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Abstract

In this report we examine the realizability considerations
of the short circuit admittance formulation for a linear thin-wire
antenna. General realizability considerations are discussed for
the pole and modified-pole admittance formulations. Using numeri-
cally calculated natural frequencies and natural modes and
analytically calculated coupling coefficients, realizability con-
ditions are discussed for the pole and modified-pole admittances.
Circuit realization for the pole-admittance form is shown; the
realizability of the modified pole-admittance form is also

discussed.



I. Introduction

This report deals with the construction of equivalent cir-
cuits from their singularity expansion method (SEM) parameters.
Simply stated, if the natural frequencies of the scatterer/
radiator are known, a procedure for constructing eduivélent'cir—
cuits involving physically realizable circult elements such as
resistors, inductors and capacitors, along with voltage/current
sources, will be discussed.

The question which naturally arises is, why would one want
to construct an equivalent circuit for an electromagnetic
scattering/radiating problem. Under certain circumstances, such
a representation could be helpful in providing

1. Physical insight
2, Computational convenience
3. Capability of using well-established circuit

transformation techniques

4. Combination of electromagnetic analysis with
physical circuit elements, transmission lines,
etc., which are constructed as part of an
antenna or scatterer

5. Use of existing computerized circuit analysis
programs

6. Physical construction of equivalent circuits
for use in pulsers for special types of EMP

simulators

The electromagnetic theoretist's urge to construct equiva—
lent circuits from Maxwell's equations is nothing new. James
Clerk Maxwelll himself alludes to lumped parameters such as induc-
tors and capacitors in his now famous work. Transmission lines
have been thought of in terms of distributed circuit parameters
consisting of inductors, capacitors and resistors for small sec-
tions of transmission 1ines.2 The first serious attempt to
construct equivalent circuits from Maxwell's equations was made
by Gabriel Kron.3 His procedure was to expand Maxwell's equations
in suitable orthogonal curvilinear coordinate systems and identify
the capacitance and inductance for each differential element.
There are several drawbacks in this procedure:




1. Even free space is thought of as consisting of
resistors, inductors, capacitors, and possibly
ideal transformers. This leads to artificial
resonances in the radiation region,

2. Resistors as circuit elements occur primarily
because of the conduction current. Radiation
from a scatterer/antenna may not be treated
very effectively,

3. In treating large electromagnetic problems, one
needs large core storage in the digital computer,
and finally, '

4. When the free space is artifically terminated
(this has to be done because of the finite size
of the core storage associated with computing
machines), one has to deal with artificial reflec-
tion from the outer boundary. Although this last
problem might be overcome by putting impedance
loading at the outer boundary, its effectiveness
over a wide band of frequencies is not known very
well.

Using the natural frequencies (resonances), Schelkunoff4 has
attempted to construct lumped parameter circuits for the input
impedance of antennas at each of the natural frequencies. This
was based on function-theoretic technigues and the assumption that
impedances are analytic functions in the complex frequency plane.
He also conjectured on the existence of certain representations
for driving point and transfer impedances. In a recent paper,
Bucci and Franceschetti5 have constructed driving point admittance
equivalent circuits for a spheroidal antenna in a dispersive medium
and have also calculated the transient response using the natural
modes in spherical coordinates. 1In this technique, however, gyra-

tors had to be used in the equivalent circuits.

In a recent report, Baum6 has taken the singularity expansion
representation of the response of antennas and scatterérs in free
space and exhibited equivalent circuit gepresentations. This
representation included voltage and current sdurcés where appro-
priate. This report is an outgrowth of Baum's original work with
the express purpose of testing the theory on a simple body and to
discuss some aspects of realizability not covered earlier.



II. Basic Theory

In this chapter, we will examine some of the basic principles e
associated with the SEM and derive relevant formulae for the driv-
ing point admittance.

2.1. Preliminaries of SEM

SEM is a generalization7 of circuit concepts, where
natural frequencies, natural modes, and coupling coefficients are
used to represent the pole terms in the response to antenna/
scatterigg problems. Using the electric field integral equation,
}etting ﬁ(?,s) represent the incident or source electric field,
3(?,8) the response current, and ?(?,?';s) the impedance kernel,

<?<%,1~*';s> P 3> = BLe) (2.1)

where the tilde (~) denotes the bilateral Laplace transformed

we can write

quantity. In equation (2.1), the impedance kernel F(?,?';s) is
defined via the free-space dyadic Green's8 function as

~

%(?,?';s) = sy, éo(?,§‘;s)
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with the scalar free space Green's function éo(§,;‘;s) defined as
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and ? is the identity dyadic, Mo the free space permeability and
Y = s/c the complex propagation constant, s the complex radian-

frequency, and c¢ the speed of light in free space.

If the antenna/scatterer is perfectly conducting,

F(3Fe) 2 T (F,50e) (2.4)




where the subscript pc denotes perfectly conducting. If the
scatterer/antenna is impedance loaded,

%(: :S)—% (; S)"'%

J(F,T158) 8(T - T (2.5)

where the subscript % represents the loading term. In (2.1) <;>
indicates a dot product along with (line, surface or volume as the

case may be) integration over common coordinates.

Natural frequencies S, of the scatterer are defined as
the locations in the complex s plane where the response 3(r s) has
a pole while the natural mode is the solution of

-<%(i'>,—f‘;s) : 3@(%'> =3 (2.6)
@a ; %(_f,—f‘;s> =0 | (2.7)

at the natural frequency s, and ga(;) (ﬁu(;)) is the right (left)
natural mode. In terms of the natural frequencies and natural

or

modes, one can write the response as

N O IR E ORI
J(r,s) = g G0 ¢ NEIEN (2.8)

where ﬁa(s) is the coupling coefficient and %p(;,s) contains singu—'
larities other than poles, sucg as essential singularities and
branch points. The nature of Wp for an arbitrary scatterer has

not been established in any general way; for finite size objects

in free space with suff}ciently simple electromagnetic description
it has been shown that Wp is an entire function, i.e., has no

singularities in the finite s plane.9

2.2 Definition of the Driving Point Admittance for Antennas

In order that-we may construct equivalent circuits for
an antenna/scatterer we need to define at least one port on the



body. If, for the time being, we consider an antenna/scatterer
with a single port, at the terminals of this port we can construct
either a Thevenin or a Norton eduivalent circuit as shown in
figures 2.1 and 2.2, respectively. Here ia(?a) is the driving
point impedance (admittance) of the antenna/scatterer while ZT(YT)
is the impedance (admittance) associated with the terminals. Ter-
minal impedance (admittance) includes the loading one might have
in the antenna gap, VS and IS are the voltage and current sources
respectively. Note that ZT(YT) will not enter into our analysis
and may even be nonlinear.

The driving point impedance Z (s) is defined in the
circuit analysis as

ﬁoc(s)

Z,(s) = == (2.9)
I .(s)

where ?Oc(s) is the open circuit voltage while isc(s) is the short
circuit current with the convention that one is locoking into the
port from the exterior. The driving point admittance ?a(s) is
defined as

Y (s) = Z2_7(s) (2.10)

In generalizing this concept to antennas/scatterers,
one defines a set of ports (terminals) on the antenna/scatterér
(figure 2.3). The gap region at the ports is assumed to be small
at all wavelengths of interest which implies that the electric
Tield is uniform in the gap. It should be pointed out that for
an antenna, a definable gap region already exists. However, for a
scatterer, the creation of a gap region is artificial.

If we specify the gap electric field ﬁg(?,t) as con-
servative in the gap, it can be expressed as the negative gradient

of the potential @g. The gap voltage Vg(t) is defined as

V(t) = ¢ (F,t) - o (7, 1)], (2.11)

-
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Figure 2.1. Thevenin Egquivalent Circuit

Figure 2.2. Norton Equivalent Circuit
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or

V(t) = - j ig(r,t) - 13 as S (2.12)

Ce
where S, and s_ are equipotential surfaces on opposite sides of
the gap, C, is the contour from s, to s_, while 1_(¥) is the unit
vector tangential to the contour Ce.

If the gap width is A, and the source (gap electric

field) parallel to the z axis, we can write without any loss of
generality

> 1
Eg(r,t) = - % V(t) TZ (2.13)
1
e (r,t) = - TZ , (2.14)

If we assume that the displacement current through the
gap is small, and that most of the current is due to charge motion,
then the current I(t) through the gap can be written as

I(t) = <(j(?,t) : Eg::> (2;15)

g

where the subscript g indicates that the integration is over the

gap region and j(?,t) is the current density. Hence the admittance
Y (s) is given by

¥ () = - 282 o L) Vies) (2.16)
V(s) V(s) V(-s)
or
N <:?(r,s) s eg(€E>
Y, (s) = - _ £ (2.17)
V(s)

In a similar fashion the antenna impedance can also be

defingd. For this definition the reader is referred to the earlier
work.



2.3 Short-Circuit Boundary Value Problem

The short-circuit boﬁndary value problem is defined as ‘!'
the antenna or scatterer with the impedance loading in the gap
region short circuited. Although both SEM and eigenmode expansion
method (EEM) can be used for the short-circuit boundary value prob-

lem, we will discuss here SEM form only; and further details on
EEM form can be obtained in the earlier Work.6 We use the sub-

script sc to denote short-circuit quantities as

Oge = <Bsc’8éc): Index set for short-circuit
natural frequencies (B¢, repre-
sents the layer while Bg. the pole

in that layer)

3& : Right short-circuit natural mode
sc

ﬁa : Left short~circuit natural mode
sc

ﬁ& Admittance coupling coefficients"
sc

ﬁa : Short—-circuit current coupling
sc coefficients

s, Short-circuit natural frequencies
sc

Assuming that the short-circuit boundary value problem
has only first order poles,ﬂthershdrt—ciréuit current can be

represented aslo
A, (s) Y, (%)
J_(F.s) = 7 “sc “se L F 2 (2.18)
sc(r’s) (s - s )] sC r,s) )
o o
sc sc
where
> > .« > -+
<ua (r) ] Einc(r,5>
- scC g
nd: (S) - <—> > . P T Ty .« .*l>
scC Uu (I‘) ] 'gg (r:r )S) _ y \)Ct (r ) a+g
sc s=s sc -
sc (2.19)
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with the subscript g indicating integration over the gap while
n+g indicates integration over the ahtenna plus the gap. Note that
ayven though the numerator of (2.19) indicates integration over the
gap region alone, since the incident field is zero everywhere on
the perfectly conducting scatterer except in the gap, this speci-

fication is superfluous.

Returning to (2.18) and (2.19), we can rewrite them

In terms of admittance coupling coefficients as

5 ng o v, (M
< V (s) o, o ~
-+ > - sc sc 7 —>' ->
Jeo(T) —%?—— ) 5 =5 5= * Wl (r,s) (2.20)
© OLSC CXESC
with
d, () 5 3,3)
- sc g
n, (s) = -2 z )
OLSO © > > . 9 %’ > > . > -
Hy (1) 5 g T(r,r';s) » Vg (r'§:>
scC S=SOL sC atg
sC

(2.21)

Note that if in (2.19) and (2.21) the dyadic operator I (%,7';s) is
symmetric, the left natural mode Easc(;) is equal to the right

-> >
natural mode Vv (r).
Osc

Using the antenna admittance formula given by (2.17)
we can write the admittance ?a(s) as
aa
v =—]."_ _.____.§_.C}__.....__ v 9
Y, (s) Z ) TS, ) + Y () (2.22)
sc sc

with <<i§“ ¥ Eg(¥£>; <i:§a (ry 3g:>>

(e o] 3
se <, & 2 EEe
C

2

m

N3
w
0
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YSCQ(S)

[l

<:%éc(§,s) ; gg;:> = admittance entire function
(2.24)
If we assume, without any loss of generality, that the
gap electric field is parallel to the z axis and that the gap is of
width A, from (2.14) and (2.23) we have

’ <, @ TZ:§><1§Q (H ;1 :2>

3 = _© sc
o 2 3
se A <i:ﬁ (F) 3 = ?<§,?';s>‘ ;v <?'i:>
o ds _ o
SC S—Sa sC a+g
se (2.25)
and ~
. > o .—>Z>
Foco(®) = - F JieF1ie) 1 1.2 (2.26)

One should note, however, that under the definitions (2.22) and
(2.25), a delta gap is not permissible. This is not any restric-
tion at all since a closer examination of (2.25) reveals that

W is independent of the gap.

sc

We can also define pole admittance Yy (s) as
Osc
a

1 __ %sc
o ZO (s - S, )

sc sc

§a (s)

i

S (2.27)

where éa o the pole admittance coupling coefficient, is given by
(2.25) while the entire-function contribution is not included.

If we are intcrested in the admittance in the neighborhood of some
natural frequency, it would be sufficient to compute the pole
admittance at the nearest natural frequency (th&s could lead to
significant errors if the admittance coupling coefficients corres-
ponding to other natural frequencies are not negligible).

Various conclusions can be drawn regarding the coeffi-
cients iasc and properties of the admittance function. We will
postpone this discussion until the next chapter.

12




2.4 . Short-Circuit Boundary Value Problem with Sources

The admittance form discussed in section 2.4 is inde-
pendent of the forcing function, i.e., the incident field. If we
are to use the equivalent circuits to their fullest, they should
include scurce functions. The source electric field in the form

of general incident field can be defined as

-~

3 3 > ~ -
E (F,s) = By (T,8) = E_ [ £,(s) 3p(r,8)

p (2.28)
%S(%,t) = nc(?,t) = B, g %p(t) * gp(%,t}

where EO is a constant, £ (s) (f (t)) is the generalized incident
wave form and 3 (r s) (3 (r t)) the generalized spatial form,
while * represents the convolutlon with respect to the time

coordinates.

In terms of the generalized incident (source) fields,

the short circuit current 380(?,8) and the coupling coefficent

n (s) can be rewritten as
Usc
. A, (s) v, ()
> _ sc sc -
I o(Tos) = az TR + W, (3,8) (2.29)
sSC ScC
with . . %
) <:fusc(r) X inc(r,Sizg
n, (s)= —
s¢ <G, &1 ZEE e PV, (ED
sc s=s sc atg
0LSC
(2.30)
> - 3 >
E < F, (¥) ;] f (s)? (r,S)t:>
_ o Uy - p D o
<G dy A FE e AR ID)
o] s _ o}
SC S=S sScC a+g
Cj'SC
(2.31)

13



(2.32)
Note that in (2.32) various simplifications result if the natural
modes %ascr?) for the scatterer (antenna) are the same as the
expansion fuynctions §p(?,s), under the assumption that the natural
modes are arthogonal.

Using (2.15) and (2.29), the short circuit current

I(s) can be written as

= - =, > .
I (T) = uz CREN + <<:%Sc(r,s) ; eg:>>
S¢ s¢ (2.33)
with ’
B, [ E o) <J, G
i G _ P sc atg
o ‘) - - ~
>° Ty s ST Es DY, B>
o S _ o
sc s=s sc atg
O£SC
(2.34)
or equivaluntly
1 f (s)
i, () =.2 } z p
sC “ o] o > .« * >
<G, &) &)
g
SC
Ty B 38> B, 18>
sc P"a+g sc g
<y B S TEEs P 3, B>
sc s=s, sc a+tg
sScC

(2.35)

14
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Using (2.35), (2.23) one can rewrite (2.33) as

a ~ ~
3 Xy = % 1 5. “se + vV (s) Y (s)
ISC(r) = Z fp(S) 7 z VCX D '(—5-—:_—é—~——5' sce,Dp sce
P 0 Gy, sc Ao
S (2.36)
with ' o
iy, & EEs, >
Ty oy = B e eeats (2.97
sc’ <ifu (r) eg(rz:>
: sc g
called the voltage source coefficent, and
by B 58>, & 18>
= -7 sc g - sc &%
asc © > > .« O % - > . > ->
<<:ua (t) § 55 T(r,T';8) PV, (r£:>
sc s=s, sc a+tg
sce (2.38)

known as the normalized admittance residue.

As defined in (2.27),
. the pole admittance §aa (s) is given by
sc
5
3 1 ®se
Yaa (S) = _Z-; E——;——S——a—-—-}- (239)
sc

sScC

In terms of the pole admittance §a

(s), the short circuit
~ - . Osc
current Isc(r) can be written as

I_.(T) =] %p(s) { I v, . Y, (s)+ Vece p(S) Yoo ()
p o sc o
sc sc (2.40)
or o ‘
I (7)) = ) ) T (s) V Y (s) + { f (s) V (s)1§ (s)
sc asc {p o) asc,p.§ aasc g D sce,p ) sce
(2.41)

15



where Z Ep(s)%a D is interpreted as a voltage for pole o or
sc»
pole sgurce. Knowing the sources and admittances, one can con-

struct the equivalent circuits and their proper sources. ﬁ

16




3. Some Concepts of Synthesis

In the last chapter we derived the formulae for the admit-
tance and a representation of the short circuit current when
sources were present in terms of the mode admittances. Since
sources are generally "simple,' and problem dependent, we will
not discuss them here. Admittances are another story. However,
they have several interesting properties which can be exploited.

3.1 Properties of the Driving Point Admittance

The general form of the driving point admittance is
given by

-~

a
Y = —_—
Yd.p.(s) = 7 T (other terms) (3.1)
o o
where S, is the ath pole, éa is the residue at the oth pole, and
the subscript d.p. denotes driving point admittance. In (3.1)
other terms include singularities other than poles. TFor conve-

nience, we let the complex frequency s be of the form
s = Q + iw (3.2)

where @ is the real part of s (Re(s)) while w is the imaginary
part (Im(s)) of s. We also assume that the objects into whose

ports we are looking are completely passive. If11
1. The driving point admittance ?d p.(s) is analy-
tic for Q@ > -a where a > O,
2. If s is real (v = 0) this implies ¥, L. (s) is

real and hence by Schwartz reflection principle

?d.p_(E) = ?d.p.(s) (3.3)

where (-) implies complex conjugation,

3. Zeros and poles on the imaginary s axis are
simple,

17



4. At a zero on the imaginary axis, dY /ds is
a real positive constant while at a pole on the

imaginary axis the residue is a real positive

constant,

then §d D (s) is a positive real (PR) function. Since, if
2d o (s) = 1/? (s) is also PR, we
conclude that if the driving point admittance is PR, so is the

Yd.p.(s) is a PR function,

driving point impedance and vice versa.
3.2 Alternative Representations of the Admittance

If, for the time being, we assume that the admittance
can be represented purely by the poles, we can write

. a
Y,  (s) =] —— (3.4)
d.p. 5 S~ Sy
Since this is PR, Y (s) satisfies all of the conditions dis-
cussed in section 3. 1 If the number of poles a given represen-

tation has is infinite (generally the case because all of the

natural frequencies are excited), there is no a priori knowledge

that (3.4) converges. In addition, knowing the low frequency '

(s > 0) and/or the high frequency (s » «) behavior of Y (s),

d.p.
one can write more efficient formulations.

12,13 in the functions of a

Mittag-Leffler's theorem
complex variable states that a function which is analytic in the
finite part of the complex plane except at simple poles can be
replaced by any other function having the same poles and residues
at the poles differing from the original function by an entire

function. Assuming that one of the Sy = 0, we can write (3.4) as

- a 5
- T ,
Vop. (o) =ds+ 2+ ] =% . (3.5)
a Sa
where i §d o (s)
a, = lim —==—— Jarg(s)| < w/2 (3.6)
S 5

18




Here either ao or a_, could be zero. If we assume that none of
the S, are zero (if this happens in addition to 50 not being zero,
§d p. is not PR) we can 51mp11fy (3. 5) under various conditions.

If Yd D. (0) = s By = 0, and

Yy.p.(8) = 8,5 + ] —2— : (3.7)

ém represents a capacitor of &  farads in parallel with the pole

admittances. In general, for a truncated set—of poles one can set
d, = O since in the right half plane lim ?d D (s) -~ constant. If
& is set to zero s*e
a g
Y = .2 %
Yd.p.(s)'— s T g s - s, (3.8)

with éo representing an inductor of 1/aO henries inductance in
parallel with the other pole admittances. If Re(sa) £ 0, i.e.,
2ll of the poles are in the left half s plane or on the imaginary
(jw) axis and if the poles occur in conjugate pairs, (3.7) and
(3.8) are generally realizable. There are certain special condi-
tions under which these are not realizab1e14’15 and we will

discuss these conditions later.
Returning to (3.4), this can also be written as

5 S
(3.9)

w2
Q_‘.-
(ol
~\
10)]
e’

i}
t~1
— s,

)
w2
Q
0]
Q
m‘ 2
Q
W
Q 1

OL

known as the modified pole admittance with the entire-function
contribution modified by Z ~ a /s If we restrict our attention
to PR functions, au/s along w1th its complex conjugate degenerates
to a conductance in parallel with the individual pole admittance;
however, in the modified entire function this may not necessarily
be the case. If the driving point admittance approaches a con-
stant value at high frequencies, the entire-function contribution
would be zero and this happens to be the case for a thin cylindi-
cal antenna.

19



Another type of expansion which is useful is analogous

to the Foster's canonical form for lumped constant elements in the

form of an infinite product.le’17 If §d p (0) = 0, we can write
1 - s/s!
3 “oc 1
Yd.p.(s) = SCWW (3. O)
o Oge
while if Yd.p.(m) =0
1 - sg/s!
3 _ 1 “oc 3. 11
Yd.p.(s) N EETQ-I - s/s (3.11)
%sc

where subscript oc represents open-circuit while sc the short-

circuit quantities.

Using Cauchy's integral formula, Bode18 derived vari-
ous integral representations. If the resistive part R(w) of the
impedance (admittance) is known on the imaginary {(jw) axis, the

reactive part can be written as

i 2 2

X(w) = 22 [ R(X) = B(w) 4, (3.12)
O X - W

where poles on the jw axis and at~« are indented around. This
implies that no series inductors or capacitors are allowed. It
should be noted that if R{w) and X(w) are known on the imaginary
(jw) axis, using analytic continuation techniques one can analyti-
cally extend these values along an arc into the left (right) half-

planei2,13

as long as the arc does not pass through any of the
singularities. Hence, if one is trying to construct the equiva-
lent circuits from measured data, we only need to make one set of
good measurements and use the above principles to construct an

SEM representation.

20




3.3 Network Representation of the Pole Admittance

It is an accepted fact that it is easier to represent
the driving point admittance (impedance) in an analytical repre-
sentation than in a network representation which is physically
realizable. In this section we will consider the representations
(3.4) and discuss the condition under which this is physically
realizable.

Rewriting (3.4) here for convenience,

~

a
- o
Yap. () = Lg% (8.18)

For the present we will assume that ¥ {(s) is PR. If we con-

d.p
sider the conjugate pole pair, for each pole pair the admittance

~

Y can be written as
d.p.a’cp _
- ia 5a
Y (s) = + = (3.14)
d'p'a,cp s Sy s - S,
or
- P Re(au)s - (sua@ + s@aa)
Ya.p (8) = —3 )
To,ep s” - 2 Re(s )s + }su] (3.15)
where Is@lz represents the square of the magnitude of S IT we

represent the real part of éq as éuR,'tﬁé'imaginary'part by'égl,

“the real part of S, by Qa and the imaginary part by CHp

2% s+ 23 |a| -5 w)
(S) _ @R @R a QI C

a.p. 2 | .
o ,Cp s + 2] ]s + [s,

2

‘2 (3.16)

If the residues ia are purely real, the numerator of (3.18) can
be simplified further.

Consider a general representation of the form

cls +702

Ya.p.(8) = =5 (3.17)

+ ; +
s cgs * ¢y
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4
where cy is real and > 0. It is easy to show that,l“ for (3.17)
to be PR it is sufficient if CqCq > Co > 0. Applying this condi-
tion to (3.16), for Y (s) to be PR it is sufficient if

d'p'a,cp
aa w

B, ¢ (3.18a)
g | 19,

where w, > 0. This condition simply requires that for poles of
higher order on the first layer the admittance coupling coeffi-
1% of this
condition requires that the complex admittance residue lie within
£ 0, then the

cient be mostly real. Geometrical interpretation

the shaded area shown in figure (3.1). If Cq

requirement for PR is
w?(c, - cqel) < coc (3.18Db)
2 1737 = "274 )

or

w2<§ !Qa] + 4w ) > (é w.oo- a [Qul)<92 + wz) (3.18¢)
ap apa apoa ap o a

This is a much more general condition than (3.18a) and hence more
stringent. Note that this condition will have to be satisfied

for each pole pair and it is possible that this condition may be
satisfied only on part of the jw axis for a given pole pair, which
implies that the equivalent circuit is appropriate only for a por-
tion of the jw axis.

Constructing a lumped parameter circuit for (3.17),
it will be of the form shown in figure (3.2). Comparing the
coefficients, we obtain

L = 1 henries
c
1
3
°1
C = 5 farads
€184 = Cgleqeg - c5)
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with

|

Qlo

Note that if ciC3 2 ¢y, all of the gquantities in (3.19) are

and hence physically realizable.

(3.16) we have

L

with

(malper]

—_— hms
P O
¢
2
clcz
2 )
C1C4q ~ C1CgC3 * ©g
€13 = Cg
c1
Sa
Cq

mhos

25

mhos
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(3.

(3.

0

In terms of the quantities in

(3.

(3.

(3.

(3.

(3.

19)

20)

20a)
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20c)
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G _
8- (3.20%)

Note that if the admittance residue is real and the
poles are on the jw axis, G = 0 and we obtain a simple RLC series
circuit. Alternatively, if

i w =3a_ (3.21)

the conductance G is zero and we obtain a simple series RLC cir-
cuit. Note that condition (3.21) implies that the residue must
fall on the boundary of the shaded area in figure 3.1.

If the simple pole is on the negative real axis, the
realization procedure is slightly different. Assuming a simple
pole,

a
¥ (s) = o = — 1 . (3.22)
: R s/a, + {QR]/aOt

If éa is complex, (3.24) is not PR and hence not realizable;
however, by conjugate symmetry, éu must be real. If éa > 0
(ﬁa = 0 being a trivial case) (3.24) can be realized as shown in

figure 3.3 with

L = l/éa henries _ (3.23)

R = IQR]/QQ ohms (3.24)
with '

R

= IQRI (3.25).

Note that in figures 3.1 and 3.2 the sources, when present, appear
as a voltage source in series with the proper admittance.
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3.4 Network Representation of the Modified Pole
Admittances

Rewriting (3.9) here for convenience,

1

- E <éa) S X i&s
Y! (s) = =] —=2__ = —= (3.26)
d.p. o \Sy,/ s - S, 5 S —:sa

Considering a conjugate pole pair, for each pole pair we have

- i's a's
Vp. ()= g s ot (3.27)
Tla,ep o) o
or 251 &2 + 2(&' | -~ &' w )s
. g ap' e ap o
¥, (s) = 5 0 (3.28)
“Fra,cp s® + 2sla | + |s |

where the fact that Re(sa) < 0 has been used along with the assump-

tion that RR and éI 2 0, this however does not lead to any loss of

generality.
Consider a general modified admittance representation
of the form
- 0182 + CHS ' ‘
1 —_
Y = (3.29)
d.p. s® ¥ o8+ o
3 4

The represcntation shown in (3.29) is PR if and only if all

Cy > 0 and CyCq 2 CyCy- Note that figure 3.4 is appropriate for
Cq > Cqg and Cqgs Cy 2 0. 1If Cy < Cqy with Cz, Cy 2> 0 the inductor
in the figure should be replaced by a capacitor. This later
representation is perfectly acceptable if the poles under con-
sideration are on the negative real axis. In terms of the ci’s,
the element values in figure 3.4 are given by

olo‘
)

1sY

(3.30a)
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For the present case,
(3.30) from (3.29) we

Representations shown

1

Cy - c103<1 -

(cgeg = c4¢y4)

C1%4

CaC3

)

(3.

(3.

(3.

(3.

(3.

(3.

(3.

2 - ey )

Ca 7 ©31C9C3 T C1%4
making the appropriate substitutions into
obtain

2(ar o | - 3 w )

) ap' o ap e
2 2
(1% + wg)
ar o] - &' w )
_ ( ap' o ay a
h 2(~,2 ~ 2

2(ug )" (2" + 31)
- 1

25&

R

~ 2 2 ~

a&R([Qal - wu) - 2aI| ul
= 37,2 . ~.2\

ZwQ(aé + a1 )

30b)

30c)

30d)

3la)

31b)

31lc)

31d)

in (3.31) are physically realizable only if

219&[(5& e | - & wd)
R I
along with
2
219,0 , Isyl
which is a tautology.
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If the pole is on the negative. real axis, assuming
that it is a simple pole, we can write

- a
d.p a,Re Sal/S T Sy
a
Q S
= 3.34
(mg) s ¥ I ] (3.34)
By conjugate symmetry, éa is required to be real. If éa is nega-

tive, circuit representation of (3.34) is not physically realizable.

‘A circuit realization for ia > 0 of (3.34) is shown in figure 3.5
with

o

C = T~9T-farads (3.35)
Qd
R = 4 ohms (3.36)
a
[0}

This representation is simply a specialization of the case shown
in figure 3.2.
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4. Admittance Networks for a Cylindrical Antenna

We will now consider a well known problem of a thin cylin-
drical antenna for the modified and the unmodified forms of the
equivalent circuits. For the present, we discuss the analytical
calculations using the natural frequencies calculated earlier.lg
Shown in table 4.1 are the numerical values for the natural fre-
quencies while figure 4.1 shows these geometrically. Natural

frequencies s_ as shown in figure 4.1 or table 4.1 are normalized

o
as s& with s& = sal/wc, where & is the total length of the antenna.
We normalize the complex frequency s' in the same fashion. We
assume that the natural mode Id(z) is real and is of the form

o

Ia(z) = sin<7r z) o = 1,2,... (4.1)

where o is the order of the mode in the first layer.

The integral equation which we will be dealing with is the
Pocklington form of the integral equation given by

2 24\ % % | :
d s )J I(z',s) -sR/c ~inc

4 _ s 2z ,85) o dz' = -s¢_ E (z,8) (4.2)

(d22 C2 5 4TR o Tz

where

2

R™ = (z - z')2 + 22

(4.3)

After considerable algebraic manipulations, it can be shown that
the denominator of the coupling coefficients given by

daA .
<<ia ' Js e ) Ig>> can be approximated as
o
y : s
44 . o a 1)
<Ia ) aqs| Io> i [Q@(z) , Ia(z> + o(§]
G (4.4)

where @ is the fatness factor defined by Q = 22n(%/a). If we
assume that Ia is of the form (4.1), we can rewrite (4.4) as
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o Layer 1 Layer 2 Layer 3

1 .0828+3.9251 | -2.1687+5.349x10" % | —4.0993+j.394x107 "
2 .1212+31.9117 | -2.500+31.3329 ~4.5142+j1.4979
3 .1491+32.8835 | -2.7342+32.4680 —4.8285+32.7472
4 ,1713+3j3.8741 | -2.9146+33.5334 _5.0693+j3.8894
5 .1909+j4.8536 | -3.0454+j4.5757 _5.2851+j5.0070
6 .2080+35.8453 | -3.1640+35.6097 -5.4647+36.0811
7 .2240+36.8286 | -3.2659+j6.6221 _5.6277+37.1478
8 .2383+37.8212 | -3.3562+j7.6405 -5.772+38.1901
9 .2522+38.8068 | -3.4376+]8.6466 —5.9045+39.2351
10 .2648+j9.8001 | -3.5108+39.6555

k)

s L
Table 4.1. Pole locations s& = [ o ] in

me

plane for the thin wire of Q

the complex frequency

= 10.6 determined by
19

the contour integration method.
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Qs 2

(4.5)

d
<Ia ’ ES— 5 I>

where terms of order Q_l are neglected. It may be argued that
terms of the order Q~1 play an important role in the positive
real properties of the admittance functioms. In our opinion,

this does represent the best approximation.

4.1 Pole Admittance Formulation for a Cylindrical Antenna

The short circuit current T(z) can be written as

e 22 z <:}& ’ E;n§:> 1 (4.6)

H(z,8) = 824 & { I, > Ia:>> + O(%)] (s - 54)

where, as defined before, s' is the normalized complex radian

frequency. Note that as s' = O, i(z,s) + a constant value. This

is not physical for a cylindrical antenna.

Using (2.22) and (4.6), we can write the input admit-

tance at the center of the antenna as

: 1 2% o’ g 1
Y(s') = = ) (4.7)
2 Q7 1 {(s' - 8')
A o o [<IO'. s I(X> + O(ﬁ)] (o4
Neglecting terms of order Q—l, we have

3 _ 1 4
@ =gl <o DiwesEp (4.8)

We note that

2
(E&) sinz(%% A) a = odd

<I<x ‘ >§ - (4.9)

0 o = even
If the gap is small, i.e., A << 22%/am (note that the gap has to

be small compared to the frequency of interest), we can approxi-

mate (4.9) as
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o A2 o odd o0
<, D - o bo<<Tx (4.10)

even

Q
It

Hence, for a small gap approximation, (4.8) can be
simplified to read '

1

2 )
[ t
Qzy & (s sa)

Y(s') = o = odd (4.11)
where if a finite sum is considered, s' cannot be larger than the
largest s&. We note that the pole admittance coupling coefficients
are real and positive. Hence they satisfy the realizability con-
siderations discussed in section 3. This implies that for each
conjugate pole pair, a network representation is realizable.

Shown in figures 4.2 through 4.6 are the real and imaginary parts
of the pole admittance for each conjugate pole pair. Figure 4.7
shows the cumulative sum of the real and imaginary parts of the
admittance for nine conjugate pole pairs. Note that at zero
frequency, the admittance reaches a constant value which is not
physical. In addition, results for w' > 9 should not be trusted
because only nine pole pairs were con81dered in our calculations.
Comparing the admittance values with the King- ~MiddletonZ©
one finds that the peaks and valleys agree within 10%. Shown in

theory,

figure 4.8 are the network realizations for each of those pole

pairs. Note that all the element values are positive and real,
Y(s) » =4 7 2
0206 § sS4

s = 0 does not agree with a cylindrical antenna admittance.

as 8 +~ 0, which is a constant. This behavior at

Returning to (4.6), we can rewrite this as

<I e

(s' - s )

e (2) = (4.12)

O

Note that the numerator term <i§d , E;n§:> is simply the source
term. Comparing the remaining terms with the admittance equation

(4.11), they are found to be identical. Note that this holds only
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at the center of the dipole antenna. One interpretation is that
in the small gap approximation, if one eliminates the source term,
the remaining term is the pole admittance. This has been found
to be true in the case of a cylindrical antenna and a Helix.21
Since the natural mode is real, the coefficients for the voltage
coefficients for the conjugate pair circuit are constant and real.

4.2 Modified Pole Admittance Formulation for a
Cylindrical Antenna

We write the short-circuit current for this case as

inc '
¢ oy <i, . E o
Z) (4.13)

sc QZ [<<:I , Ii:> L0 ; } s (s™ = 8])

As s' - 0O, I(z) -+ 0 uniformly, which is the condition an electric

dipole is required to satisfy. The input admittance at the center

of the antenna is
. 2
I 1
3 1 2% < > t
Y(s') = = ) , ,_ ;
A2 on o [~<:§ , Ij:> + 0 i ] a Sa)
a Q
1,

o = (4.14)
Neglecting terms of order Q-l; we can rewrite (4.14) as
3 1 4 <:: :>>2 s
t =
Y(s') = AL g I, . 1 g ST(s =50 o =1,3,...
(4.15)

Using the small gap approximation given by (4.10), we can rewrite
(4.15) as

4 s'

Q7 Z s'(s?' - g')
o o "o o

§(s') =

o =1,3,... (4.16)

Note that as s' - O, ?(s') ~ 0, which is the condition the input
admittance of a cylindrical antenna is required to satisfy. As

s!' =+ », Y(s') » a constant value, which also satisfies the
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regquirements for a cylindrical antenna. Comparing the pole admit-
tance formulation (4.11) with the modified pole admittance
formulation, one notes that the two formulations are identical

at the pole locations.

Rewriting (4.13) for the small gap approximation, we
obtain

~ 4 inc s
I (2) = 55— ] <I , E > S — (4.17)
sc QZO a o Z sa(s sa)

Comparing the terms other than the forcing function with the
admittance given by (4.16), we find them to be identical. As
mentioned earlier, this appears to be true for all cases consid-
ered by these authors. As discussed earlier, the voltagé coeffi-

cients for the conjugate pair circuit are constant and real.

We note that (4.16) is obtained from (4.11) by way of

Y,(S,)=QZOOL[S_S, +§T} (4.18)

If we compare the pole admittances with the modified pole admit-
tances, the modified pole admittances are obfained from the pole
admittances by the addition of (l/s&). Note that the real part

of s& is negative, and the real part of the modified pole admit-
tance is ‘obtained from the real part of the pole admittance by the
addition of —2]9&}/(93 + mi). Although this yields the correct
behavior for low frequencies, this will make the real part of the
modified pole admittance negative for high frequencies, thereby
making thé modified pole admittances non-P.RE. and hence non-
realizable. An interesting result is that if the pole admittances
(modified pole admittances) are P.R., corresponding modified pole
admittance will not be P.R. assuming that the pole admittance coupl-
ing coefficients have positive real part. Note that resistive
padding techniques21 are available to correct the non-P.R. property

of the modified pole admittances. Note that one can also consider
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the natural frequencies according to the eigenvalues of an appro-
priate integral equation and construct equivalent circuits.
Another alternative is to consider the open-circuit boundary value
problem and construct the equivalent circuits. Although not dis-
cussed here, a final alternative is to construct equivalent
circuits from measured data, where the required SEM quantities

are found from the measured time or frequency domain data. This
is a powerful tool for structures that are too complicated to

model in an analytical or computer model,
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5. Conclusions

In this work, we discussed the application of the SEM
representation to the short-circuit boundary-value formulation e
of a dipole antenna. General realization constraints were dis-

cussed along with the example of a cylindrical antenna. It has

been shown that under the analytical formulation of the coupling
coefficients, the pole admittances (but not the modified pole

admittances) are positive real and hence realizable. Network

realization for the pole admittances is exhibited.

From this work, it is clear that at least for a cylindrical
antenna under the analytical formulation, network realizations
are possible. Approximations were made in analytically evaluat-
ing the coupling coefficients, and we estimated the effect of
these approximations to be of second order. Until an '"accurate"
numerical evaluation is made, one cannot conclusively say much

about the realization procedure for the "exact" formulation.
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