poles 2 and 3 for the first layer, and pole 2 of the
second.

he conclusion to be reached is that the small. negative low fre-
quency admittance values found when forming modified conjugate pole-pair
admittances are not attributable to any small numerical errors in either the
poles or residues, but are inherent properties of these admittances, The
important exception is pole 1 in the first layer. It was found that when
large changes in the poles or residues were made in an attempt to make these
pole-pair admittances PR, the peak wvalue of the admittance, which we know to
be accurate through comparison with integral equation admittance results, is
changed substantially. Hence means other than parameter modification or

approximation must be used to realize these admittances.,
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CHAPTER IV

CIRCUIT SYNTHESIS

4,1 Introduction

This chapter addresses the construction of equivalent admittance
circuits for three objects -~ the center—-driven wire, the quarter—driven wire,
and the circular loop. The circuits derived are physically realizable; that
is, they are composed only of passive resistor, inductor, and capacitor
elements, The circuits are composed of terminal eigenadmittance modules
whenever possible. However, Qhen terminal eigenadmittances are not PR, two
other methods are used to create equivalent circuits. In the first, a method
is devised by which an admittance having a negligible non-PR region can be
made PR. In the second, poles are regrouped to produce a PR result. The

response of these circuits to a transient wvoltage at the port are compared to

the response of the original object to the same voltage. A study of the sen-

sitivity of these circuits to element variations is also made.

4.2 Center-Driven Wire

Two equivalent circuits are constructed. The first is composed of
terminal eigenadmittances, and the second employs first layer pole-pair admit-
tances only. To construct this second circuit, a method is given by which
the small non~PRness of these admittances can be neglected. The responses of

both circuits are investigated.
4.2.1 Terminal Eigenadmittance Results

The PR results from Chapter III, which indicate that the summation

of poles along the eigenmodes postulated in Figure 42 are PR and hence
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physically realizable; are used as a basis to construct an equivalent circuit
for the center-driven wire. The procedure followed is to construct the
rational polynomial formed by the summing of those poles in an eigenmode and
their conjugates, and then use standard circuit synthesis techniques to
derive the equivalent circuits. The circult synthesis is done by reducing’
the polynomial to a minimum conductance -~ minimum reactance. form, and then
applying the Bott-Duffin technique., Although a complete representation for
the eigenmode grouping is available for only the first six eigenmodes, we
chose to include mode seven, although the data base for this mode lacked one
pole in the fourth layer, since it was PR without this pole. The poles and
residues used are listed in Table 1. Figure 58 gives the result of this
synthesis, and Table 2 lists the element values, The reactive components

are normalized by-ﬁt . The real part of pole 1 is biased upward by 3.5 per-
cent of the peak value, as indicated in Chapter III, to make it PR. Because
only modes which possess current distributions which are even functions
couple at the center of the antenna, eigenmodes one, three, five, and seven
are realized. Table 2 also gives the actual circult element values needed to
realize the center-driven admittance of a 100-meter wire, This length was
chosen because it gives element values which are in the picofarad, microhenry
range. These values change proportionally to length, so that only a certain
range of sizes for the wire may actually be realizable. This scaling of
inductors and capacitors is frequency scaling, with the scaling factor equal

L . . ; . .
to P Hence both capacitors and inductors increase with increasing length.
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Table 1

Poles and Residues Used for Eigenmode Synthesis,

Center-Fed Cylindrical Antenna

Mode Poles Residues
1 ~.08427+1.9158 .1112%10" %4+, 3121x107°
3 - 1473+32.870 .1319%10 24, 3301x10" 2
~2.491+11.328 .0988x10 4§, 2529x10" 3
5 -.1877+34.834 .1423x10"2+j.3521x10'3
~2.894+33.528 .1408x10” >+4.1850x10 2
—4.517+31.497 .3218x10" +5.2378x107>
7 ~.2177+36.792 149610245 . 3699x10™ 3
~3.140+15.600 L1647x107 +§. 1687102
—5.069+3 3. 890 .6818x10" %45, 1628x1073

Poles are normalized as per Tesche [2]
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Table 2

Element Values Normalized to-lt for Center-~Driven Wire Admittance,

Realized on a Terminal Eigenadmittance Basis

100 Meter Antenna

Mode Element Normalized Value (ohms, farads, henries)
1 R .663 .663
R, 2200.6 2200.6
c 2.72x1073 288.6x10 2
11 .
-6
L, 434,55 46.11x10
2 Ry 29.76 29.76
Ry 4280. 4280.
R, 571.4 571.4
Ry, 53.07 53.07
R, 397.4 397.4
Ly 290.3 30.80x10"°
La, 3817. 405.x10"°
Las 141.2 14.98x107°
-6
Lo, 18.45 1.958x10
Cyy 3.649x10"% 38, 72x10 12
Csy 8.126x10° 8.622x10" 2
Css 1.681x10"2 1784x10" 2
C, 1.278x1073 135.6x10 12
Cys 6.218x10" % 65.98x10 12
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Table 2 (continued)

100 Meter Antenna

Mode Element Normalized Value (ohms, farads, henries)

5 Rey 50,69 50,69
Re, 5228 5228
Re s 1003 1003
R, 2829 2829
Rg o 947.2 947.2
R 137.9 137.9
R, 718.5 718.5
Reg 761.1 761.1
Reg 254,9 254,9
Cqy 1.539x10% 16.33x10" 12
G, 3.926x10:§ 4.166Xl0:iz
Ce s 7.068><1o_4 7.499><1o_12
Csy 3.362x193 35.67><1o_12
C55 2.52x10 . 267.l+><10_12
Cse 2.608x10 27.67x10
c.. 1.738x1072 18. 44x10™ 2
Lep 2424 25.72x10"°
Lgy 1817. 192.8x10::
Leq 188. 19.95><1o_6
Le, 125.3 13.29><1o_6
Lse 28.3 3.oo3><1o_6
Lo, 50.96 5,407x10
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Table 2 (continued)

100 Meter Antenna -

Mode Element Normalized Value (ohms, farads, henries)
7 R, 53.02 53.02 ]

R, 5967 5967
R, 2500 2500
R, 1682 1682
R 3611 3611
R 106.5 106.5
R 254.1 254.1
R 377.7 377.7
R 175.9 175.9
C.p 8.368x10™° 8.879x10" 12
c., 2.427x10:§ 2.575x10:12
C,, 2.285x194 2.424x10_12
C., 3.62x10 38.41x10
C.o 2.161x1073 229.3x10” 12
C.p 4.982x10~" 52.86x107 12
c. 1.129%1073 119. 8x10™ 12
L. 230. 24.40x10“26
L, 1373 145.7x10_6
L, 316.5 ©33.58x10
L, 717. 76.08x10"°
L 15.42 1.636XIO—Z
L 14.52 1.541x10
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4,2.2 Pole-Pair Realization Using First Layer Poles

Although the previocus section gives a practical circuit for the
admittance of a center-driven wire, several factors limit its use. An eigen-
mode synthesis for modes higher than seven requires the SEM poles lying in the
fifth and higher layers. Such poles are very hard to extract, and to date
have not been extracted. This would result in a band limitation on the cir~
cuit if the higher modes are not represented. Also, as more modes are
included in the representation more poles per mode are needed for realiza-
tion, which leads to more circult elements per mode.

For these reasons and because poles other than first layer appear
to contribute negligibly to the total admittance, a circuit using only first
layer pole-pair admittances is constructed. In light of the very small non-
PR values associated with the first layer poles, it is reasonable to assume
that some realization yields a circuit which includes some small, negligible
negative elements.

The following observation in regard to the Bott-Duffin synthesis
provided the necessary insight for approximate realization of the circuit,

Suppose a negative conductance G equal to the maximum negative value of a

N’
modified pole-palr admittance, is removed from the admittance, The result-
ing admittance i1s PR, since its real part has been raised by a level equal to
the absolute value of GN' If a Bott-=Duffin synthesis is then performed on
this PR admittance, the circuit module given in Figure 59 results,

Here YC and YL are functions obtained in the Bott-Duffin synthesis
and are subsequently synthesized by the removal of a conjugate pole., The

module is seen to consist of three branches: a shunt conductance, a capaci-

tive branch, and an inductive branch., Since the overall admittance of this
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Figure 59: Modified Bott-Duffin synthesis module. The
negative resistor branch and the inductor
branch are negligible.




module at w = 0 is zero, then the admittance real part of YL’ G_, must equal

L
GN' Furthermore, the conductance of the inductance branch is limited to a
maximum of GL’ since the elements in the branch are in series with GL. Now
since
cp
G << ¥ 7l (5.1)
for the first layer poles, then
cp
6 | << v 5] (5.2)

as well,

This demonstrates that only the capacitive branch need be included
in the synthesis and the other branches are negligible. This realization has
the correct behavior at zero frequency, and has the proper pole at the proper
peak value. The peak value does not differ from the original because, at the
pole, the inductive branch contributes admittance GN’ while the resistor con-
tributes —GN. Only the final value of the admittance would‘differ from the
original pole-pair admittance, and this is negligible.

This scheme is used to synthesize an equivalent circuilt using only
first layer poles for the center-driven wire. The resulting circuit is given

in Figure 60, and a table of circuit element values given in Table 3.
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Table 3

Element Values for Center-Driven Wire Equivalent Circuit

Realized by First Layer Pole~Pair Admittances

100 Meter Antenna

Pole Element Normalized Value (ohms, farads, henries)
1 R .663 .663
R, 2200.6 2200.6
C 2.72x1073 288.6x10 12
11
-6
L, 434.55 46.11x10
3 Ry 4958.7 4958.7
Cyy 4.728x10"" 50.17x10" 12
c,, 1.063x1073 112.8x10 12
-6
Ly, 368,22 39.07x10
5 Ry 6513.5 6513.5
Cap 2.253x10™% 23.9x10 12
Cyp 2.787x10™% 29.57x10" 12
L 341.4 36.22x10"°
i : )
7 R, 7542.3 7542.3
C\q 1.418x10™ % 15.05x10 12
C,y 1.249x10™% 13.25x107 12
L 324.6 34.464x10"0
41 . .
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Table 3 (continued)

100 Meter Antenna -

Pole Element Normalized Value (ohms, farads, henries)
A Roy 8374.8 8374.8 -
csy - 1.011x10"% 10.73x10" 12
c., 7.124x10™ 7.559x10" 12
L 311.91 33.09x10"°
51 y

4,2.,3 Circuit Performance

The transient current response at the port of the circuits is ana-

lyzed by means of a SCEPTRE circuit analysis program implemented on an IBM

370 computer. The circuit is excited at the port by a Gaussian pulse of the
form

e—(AN(t-TMAX))z

v(t) = . (5.3)

7 and TMAX = 60.802x10™° seconds. These results are then

where AN = 3,25x10

compared to results from the thin wire time domain (TWID) program for a similar

wire. Figure 61 illustrates these results for the eigenadmittance circuit,

and Figure 62 illustrates the results for the first layer circuit synthesis.
The response for the two circuits is almost identical. The eigen-

admittance circuit shows more oseillatory behavior but this is due to the

truncation of the modes at mode seven. For late times the response is very

close to the TWID response, Note that both circuits miss the early time, -
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or forced, response. This indicates that the representation for the wire is
not complete. A study was made to attempt to discover what was missing to
cause thils early time response error. If we observe that the wire is a
capacitive object, then it can be theorized that the SEM representation of
the admittance should include a shunt capacitor across the port. Such a
capacitor would correspond to a pole at infinity. It can be demonstrated
that the response of such a capacitor would be such that it would give the
correct forced response and not affect the late time. The current response
of a capacitor is given by

dv

i(t) = C it -

(5.5)

If the forcing Ffunction is a Gaussian pulse then the current contributed by
the shunt capacitor is given by

e—iAN(t—TMAX))Z

i(t) = C 2(AN(t - TMAX)) . (5.6)

Such a shunt capacitor can be viewed as a lumping of the static capacltances
assoclated with an infinite number of poles neglected in the synthesis. This
conjecture 1s supported by work done by Franceschettl [14] on the quasi-

static capacitance of spheroidal antennas.

4,3 Quarter-Driven Wire

In the last chapter we showed that some of the terminal eilgenadmit-
tances for this structure are non-PR. Thus an alternate means of realizing the

equivalent circuit is employed here. 1In order to perform the synthesis at this
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feed point, we resorted to an ad hoc grouping of poles so as to achieve PR

"pole group" admittances. The groups used are as follows:

Group 1

pole 1, first layer
Group 2

pole 2, first layer

pole 1, second layer
Group 3

pole 3, first layer

pole 2, second layer

pole 1, third layer
Group 4

pole 5, first layer

Group 5

pole 6, first layer

pole 7, second layer

pole 1, fourth layer
Group 6

pole 7, first layer

pole 8, second layer

pole 4, third layer
Group 7

pole 9, first layer
Group 8

pole 10, first layer

pole 9, second layer g

pole 8, third layer
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Poles 4 and 8 of the first layer were not included, because of their negligi-
ble pole-pair admittances., Table 4 lists the values of the poles and residues

used.

Table 4

Poles and Residues Used for 1/4-Fed Synthesis of Cylindrical Antenna

'ad hoc' Group Poles Residues
1 ~.08427+5.9158 L6192x107 +4,1619x10 >
2 ~.1199+31.890 1268102+, 3537x10">
-2.149+350.0 —.1707x10'3+j.o
3 ~.1473+j2.870 L 5496x107 +4.2259x10"°
~2.491+51.328 .1159x107>=5.1483x10™°>
~4,098+30.,0 -.2497x10'3+j0.o
4 ~.1877+34.834 .9177x10 2+, 1117x10">
5 ~.2038+35. 814 .1500%10™ %45 . 4254x10™ >
—3.225+16.620 .9804x1073=3.2504x10" >
~6.006~1.884x10" 2 % %
6 ~.2177+§6.792 54941072+, 3144x10°
| -3.297+37.632 .5421x10 4§ .1116x10" 2
—5.069+ 3. 890 6790107 +5. 8824x107
. —2 4
7 —.2426+38.736 .1074x10™ %4+, 7253x10
8 ~.1783+§9.766 .1641x107%+4.5373%x107 >
~3.363+78.636 ~.1079%10" %43, 64141073
~5.638+78.235 .2912x10" 244, 8177x107°

Poles are normalized as per Tesche [9]

*Residue value unavailable
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Figure 63 gives the circuit synthesized from the above groupings

using the Bott-Duffin procedure. Table 5 gives the element values. The cir-

cuit was analyzed with the SCEPTRE program, using the same Gaussian pulse as
in the previous example, and a comparison with results computed by TWID was
made. Filgure 64 illustrates this comparison. The circuit response exhibited
(when compared to TWID) osclllations of relatively high magnitude. These
oscillations cause the signal to be degraded in late time. However, the gen~-
eral shape was replicated. The early time response shows the same departure
from TWID as did the center-driven wire. There are two possible sources of
the oscillations. One is an incorrect element value in one of the modules.
The other more likely possibility is an error in the SEM poles, partic-

ularly in the higher frequency, deeply embedded ones.

4.4 Admittance Synthesis for Circular Loop

As stated in Chapter IIIL, there are an infinite number of poles in

an eigenmode of the circular loop. Therefore, a terminal eigenadmittance
module has an infinite number of elements and is unrealizable in a practical
sense. By truncating the set of eigenmode poles, a truncated terminal eigen-
admittance module can be constructed. Two problems remain, however. First,
the truncation may not result in a PR admittance, in which case the modified
Bott-Duffin procedure of Section 4.2.2 must be used. Namely, the admittance
is made PR by removing a negative conductance, and then neglecting this con-
ductance branch and the inductance branch in the subsequent Bott—Duffin
synthesis, Second, even if the truncated admittance is PR, the complexity of
the Bott-Duffin circuit grows quickly with pole count. The number of elements
required for a Bott-Duffin synthesils grows. by 7X2N-6, where N is the number of

pole-pairs. Thus an admittance composed of 4 pole~pairs requires 106 elements. -
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FIGURE 63. EQUIVALENT CIRCUIT
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Table 5

Element Values for Pole Groupings of Quarter-Driven Antenna

Pole 100 Meter Antenna‘
Group Element Normalized Value (ohms, farads, henries)
1 R, 7.427 7.427
R, 4311.9 4311.9
-3 ~12
¢,y 1.51%10 160.2x10
L 782.3 83x107°
11 .
2 Ry, 2234.4 22344
Ry, 3. 405 3.405
R, .752 .752
C,; 8.003x10™% 84.91x10 12
Cys 2.288x10™% 24.28x10 12
Cys 1.787x107 % 18.96x10"°
Cyy 1.026x10% 108.9x10™ 2
-6
L,y 300.5 31.88x10
L, 17256. . 1.831x107 2
' -9
L,s . 3846 40. 81x10
3 Ry, 36.13 36.13
Ry, 5806. 5806.
Ry, 4677 4677
Ry, 1597 1597
Rys 1042 1042
Ry 355.6 355.6
Ry, 286.5 286.5 ]
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Table 5 (continued)

Pole 100 Meter Antenna
Group Element Normalized Value (ohms, farads, henries)

3 Cqy 1.843x107% 19,5610 12
Cay 6.606x10"° 7.009x107 %2
Cay 3.264x107° 3.438%10" 2
Cay 3.174x10"" 33.68%10" +2
Cys 1.634x107% 17.364x10” 12
o 2.007%10 3 213.0x10" 12

36
-6
Ly, 527.9 56.02%10
Lo, 3339 354.2%10" 0
Lo, 271.8 28,8410
Lo, 107.9 11.66x10°
-6

Lys 53.9 5.719x10

4 Does not couple

5 Rey 1.418 1.418
R, 32510. 32510.
Cey 7.893%10"° 837.5x10" L2
L 541.3 57.43x107°

51 i y

6 R¢y 65.91 65.91
R, 17640, 17640.
R4 38400, 38400,
Ry, 12450, 12450,
Rgs 258.3 258.3
Ree 118.7 118.7
R, 140.4 140.4
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Table 5 (continued)

Pole 100 Meter Antenna .

Group Element Normalized Value (ohms, farads, henries)

6 Ceq 1.182x10"% 12.54x10" 12
Cq, 1.258x107° 1.335%10 2
Cy 5 1.790x10™° 1899x10™ 12
Ces 4.909%107> 5,209x10" -2
Ces 7.124x10"" 75.58x10" 12
Ces 2.471x107% 26.22x10" 12
Lgq 223.7 23.74x10:2
Lg, 3246. 344.4X10a6
Lgs 1126. 119.5><1o_6
Lg, 57.33 6.083><1o_6
Lgs 8.156 . 8654%10

7 R, 108.3 108. 3
R, 2615. 2615.
R, 708. 708.
R, 65.4 65.4
R 31.12 31.12
R 336.9 336.9
R, 2661, 2661.
Rog 28810. 28810.
R 720.5 720.5
R1o 60540 60540
R, 5592. 5592,
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Table 5 (continued)

Pole 100 Meter Antenna
Group Element Normalized Value (ohms, farads, henries)

7 C,, 9.245x10‘f '  9.809x107 12
Coy l.065x10:£ ll.3XIO—1i2
c,, 2.084x10 22.11%10
C, 3.532x10:2 37&.8Xl91;2
C.s l.642x10_4 -1743x10_12
Crp 3.355x10 35.6%10
c,, s.aasxlo:i 8.96lXI0:1§
C.g 1.277><1o_5 13.55x10_12
Cro a.131><10_4 4.383x10_12
C, 10 1.921x10 20.38x10™"
€.y 3.924%107° L4163x10" 12
Cs12 2.437x107° .2586x10" 12
Loy 159.1 . 16.88x10°
L, 240.6 25.52x107°
Lo, 77.82 8.257x10"°
L, 361.9 38.39x10"°
L 7.392 .7843x107°0
Log 4.592 .4872x107°
L, 200.6 21.28x107°
g 392.6 41.66x107°
Lo 6654. 706.0x107°
L210 30940. 3.283x10:2
L, 632.0 67.06x10

8 Does not couple
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Table 5 (continued)

Pole 100 Meter Antenna
Group Llement Normalized Valuc (ohms, farads, henries) "
' ) 64.38
9 Ry, 64.38
R 102300. 102300,
92
c 2.819%107° 2.991x10" 12
91
L 464.2 49.26x107°
91 ,
10 Rio, 5.875 5.875
Ri02 3920. 3920.
R0 4209. 4209.
R, 04 1610.0 1610.
R o5 694.0 694.
R, 06 646.3 646.3
R,y 84.55 84.55
R og 80150. 80150.
RLO‘) 12170, 2170
R, 010 1690. 1690.
R, 011 33,94 33.94
c 6.284x107° 6.668x10 12
101 -5 -12
c 2.144x10 2.275x107 "
102 B 1
C103 5.458%10 5.791x10
Clo4 4.066%10"° 4.314x10" 12
C1o5 2.147x107° 2.278x10 12
C, 06 2.418x10"% 25.66x10 12
C1y; 5.348x10"° 5.674x10 12
CLog 1.013x10"% 10.75x10" 2
C100 1.359x10"% 14.42x10 2
o 4.989%107° 5.294x10'12
1010 » 1
c 7.346x10 77.94%10
1011 9 1
€010 1.830x10 19.42x10

118




Table 5 (continued)

Pole 100 Meter Antenna
Group Element Normalized Value (ohms, farads, henries)
10 L. 135.7 14.40x107°
101 -6
L 658. 69.82x%10
102 -6
L 275.5 29.23x10
103 -6
L 145.5 15.44x10
104 -6
L 369.8 39.24x10
105 -6
L 58.33 6.189%10
106 -6
L 148.4 15.75%x10
107 -6
L 58.4 6.196x10
108 -6
L 110.7 11.74x10
109 -6
LlOlO 497.8 52.82><10_-6
LlOll 1998. 212.0x10
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For these reasons, two circuits for the circular loop are con-
structed, representing two degrees of complexity. In the first, only the
type I poles of each eigenmode are used. 1In the second, all poles necessary
for a PR result are used, except when the data is insufficient for a PR

result, in which case the type I and type III poles are used.
4.4.1 Type I Poles

Given that the type I poles are the major contributors to the total
admittance of the loop, and that the non-PR excursions of these pole-pair
admittances are quite small, a modified Bott-Duffin synthesis of the type
used for realizing the first layer poles on the straight wire is implemented.
Because the loop is a closed object, it has a pole located at s = 0. This
pole represents the magnetostatic inductance of the loop which was realized
straightforwardly as a lumped inductor. Only the type I poles for the first
10 modes were used in the equivalent circuit. These are sufficient to real-
ize the response to the bandwidth of excitation used. »Thé resulting circuit
is shown in Figure 65. Table 6 lists the element values, both normalized and
for a 100 meter radius antenna.

Again the circuit was analyzed by SCEPTRE and compared to TWTD
results. Figure 66 displays this comparison. The agreement in early time is
excellent, but the peak wvalues of the cilrcuit are approximately 15 percent
higher than the TWTD response. In the late time the circuit response is off-
set from the TWTID response by about 0.2 ma, and the circuit response shows

oscillations.

121




*103DNpUT
junys sylxr Aq poalussaadsax ST oxaz e a1od
9YL -ssoueljTupe ated-s1od. 1 9dAk3 Hutsn

doo1 JeIndITo 2yjl I07 3JITNOIATO justeatnbd :69 ainbrg

15y I¥d

260 20 2€Q

¢
2y
Y 127 1zy
IthNU ny

o Iﬁ 169 Ai 120 QI 1

|~| _¢n,u

W 107 o nm_}

122



Table 6

Element Values for Circular Loop Equivalent Circuit Using Type I Poles

Mode Llement

01l
11
12
11

11

21

Co1
0

21

31

31
Cap

31

41

41
42

@]

41

Normalizéd Value

2165.

47.35

10.16x10°

9.918x10"%

925.5

16.63%10°

4
2

2.802x10"
1.335x10°

862.5

20.7l><lO3

5
4

1.529%x10
8.616x10

818.1

24.21x10°

4
4

1.007x10"
3,189x10

785.7

123

100 Meter Antenna
(ohms, farads, henries)

721.5x10"°

47.35
10.16x10°

330.6x10" 2

308.5x10"°
16.63%10°

12
12

93.4x10
4450,%10"

287.5x107°

20.7l><lO3

50.98x10 12
287.1x10" 12
272.7x107°
24.21x10°

12
12

33.58%x10
106.3x10"

261.9x10°




Table 6 (continued)

100 Meter Antenna )

Mode Element Normalized Value (ohms, farads, henries)
3 3
5 Ry, 26.98x10 26.98x10
¢y, 7.332x107° 24 bhx10" 12
) 1.660x10™% 55.32x10 L2
L 760.2 253, 4x10" 0
51 ] -
3 3
6 R, 29.24x10 29.24x10
Gy 5.682x10% 18.94x10 12
Cy, 1.016x10"% 33.86x10 12
L 738.9 246.3x10"°0
61 ] .
3 3
7 R, 31.11x10 31.11%10
c,y 4.596x107° 15.32x10 2
c,, 6.858x10 > 22.86x10 12
L 720.9 240.3x10"°
71 . .
3 3
8 Rgp 32.68%10 32.68%10
Cqy 3.831x107° 12.77x10" 12
Cgy 4.938x107° 16. 461012
L 705.3 235.1x10"°
81 . .
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Table 6 (continued)

100 Meter Antenna

Mode Element Normalized Value (ohms, farads, henries)
3 3
9 Rg1 34,0210 34.02x10
Co1 3.27x107° 10.9x10 12
Cys 3.729x107° 12.43x10" 2
L 691.2 230.4x107°
91 . :
10 R 35.17x10° 35.17x10°
101 . .
Cio01 2.838x107° 9.46x10" 2
-5 -12
€102 2.916x10 9.72x10
L 678.6 226,2x10"°
101 ‘ :
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Figure 66: Comparison of the response of the type I

pole-pair circuit to TWTD.




4,4.2 Type I and Type III Poles

The departure of the transient current response of the circuit
from that of the TWTD model in late time displayed in Figure 65 for the type
I pole~pair synthesis is attributable to the omlssion of type III poles in
the frequency range of interest. Therefore a circuit 1s constructed which
includes all type III poles for each eigenmode, up to the cutoff frequency
given by mode 10. For mode 0, the type II pole is grouped with the type III
poles, since this results in a PR function. For modes 1 and 2 and type I
Plus type III pole groupings, the admittances are PR; for higher modes, they
are not. TFor these higher modes the modified Bott-Duffin procedure is used
to make the groupings PR. The circuit derived is given in Figure 67, with
element values given in Table 7.

An analysis of this circuit on SCEPTRE and comparison to TWID
showed an improved response, particularly in the late time, as indicated in

Figure 68,

4,5 Sensitivity of Circuits

Aithough the circuits derived for the straight wire and the loop
are in principle realizaBle, practicality of the realization still may be
limited by sensitivity considerations. In order to assess the sensitivity,
the two circuits previously described for the center~driven wire are sub-
jected to pseudorandom changes in element value over a range of +107% to ~10%.
The random number generator is given in Reference [19]. 1In the range of -10
to +10 it has a mean of zero and a standard deviation of 5.8. WNo attempt
was made to do a complete Monte Carlo or worst—case analysis on circuit per~

formance. Several circuits with errors were made. The resulting circuits
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Table 7

Element Values for Equivalent Circuit for the Circular

Loop Using Type I and III Poles

100 Meter Antenna

Mode Element Normalized Value (ohms, farads, henries)
0 Ry, 12.6x10° 12.6x10°
R, 22.34x10° 22.34x10°
R, 1.123x10° 1.123%10°
Ro, 120.7 120.7
Ros 819.2 3 819.2 ;
Rog 408. 4x10 408. 4x10
R 1143 1143.
Rog 122.9 122.9
R 168.4 168.4
09 5 5
Rorg 401. 3x10 401, 3%10
Ropy 2208 3 2208 3
Rop, 60. 2x10 60.2x10
Ry 43.92x10° 43.92x10°
Rops 43.15%10° 43.15%10°
3 3
Roys 292.8x10 292, 810
Cor 5.334%107° 17.78x10" 12
Cos 1.233x107° 4.111x107 12
Cos 8.289x10°° 2.763x10 12
Cys 2.473x107° 8. 242x10 12
Cos 2.896x10 2 965.3x10" 12
Cos 1.089x10° 3,631x10" 12
Cys 1.699x10 2 5663x10 12
Cos 1.520x10° 5.065x10 12
Cog 6.999x10 2 23330510 12
Coto 2.076x10"> 691.9x10 2
-5 12
Cor 4.752x10 15.84x10
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Table 7 (continued)

100 Meter Antenna

Mode . Element Normalized Value (ohms, farads, henries)
0 Coto 1.772x107° 5.907x10 12
Co13 2.319x10" % .00773x10™ 12
Cors 6.486x10"° 21.62x10 2
Cors 3.048x10" 8 .01016x10" 12
Corc 1.958x10"% 65.27x10 12
Co1 6.915x10" % .02305x10" 12
Co1s 4.260x10"8 .0l42x10" 2
Coro 1.552x10"% 51.73%10 12
Coo 5.808x10"° 1.936x10" 12
Cop1 4.959x10” 8 .01653x10" 12
S ~12
Coyy 8.103%10 2.701%10
-6
Log 2165 721.5x10
Loy 7653 2551x10 0
Lo, 9657 3219x107°
Los 286.4 95.46x10"°
Lo, 2344 781.3x10"°
Los 1.503 .5009x107°
Log 2,445 .815%1070
Ly, 3198 1066x10"°0
Log 1,144 .3812x10"°
Log 3,411 1.132x107°
L 399.6 133.2x107°
010 -6
Loy 2.1 : . 7x10
L 8.376x10 .1792
012 »
L 408.6 136.2x10
013 -6
L 608.1 202, 7x10
014 e
L 1219. 406.4x10
015 5 6
Loge 1.428%10 47598%10
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‘Table 7 (continued)

100 Meter Antenna

Mode Element Normalized Value (ohms, farads, henries)
5
0 L 1.026%10 .03412
017 P
L 749.4 249.8%10
018 2
Logg 537.0 179. %10 "
L 873.9 291.3%10
020 ]
Lo,y 3.45%10 1.15
1 R | 49. 36 49,36
R, 1182 ; 1182 3
R, 27.07%10 27.07x10
R, 2294 2294
R 8.314 8.314
15 5 5
R 111.6%10 111.6%10
R 9460 9460
3 3
R g 3080110 30801x10
¢y, 3.891x10"% 329, 7x10" 12
C,, 6.309%107° 2.103x1072
C,, 1.958x107° 6.528x10 2
c,, 8.027x10 26757.x107 12
C 1.258 .4193x107°
1 -6 ~12
Cig 5.979x10 1.993%10
C5 6.636x10"° 2.212x10" +2
C,q 9.369x10° 31.23x107 12
C1 8.433x107° 2.811x10 12
-9 -15
C,10 1.459x10 . 486210
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Table 7 (continued)

100 Meter Antenna

Mode Element Normalized Value (ohms, farads, henries)
1 L 1700 566.5%10 0
1 4 -6
L1, 2.399%10 799710
Liy 1531 510.3x107°
Ly, 2159 719.7x10"°
Lys 930.3 310.1x10‘6
Lo, .3735 .1245x107°
L4 20.56x10° 6.852
Lig 1616 538.6x10°
Ly 5016 1672x107°
6
Li1g 322.2%10 107.4
2 Ry 1.521 1.521
R 5199, 5199.
22 5 5
R, 29.63%10 29,63%10
R, 12.69x10° 12.69x10°
Cyy 2.734x10"% 91.14x10" 12
Cyy 6.549x10"° 2.183x10" 12
C,s 6.627x107° 2.209x10 12
C,e 7.314x10"° 2.438x107 12
L, 2750 916.5x10"°
L, 2492 830.6x10"°
Loy 868.5 289.5x10"°
-6
L, 2462 820.8x%10
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Table 7 (continued)

100 Meter Antenna -

Mode Element Normalized Value (ohms, farads, henries)
3 3
3 Ryp 62.01x10 62.01x10 .
Ry, 181.9x10° 181.9x10°
R 27.98x10° 27.98x10°
33
Cyp 1.469x107" 48.95x10 2
Cyy 2.535x10"° .8451x10" 12
C,s 1.090x1073 363.4x10 L2
Cyy 2.242x10"0 747410712
Cos 2.448x107°0 .8159x10 2
-6
Ly 4248 1416%10
Ly, 3891 1297.x10°
L., 823.5 274,5x107°
-6
Ly, 4398, 1466x10
3 3
4 Ryp 71.58x10 71.58x10
R, 212.4x10° 212.4x10°
R, 34.31x10° 34.31x10°
Cup 9.588x10"° 31.96x10" 2
C,, 2.046x10"° .6821x10 2
€3 3.735x10"% 124.5x10 2
Cou 1.607x10"° .5355x10 12
c 1.644%x1070 .548x10" 12
45
L, 4038 1346%10~°
L, 3945 1315><1o'6
Lys 789.9 263.3x10"°
-6
L, 5025 167510
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Table 7 (continued)

100 Meter Antenna

Mode Element Normalized Value (ohms, farads, henries)
3 3
5 Ry, 79.92x10 79.92x10
R, 215.6x10° 215.6x10°
R 40. 3x10° 40.3x10°
53
¢, 6.942x107° 23.14x10" 12
., 1.732x107° .5773x10" 12
., 1.883x10"% 62.78x10 12
Ce, 1.229x10™° .4095x10" 12
C,. 1.151x107° .3837x10" 12
L, 3804 1268x107°
Ls, 3957 1319x107°
L, 763.2 254, 4x107°
-6
Lo, 5580 1860x10
3 3
6 R 29.24x10 29, 24x10
Cor 5.682x10° 18.94x10" 12
c,, 1.016x10" % 33.86x10 12
L 738.9 246, 3x10"°
61 ' :
3 3
7 R, 31.11%10 31.11%10
c,, 4.596x10"° 15.32x10 12
c,, 6.858x10"° 22.86x10" 12
L 720.9 240, 3x107°
71 . .
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Table 7 (continued)

100 Meter Antenna .

Mode Element Normalized Value (ohms, farads, henries)
3 3
8 Ry, 32.68x10 32.68%10
Cgy 3.831x107° 12.77x10" 12
Cgy 4.938x10™° 16.46x10 -2
L 705.3 235.1x10"°
81 L] .
3 3
9 R91 34.02x10 34,02x10
Coy 3.27x10"° 10.9x10” 12
Cqs 3.729x107° 12.43%x10" 12
L 691.2 230.4x10"°
91 . .
10 R 35.17x10° 35.17x10°
101 . .
C1o; 2.838x10"° 9. 46x10" 12
_5 ~12
C10 2.916x10 9., 72x10
-6
L1 678.6 226.2x10
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were then run on SCEPTRE, A typical result, compared to the uncorrupted run,
is given in Figure 69 for the first layer pole-pailr synthesis. The responses
are identical in the early time, where only the object's force response is
important. In late time, the pole shifting caused by the element variations
results in a distorted response. The sensitivity of the eigenadmittance
circuit was also examined this way, with a similar result. This is not sur-~

prising, since it is well known that a Bott-Duffin synthesis is very sensitive

to element errors [15].
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CHAPTER V

CONCLUSIONS

We have demonstrated the feasibility of synthesizing passive-
component equlvalent circuits which simulate a single-port immittance of a
passive antenna/scatterer. Circuits developed here replicate well the
terminal response of straight-wire and wire-loop structures except in the
early time. It is conjectured that circuits which account for the static
capacitance of the structure completely, can bring this early time behavior
into agreement, as well.

From the point of view of developing simple systematic equivalent
circuits, one would desire that pole-pair contributions to immittance would

prove to be positive real functions. Disappointingly, this study reveals an

abundance of counterexamples to this desirable result. We have observed,
however, that the dominant poles in the resonant structure of the object -
those nearest the jw axis = have admittances which manifest a near PR behav-
ior. Through negligible adjustments to these admittances, PR behavior was
achieved.

Terminal eigenadmittances for the circular loop and center-driven
wire are shown to be PR within the limits of numerical accuracy. However,
certain terminal eigenadmittances for the quarter—driven wire are non-PR.
Although it is known that the inverse eigenvalues are PR, the PRness of all
terminal eigenadmittances remains to be demonstrated. Since the eigenset
grouping of poles is only conjectured, it is not possible to reach a definite

conclusion at this time in regard to terminal eigenadmittance PRness. .
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The spherical antenna is suggested as an object for study of admit-
tance synthesis properties in the future. That eigensets are well-defined
and that each eigenset embraces a finite collection of poles provide the
potential for complete and conclusive studies.

The present work has addressed only the admittance element of
Norton equivalent modules. The companion source terms need to be studied
in light of the present work. In particular, when sources are combined even
on a pole-pair basis, the composite source exhibits a frequency dependent
transfer function from the excitation waveform. This frequency dependence
introduces circuit complexities which are likely to preclude physical real-
ization. Approximate methods for circumventing this frequency dependence

are warranted.
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APPENDIX

The proof of the positive realness of the integral operators for
the antenna scattering problem is given here. This proof is due to Wilton -
{13} and reproduced here.

Consider a conducting scatterer S with unit surface normal n illu-

i

minated by an incident field (ﬁl,ﬁ Y. A surface current J is induced on S

which produces a scattered field (Es,ﬁs) satisfying the boundary condition

Ax @+ E) =5 (A.1)

on S. By the equivalence theorem, the scatterer may be removed and replaced
by the surface current J radiating in free space. This current, radiating
in the absence of the sources of the incident field, produces the scattered

field (Es,ﬁs) exterior to S.

In the absence of other sources, the total energy radiated by the

current distribution J is always positive semidefinite:

t
E(t) = JP W(t) dt 2 0 , (A.2)

-0

where E is the energy and W(t) is the total power radiated by J at time t and

is computed as follows:

1
1
ol
0
-
]
[a 8
[92]

W(t)

- fgi.gds, (A.3) .
S
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where the lower case quantities are time-domain counterparts of the corre-
sponding upper case transformdomain quantities. The current 5 and incident
field o= are related through an integral equation, which fact will be

exploited subsequently.

We next suppose the incident electric field and induced current are
given by
s.t s*t st
i _ = =0 =%,y 0 = 0
j(r,t) = Jo(r)e + Jo(r)e = 2 Re Joe s (A.43)
i _ o oSpt o, sgt _sgt
e (r,t) = Eo(r)e + EZ(p)e = 2 Re Eoe . (A.4D)
where Sy = % + jwo, % > 0, and where EO is an arbitrary complex vector

function of position, and 30 is the resulting complex current response. The

excitation is assumed to start at t =
9yt 1 _
. in the system. Since e =0 for t = -«, both e” and j are zero and there

-, where there is no initial energy

is no transient term. That 1s, the 'forced' response above is the total

response.,
The power W(t) radiated is now
Jr _ _ 280t — s 25"t — . ZGOt
W(t) = A [JO * Ege +Jp t Ege + (EO < Jg tEp Jo)e } ds
f o 2s0t _ . Zoot
= 2 Re [ EOJOe + EO . JOe } ds

and hence the total energy radiated is
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E. « J. 2s.t E.+ J. 2.t
E(t)=Ref{:—-g-———Qe 0 +—O—-——ge O} as . (A.5)
S 50

If we write the first integral in polar form,

20 _t E «3J
E(t) = e O f 0 0 43l cos (ugt + 6)
s %0
é{EO - Jp ds
+ Re >0 ., (A.6)
%

We must consider the case w, = 0 and Wg # 0 separately.

0

Case T, Wy = 0

In this case, (A.5) can be written as

E(t) f {Ra(ﬁo . 30) + Re(EO . 33)} ds

0 S -
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from which we conclude that

U)gﬁ
wJ
®
tx11
-
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®
<l
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wn
v
o

0 0 > (A7)

But since EO is arbitrary, we could replace it by jﬁo and the corresponding

current response would be j3 by the linearity of the system. Hence, from

0

(A.7), 1t must alsc be true that

fRe<jE)-Re<j3)ds= fIm}_f «ImJ, _dS 2 0. (A.8)
g 0 0 2 0

Case II, @y # 0

From (A.6), we note that since the maximum negative value for the

cosine is -1, we must have

E . T E .3
Re f 0 0 ds 2> f__O_____O dsy 2 0 , (A.10)
s % s 5
Thus for both cases we have
Re fﬁouﬁgdSzo, 5, > 0, (A.11)

which is a necessary condition on all solutions of scattering problems involv-
ing passive scatterers.
Using (A.11) we next derive a condition similar to the positive

real condition on driving-point immittances in circuit theory. The condition
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applies to the dyadic kernel of the operator relating J to ﬁi through the

electric field integral equation

3 x BN(%,s) = & x IE(E,E';S) e J(z'e) as' . (A.12)
S

Since El and J are transform quantities, (A.1ll) applies for a point ¢ = Re s

in the right half plane:
-t - e, | -t 1
Re f IJ () » Z(x,r )} » J(xr ) d8 ds
S S

2"y + [3*(?) e Z(T,T') » 3(%‘)] +} ds' ds

L]

S]]
~
la g}
all|
~—
.

o

[7®

It
e
(l’)‘\ﬁ
C/)H

[3*@ « 2E5H - 3E) + TG - TEEY - I@ ] a8’ as

1]
Ny
we_
w kﬁ

(7@ « 2,5 - 3G + @ - BHEI) - IGEH] @' as

It
Ny
w %
cnk_._5

(3@ - [2@FH + @] - TEH]es’ as

I
Ne
wn '\__5

wm

= f f&*(?) * Re Z(¥,T') + J(¢') das' ds 2 0, (A.13)
S S

where the dagger denotes the transpose conjugate and where we have used the

reciprocity condition that

- =t

ZhH(T, ") = Z%(%, 1) = Z%(G',D) .

Thus, Re Z must be positive semidefinite for ¢ > 0; i.e., R

oalt
v
(@]

Re ¢ >0, (A.14)
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where (A.l4) is a shorthand notation for (A.13), except for operators which
are merely complex constants.

We note that condition (A.14) is analogous to one of the so-called
positive real conditions for immittances of m—port networks. For such net-
works, the positive real condition is shown to be both a necessary and
sufficient condition for the realizability of a passive network. The suffi-
ciency of the condition is established by actually deriving algorithms for
synthesizing such networks. We are not yet at this stage in electromagnetics,
but we are now in a position to list several independent conditions, analogous
to those of an m-port immittance matrix, which the impedance operator for a

passive scatterer must necessarily satisfy:
3s) is analytic in Re(s) > 0

(2) .E(;,} 3s) 1s real for real positive s;

(3) Re E(r,r 3s) > O for Re s > O,

Though the sufficiency condition has not-been demonstrated, we nevertheless
" term operators with kermels satisfying these conditions as positive real., As
in network theory, it is possible to find alternative conditions for (1)-(3),
which are simpler to test. We also note that to arrive at these conditions,
we must write the integral equation in the form of (A.12). We point this out
because it is common to view the right-hand side of (A.12) as the scattered
field, in which case the left-hand side, in view of the boundary conditions,
would have a negative sign., In this form, the resulting impedance operator

could be termed 'negative real'.
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Next, we note that E(E,;';s) can be written in terms of its eigen-

spectrum as
=, = - = - =1
Z(r,r 3s) = :E: An(s)Jn(r;s)Jn(r 3S) (A.15)
n
where kn is an eigenvalue and En is the corresponding elgenvector satisfying
the eigenvalue equation

{E(;,;';s) . En(;';s) as' = MOENEI) (A.16)

and where 3n 1s orthogonal to all other eigenvectors

_!Em(z;s) . En(}';s) ds =8 . (A.17)

Note that Z is an operator—~valued analytlic function of s and we assume that
An and jn are likewise analytic. The absence of the complex conjugate in the
second eigenvector in (A.17) is -at first disconcerting, but it should be
remembered that the operator Z is not self-adjoint, but 1s complex symmetric;
i.e., E*(;',;) = ?*(;,;'). Briefly, the eigenvectors jn should be bilorthogo-
nal to the eigenvectors of the adjoint operator, §+(E',;), which, in view of
the complex symmetry of E, are just 3;. The resulting biorthogonality con-
dition is (A.17).

We note that (A.13) must be true for all possible current distribu-
tions J and hence must be true for J(r;s) = jm(;;s). Substituting this con-

dition and (A.15) into (A.13) results in
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Tk - e = e - -1
Re ! -S[Jm(r) ’ ZKH(S)Jn(r)Jn(r') - J (r ) ds' ds

n

Re{3m<s) 4'3;<§) . 3m<E) dS}

Re{A @ 156 ds} 20,
m m

)
from which we conclude that An(s) is positive real

Re A_(s) 2 0, g >0., (A.18)

It can be shown that for scalar quantities, (A.18), together with the require-

ment An(s) is real when s is real, is equivalent to the following conditioms:
(a) An(s) has no poles or zeros in the right half planej

(b) poles of An(s) on the imaginary axis must be simple and the residues

evaluated at these poles must be real and positive;

A
2
1A

8

(¢) Re Xn(jw) 20, 0

The latter condition i1s particularly important because it requires only the
examination of kn on the jw axls rather than in the whole of the right half
plane. As an example of-the application of these conditions, we note that
for a wire loop there exists only a ¢-directed current, which is found by
requiring the ¢~component-of electric field to vanish on the loop. Thus the

kernel is scalar-valued and has been found by T. T. Wu to be

149




Z2(¢,9")

]
(S
3
(@]
=3
— Q
-
1]
1
e
jo]
~
T
-G
p—y
v

8

- 4! s At
= jno'ﬂ’(xo -+ néi jnoﬂ-an [e Jn(‘b ¢ ) + eJn<¢ ¢ )} , (A.lg) -

where the rearrangement to the trigonometric form is made to more closely

compare with (A.15). Thus, jun(s) must be positive real. But jan(s) is

positive real if and only if EEA?;Y 1s positive real and it has been
n
verified by direct computation that 32:%25- has no poles either in the
n

right half plane or on the jw axis, thus satisfying conditions (a) and (b).

Condition (c) implies that we must have

Re—:&—-J(;,—-')—=Im—(l,'J)—_>_O, 0
Jan OLnJ

A
€
A

8

which appears to be true [18].

Finally, we consider the jw axis poles of the inverse operator,

whose kernel is the resolvent kernel

= - -1 J (;,5)3 (;' sS)
E'l(r,r ,s) =z o - (IS‘) . (A.20)
n n

We know that poles on the jw axis must be simple and that the vector compo-
nents of the current jn’ which are cavity mode currents, are cophasal and
hence, because of the normallzation (A.17), are real. Furthermore, at a
pole, one of the elgenvalues, say km’ has a simple zero and can be approxi-

mated by the first term in its Taylor series for a pole at 4 by .
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Am(s) = al(s - so)
or in polar form by

A () i

U
Q
]
o

J¢

where (s - so) = ¢ e°". Since the pole term will dominate, then on the

semicircle of radius ¢ in the right plane, we have the condition

Re ffﬁ*-i-ids'ds
s s

T%(r,s) + T (T,8) T (T ,8.) + J(T',s.)
EReff = n_¢o 0" as' s
S S ale el
= jﬂj (;,s) . E(E,s) ds 2 Re L
g D jo
0.€ e
1
- - - - 2
’ thn(r,s) ¢ J(r,s) dS‘
= S cos (¢ +0) 20, (A.21)
a. e
1]
— jo ., T i .
where o = ’al’e . The condition (A.21) must held for -5 < ¢ £ 7 i.e.,

for s in the right half plane, which is possible only 1f © = 0, This implies

that

o, = — (A.22)

is real and positive., It can easily be checked that this condition is con-

tained in condition (c) above.
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Note that for antenna problems, we can take EO to be a unit voltage

source (i.e., a & function) at some pair of terminals on s and conclude that
the input admittance is positive real. The above proof establishes the PRness
of the inverse eigenwvalues, but does not address the question of the PRness

of terminal eigenadmittances. The PRness of the terminal eigenadmittances .
may be explored based on the PRness of the eigenadmittances 37%57 established

above and on (2.13), which is written here in terms of the na;;ral current

modes and gap geometry as¥

~ ~ 2
<J (rys) ; a >
- l n( b ) > g Sg_
Yn(s) T = = . (A.23)
n A <Jn(r,s) s J (r,s)>
. . . 1
It is convenient to define v (s) = ——= and
n An(s)
<J (z,s) 3 & >2
~ n g Sg o
F (s) = 5= = , (A.24)
A <Jn(r,S) 3 J_(rs8)>
such that
> ~ ror i1 B i | ir
Y () = (v F -~y F)+ 3Gy F +v F),

where the superscripts denote respective real and imaginary parts. It fol-

lows that PRness of Yn(s) hinges on the adherence to

r i
YnFn 2 YnFn , Re{s} 2 0 . (A.25)

*The foregoing material due to Wilton used his notation of explicit expression
of integration. From here forward, we revert to the symmetric product nota-
tion used throughout the body of this work,
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Because of the complexity of (A.24), it is difficult to draw gen-

eral conclusions regarding
test (A.25) on a numerical
costly since an eigenvalue
that the eigenmodes ﬁn are

(A.24) and (A.25) that the

the case for both the loop

the satisfaction of (A.25). Clearly, one might
basis, but to do so would be computationally
problem would need to be solved. For the case
pure real for s = jw, it follows directly from
terminal eigenadmittances gn(s) are PR. This is

and sphere geometries, but the real modes for

these structures devolve from symmetry degeneracies. On the other hand, the

first few natural modes on

the straight wire exhibit small real parts for s

near the jw axis, and (A.25) is likely to be satisfied.

With the respective high~-Q and low-Q extremes of the straight wire

and the sphere likely yielding PR terminal eigenadmittances, one might be

tempted to draw broad conclusions. However, some common topological feature,

such as convexity, might bear on the results for these two special cases,

thereby qualifying any general conclusions which one might draw.
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