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Abstract

Low~-frequency electromagnetic penetration of a closed
shielded region via an aperture in the shield is considered by
investigating the canonical problems in which the shield is a
perfectly conducting spherical shell, the aperture is circular,
and the applied field is uniform. Each of these problems reduces
to that of solving a set of dual series equations. The solutions
of previously solved problems are presented as well as those of
heretofore unsolved problems. The penetration of the shielded
region is measured by the ratio of the field at the center of
the sphere to the external applied uniform field. It has been
previously shown that these ratios are the same for an applied
magnetic field parallel to the symmetry axis and an applied
electric field perpendicular to this axis; in this note it is
shown that the ratios are the same for an applied electric field
parallel to the axis when the shell is uncharged and for an
applied magnetic field perpendicular to the axis. In addition,

a new approach to the solution of certain class of dual series
equations is found and exploited in the solution of two of the
canonical problems.




I. Introduction

It is widely recognized that the most important penetrations
of shielded regions by electromagnetic fields are those which occur
through apertures and along conductors entering the shielded region.
In this note we shall address the canonical problems of quasi-static
electromagnetic aperture penetrations of a spherical conducting
shield. The aperture is taken to be circular. This configuration
is the simplest possible in a separable geometry which incorporates
the two fundamental features of interest, viz.

1. finite volume of the shielded region

2. aperture penetration

There are five canonical problems in all. The five prob-
lems are listed in table 1: three of these are electrostatic
problems, and the remaining two are magnetostatic. Some of these
problems have been solved by other authors: in particular, the
solution to the problem of the grounded spherical shell with an
applied electric field parallel to the symmetry axilis (problem 1)
may be found in Sneddon [1]; and the problems of the spherical

shell's interation with an applied electric field perpendicular
to the symmetry axis (problem 3) and with an applied magnetic
field parallel to the symmetry axis (problem 4) have been solved
by de Logi [2].

It is our purpose in this note to review the solutions of
the solved problems and to present the solutions of the heretofore
"unsolved problems, as well as to point out some relationships
.which exist among these problems. The electrostatic problems are

formulated and solved in the next section, and the magnetostatic

problems are addressed in section III. The equivalent aperture
dipole moments are discussed in section IV. Section V concludes
the note.
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Table 1. The Canonical Shielding Problems

Electrostatic - Magnetostatic
1 iEO 4. l H_
(V=0)
b H
2 l Eo 5. ‘____o
(Q=0)
<
3 E



II. The Canonical Electrostatic Problems

The three electroﬁtatic problems shown in table 1 all in-
volve the interaction between an applied uniform electric field
Eo and a spherical shell with circular aperture. The geometry of
the problems is shown in figure 1. The conducting spherical
shell, which is taken to be infinitesimally thin, occupies the
surface r = a, 0 < 8 < o in the spherical coordinates (r,8,¢).
The angle of the opening, 8o, is related to a by b, =17 - a.

In problems 1 and 2, the applied electric field is Eo =
Ezogz‘ We denote the potential of the shell by Vo and 1ts total
charge by Qy- In problem 1, Vo, = 0 (the shell is grounded); and

in problem 2, Qo = 0. The electric field E is given in terms of
the electric scalar potential V by E = -VV, where V = -E, rcoss
+ Vl and
vV, = 0  off the shell
1im er = const = 4W€OQO (1)
o
V =

V. + E_ _acosh .on the shell
1 o} Z0

Appropriate representations for Vl in the regions r < a and r > a
are

' co n
. = r
r<a: Vi(r,8) = E .2 n£0 an<a) P_(cos8)
(2)
| . -1
rza: Vi(r,8) =E, a ngo an(a) P (cos6)

The coefficients a, are to be determined and Pn(-) denotes the
Legendre polynomial of degree n. The potential represented by
equations (2) is continuous at r = a and has the prescribed be-
havior as r-«. Now Vl(a,e) = VO + Ezoacose on the shell

(0 £ 68 < o) and avl/ar must be continuous over the aperture

(¢ < 6 < 1). Enforcing these conditions on the potential given

above yields the dual series equations
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Figure 1. Geometry of the problems. Fo denotes
the applied field: in problems 1 and 2,
F =E_ a_; in problem 3, F =E_ a_; in
0 Tz0o Z - - To0 "Tx0'X
problem 4, F =H__a_; and in problem 5,
o Tzo Z T ,

F =H a
O X0 X




oo ' vV
_ o
nEO anPn(cose) = E_ % + cos# (0 £ 86 < a)
(3)
Z {(2n + 1)anPn(cosB) = 0 (oo < 8 < 7)

n=0

Thus problems 1 and 2 reduce to that of solving the dual series
equations (3): problem 1 has the additional requirement that
V. = 0, and problem 2 requires that @ = 4ne azE a = 0, or that

o) o 0 Z0 0

a = 0.

o}

Equations 3 are a special case of the more general dual

series equations '

) manPﬁ(cose) = F(8) (0 < 6 < a)
n=m

(4)
nzm (2n + 1) a P7(cos8) =0 (o < 8 < m)

in which F(8) is a prescribed function of 8§ and Pg(-) denotes the
associated Legendre function of degree n and order m. The solu- ‘
tion of equations (4) can be written [1]

o
_ 2m+1/2 (n - m)! f * u
m¥n T (n +m)y! | P () @OS 2
0 .

)2m+l

(5)

. ( 1 ll)m[cos(n + 1/2)u}du
sinu du u
COSs g

where

2

0 Ycos8 - cosu

9 m
N a (tan —) F(8)sin6ds
) = & (6)

In particular, if m = 0 and F(8) = VO/EZOa + cos8, we find




Vo [sinna + sin(n + 1)&]
a

a:
n WEZO n n + 1
(7)
1lsin(n - 1)o sin(n + 2)u
* E[ n - 1 * n + 2 (n 2 0)
Now the coefficients for problem 1, aél),'are simply
a(1) - lléin(n - 1o + sin(n + 2)a (n > 0) (8)
n ﬁl n - 1 n + 2
Setting a, = 0 for problem 2 yields the relation
v
0 . 1 ( . i . _
ﬁEzoa (oo + sina) + = \sina + 5 Sln2u> = 0 (9)
so that the coefficients for problem 2, agz), are
sing + i sin2o
(2) - (1) 1 2
a = a - = -
n n i o0 + sing
(10)
sinno , sin(n + 1)@) (n > 0)
n n + 1 -

A convenient measure of the field penetration to the in-
terior of the shielded region is the ratio of the electric field

at the center of the spherical shell to the applied uniform field

Ezo’ This ratio is simply
E_(0)
5 = 1 - al (1]—)
Z0

Expressing Ez(O)/EZO in terms of 60, the half-angle of the aper-
ture opening ,yields the following results:



grounded shell:

E_(0)

B
b4

i
= |
o
(o]

]
Lo

sinBGO) (12)

uncharged shell:

)
. 1. “
EZ(O) 1 . 1 cinge s <81n80 -5 31n280) (13)
E T] 0 3 o mT - 6 + sinsg
Z0 o} o)
Q =0

These ratios are plotted as functions of eo in fiéure 2.

In problem 3, the applied electrostatic field is Eo = Exoax
and the sphere is uncharged. Thus V = Vl - Exorsinecos¢, and
appropriate representations for the potential Vl in the regions

r < a and r > a are

oo n
r < a Vl(r,e,¢) = Exoacos¢ Zl aés)(g) Pi(cose)
n'—_-
(14)
oo ' -n-1
rza: Vy(r,6,9) = E acos¢ ) aé3)(§) Pi(cose)
n=1

By symmetry, the potential of the shell must be zero, so that"
Vl - Exo

reguiring that BVl/ar be continuous over the aperture leads to

asinfcos¢ on the shell. Enforcing this condition and

the dual series equations

) aéS)P;(COSG) = gin6 (0 2 6 < a)
n=1
.~ (15)
Io(an o+ 1Dal®) pleeost) =0 (e <o <™
n=1 .

whose solution, from eguations (4)-(6), is

e oo R = s




E_(0)

Z0

) T T
o 30° 60° 90° 120° 150° 180
60 (degrees)

Figure 2. EZ(O)/LZO vVSs. 60 for VOxO (problem 1)
and QO=O (problem 2)



sin{(n - 1)o + sinno

(3 o -1 [n + 1

n 7n(n + 1)n - 1

(16)
. n .
- sin(n + 1)a - — 3 sin(n + 2)@] (n > 1)
. _ (3) : .
The ratio EX(O)/EXO =1 + a1 s expressed in terms of the
aperture angle 60, is
E_(0)
X -1 1 _. 1 _. 1 .
T = ﬂ(eo -5 51n60 -3 81n280 + 5 81n380> (17)

X0

This ratio is plotfed as a function of 60 in figure 3. As we
expect, EX(O)/EXO is always less than EZ(O)/EZO when the sphere
is uncharged.

This completes our treatment of the three canonical electro-
static problems. We now turn to the two canonical magnetostatic

problems.
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E_(0)

X0

]
60° 90° 120° 150
60 (degrees)

Figure 3. EX(O)/EXO VS . 00 (problem 3)
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IIT. The Canonical Magnetostatic Problems

The two magnetostatic problems shown in table 1 both in-
volve the interaction between an applied uniform magnetostatic
field and a conducting spherical shell with a circular aperture.
The geometry of these probiems is identical to that shown in
figure 1; only the applied field is different.

In problem 4, the applied magnetic field is ﬁo = Hzoiz’

By virtue of the azimuthal symmetry of the problem, it is con-
venient to write the magnetic field in terms of the magnetic

vector potential A = A,m, as H = V x AQE in which A =<Hzorﬂ%.

¢¢ ¢’ ¢
sing - A,., where A is independent of ¢ and
¢1 61
2 A¢1
V©A - =0 off the shell
o1 2 . 2
r sin” 6
lim rA¢1 = 0 (18)
-
Hzoa
= i - *
A¢1 5 sin® on the shell

Appropriate representations for A 1 in the regions r £ a and

¢

r 2 a are

© n
r < a A¢l(r,8) % Hzoa nzl a§4)(§) Pi(cose)
(19)
> A 8) = 1 H § (4)(x —n_lPl(cose)
r=za: ¢1(r’ ) =3 Hya niq 2n a n

Setting A¢1(a,e) =<ﬂzoa/2)sine on the shell (0 <€ 6 < @) and forc-
ing 8/3r(rA¢l) to be continuous over the aperture (r = a,a <6< 7T)

vields the dual series eguations

* The solution to problem 4 via the magnetic scalar potential
is described in the Appendix.
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) 5 (4) Pi(cose) = ginb | - (0 < 8 < a)

n=1 &
(20)
7 (20 + 1)2(%) plcoss) = 0 (¢ < 8 <)
= n n
n=1
These egquations are identical to equations (15). Thus
(4) _ _(3) _ -1 n+ 1 _. .
a, a; (o ¥ 1y|n - 1 sin(n - 1l)a + sinna
(21)
- sin(n + 1o - —5— sin(n + 2)a| (0 2 1)
and the ratio HZ(O)/HZO is simply
H (0) E_(0)
z % o Llg _lging - L osin2e
HZO EXO Tl o 2 o} 2 o}
(22)
1 .
+ 3 51n3601

This ratio has been plotted in figure 3.

In problem 5, the applied magnetostatic field is Eo = ongx‘
The absence of azimuthal symmetry forbids the use of the magnetic
vector potential; instead, we write H = —va, where Vm is the

magnetic scalar potential. We have Vm= —HXOrsinecos¢ +'Vm1’ where

vy =0 off the shell
ml
lim er1 ='O, (23)
T ->co '
Ble
5 = H_ sin8coso on the shell
r X0

Appropriate representatiops;forrvml in the regions r < a and

r > a are

i3



[e0] n
. - ifr (5),1
r <a : le(r,e,é) =H_.acos¢ n£1 E(E) a "~ ’P (cosb)

(24)

[>e)

—n-1
: S 1B\
r>a V¥V (r0,94) onaqos¢ nzl —rT 2, (a) P_(cosb)

These representations guarantee that Ble/ar will be continuous
at r = a. Setting Sle/ar

onsinecos¢ on the shell (r =[a,
0 < 8 < a) and forcing le to be ¢ontinuous through the aperture
(r = a, a < 8§ < 7) yields the dual series equations

o~ 8

L aéS) Pi(cose) = gin8 (0 < 8 < a)
(25)

T o2n+ 1 _(5)pl i} |
n£1 TR P (cost) = 0 (¢ < 68 < 1)

It will be noted that these dual series equations are of
a form different from those seen in the previous problems.
However, we observe that the first of equations (25) can be

written as an eguivalent ''serio-differential' equation:

| o a(®
i d < . d) 1 n 1
2 - |sing =) - }  —=————— P (cosb)
[31ne dé de sinze] n=1 n(n + 1) "n
(26)
= -gin® (0 £ 6 < q)
Solving this differential equation, we find that
BN €D .
n 1 _ 1 . 8
n;z_:l m Pn(COSG) =3 sin6 + A tan 5
- (27)

+ B cot (0 £ 8 < a)

[\N]Rest

in which A and B are constants to be determined. The functions

tan %, cot % are the solutions of the homogeneous equation
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1 ﬁ‘-(sine if-) S S (28)

sing ds ds . 2
sin 6
Now defining
(3)
~(5) _ _"n
&n n{n + 1) (29)

we obtain the dual series equations

[
<D

+ B cot = (0 £ 86 < a)

| @
[}

§(5)Pl(cose) = = sin6 + A tan
1 n n 2

I o~18

(30)

N

(on + 1>£é5>pi(cose) -0 (0 <6 <)

flo—1 8

n=1

which are of the form previously considered.
Since we have no reason to suspect the existence of singular
behavior at 8 = 0, we set the constant B equal to zero. Then, by

using equations (4)-(86) and (292), we find

1
cos(n + —)a
a(5) =1 2 [A(u + sina) + (éinu + 1 Sin2aﬂ
n m Qo 2
coSs =
2

_ lisin(n - 1)o sin{(n + 2)a

ﬂ[ n -1 * n + 2 ] (31)
_ A |sinno sin(n + 1)a

T [ n * n + 1 ] (nz 1)

in which the constant A remains to be determined.

The determination of the constant A follows from considera-
tion of the first of the original dual series equations (23).
Specifically, the sum

aé5) Pi(cosé)

o~1 8

n=1
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must exist, and it must equal siné over the interval 0 < 6 < «o.
By virtue of the manipulations used to convert the first of equa-
tions (25) into equation (27), it is clear that if this series
converges, it will converge to sin6 in the interval

0 < ® < a. Now when n»» and 7™ > 6§ > 0 [3],

Pi(cose) u (nggze)l/z CcoSs R; + %)e + %] (32)

from which it is obvious that the series in gquestion will converge
only if the factor multiplying cos(n + 1/2)x in equation (31)
vanishes, i.e., if

- Gina + 1 sin2@

2
A= o + sino (33)
Thus
,(5) _-1[sin(n - 1o , sin(n + 2)o
n T n -1 n+ 2
(34)
r . i .
p[sino + 5 sin2a] [o50 00 sin(n + 1)
+ = - + (n > 1)
T a + sina l n n + 1 J
. . (2) . .
which is egual to -a, ", The ratio HX(O)/HXO is therefore
50 EO0 1l 1
H E mflo 3 o}
X0 Z0
Q=0
) 5 (35)
(sine - = sin28 )
+ 0 2 0
m - 68_+ siné
o o)
This ratio has been plotted in figure 2.
We have plotted the field ratios for the five problems
together as functions of 8, in figure 4. These ratios are also

given in table 2 for 0° < 8, < 90° , and their small-argument

approximations are given below:
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X0
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60 90
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Field ratios F(O)/FO vs.
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problems 1-5
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Table 2.

Field Ratios versus 90 (0

3 EE(O) ) HE(O) EE(O) E}E((O) _ H}ZI(O)
20 X0 zo X0 ZQ
Q,=0 v =
o° 0.0000 0.0000 0.0000
5° 0.0003 0.0003 0.0000
10° 0.0025 0.0025 0.0000
15° 0.0083 0.0083 0.0001
20° 0.0192 0.0192 0.0003
25° 0.0364 0.0364 0.0010
30° 0.0610 0.0606 0.0023
- 35° 0.0931 0.0920 0.0048
40° 0.1327 0.1303 0.0091
45° 0.1794 0.1750 0.0158
50° 0.2326 0.2247 0.0256
55° 0.2910 0.2781 0.0394
60° 0.3535 0.3333 0.0577
65° 0.4185 0.3886 0.0812
70° 0.4845 0.4419 0.1105
75° 0.5500 0.4920 0.1458
80° 0.6135 0.5363 0.1873
85° 0.6739 0.5747 0.2348
90° 0.7299 0.6061 0.2878
18




W

EZ(O) ] HX(O) 3 EZ(O) ) 360 (6 5 0)
E H E 217 e}
Z0 X0 Z0
QO=O VO—O
(36)
5
EX(O) _ HZ§O) ~ 60
= M (6_ =+ 0)
E H 5m 0
X0 70
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IV. Aperture Dipole Moments

It is of interest to calculate the dipole moments of the '
circular aperture for problems 1, 2, and 5 and to consider the
effect of the surface curvature on these dipole moments. We use

the "imaged" electric and magnetic dipole moments defined by

£

— _ O — — —

pai - p) J r ¥ n % Ea ds
A (37)

m, 5 = - f r Hn ds
A

where T denotes the position vector, n is the unit vector normal

to the aperture, Ea is the electric field in the aperture, and

Hn denotes the component of maghetic field normal to the aperture.
It is easy to show that

-  _4 3 _, (1,2)z
Dgi 5 Ta EoEzo (1 ay )az {38)

for problems 1 and 2 and that
= 4 3

= _ 4 (8)\z
m, 5 T2 on (1+a1 ,)ax (39)

for problem 5. In the 1imit eo + 0,

3
Paiz ~ 2€oEzo <aeo)

(40)

“m .~ 2H__ (ae )°
alx X0 O

Since the short-circuit electric and magnetic fields at the
. - 3 - .
aperture center are respectively SEZOaZ and §onax’ we find that

the "imaged" aperturg polarizabilities 0oy and o

; are, in the

limit,

_ 2 3

Yei §(aeo) :

‘ (6 ~ 0) (41)

= é(ae )3 ©
Otmi 3 0
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The quantity aeo is, of course, the aperture radius in this
limit.
To see the behavior of the electric and magnetic dipole

moments as functions of the radius of curvature of the surface,
we define the functions

p .
5(1’2)(6) - aiz 5 = 2ﬂ3 (l—al(l’z))
ZEOEZO(an) 38 .
© (42)
m_.
n(8) = aix - 2ﬂ3 (1 + a1(5))

3
ZHXO(aGO) 860

Now the function g(z)(e) {(uncharged shell) is identical to

n(8). Curves of g<1)(e) {grounded shell) and n(6) are shown in
figure 5, and the small-argument approximations to these functions
are given below:

g 2
50°0

]

(1) w (2 y = -
ey = g1 %o ) = n(s ) = 1 (43)

E(l)(eo) and n(eo) are also given in table 3 for,OO i»eo < 900.
As we expect, a decrease in radius of curvature (i.e., an in-
crease in eo) yields a decrease in the equivalent dipole moment
of the aperture. A similar result for a cylindrical geometry

has been derived by Latham [4].
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Table 3. g(1>(eo) and n(so) versus 80 (07 < 6

8 e s, ) ey = n(e,)
0° 1.0000 1.0000

5° 0.9966 0.9966
10° 0.9864 0.9867
15° 0.9696 0.9705
20° 0.9466 0.9487
25° 0.9177 0.9218
30° 0.8836 0.8903
35° 0.8408 0.8513
40° 0.8022 , 0.8166 .
45° 0.7564 0.7757
50° 0.7082 0.7330
55° 0.6585 0.6891
60° 0.6079 0.6447
65° 0.5524 0.5959
70° 0.4978 0.5478
75° 0.4591 0.5136
80° 0.4127 0.4721
85° 0.3687 0.4323
900 0.3275 0.3944
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V. Discussion and Concluding Remarks

The solutions of the five boundary value problems con-
sidered in this note can all be expressed in fterms of the
solutions of certain dual series eqguations. It is interesting to
note that although electric scalar potential, magnetic scalar
potential, and magnetic vector potential formulations have been
emploved, there are in fact only two distinct sets of coefficients
an. It will be recglled that agl) and a(z) are special cases of
a more general 2. given in equation (7) andﬁthat a§5)= —aéZ).
Furthermore, 3%3) = ag4), and (see the Appendix) 2bn= —n(n+1)aé3).
While these equalities of certain of the expansion coefficients
may be merely fortuitous, one suspects that a more general
(3) = (%)

n n

could have been predicted directly from the fact that V

conclusion may be drawn. Tor example, the result a

1sec<b

and A¢1 satisfy the same partial differential equation and also

satisfy similar boundary conditions. Furthermore, such a rela~
tionship is known for bodies of revolution in general [5].

There appears to be no comparable general relationship from which
(5)_ _,(2)
n n
A contribution of this note is the solution procedure for

the equality a could have been deduced.

the dual series equations (25). Dual series equations of that
form do not appear to have been solved previously, and the con:-
version of one of them into an equivalent "serio-differential"
equation in order to produce an-alternate form containing
arbitrafy constants appears to be new. The procedure is
obviously capable of generalization, and this topic will be

dealt with in a future Mathematics Note.
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Appendix

The Solution of Problem 4 via Scalar Potentials

We use H = -VV_, where V. = -H_ rcos® + V_. and
m m Z0 ml
v3v . =0 off the shell
ml
lim erl = 0 7 (A1)
>0
3V
AT = HZocose on the shell

Appropriate representations for le in the two regions of the
problem are ' '

n
) (ann(cose)

v x; E(AZ)

r < a’: le(r,e) =

1
s
N
O
o
If~1 8
(@]
=y
——
® s

i [ SN

z .‘_n_ H
: 1 (r
r>a: V. o(r,8)=-H a nzo — 1<a) b P (cose)

I
I
2%

where bO = 0. Imposing the conditions that Sle/Sr = Hzocose on
the shell and that le be continuous over the aperture yields the
dual series equations

) ann(cose) = cosf (0 £ 8 < &)
n=0
(A3)

po 2ot 1 b P _(cos8) = 0 (0 < 8 < 7)
n:

0 n(n + 1)

Applying the operator

L@ e )T
sind de das
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to the first of these equations yields

© b
n 1 6
nzo m Pn(COSG) 5 cosé + A+ B 1n (tan é‘) (0<8<a)
(Ad)
s 2n + 1 :
nzo m‘l—) ann(COSB) = 0 (o < 6 < m)
Now defining
. b .
bn - n(n + 1) (43)
and setting B = 0, we obtain as dual series equations
v B oy = L
nio ann(cose) 5 cosd + A (0 £ 86 < o)
(AG)
w ~
J (2n + 1)b P (cos8) = 0 (a0 < 8-°5 7)
n=0 non

These dual series equations are of the form given in equation (4).
Solving for bn’ we obtain

- é[sinna sin(n + 1)a
bn n(n + 1) ﬂl n + P ]

(A7)

+ L [sin(n - 1)a . sin(n + 2)&]

2m (n - 1) n + 2

and we note that bO =0 as required. -

In order to determine A, we note that the series nEO bn Pn(cose)
must be convergent and must represent the function cos8 over the
interval O £ 8 < a. Now,

1/2
2 1 m
P(e0s0) v (gdg) | cos Rf “3)e - z] (48)

27



so that for the series to converge,

lim bn < e (A9)

n--oo

It is not difficult to show that the value of A for which this
condition holds independent of o is

A= % - cosg (A10)

so that

1 . . n+ 1 .
b = 5;[51nna - sin(n + 1)a + ——7F sin(n ~ Da

(A11)

-3 2 5 sin(n + Z)u]= "ELET;—ll aéB)
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