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CHAPTER T

INTRODUCTION

Ribbon, or "flat-pack" cables, as described in this
report, are a particular type of multiconductor cable
consisting of n dielectric-coated conductors arranged in a
linear array as shown in Fig. 1.1. Each conductor is
cylindrical in shape, with all conductors in the cable of
identical radii, ry- Surrounding each conductor are
identical, cylindrically-shaped homogeneous dielectrics, or
insulations, of equal radii, rqr and relative dielectric
constant, e The conductors are uniformly separated by a
. distance, d, in the horizontal plane. In many types of
ribbon cables, the conductor orientations are maintained in
this linear array by bonding the adjacent dielectric
insulations together. When the separation between con-

ductors does not allow the dielectric surfaces to touch, a

| 2 3 4 n
e df e -

“’*f Figure 1.1 Orientation of ribbon or "flat-pack" cable.
. &



thin film of the insulation connects the adjacent conductor
insulations.

Ribbon cables have been used for many years in computer
bus connections as in the Digital Equipment Corporation PDP-
8 minicomputer [1]. They are recently finding greater usage
in other types of systems such as aircraft and missiles. 1In
these applications, the various conductors connect
electronic devices at either end of the cable. O0Of con-
siderable importance when using these cables is the ability
to predict interference or crosstalk. Crosstalk is the
unintentional coupling of signals from one wire onto an-
other, resulting in possible bit errors in computer signals
and the mixing of signals in analog systems.

Paul [2,13,19] has developed general techniques for
characterizing a system of wires as a multiconductor trans-
mission line, which can be used to predict crosstalk in
ribbon cables. These techniques require that the per-unit-
length transmission line capacitance and inductance matrices
of the system, g and E, be obtained. The purpose of this
report is to develop a numerical technique yielding these
matrices for ribbon cables.

Approximations to the elements of the transmission line
capacitance matrix can be obtained for cases with no
dielectric insulation, providing the separation between the
conductors is at least ten times the conductor radius. One
such approximation will be derived in Chapter V, and will be

used to develop an approximate expression for the trans-
2
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mission line inductance matrix. Boast [3] describes an
approximate method of determining the transmission line
capacitance matrix for bare conductors above an infinite
ground plane. The smallest ratio of conductor separation to
wire radius must be greater than ten. In this case, one can
assume that the per-unit-length charge on each conductor
surface is uniformly distributed around the conductor
periphery.

Ribbon cables, however, have a much smaller conductor
separation than is required for these approximations to be
valid, and in addition have dielectric insulations.

Clements [4] showed that, in fact, the approximate formulas
based on constant charge distributions are no longer
sufficiently valid for close spacing and dielectric material
surrounding.the conductors.

Clements [4,9] has developed a general computer
numerical technique for characterizing systems of circular
conductors with circular dielectric insulations. This
general technique is specialized in this report to the
particular case of ribbon cables. As a result, many sim-
plifications in the technique are made possible. This
specialization of the general technique and the simpli-
fications which result are described in detail in Chapter
II. Certain special considerations in defining the boundary
conditions and in choosing the matchpoints when applying the
technique to ribbon cables are described in Chapter III.

Chapter IV describes two alternate methods which were
3



investigated to reduce computer solution time; these methods
did not yield valid results.

Chapter V describes the determination of the per-unit-
length transmission line capacitance and inductance
matrices, C and E, needed to analyze multiconductor systems.
An approximate expression for the transmission line
inductance matrix is also derived.

A computer program was written to implement the results
of this report to provide a means of finding the trans-
mission line capacitance and inductance matrices of ribbon
cables. Chapter VI describes the operation of this computer
program and the separate subroutines used. Results of the
program are compared to both known results and to the
approximate technique of Chapter V. Chapter VII is
basically a users manual describing input formats and
displaying typical outputs from the program. Finally,
Chapter VIII summarizes the main points of the report, and

Appendix B gives a full listing of the computer program.

-



CHAPTER IX

DESCRIPTION OF THE METHOD

IT.1 Capacitance and the Capacitance Matrix

To understand the concepts involved in determining the
capacitance matrix for a system of wires, it is necessary to
have a knowledge of the meaning of the term capacitance.
This can be accomplished by considering the case of two
arbitrary conducting bodies, as shown in Fig. 2.1. Q, and

Q., are the total free charges on the bodies, and ¢1 and ¢2

2
are the potentials of the bodies with respect to some
arbitrary reference point. The charges Q1 and Q, can be

related to the potentials of the bodies as shown in Eqg.

(2.1).
Q o G |
= e (2.1)
Q; 21 221[%2
Q
‘;‘lllll!h 2
Figure 2.1. Two arbitrary conducting bodies.
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The matrix

<€’11 &12 (2.2)
~ .
& G
is known as the "generalized" capacitance matrix [7].
Hereafter, _ will be used to denote matrix quantities, and
an underbar, , will denote nx1 column vectors. A matrix
with m rows and n columns is of order mxn.

When the system of Fig. 2.1 is considered as an elec-
trical network problem, it is customarily assumed that the
bodies have been excited in such a way that charges of equal
magnitude and opposite sign are present on the surfaces of

the bodies. Enforcing the condition Q0=04=-0, appropriate

to network problems, Eg. (2.1) becomes

0 =€.9,+ Cp,
-0 = €0, + €0,

+
(2.3)

In most texts on electromagnetic theory, a network
consisting of only two bodies is said to have a capacitance,

C, between the bodies defined as [5,6,7]

_ _9Q
C =< (2.4)

where Vo is the difference in potential of the bodies; i.e.,
Vo=¢1_¢2 .
Equation (2.3) can then be solved for the ratio

Q/(¢1-¢2) yielding an expression for the capacitance
6
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rgkg between the two bodies of Fig. 2.1 as [7]

& & ¢ ¢

0 11722 1221 ) (2.5)
| B P S L

21
" The concept illustrated by Eg. (2.1) can be extended to
‘ the case of n charged bodies. Then, the nxn generalized

‘ v capacitance matrix is defined by the equation

| 0] r-(:.11 €, C‘]n- r‘2’1.

« i R ] I
; o B S §

| ol (G G2 T <':nnj | 7n |

‘ In matrix notation, Eqg. (2.6) is written as

0 =Cg (2.7)

where Q is the generalized capacitance matrix of the system.
When considering infinitely long parallel conductors,
total free charge is no longer finite. The charge on each
conductor is customarily expressed as a function of its
' length. This per-unit-length free charge, dgr Can be
related to the conductor potentials by the same relationship

as in Eq. (2.6). This yields the matrix equation




2y | G T em 2,
daf | _ S S | A
: S : (2.8a)
_qnf_ Lén1 é1.',12 nn -¢n.
or
as =€ ¢ (2.8b)

where q; ¢ is the per-unit-length free charge on conductor i,
and € is the per-unit-length generalized capacitance matrix

of the system.

II.2 Dielectric-Coated Conductors

Shown in Fig. 2.2 is a cross-section of two infinitely
long circular conductors covered with a cylindrical diel-
ectric. These dielectric-coated conductors will be referred
to as wires. The dielectric material is assumed to be
linear, homogeneous and isotropic. The quantities L and
roo in Fig. 2.2 designate the radii of the conductors, 31
and Tqo designate the radii of the dielectrics, and €r1 and

€2 specify the relative dielectric constants of the diel-

2

b8 @

%lb

Fig. 2.2. Two dielectric-coated conductors.
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ectric materials relative to free space. The term "con-
ductor surface" will designate the conductor-dielectric
boundary, and the term "dielectric surface" will designate
the dielectric-free space interface.

The potentials on each conductor cause quantities of
"free" charge to build up on the surfaces of the conductors.
These "free" charges produce an electric field in the
region surrounding the conductors. The introduction of
dielectric material into this field will cause the dipoles
in the dielectric to separate their positive and negative
charges to align themselves with the electric field. This
separation results in a net drift of "bound" charge to the
dielectric surface, d1p and dop in Fig. 2.2. An equivalent
amount of charge equal in magnitude but of opposite sign
will be induced on the conductor surface. The total (bound

plus free) charges q4 and q, on the conductor surfaces are

qq = 99 T 9qp and 9y = Ay 7 Ay, - (2.9)

Thus, the "free" charge on the conductor is found by adding
the values for the bound charge at the dielectric surface

and the total charge at the conductor surface;

d1g = 99 * Aq, and Gye = 9y * dyy (2.10)

Since the generalized capacitance matrix relates "free"
charge to conductor potentials, the per-unit-length charges

on both the conductor and dielectric surfaces must be found



in order to develop this matrix for dielectric-coated con-

ductors.

I1.3 Analytical Formulation of the Method

To find the generalized capacitance matrix of ribbon
cables, a general computer numerical technique developed by
Clements [4,9] is used, which utilizes the matrix methods
described by Adams [7,8]. The technique is associated with

the general "method of moments" [10] for solution of fields

)
\/F

(r,®)

problems.

refere nge
/‘./ axis

Figure 2.3. Fourier series charge distribution around
a cylindrical surface.

In examining the method, the per-unit-length charge
distribution, g, around an infinitely long cylindrical
surface as shown in Fig. 2.3, will be represented as a
Fourier series,

&) = + E ( ' + 5 _sinmg’ 2.11)
o =0, i OpCOSm +g sinmg) . (2.
where k is the number of harmonics included in the repre-

sentation. Then, the potential, with respect to an arbi-
10
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trary reference point, at a point (r,8) outside this surface

(i.e., r>r') is [4] (e, is the permittivity of free space)
#(r,8) =-0 r'inr 1 E g (r,)m+1 cosmd
0 &y 2€v m=1 mr
(2.12)
+ 1 g;} (r')m+1'sinme
ey oy m mr™

The reference potential term (defined in Appendix A) has
been omitted in Eqg. (2.12). It is shown in Appendix A that
this reference term will vanish for a system with zero net
charge and the reference point at infinity. Also, the

electric field at the point (r,0) can be found as [4]

E(r,8) 20 (%_)“+ 1 ¥ (r')mH( mOT + sinmod)
r = /7 = cosm@r + sin
’ ev ZEV m=1 W\T
A LM+ _
1 % Jm(E_) (sinm®r - cosmé8) , (2.13)
+ e r
&V m=1

where ¥ is a unit vector in the radial direction, and 8 1is
a unit vector in the tangential direction.
Similarly, if the point (r,®) is inside the surface,

that is, r<r', [4]

- ' ' A .
3(r,0) = Tor'in T + g g r'cosmé + % 6 r'sinme
’ - - e e - .
€v 2€v m=1 " m(z")"™ ! 2€v m=1 " m(r")™ !
(2.14)

11



k m-1
—_ -1 r —_ .
E(r,8) = »— DY Gﬂ% (cosmfr - sinm68)
! E:V m=1 mAr
-1 k - r m-1 _ _
+ -2—5_\; m§1 ?n("l:—r) (Sinmer + Cosmee) . (2.15)

Equations (2.12), (2.13), (2.14), and (2.15) can be
used to find an approximation to the potential and electric
field vector at any point due to a per-unit-length charge
distribution on a cylindrical surface of the form of Eqg.
(2.11). A consideration of the geometry of the "flat-pack"
cable results in a reduction of the number of terms in these
equations.

Figure 2.4 shows the orientation of the wires in a
"flat-pack" cable. 2All wires are identical and are oriented

in a linear horizontal array.

-
ot —fe—d

d
Figure 2.4 Physical geometry of "flat-pack" cable.
One would expect from the extreme symmetry of the
"flat-pack" cable with respect to the line connecting
centers of the wires, that the surface charges would be

symmetric with respect to this line. This "even" function

of the per-unit-length charge on the surfaces can be de-

12




scribed by constant and cosine terms only. In analytical
form, the per-unit-length charge on a conductor surface is
of the form

k

o(8) = O0_+ ¥ g _cosmd . (2.16)
0 , m

=1
Thus for "flat-pack" wire orientations, only k+1 of the full
2k+1 Fourier coefficients need to be retained.

The potential and electric field equations for r»>r',

Egq. (2.12) and Eq. (2.13), can then be reduced to

m+1
cosmf (2.17)

k,
r'ln r 1 v g (x')
@(r,8) = =0 +
! 0 e, 26, m=1 © m

and
o (g—'_)—‘ 1 Z g (r')m+1 -— . eé-
E(r,08) = 0 " r + 2€v . mlF (cosmfBr + sinm68) .
- (2.18)
Similarly, for r<r', Eq. (2.14) and Eq. (2.15) become
@(r,8) = =0 r'inr' . 1 % g r" cosm®
’ - —__--—-
0 €, 2€V n=q M m(r,)m 1 (2.19)
and
B(r,0) = 3 E () (cosméF - sinmé®) .  (2.20)

Similarly, the per-unit-length bound charge on a

dielectric surface is of the form

13



1 \
g'(8) = Ob + I o,cosm6 . (2.21) : i

The potential and electric field vector due to the per-unit-
length bound charge on the dielectric surface can be found
from Egns. (2.17) through (2.20) with ¢ replaced by o'.

The angle 8 in the charge distributions in Eqns. (2.16) and
(2.21) for each wire is with respect to the line connecting

wire centers as shown in Fig. 2.4.

IT.4 Matrix Organization in the Method

In the previous section, equations were developed for
the potential and the electric field due to a charge distri-
bution on a cylindrical surface, where the charge distri-
bution is represented as a Fourier series. These equations
are utilized in this section in a matrix formulation to
solve for the per-unit-length generalized capacitance
matrix. ¢

Fourier series representations of k+1 terms are chosen
for the charge distribution around each conductor surface,
where k is the number of cosine terms in the series. Since
the potential is equal at any point on the conductor sur-
face, k+1 matchpoints on each conductor surface are used to
define the potential resulting from the charge distributions
on all the surfaces.

Similarly, Fourier series representations with 1+1
terms are chosen to describe the bound charge distribution

around the dielectric surface. The boundary conditions at

14
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the dielectric surfaces require that the normal components
of the displacement vector D=€E must be equal just inside
and just outside the dielectric boundary [7]. Therefore,
1+1 matchpoints are chosen on each dielectric surface at
which this condition will be enforced. The electric field
will change by OS/EV as a field point passes through the
charged surface (where Pg is the surface charge in coulombs
per square meter), but the normal component of the dis-
placement vector will remain continuous across the boundary,

i.e.,

E.E. - € E- =0
i™n v 'n
i o, _
ev(arEn En) =0 (2.22)
e EX - E° =0
rn n

where Ei and Eg are the normal components of the electric
field just inside and just outside the boundary, respec-
tively, €5 and €, are the dielectric constant and the

relative dielectric constant of the insulation, and €y is

the permittivity of free space.

The matrix equation which results will be of the form

15



D11 Dqqo :D12 Dyg : ... : >1n 2ane [ [ ¢,

Dara Bavar 0 Bar2 Pavae v v Pavn a4 2
1 | |

Do1 Doqv [ R22 Doz | ..., Don Donr |9 2,
| | | ]

22.'.1_92'1'_' [:)2i2_92'2'_'_ - _.'_PZ'E ?2111'.3-3 = _g‘_

[ ] I L] I * l [ ] L]

. I . I . . :
------ - -"=-- =" -""-|=-==- - == F== ===
Pn1 Dnae 1 Pn2 Dnat ' Pon Pnn' [[Zn gn

. R,
9n'1 Dphvqr 1Dpep 9n'2' ! ! Pn'n n'nj o 9 )
- L L
- N——— - (2.23)
D

where unprimed quantities relate to the conductors, primed
quantities relate to the dielectrics, and n equals the total
number of wires in the cable. The 9y térms are vectors of
length k+1 containing the Fourier coefficients of free plus
bound charge densitiés on the i-th conductor boundary, gi
are vectors of length 141 containing the Fourier coeffi-
cients of the bound charge densities on the i-th dielectric
boundary, and 91 are column vectors of length k+1, defining
the conductor potential of the i-th conductor for i=1,°°"°,n.
These three vector quantities have an element organization

as shown below:

- - F m
950 aig 25
931 31 25
i =| : o =| : g =| - (2.24)
Ejlk- LOJ!.lJ _¢1J



where the per-unit-length charge distribution on the con-

ductor surface of the i-th wire is represented by

k

+ I Oim cosmé (2.25a)
m=1

and the per-unit-length bound charge distribution on the

dielectric surface of the i-th wire is represented by

1
0, =0, + L 0., cosm® . (2.25b)

The submatrices of D have the significances noted below:

Qij contains the contributions to the potential at the
matchpoints of conductor i due to unit charge
distribution coefficients on conductor j. This

submatrix is of dimension (k+1)x(k+1).

Dij' contains the contributions to the potential at the
matchpoints of conductor i due to unit charge
distribution coefficients on dielectric j'. This
submatrix is of dimension (k+1)x(1+1).

i'g contains the contributions to the difference in

the normal components of the displacement vector
at the matchpoints on the surface of dielectric i'
due to unit charge distribution coefficients on

conductor j. This submatrix is of dimension
(1+1)x(k+1).
17



Di'j' contains the contributions to the difference in /‘I

the normal components of the displacement vector -
at the matchpoints on the surface of dielectric i'

due to unit charge distribution coefficients on

dielectric j'. This submatrix is of dimension

(1+1)x(1+1).

For convenience, the matchpoints on each conductor
surface (dielectric surface) will be chosen according to the
same rules for all conductor surfaces (dielectric surfaces).
An example of this is shown in Fig. 2.5, where the match-

points are denoted by X's.

@000

Figure 2.5. Matchpoint orientations for the conductor
and dielectric surfaces.

Due to (1) the horizontal orientation of the flat-pack
cable, (2) the identical size of all the wires (see Fig.
1.1), and (3) this particular method of choosing the match-
points, many of the submatrices of D are identical. For
example, 911 contains the contribution to the potential at
the matchpoints of conductor 1 due to the components of its

own charge distribution. Obviously, then,

Dyq = Dpp = 777 =Dy - (2.26a) 'q
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‘~; Thus, the charge distribution on any conductor produces the

. same contribution to the potential at the matchpoints on its
own surface. Also, the charge distribution on the surface
of any dielectric produces the same contribution to the

potential at the matchpoints on the conductor surface inside
it:
Digr = Door = =D __+ . (2.26Db)

~nn

Similarly, it can be seen that

D11 = Par Ph'n

Dyige = 777 = Do

Divqn (2.26c)

This shows that all the submatrices on the main diagonal of

D are identical, i.e.,

211 oo | _ | P22 Pa2r | _ _| Pan Pan
Dirg Do Dai2 Do Phrn Pnrne

(2.27)

The same is true for the other diagonal partitions: hence

the matrix in Eq. (2.23) can be written as
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(D, D_4 D, " D (n-1) (o1 [*
*
D4 Do D_4 D (n-2) 9 X5
*
b, D, Dy D _(n-3) 93 | =] %3
L I ] *
L 9(n—1) 9(n—2) 9(n-3) Py | —n | =n
(2.28)
where
* g 2.
g, = 1 ’ X. = 1 ’
1 0! -1 0
-1 el

and the subscripts on the Pi submatrices in Eq. (2.28) are
found from the subscripts of the corresponding submatrices
of D in Eq. (2.23) by subtracting the second subscript from

the first. For example,

91n I~J1n'

— D (2.29)
D D — ~-(n-1)
~1'n <1'n"

The matrix D in Eq. (2.28) is in the block Toeplitz form
allowing fast generation of the complete matrix, since only
2n-1 of the original n2 submatrices need be computed.

The matrix D of equations (2.23) and (2.28) is inverted

to obtain the matrix ?=P—1, and the equation becomes

20
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(2.30)

The total (bound plus free) per-unit-length charge, q;, on
the i-th conductor surface is the integral of the per-unit-

length surface charge density, Oi,over that surface. Thus,

k

2T
q; = “[ (09 + 21 O, COsSmO)r _de (2.31)
0

which reduces to

2T
= O =
a; af 50Td0 = 2Tr 0, (2.32)

since the integration of a cosine function over a multiple
of 2T is zero. The term r, is the conductor radius, and 930
is the average value of the total per-unit-length charge
density (the constant term of the Fourier expansion) on
'conductor i,

Similarly, the per-unit-length bound charge on the

dielectric surface is

a} = 2mrgoly (2.33)
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where rs is the dielectric radius, and Oio is the average

value of the per-unit-length bound charge density on the i-
th dielectric surface. As a consequence of Egq. (2.10), the
per-unit-length free charge on the surface of conductor i

is
dijf = 93 + 9§ . (2.34)

Thus, combining equations (2.32) and (2.33) yields the per-

unit-length free charge on the i-th conductor,
dif = 2ﬁ(rCOiO + rdOio) . (2.35)

From Eq. (2.30), the average per-unit-length charge density

on the i-th conductor, © (the first term in the gi

io’

vector) is

1 1
o — o e o
. T. ¢1 + 31222 + + T

:
0= Tiq2 2 (2.36)

—intn

where Elj indicates a 1xn vector consisting of the first row

of Fij' Similarly, the average per-unit-length charge

density on the i-th dielectric, OiO’ is

L — 1 1 oo o 1
O30 = Tjiq8q + I;0,8, + + T8 - (2.37)

Adding equations (2.36) and (2.37), according to

equation (2.35), yields

22
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1 1 1
2”[rc(311g1 T8, + Tingy)

]

1 1 e
P rg(TieqBy + T8, 4 * '_f_i'nQ—’n)]

n
1 1
2T ji1 [(rcgij + rdgi.j)gj] . (2.38)

Since 91 is a vector of equal conductor potentials, that is,

g. = : (2.39)

R

then Eq. (2.38) can be written as

o o Tm n Tm
. = 2T Z {r L T.. +r z T.,.} @ (2.40)
if =1 C =1 I d m=1 *'3 Jj

where TE? is the element of Eij in the p-th row and g-th

column. The desired generalized capacitance matrix is

- T P N
q1f-_1 €, 12 n | |?1
b
D¢ | = ¢ d‘22 2n 2, (2.41)
-qnf_ . n1 n2 nn ,gn_

q;¢ (2.42)

o~
o
Q
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Thus comparing equations (2.40) and (2.42), the elements of
the per-unit-length generalized capacitance matrix can be

written as
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CHAPTER III

MATCHPOINT SELECTION

IITI.1 Introduction

In the previous chapter, a method for computing the
generalized capacitance matrix of ribbon cables was de-
veloped. Several major considerations concerning choice of
matchpoints will be discussed in this chapter. In the first
part of this chapter, necessary criteria for choosing the
position of the matchpoints are discussed. A matchpoint
selection technique applicable to the ribbon cable problem
was developed and is shown to meet these criteria. The last
portion of the chapter provides some guidelines on the
number of Fourier series coefficients and matchpoints
required for the surface charges to yield accurate capa-

citance matrices.

I1IT1.2 Matchpoints and Nonsingularity of the D Matrix

A key step in the method outlined in Chapter II is the
inversion of the computed D matrix. The necessary criterion
to insure solution is that D be nonsingular thus assuring
that 9_1 exists. Therefore, the matchpoints should be
chosen such that singular D matrices are not generated.

A matrix is singular when any of its rows (or columns)

can be expressed as a linear combination of the other rows
25



(columns). The most obvious case of this condition results
when two rows (columns) are equal. Criteria for matchpoint
selection which will guarantee that no two potential or
displacement vector continuity equations are equal will be
developed in this section. It should be pointed out,
however, that these will constitute only necessary con-
ditions for the nonsingularity of D.

As described in Chapter I1II, the matrix equation de-

fining D is of the following form:

g | I oese | T1r 1T o
Ryg Ry Py Dy . 210 R || 2 2,
o o o ]
Birg Broqr ! Rova By ! ' Dyen Ry | | 9 d
I i
Rp1 DBoqr 4 Bpp Dopv ' Pan Donr || 22 2,
I 1 I
o o 0 1 —
]22!1 sz»]l i ]_:32!2 122!2| 1 1 Qzln 122!1.'.“ 9_2 - 9_
- - - - - |- - - == - T- -7 - =--- = - -—
. | . ¢ | . . .
------ = = = == =4 -, 7 + = = = - = -——— -—-
12n1 1~Dn1' 1 <n2 Qn2' | | Pnn <~nn' 22 g-n
| I e o o I 1
LQn'1 l~3n'1' | 12n'2 13n'2' | \ 13n'n n'n'] | -n -Q y

(3.1)

It will be assumed that there are k+1 matchpoints
around each of the conductor surfaces and 1+1 matchpoints
around each of the dielectric surfaces. The first block row

Dirvge submatrices in a partitioned row of Eq.

of pij and D
(3.1) consists of k+1 equations for the potential at the
conductor matchpoints of wire i. The next block row of Di'j
and Pi'j' submatrices consist of 1+1 equations containing
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the differences in the normal components of the displacement
vector at the matchpoints on the dielectric surface of wire
i.

Examining the conditions for identical potential
equations, the case where the identical equations are in
different partitioned rows of the matrix in Eg. (3.1) will
be considered first. The matchpoints corresponding to the
two equations are located on different wires since the
partitioning in Eq. (3.1) combines only those equations for
2 particular wire in each block row. Figure 3.1 illustrates
two matchpoints, A and B, on the surfaces of the conductors

of two different wires, i and j.

Figure 3.1 Matchpoints on two different wires in the cable.

Referring to the matrix equation (3.1), the rows associated
with matchpoints A and B will be equal if the respective
rows of the submatrices in each column partition are the

same. That is,

D, = DB for all m=1, 1', ..., n, n'

Zim —-jm ! (3.2)
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where ng indicates the row associated with matchpoint R in
the submatrix qu. This implies that the contributions to
the potentials at matchpoints A and B due to the components
of the charge distributions on the m-th surface must be the
same. It is obvious that this will be true only when match-
points A and B are at the same location. For wires having
dielectric insulations, however, matchpoints on two dif-
ferent conductors will never be coincident.

A similar analysis for the displacement vector con-
tinuity equations shows the same result which is illustrated
in Fig. 3.2. For ribbon cables with separation greater than
twice the dielectric radius, however, this will never occur,

since the dielectric surfaces will not be touching.

Figure 3.2 Coincident matchpoints from different surfaces.

When the adjacent dielectric surfaces in a ribbon cable are
touching, this may occur and a general matchpoint selection
method should avoid this condition.

Another instance in which the D matrix in Eq. (3.1)
will be singular occurs when two identical equations are in
the same row partition, implying that the matchpoints
associated with these identical equations are associated

28



with the same surface. 2As in the previous case, the ele-
ments of tﬁe two equations will be equal when the effects at
the two matchpoints (on potential or continuity of the
displacement vector) due to components of the charge dis-
tributions on the m-th surface are the same. This will
result when choosing two matchpoints on the same surface of
some wire as images of one another, above and below the line
between the centers of the wires. Fig. 3.3(a) illustrates

a typical occurance of this condition.

(a) Matchpoints symmetrically disposed with respect
to the center line on a charged surface
(dielectric or conductor).

(b) Alternate choice of matchpoints on the surface.
Figure 3.3.

Matchpoints A and B in Fig. 3.3(a) are symmetrically

disposed with respect to the charge distributions on all the

29



wires. The potentials (or fields) at these points due to
terms of the Fourier series representation of the charge
distributions (assumed to be an even function with respect
to the line between centers) on any surface will be the
same, thus generating two identical rows. This can be
easily avoided by choosing the matchpoints on any surface
according to the method in Fig. 3.3(b). If the angles 8 and
¢ are not equal, the rows in the D matrix associated with
these matchpoints will not be equal.

A method for matchpoint selection must then meet two

necessary criteria:

1) the matchpoints on two adjacent wires must
not both be on the line between centers, and
2) the matchpoints on any surface must not be
chosen symmetric with respect to the line
between centers.
These criteria, of course, do not guarantee the nonsin-
gularity of D. They do, however, avoid the obvious cases in

which a singular D matrix will be generated.

ITII.3 Matchpoints and Symmetry of the € Matrix

Due to the extreme symmetry of the "flat-pack" problem
(conductor radii identical, dielectric radii identical,
separation of the wires identical, and the wires oriented in
a horizontal plane), some of the elements of ¢'must be

identical. As an example, consider the case of three wires
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shown in Fig. 3.4(a). The generalized capacitance matrix

becomes
§ y
41 qz (;3
<%1 (%2 631
_é,13 61'2 éﬂ_j (3.3)

(a) A three-wire cable .

@@

(b) A four-wire cable .

Figure 3.4 Three and four-wire cables illustrating the
geometrical symmetry.

The resulting structure of € in Eqg. (3.3) can be
easily shown by recalling tha.t:Cij is the ratio of the total
per-uriit-length free charge on the i-th conductor with a
unit potential applied to the j-th conductor and all other

conductor potentials set equal to zero; i.e.,
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i3
2514 =0 X (3.4)

Clearly then from geometrical considerations

€33 = 611
Cy3 = d=’21
€32 - é’12 (3.5)
€y = d‘:13
as indicated in Eq. (3.3).
For four wires (:' becomes
-611 é12 d.‘]3 ¢14-
¢ _ i21 222 iz3 :24 . (3.6)
24 23 22 21
_614 013 612 d’11_

Thus it can be shown from Eq. (3.4) that for this four wire

case (see Fig. 3.4(b)),

633 - e22
644 - én (3.7)
631 - é24
632 - é’23
<E341 - é‘14
é42 = C13
é43 - é12
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Therefore, the matchpoint selection technique should yield

this "geometrical symmetry". Matrices with these properties

are called centro-symmetric [18]. An nxn centro-symmetric

matrix M has the property that M SMS where S is an nxn

matrix with ones on the cross-diagonal and zeros elsewhere;
i.e., Sij = 1 for i+j = n+1 and zeros elsewhere [18].
Reciprocity relations [11] also show that the gen-
eralized capacitance matrix is symmetric with respect to the
main diagonal. Thus, the generalized capacitance matrices

for three and four wire cables can be written as

. S P é'1,3
G = 52\322//672 (3.8a)
13 e12 e11j
& & &)
U ER
N C ,
. é12\\¢22 23,7 13
_ -’ e
= 1% 8% S (3.8b)
¢ ¢ ¢
L7140 13 12 11

Therefore, the generalized capacitance matrix should be
symmetric with respect to both the main diagonal and the
cross—diagonal and those elements above the dashed lines in
Eq. (3.8) completely characterize the matrix.

Another necessary criterion, then, in choosing the
matchpoints for the method described in Chapter II is that

the computed capacitance matrix be symmetric with respect to
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both the main diagonal and the cross-diagonal.

IIT.4 A Method for Matchpoint Selection L

In the implementation of the general technique, many
choices of the number of matchpoints and expansion terms for
each surface are possible. However, one particular choice
will be used in this report and the resulting computer
program. The number of terms in the Fourier series dis-
tributions associated with each dielectric surface of each
wire will be the same and will be denoted by NFD. Also, the
number of expansion terms associated with each conductor
surface of each wire will be the same and will be denoted by
NFC. The number of matchpoints associated with each di-
electric surface of each wire will be equal to the number of
expansion coefficients associated with this surface; i.e., 3
NFD = 1+4+1. Similarly, the number of matchpoints associated
with each wire will be equal to the number of expansion
coefficients associated with this surface; i.e., NFC = k+1.

During the course of this work, a recursive method for
selection of the matchpoint positions was developed. This
will be described and then shown to meet the necessary
criteria. The method is dependent on the number of Fourier
coefficents chosen for the distribution of charge around the
surface. The relation assumes the matchpoints are evenly
divided around the surface, so that the only independent
variable is the rotation of the matchpoint set from the zero rﬁD

degree axis. This is illustrated in Fig. 3.5 for five

~

{
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matchpoints on a particular surface. The angle 6 used in
the potential and electric field expressions in Chapter II
will be chosen with respect to the horizontal line between

centers, as shown in Fig. 2.4 and Fig. 3.5.

A

e
»2— reference axis

Figure 3.5 Example of matchpoint selection.

The angle, a, between any two adjacent matchpoints is

determined by

N

T
a = §F5s (3.9)
where NFS indicates the number of Fourier coefficients

(matchpoints) associated with the surface (conductor or

dielectric). For this particular case of five matchpoints,

a=§_=720 .
5

The angle 4, the rotation of the matchpoints from the 6=0

reference, is given by

A = YEL_FET ) (3.10)

Thus for the case of NFS=5, as above,
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. . m o 5m 91 137 177 from
The matchpoints then lie at angles 10, 70, 70, ~70, 10

the reference.

Table 1 shows the typical matchpoint selections using
the formulas in Eq. (3.9) and Eqg. (3.10) for cases where the
number of matchpoints is in the range of 1 to 10.

For all the cases shown in Table 1, the matchpoints on
any particular surface (conductor or dielectric) are not
symmetric with respect to the line connecting wire centers,
nor do the matchpoints occur on the line connecting wire
centers. This is true for all finite values of NFS. In
general, then, this matchpoint selection technique will
always meet the criteria which were necessary in avoiding D
matrices in which two rows of the potential equations or the
displacement vector continuity equations are identical.

It was shown in Section III.3 that the generalized
capacitance matrix should be symmetric about the main and
cross-diagonals. This would be true if the exact charge
distributions on the conductor and dielectric surfaces are
obtained. 1In applying this technique, an approximation to
the true charge distributions will be obtained. 1In the
limit as the number of matchpoints on each surface increases
without bound, these approximate charge distributions will
approach the true charge distributions. In order to min-

imize the computation time and required core storage, how-
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ever, the matchpoint selection technique should provide a
rapid convergence of the generalized capacitance matrix to
one which is symmetric about the main and cross diagonals.

As indicated above, the number of matchpoints on each
conductor surface and each dielectric surface of each wire
will be denoted by NFC and NFD, respectively. In addition,
the number of matchpoints chosen on each surface will equal
the number of Fourier series expansion terms associated with
that surface. For the case of two wires, the matchpoint
selection technique outlined previously can be shown to
yield centro-symmetric generalized capacitance matrices for
any value of NFC or NFD. To show this, consider the case of
two wires with various matchpoint selections shown in Fig.
3.6. These cases should be sufficiently representative to
illustrate the proof.

Note in Fig. 3.6 that when the number of matchpoints on
a particular surface is odd, these matchpoints are mirror
symmetric about a vertical line X~X' between wire centers.
When the number of matchpoints on a particular surface is
even, these matchpoints exhibit skew symmetry about the
vertical line X-X'. These conclusions can be generalized
for two wires and any value of NFC or NFD.

The generalized capacitance matrix for two wires

becomes
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(a)
NFC=1  a=2T7 *
NI'D=1 a=2m U U
A=m
2
X
]
(b)
NFC=1 a=2m il m
NFD=2 a="m \\\’// - \\\J//
A=% % %
X
(c) X
NEFC=2 a=m
A=m
4
NFD=2 a=mn
A=m
4

(d)

h/
=5 ooy

Figure 3.6. Matchpoint selections for two wires.
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C= e, ¢

~ 21 22 . (3.11)
Recall that d;j is the free charge on the i-th conductor
with a unit potential applied to the j-th conductor and the
remaining conductors at zero potential. Since (1) the
matchpoints on corresponding surfaces exhibit either mirror
symmetry or skew symmetry with respect to the vertical line
X-X', (2) the wires are identical, and (3) the assumed
charge distributions are symmetric with respect to a line
between centers, then clearly(: for two wires will exhibit
centro-symmetry and

e, =¢

11 22

c,. =€

12 21 . (3.12)

This is a direct result of the fact that due to the above
observations, the computations performed when the cable is
viewed from either end will be identical. Note that for two
wires, centro-symmetry automatically guarantees symmetry of
about the main diagonal. Computed results illustrating this
are given in Table 2 for the cases of NFC=2, NFD=2 and
NFC=2, NFD=3. Note that the matrices are symmetric with
respect to the main and cross diagonals to sixteen digits.
All computations were performed on an IBM 370/165 computer
in double precision arithmetic.

For cables containing more than two wires, geometrical
40
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symmetry (i.e., centro-symmetry) of(: will again result.
This has been verified computationally in numerous cases for
cables involving up to twenty wires. However, for more than
two wires, this geometrical symmetry does not automatically
imply symmetry about the main diagonal. Again, the reason
that.Q will not be symmetric with respect to the main
diagonal is that only the approximate charge distributions
are obtained. However, this matchpoint selection technique
does provide rapid convergence to generalized capacitance
matrices which are symmetric about the main and cross-
diagonals. A typical result for a five wire cable with

NFC=3, NFD=7 is shown in Table 2.

III.5 Number of Fourier Coefficients and Convergence of the

Capacltance Matrix

One final topic to be discussed is the choice of the
number of Fourier series coefficients around each boundary
which are to yield results to a certain accuracy. This is
most important in terms of computation time, since a single
additional coefficient increases the size of the D matrix by
an order of NW (the number of wires). This is significant
since the number of operations (multiplications and di-
visions) required to invert an mxm matrix is approximately

m3. Therefore, the number of operations required to invert

D is (NFC + NFD) (xw) 3.
A number of sample cases were run to determine worst

case needs. The problem considered is illustrated in Fig.

3.7'
42
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> g r, 1.0
ry 2.0
sep = 4.0

‘-o—szp—-———{ e

= 4.0
r

Figure 3.7 Two-wire ribbon cable.

where the dimensions of the cable indicate that the diel-
ectric surfaces are touching. This should correspond to a
worst case condition in terms of wire separation. Table 3
shows the calculated capacitance using Eq. (2.5), for
various numbers of Fourier coefficients associated with each
surface.

The circled items in Table 3 indicate the best result
for a particular number of total Fourier coefficients
assigned to each wire. The most interesting point is that
not as many terms are required around the conductor surface
as the dielectric surface. For example, with ten total
coefficients, the best organization would use three terms in
the representation of the charge distribution around the
conductor surface and seven for the dielectric surface.

Table 4(a) indicates similar results for five-wire
ribbon cable. Considering the convergence of the ¢33 term
given in Table 4(a), it is sufficient to assign approx-
imately one-third of the total number of expansion coef-
ficients alloted to the wire to the conductor surface expansion

and assign the remaining number to the dielectric surface
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’ # terms # terms around conductor
around
dielectric 1 2 3 4 5 cc 10
1 E
2 |(G6.D 63.5
3 |@5D (2.9 73.4
4 70.5 (78.1) 79.4 79.5
5 73.0 (1.3 82.7 82.8 82.8
6 74.7 85.0 85.0
7 75.6 84.6 (86.0) 86.2 86.2
8 76.2 85.3 (86.8) 87.0 87.0
9 76.6 85.7 (87.3) 87.4 87.4
10 76.8 86.0 . 87.7 87.8 87.8
11 1'!";‘!!!} 87.9
] 12 CIIID ‘HIID 88. 1
] 13 88.0 (88.1) (88.2
Pl
14 88.0 (88.2) 88.2

Physical conditi

r =1.
c

Table 4(a).

0%

ons:

0, rd=2.0, sep=4.0, %=4.0

Center element, C (3,3), in the
generalized capacitance matrix of a
five-wire ribbon cable for various
numbers of Fourier terms per boundary.
(All entries x10712.)
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expansion. In applying these results to transmission line
analysis, the transmission line capacitance matrix, C, is .
needed. The derivation of C from the generalized capa-

citance matrix is shown in Chapter V, and the C term for

11
the five wire ribbon cable is shown in Table 4(b). Again,
it is sufficient to proportion the total number of expansion
coefficients allotted to a wire by assigning approximately
one-third to the conductor surface. This allotment cri-
terion has yielded the same convergence results for all
computed cases which were examined and should serve as a
general rule for users of this program.

A general rule for the total number of coefficients to
be allotted to each wire cannot be as easily obtained since
the convergence depends upon the relative separation of the
wires; for larger wire separations, a smaller number of
total expansion terms can be used. However, a worst case
rule can be cited. Numerous examples have been run in-
volving up to twenty wires in which the dielectric surfaces
are touching (a worst case and generally typical situation
for ribbon cables). The dielectric constant is assumed to
be 4 (a representative upper bound on typically used in-
sulation materials). For all of these cases, accuracy to
within approximately five digits can be obtained by using a
total of ten coefficients per each wire. With the above

allotment rule, the recommendation is to use a total of ten

surface and seven to the dielectric surface.
46
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# terms # terms around conductor
around
dielectric 1 2 3 4 5 6 ¢ 10
ﬁ: ] 27
2 63.7
3 73.6
4 70.8 79.6 79.7
5 73.4 82.9 83.0 83.0
6 75.1 85.2 85.2
7 75.9 84.8 86.4 86.4
8 76.6 85.5 87.2 87.2
9 76.9 85.9 87.6 87.7
10 77.1 86.2 [ 88.0 88.0
_ 11 88.0) (88.1) 88.2
12 88.1 /88.3
- 13 88.2 88.4
14 88.2 88. 4
!
Physical conditions:
rc=1.0, rd=2.0, sep=4.0, €r=4.0
Table 4(b). C11 element in the transmission line

capacitance matrix (to be described
in Chapter V) of a five-wire ribbon
cable for various numbers of Fourier
terms per boundary.

(All entries x10_12.)
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CHAPTER IV

ALTERNATE METHODS OF SOLUTION

IvVv.1 Introduction

A numerical method for determining the generalized
capacitance matrix for ribbon cables was developed in
Chapter II. Criteria for the selection of the matchpoints
were given in Chapter III.

One difficulty with this technique is that for large
numbers of wires, a reasonably accurate ¢ matrix requires
that the ? matrix of Eqg. (2.23) be of a very large order. As
indicated previously, the number of operations required to
obtain D”! is on the order of (NFC+NFD) 3 (NW) 3 where NW is
the number of wires in the system and NFC and NFD are the
number of matchpoints (expansion terms) associated with the
conductor and dielectric boundaries, respectively.

The solution of the matrix equation (2.28) to yield the
generalized capacitance matrix could be obtained in much
less time if there were a large number of zero elements in
the D matrix. There exist many routines which take advan-
tage of this "sparseness" of the coefficient matrix to
optimize solution of the equations.

In this chapter, two methods which result in sparse D

matrices will be discussed. One is a "near-neighbor"
48
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technique in which only close wires are assumed to affect
one another. The other is a "term-dropping" technique bhased
on the relative separation of the wires. Neither of these

techniques proved to yield wvalid results.

IV.2 The Near-Neighbor Technique

In this technique, it is assumed that the potential and
displacement vector at the matchpoints on a particular wire
have contributions from the charge distributions on only the
wires closest to it. A term will be defined to describe
this closeness. Consider the multiwire ribbon cable shown
in Fig. 4.1. The term "first near-neighbors" will refer to
the wires directly adjacent to the match wire, "second near-
neighbors" will refer to the wires separated by one wire
from the match wire, etc., as noted in Fig. 4.1.

When calculating a particular row of the D matrix, the
terms corresponding to-a particular number of near-neighbors

will be included; the rest will be assumed to be small and

second near neghbors

match w1re

QQOOOQQ

flrst near nelghbors

thlrd near neighbors

Figure 4.1. Near neighbors of a multiwire ribbon cable.
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will be set equal to zero. The more terms that are ne-
glected, the more sparse the D matrix becomes. .

The goal was to find an optimum number of near-neigh-
bors to include such that the results are valid, and yet the
D matrix is sparse enough to make solution worthwhile
through the sparse matrix techniques.

Results indicate, however, that a near-neighbor tech-
nique is not valid. Shown in Table 5 is a comparison of
several terms of the generalized capacitance matrix for the
exact (no assumptions) and the near-neighbor methods. Not
only are the magnitudes of the particular elements quite
different, but the required sign pattern of the generalized
capacitance matrix (positive diagonal elements, negative
off-diagonal elements) has been altered. Similar results
occcured for the case of ten wires with eight near-neighbors
included (only the effects of the end wires on one another
were neglected). It would seem from these results that this
method is unusable.

Careful investigation of the physical conditions of the
previous method shows that an assumption which was made is
invalid. In electromagnetics, it is valid to assume that
when two surface charge distributions are widely separated,
the distributions themselves are approximately constant
around the periphery of the charged surfaces.

Thus, assuming no effect on the potential or displace-

ment vector at a matchpoint on one wire due to the charge

(J-

distribution on another wire when the wires are widely
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o)

Elements of the Gener

alized Capacitance

Matrix for a Three-wire Ribbon Cable.

“12 pr/m)

First Near-neighbor

(elements *10
Element Control
¢, 36.44
e (1,2) -39.43
¢ (1,3) -13.73
¢(2,2) 70.62
¢(2,3) -39.43
¢ (3,3) 36.44

Physical condi

Ten Fourier co
around ea

Table 5. Comparison of results using the

-25.80
-22.96
40.20

84.04
-22.96

-25.80

tions: r, =1.0

ry =2.0
sep=4.0
€ =3'0
r

efficients chosen
ch boundary.

near-neighbor technique to

results fr
(no droppi
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separated, as in the method above, is clearly not valid.
However, assuming that this effect would be due to a con-
stant distribution would seem more logical. This is the
idea behind the second method which will be described in the

next section.

IV.3 The Term-Dropping Technique

The results of the previous section indicate that the
"near-neighbor" technique does not adequately describe the
physical conditions of the ribbon cable. This method, then,
will not be useful in reducing the computation time required
to find the generalized capacitance matrix. The results
did, however, point to another possible technique which will
be described in this section.

The "term-dropping" technique is based on the assump-
tion that the effects between two widely separated surface
charge distributions are produced mainly by the average
value of charge around the periphery of the charged sur-
faces. In this report, the surface charge distributions are
represented by a Fourier series. Thus, the total contri-
bution to the potential or displacement vector at a match
point on the match wire should be adequately represented by
a charge distribution on the source wire which has fewer
number of Fourier series coefficients as the separation
between the wires increases. An example of the "term-drop-

ping" technique is illustrated in Fig. 4.2.
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C

MATCH WIRE

{: 5 4 3 2 1 1
conductor sur face ]l

dielectric surtace
Figure 4.2. Multiwire flat-pack cable illustrating the
"term-dropping" technique. (Five Fourier
coefficients per boundary.)

The second wire from the left in Fig. 4.2 is considered
the match wire; that is, the contributions to the potential
and displacement vector at matchpoints on the surfaces of
the match wire due to all the wires are to be determined.
The numbers on the surfaces indicate the number of com-
ponents of the Fourier éeries representing the charge on
that surface which will be considered to effect the poten-
tial and electric field at the match wire. For example, the
number 3 will indicate that only the expansion terms 1,
cos®, and cos286 are used to represent the distribution on
the particular surface; the number 6 indicates that the
terms 1, cosf, cos28, cos389, cosd®, and cos56 are retained.

A three wire flat-pack cable with conductor radius of
1.0, dielectric radius of 2.0, separation of 4.0, and
relative dielectric constant of 3.0, was analyzed using this
technique. Results from the term-dropping method are com-
pared to the control case (no dropping of terms) in Table 6.

The data in Table 6 indicate that accuracy is fairly
well maintained for all cases. In the case yielding 39.44%
sparsity (the percentage of the total elements in D which
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D

are zero), the error in the elements of the generalized
capacitance matrix is at most 5.84%. Since this term-
dropping technique appears to work so well for three wires,
extension to more than three wires is called for. The term-
dropping technique was applied to the cases of 4, 5, and 6
wire ribbon cables, with the same wire characteristics,
dimensions and separations, as the three wire cable. The
data in Table 7A is a comparison of representative elements
of the generalized capacitance matrix which were computed
using this technique to the same elements from the control
case (no terms dropped). These elements are chosen to
indicate the relative behavior of all the elements of the
matrix.

For the case of 4 wires, the elements of'g agree to the
control case to within approximately 5% when elements of D
less than 10_3 are set to zero. However, for the 5 and 6
wire cables, with elements in D less than 10_4 set to zero,
the error has increased to approximately 10% and 33% respec-
tively.

The error can be corrected by adding more Fourier
coefficients to the surface charge representations, while
simultaneously changing the threshold for setting elements
to zero to those less than 10 °. This new threshold can be
illustrated by showing the number of Fourier series coeff-
icients representing each surface charge distribution which

will contribute to the potential and field equations on the

match wire, as in Fig. 4.3.
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Representative Elements of the Generalized Capacitance
Matrix with 5 Fourier Coefficients per Boundary

-12

(Elements *10 )

Number No terms Terms dropped:

of Element| dropped -4 -3 -2

Wires 10 10 10
¢ (1,4)]-8.63927 -8.62931| -8.17036 | —-6.99345
¢ (1,4)]|-3.37309| -3.71094 | -4.26695| -2.77220
¢(1,5)|-6.30418| -5.97030 | ~-4.92757 | -4.93595
€(1,5)]-2.41456 | -3.20696 | -2.98949 | -.454844
®©(1,6)|-4.94645| -3.82304 | -3.70573 | -5.32934

Table 7A. Comparison of results from term-

Representative Elements of the Generalized

dropping technique for 4, 5, and
6-wire ribbon cables with 5 Fourier
coefficients per boundary.

Matrix with 6 Fourier Coefficients per Boundary

Capacitance

(Elements *10™ 12.)
No terms Terms dropped:
Element dropped 10_5 10_4 10_3 10_2
&(1,5) -2.41453 | -2.41808 | -2.68969 | -3.25143 | -2.09194
¢ (1,6) -4.94634 | -4.94287 | -4.68013 | -3.76534 | -3.64053
Table 7B. Comparison of results from term-

dropping technique for a 6-wire
ribbon cable with 6 Fourier
coefficients per boundary.
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SO

MATCH
WRe

6 6 / 6 (] 5 4 3 2 1
conductor svrface !
diclectrie surface

Fig. 4.3. Modified term-dropping technique with
6 Fourier coefficients representing
each surface charge.

These two changes were incorporated into the analysis
of the 6 wire ribbon cable. The results are shown in Table
7B. It is evident from these data that the combination of
increasing the number of Fourier coefficients used to
represent the surface charges and changing the dropping
threshold produces accurate results. But from a compu-
tational standpoint, this also increases the size of the D
matrix from a 60x60 matrix to a 72x72 matrix, while simul-
taneously reducing the sparsity of the D matrix. Thus,
sparse matrix techniques would not be useful for these
problems.

The term-dropping technique, then, does not appear to
be particularly useful for two reasons:

(1) As the number of wires in the cable increases, the
size of the D matrix must be increased to allow
the use of more Fourier coefficients in the
representations for the surface charge distri-

butions. This increase in size will increase
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computation time significantly.
(2) As the number of wires in the cable increases, the
D matrix must be made less sparse to make the

results accurate.

IV.4 Conclusions

The results of the previous two sections indicate that
neither the near-neighbor technique nor the term-dropping
technique yielded sufficiently valid results to be useful in
determining the generalized capacitance matrix of ribbon
cables.

An efficient method for finding the inverse of a block
Toeplitz matrix would be useful, however, since the D matrix
is in this form, as shown in Eg. (2.28) [14,17]. Methods
for inversion of block Toeplitz matrices have been devel-
oped, but all require further constraints on the blocks.
Sinnott's inversion algorithm [17] requires that the entire
block Toeplitz matrix, as well as the block submatrices, be
symmetric. Cramer's algorithm [14] requires that the block
submatrices be scalar Toeplitz matrices. It does not appear
that the requirements of either of these methods can be met
with the structure of the D matrix for ribbon cables.

A method applicable to this problem yielding one-half

of D”! will be shown later in Chapter VI. This method will

-~

result in a time savings of approximately five-eighths over

full inversion.
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CHAPTER V

THE TRANSMISSION LINE CAPACITANCE AND INDUCTANCE MATRICES

V.1l Introduction

In Chapter II, a method for determining the generalized
capacitance matrix of a ribbon cable with n wires was shown.
Computation of crosstalk in this type of cable can be accom-
plished through a solution of the multiconductor trans-
mission line equations [2]. This method utilizes the per-
unit-length transmission line capacitance and inductance
matrices. The transmission line capacitance matrix differs
from the generalized capacitance matrix in that a particular
conductor in the cable is chosen as a "reference conductor",
and all cable voltages are referenced to this conductor.

In Section V.2, a technique for computing the trans-
mission line capacitance matrix from the generalized cap-
acitance matrix is given. In Section V.3, a formula yield-
ing an approximate transmission line inductance matrix for
ribbon cables is developed. Section V.4 deals with setting
up the transmission line equations for cases involving

multiple reference conductors in ribbon cables.
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V.2 Determining the Transmission Line Capacitance Matrix

From the Generalized Capacitance Matrix

The "generalized" capacitance matrix Q is defined by

the matrix equation
[ 7 [ 7T
dqf 24

dof 2,

| 9n£ 2 | (5.1)

for an n-wire cable, with d.¢ indicating free charge on
conductor i, and ¢i indicating the potential on conductor i
with respect to some arbitrary reference point.

For the purpose of describing this method, the n-th

conductor in the cable will be chosen as the reference for

the transmission line voltages, defined by

Vi = (¢l— ¢n) 7 i= 1,2,...,1’1—1 . (502)

The transmission line capacitance matrix, C,is of order

(n-1) and is defined by

Comety (ne1y | | Vinety| €53

To determine the transmission line capacitance matrix, C,
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from the generalized capacitance matrix, ¢ , we require the

per-unit-length free charge on the reference conductor to

satisfy the constraint

n-1
9. =-1 4g; .
nf i=1 if (5.4)
Thus Eg. (5.1) can be written as
Cj{:é"v+é'v+ +év+(gé)¢
1£ 1171 1272 Tt Tn'n =1 Tm’ " n
_ & é é log
Qo T T21Va F T22Va T oeer M TopVn Y (2 Fon)?
n-1 e é ne
i§1q1f = Vet Vot e W (i : nm’ Pn (3-5)

Adding all equations in Eg. (5.5) together results in

n
n n
= C e 7 e
0 (i=1 m1)V1 + (i=1 m2)V2 too.. t (i=1 mn)vn
n n n
+ (z ém + 5 sz el + 3 C’nm);an (5.6)
m=1 m=1 m=1

Solving Egq. (5.6) for ¢n yields

n n

. [(z ¢ )v]
k=1l m=q MK K
n

X

1

n
1[2 d’lm] (5.7) -
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Substituting Eqg. (5.7) into the first (n-1) equations in Eqg.
(5.5) yields the entries in the transmission line capaci-

tance matrix as

cl.. =c,,=C, - [g 1éim][§1 1ij]
161“‘ ] (5.8)

for i, = 1,...,(n-1). Eg. (5.8) can be rewritten as

(5.9)

Note that the denominator of Eg. (5.9) is simply the sum of
all elements of the generalized capacitance matrix, ¢ . The

second term of the numerator can be expanded by deleting the

products with d;j yielding for the numerator of Eg. (5.9)

éij{; [ : Clm”' éij(mg us ) - éij(gtim) - &

1=1*m=1

m#j m#i . (5.10)
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Combining the first four terms of Eg. (5.10), the numerator

of Eq. (5.9) becomes

n n n n é _é _ n t n C
C’ij {151[1'02161“1]_ ri=1ij i m£1 im ij} (21 im)(m£1 mJ )
m# i m#j m#j m#i
(5.11)

or

n n n n
él'{ L [ L élm]} - ( L d..im)( L émj)
I 1=1lm=1 m=1 m=1
1#i m#j m#Jj m#i . (5.12)
The first term in Eq. (5.12) is the term éij multiplied by
the sum of all the terms in C except for those in the i-th
row and j=th column. The second term in Eq. (5.12) is the
product of the sum of the elements in the i-th row of ¢
(except éij) with the sum of the elements in the j-th column
of & (except C..).
o ij
The above results yield a simple procedure for deter-
mining the transmission line capacitance matrix from the
generalized capacitance matrix with the n-th conductor
chosen as the reference conductor for the transmission line
voltages.

Rewriting Eq. (5.9) by inserting the numerator of Eq.

(5.12) yields
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. (5.13)

n n n n
¢..l | ¢ (zC.)(zé,)
li=1lm=1 ™[~ V=g 0 =g ™I
C.. = 1#i m#j m# j m#i
1] n n
z[zc‘l]
1=1lp=1
for i,3 =1,...,(n-1) Thus, given the generalized capaci-

tance matrix ¢, as shown
of the transmission line
n-th conductor is chosen

line voltages,

in Eq. (5.1), to find the term Cij

capacitance matrix C, in which the

as reference for the transmission

1) multiply(fij by the sum of the terms of

the matrix & wi

and j-th column

th the i-th row
deleted,

2) subtract the product of the sum of all

terms of the i-th row (exceptéij) with

the sum of the terms of the j-th column

(except tij) , a

3) divide by the sum of all terms in the

nd

generalized capacitance matrix.

i-th row —* é. ¢

R I o

o o o ij * o @ 1n
Céj 2n
¢ ¢
ij in

. é-- oo
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The above method should be easy to do by hand especially for

a small number of wires. For computer implementation,

however,

for i,3 = 1,...

1)

2)

3)

the form of Eqg. (5.8) is used as shown below:

n n
zC)zC‘ )
C.. = C.. ( m=1 T (m=1
1] 1] ) o
: [zclm]
1=1 =1 (5.15)
, (n-1) . The procedure is as féllows:

Sum the elements in the n-th row of(?. This sum
will be used to find the sum of the elements in .
For i=1,..., (n-1) ”

a)

Sum the elements in the i-th row

of ¢. Add to the matrix sum. Insert
this sum into the elements of the i-th
row of the ¢ matrix.

b) Sum the elements in the i-th column
of ¢. Store these sums.
For i=1,..., (n-1)
i=1, ..., (n=-1)
a) Multiply C.. by the sum of column j,

1]
divide by the matrix sum, then

subtract from ¢.. and insert in C,..
ij ij

This procedure was developed for obtaining the per-

unit-length transmission line capacitance matrix for an n-

wire cable with the n~th wire chosen as reference for the

transmission line voltages. Clearly, this is readily adapt-

able to the case where any other wire in the cable is chosen

as a reference for the transmission line voltages. To show

this, it is sufficient to note that the rows and columns of

the generalized capacitance matrix may be exchanged to

obtain a representation with the per-unit-length free charge

on the

vector

reference conductor, qrf’ as the last entry in the

de and the potential of the reference conductor, ¢r’
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as the last entry in the vector @. The particular ordering
and structure of g with respect to the conductor numbering
system used in the computer program will be discussed in
Section VII.4.

V.3 The Per-Unit-Length Transmission Line Inductance
Matrix for Ribbon Cables

In order to solve the transmission line equations for a
cable system, the per-unit-length transmission line capaci-
tance and inductance matrices are needed. 1In the previous
section a method was developed yielding the transmission
line capacitance matrix from the generalized capacitance
matrix computed by the method described in Charter II. The
per-unit-length transmission line inductance matrix is a
function of the wire orientation and is independent of the
characteristics of the dielectric insulation materials.

This is true since the permeability of dielectrics is
typically that of free space. Thus, the inductance matrix
for a system of insulated wires is the same as that for a
system of uninsulated wires with an identical wire orien-
tation.

The per-unit-length transmission line inductance matrix
for a system of uninsulated conductors must obey the equa-
tion [15]

L=uwec ! , (5.16)
~ v v20
where My, is the permeability of free space, €, is the
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permittivity of free space, and §61 is the inverse of the
per-unit-length transmission line capacitance matrix with
the dielectrics removed.

Therefore, given the transmission line capacitance
matrix for the ribbon cable with the dielectric insulation
ignored, the transmission line inductance matrix can be
easily found.

For most ribbon cables, the ratio of conductor radius
to conductor separation usually is greater than 4. (If the
insulation thickness is equal to the wire radius and the
insulations were touching, the ratio would equal 4.) 1In
many instances it may be sufficient to find an approximate
form of the transmission line inductance matrix instead of
recomputing the transmission line capacitance matrix with the
dielectrics removed.

In developing this approximation, consider the case of

n wires, in which the n-th wire is chosen as reference.

Fig. 5.1 illustrates conditions on two typical conductors, i

[ dg ’1
Qi 4

A A

din d}h
-,..Z.;: %m
Figure 5.1. Two typical conductors and the reference
conductor.

67



and j, as well as on the reference conductor, labeled n. The
per-unit-length charge on conductor i (which for this
uninsulated case will be entirely free charge) is qyr dij
is the distance between the centers of wires i and j, and vy
is the potential of conductor i with respect to the refer-

ence. The relationship between the conductor potentials, V,

and the charge on the conductors, g, is represented by

<

11 “1n qq

.
. . . .

(n=1) C(n-1)1 €(n-1) (n-1) 9(n-1)
. 7

Co (5.17)

G oo

Individual elements of 90 can be found from the con-
ductor potentials and per-unit-length charges by the equa-

tion

j | g.=0 m=1,...,(n-1)
m#7j (5.18)

The generalized capacitance matrix for this case can be
found by using the results of Chapter II. Since the con-
ductors are widely spaced, the match points can be chosen at
the center of the conductors with constant charge distri-

butions assumed on the conductors. However, when deter-

-
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mining the potential of a wire due to its own charge dis-

o
. tribution, the matchpoint will be chosen on the surface of
the conductor. Then, from equations (2.12) and (2.14),
there result n equations relating the per-unit-length charge
o distributions, Tigr and potentials, ¢i, in the form
(3, ] T . In(r_) r_ln(d,,) r_.ln(d.,) == ] [, ]
1 o1 ) Topihldnq) Toginldsyy 10
e o o 0
Pa | _ |Ferin(@a) replnlrgy) resin(dsy) 20
S RS I E
.o o
-¢n J fc1ln(dn1) J L nold .
(5.19)
The potential of any conductor can then be written as a
function of the per-unit-length charges q;. For example,
the first equation in (5.19) can be written as
-1
L —
¢1 = Tﬁi;{zﬂrc101oln(rc1) + 2nr020201n(d21) + ...}
(5.20)
where q; = ZﬂrciOiO for i = 1,2,...,n . Then, equation
(5.19) becomes:
1 — 1 -
3, In(r_;) In(dy,) ... |[ay
¢2 1 ln(d21) ln(rcz) cee d,
;|7 7me : : :
. v . . .
7, 1n(a, ) 1n@a,) ... lay] (5.21)
. Now, conductor n can be chosen as reference and the poten-
- { ) tial, Vi' between conductor i and the reference conductor
e defined as



V. = ¢. - @ . (5.22)
According to equation (5.21),

@

-1
n 7?3;{’1n(dn1)q1 + ...+ ln(dni)qi + ... 4+ ln(dnj)qj
oo+ ln(rcn)qn} (5.23a)

and

_ =1
¢i = iﬁE; {ln(di1)q1 + ... + 1n(rci)qi + ...+ ln(dij)qj

o+ ln(dni)qn} ) (5.23b)
Then,
Vi =8 -9,
=11 (iil) + + 1n(rCi) + + 1 (iii) +
= Zme Mg )94 7 .- . /91 7 - Mg 19y
v n1 ni nj
dni
ce. 4+ ln(f—— qn} . (5.24)
cn

The requirement that the total charge on the reference
conductor (conductor n) is minus the sum of the total

charges on all the other conductors can again be invoked;

that is,

n-1
a, = - q; . (5.25)
i=1

Rewriting (5.24) by including (5.25), yields

vV, = =1 + 1 fc_nrg_l_ + + 1 (rcndij +
i T omes n 7)91 7 e Maa.J9q & -
A4 (dni) ninj

(5.26)
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Then, from equations (5.18) and (5.26), individual elements

-1
of go are

] for i#j (5.27)

and i, =1,2,¢¢.,(n=-1).
Finally, combining equations (5.16) and (5.27), the
elements of an approximation to the per-unit-length trans-

mission-line inductance matrix with conductor n chosen as

reference are

r 2
Py (dn3) ..
spln|——— [ for i=j]

r r .
- Cnh Cl1
[L],. =
~71j H d .d_.
Z—YTlnrrm—dnJ] for i#j . (5.28)
L"cnij

V.4 Applications to the Analysis of Multiple
Reference Conductor Systems

Computer and other digital system interconnections
utilize a wire assignment in ribbon cables where many wires
are reference conductors. . The most common method is the
ground-signal-ground technique, where the end wires and
every other wire is a reference conductor, so that the

signal wires are separated from each other by a reference

conductor.

The transmission line equations can be used to solve
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the multiple reference conductor problem by obtaining C and

L for the cable with one of the grounded conductors chosen

as reference.

Then, the terminal impedance matrices,

Z, can

be written by considering grounded wires as zero terminal

impedances [2, 13].

A typical example is illustrated in

Fig. 5.2.
!
0
- v ) L] ) v v
Ra Ta(o T : t W 1y R,
W : ‘vamlf S
2=0 ‘I;.(O\ | :(D- Z=0
T ! N
R3 T.(o) I T g T Ry
,_.._M, P } y—o-"\N\—¢
vm[ } l Tv,u)
[ * t -
preme X=0 | x=A —_
- reference conductor <
Figure 5.2 Five-wire, ground-signal-ground cable.

The equations defining the voltages at the ends of the

lines are [2]

v (0)

V(1)

where E and E

0 1

E

=0
E

1

- 2(0)I1(0)

+ Z(1)I(1)

(5.29)

are (n-1)x1 vectors of the equivalent open

circuit port excitations, and I(0) and I(1l) are (n-1)x1

vectors of current in the lines directed in the direction of

increasing x.

Writing the terminal impedance matrices, Z(0)

and Z(1l), at x=0 and x=1 respectively, for the 5 wire cable
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in Fig. 5.2 yields [2, 131]:

R, 0 0 0
0 0 0 0
z(0) =
Z 0 0 RO
o 0 0 0
T
R, 0 0 0
0 0 0 o0
2Z1) =10 0 r, 0
1
o 0 0 o

(5.39)

The transmission line equations can then be solved in

the normal fashion as described in [2,
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CHAPTER VI

DESCRIPTION OF THE COMPUTER PROGRAM

VI.1 Introduction

The main purpose of this work was to implement on a
digital computer the techniques of Chapter II to solve for
the per-unit-length generalized capacitance matrix for a
multi-conductor ribbon cable. Then, utilizing the results
of Chapter V, to solve for the per-unit-length transmission
line capacitance matrix needed for the analysis of crosstalk
in ribbon cable systems. A listing of the program which

will be described is contained in Appendix B.

VI.2 Computer Program GETCAP

GETCAP (which is an acronym for GEneralized and Trans-
mission line CAPacitance matrices) is a FORTRAN computer
program which utilizes all the results of this report to
find the per-unit-length generalized and transmission line
capacitance matrices for ribbon cables. The GETCAP main
computer program uses a subroutine which is also called
GETCAP. This GETCAP subroutine may be used alone in cases
where it will be part of a larger program designed for
specific purposes, or with its controlling mainprogram which
provides a very user-oriented method of determining the

capacitance matrices.
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The problem to be solved is described by the following

NW

RC

RD

CCSEP

ER

NFC

NFD

NF

(O

IREF

input variables:

The number of wires in the cable.

The radii of the conductors.

The radii of the outer dielectric insulation
surfaces.

The center-to-center separation of

any two adjacent conductors.

The relative dielectric constant of the
insulation material (relative to free space).
The number of Fourier series terms to be used
to represent the charge distributions around
the conductor surfaces. (Note: The charge

distribution is assumed to be of the form

(NFC-1)
oi(e) = Z— Oim cosm@
m=0
for i=1,...,NW.)

The number of Fourier series terms to be used
to represent the charge distributions around
the dielectric surfaces. (Note: The charge

distribution is assumed to be of the form

(NFD-1)
1 -—
oi(e) =1z Oim cosm8
=0
for i=1,...,NW.)

The total number of Fourier coefficients per
wire; (NF = NFC+NFD).
The reference conductor for the transmission
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line voltages; (1 < IREF <NW).
IOPT =~ A program option selector.
The cable dimensions, RC, RD, and CCSEP can appear in any
choice of units (mm., meters, mils., etc.), so long as all
of the dimensions are in the same units.
Subroutine GETCAP recognizes three possible values for

IOPT.

IOPT = 0 - Matrix partitioning is used to invert
the D matrix.

IOPT = 1 - Standard full inversion of the D matrix.

IOPT = 2 - The dielectrics are removed. The

program assumes a bare wire cable.
In addition, the GETCAP mainprogram recognizes options 10,
11, and 12. The second digit corresponds to options 0, 1,
and 2 above. The first digit, 1, provides a copy of the
upper triangle of the transmission line capacitance matrix
in punched card format being generated for later use.

At this point, a discussion of the partitioning method
which is selected with IOPT>= 0 (or 10) is necessary. As
was shown in Chapter III, the generalized capacitance matrix
for ribbon cables is ideally symmetric with respect to both
the main diagonal and the cross-diagonal. This means that
only a few terms of the entire matrix must be found, as
shown in Eqg. (3.8). Further investigation shows that these
terms can be developed from the elements of half of the

inverse of the D matrix.

The elements of é are developed from the inverse of the
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D matrix according to Eq. (2.43)

n n
C.=2mnr | % oMy Tl , (6.1)
ij Clp=1 173 d m=1 *'3
where T=D"'. The symmetry of q with respect to both the

main and cross-diagonals will allow those elements which
completely specify q to be developed only once. Also, these
elements will be chosen so that only the submatrices on the
left half of T will be used.

Noble [12] describes a technique for finding the

inverse of a square, nonsingular matrix D partitioned such

that
P Q
D = (6.2)
< R s
where P and S are square matrices. The inverse of D (if D
and S are non-singular) is
-1
X -XQSs
-1 _ £ oz
D -1
i -5 RX W
1 -1 -1 -1 -1
where X = (P—Q§ 13) and VS = S§ + S RXQS (6.3)

Partitioning the matrix D of Eq.(6.2) in halves results in
the minimal amount of time required to solve for part of the
inverse of D by the method in (6.3). This can be verified
by counting the number of operations (multiplications and
divisions) required to obtain the form of Q—1 in Egq. (6.3).

The number of operations required to multiply an nxk matrix
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by a kxp matrix is npk.

Partitioning D in Egqg. (6.2) in halves, the number of
operations to solve for the required portions of 9-1 as
described above is approximately 5/8 of the number of

operations required by a direct full inversion of D. To

show this, consider D of order 2n such that

g
0O

D = , (6.4)
“ IR S

where P, Q, R, and S are n x n matrices. To solve for 9’1

directly will result in approximately 8n3 operations. If

the inverse of D is written as

-1 a B
P = ; 5 ’ (6.5)

then solving for o and Yy will require 5n3 operations (re-
membering that n3 operations are required to invert an nxn -
matrix and n3 operations are also required to multiply two

nxn matrices).

VI.3 Operational Details of the GETCAP Program

The entire GETCAP program consists of five program
units:
MAIN - The main program for inputting data and
controlling output of results.
GETCAP - The subroutine which performs the actual

computation of the capacitance matrices from

el

the input data.
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MINV - A matrix inversion subroutine from the IBM
Scientific Subroutine Package (SSP) [16].

MPC - A subroutine which multiplies two general
matrices, then multiplies the resulting
matrix by a constant.

MPRT - A subroutine which outputs a general matrix
to the printer in matrix format with la-
beling.

Each of these program units will be described separately in
this section,'with the greatest emphasis on the GETCAP
subroutine.

The main program was written so as to be used by
persons who are not computer-specialists. Its operational
characteristics are illustrated by the flowchart in Fig.
6.1. The main program is an executive over the GETCAP
subroutine; it also checks the input data for obvious
errors. The main program also provides the matrix and array
storage areas used in the computations by subroutine GETCAP.
The user must ensure that the array dimensions are large
enough to deal with the problems to be considered. Di-
rections for this dimensioning are given at the beginning of
the listing of the main program. Assuming a maximum number
of wires, NW, and a maximum number of total Fourier series
expansion terms per wire, NF=(NFC+NFD), for all problems to
be considered, the dimensions of the matrices required in
subroutine GETCAP will be as follows:

c (Nw?)
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, HEADER
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?
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GETCAP

ERRoR
IN INVERSION
(NW =0)

CALL MPRT

To PRINT
C& AND CTL.
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N

210
?

Y
( PONCH

Figure 6.1.

CTL

Flowchart of MAIN program.

80



2

C1((NW=1) )
D (NF?)
D1 ((NW NF)?)

LT (2 NF NW)

SCR((NF NW + 1)/2)
Note that these items are stored in vector format. This
dimensioning will allow all problems up to the maximum
specified to be considered. When the GETCAP subroutine
returns to the main program, a printed output of the gen-
eralized and transmission line capacitance matrices is
generated by calling subroutine MPRT.

Subroutine GETCAP is the computational part of the

GETCAP program. All input data, output data, and working

vectors are passed through the argument list as shown below.

SUBROUTINE GETCAP (NW,NFC,NFD,NF,RC,RD,CCSEP,ER, IREF,
I0PT,CG,CTL,D,D1,SCR,LT)

The first ten arguments are the input variables described
earlier. CG and CTL are the resulting per-unit-length
generalized and transmission-line capacitance matrices,
respectively. The last four arguments are working vectors
used by GETCAP. D1 is matrix D in Egq. (2.28) stored in
vector format.

Subroutine GETCAP operates as shown in the flowchart of
Fig. 6.2. The first step is a scaling of the input wire
dimensions to prevent numerical underflow and overflow by
the computer in generating the inverse of the D1 matrix.
Equations (2.17) and (2.18) are then used to compute the
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ERROR
?
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of f-~diagonal submatrices Pn’ for n = #1,..., *t(n-1), shown
in Eg. (2.28). These submatrices are then inserted into the
large matrix D1 according to the relationship of Eq. (2.28).

Equations (2.17), (2.18), (2.19), and (2.20) are then
used to generate the diagonal block submatrix 90 of Eg.

(2.28). is then inserted in the diagonal blocks of the

Do
D1 matrix. Computer matrix D is used to hold each of the
block submatrices Qn’ n=0,+1,...,*(n-1) for insertion into
D1.

It should be noted that when IOPT = 0 (or 10), the D
matrix in Eq. (6.1) is stored in the computer in the vector
D1, such that the first (NFxNW/2)2 locations correspond to
matrix B, the next (NFxNW/2)2 locations correspond to matrix
9, followed by (NFxNW/Z)2 locations for B, and then
(NFxNW/2)2 locations for S. In this case, the submatrices
in 9 are inserted into the D1 matrix to take into account
this unusual storage order.

When IOPT=2 (or 12), the dielectrics are ignored. Thus,
equations (2.18) and (2.20) for the electric field vector at
a point are not used in generating the 9 submatrices. Also,
since the dielectric surfaces are ignored, the contributions
to the conductor potentials due to the charges on these
surfaces are ignored.

Following the generation of matrix D1, it is inverted
according to the method designated by IOPT. If IOPT=1 (or
11), subroutine MINV inverts the entire D1 matrix. If

IOPT=0 (or 10), the method described by Eg. (6.3) is used to
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compute half of the inverse of DI1.
The matrix D represented by Eq. (6.2) is stored in D1

and inverted according to the following procedure:

1) Invert matrix S using MINV. S is replaced
by its inverse? ~

2) Multiply §_1 R, and insert the result in S
using MPC.

3) Multiply Q b §_1 using MPC and insert the
result (Q S~+ R) in Q.

4) Subtract QS—1R from P and insert the result
(P-QSs~1R) “Intd P. ~

5) Invert (P—QS_1R) using MINV. Store the result
in P. Tt

: -1 1o =1 .
6) Multiply S R by (P-QS 'R) using MPC, then

multiply the result By -7 and store in R.
Half of the inverse of D1 then lies in partitions P and R.
This method takes slightly over half the time required to
invert the entire D1 matrix.

Once the D1 matrix is inverted, the elements of the
generalized capacitance matrix,cj are computed from the
elements of the inverse of D1 by Eq. (2.43) and stored in
the computer as matrix CG. When IOPT=1 (or‘11), all the
elements of é are computed.. For IOPT=0 (or 10), the sym-
metry conditions as described in Section III.3 are utilized
and only a portion of the elements of q are computed, as
indicated by Eq. (3.8). The rest of the elements are
assumed to be duplicates of those computed.

The transmission line capacitance matrix, 9, is then

computed from the generalized capacitance matrix by fol-

lowing the algorithm in Section V.2, and the elements of C
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are stored in the computer as matrix CTL. Subroutine GETCAP
then returns to the main program with both the per-unit-
length generalized capacitance matrix, CG, and the per-unit-
length transmission line capacitance matrix, CTL.

Subroutine MINV is a standard matrix inversion routine
included in the IBM Scientific Subroutine Package [16]. 1Its
argument list is shown below:

SUBROUTINE MINV(A, N, D, L, M)
The arguments have the following meaning:

A - An input matrix which is destroyed in computation
and replaced by the inverse of A.

The order of matrix A.

2
!

D - The resultant determinant of A.

L

A working vector of length N.

M

A working vector of length N.

Subroutine MPC is used to find the product of two
general matrices and to multiply the resulting matrix
product by a constant. The argument list for MPC is shown
below.

SUBROUTINE MPC (A, B, R, S, L, M, N, C)
These arguments have the following significance:

A - The first matrix, dimensioned L by M.

B - The second matrix, dimensioned M by N.

R - The resulting matrix, dimensioned L by N.

S - A scratch vector, length L.

L - The number of rows in A and R.

M - The number of columns in A (number of rows in
B) .
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N - The number of columns in B and R.
C - The constant by which R is multiplied.

The multiplication takes the form:

The subroutine was written so that neither A nor B are
destroyed by the computation. In addition, if the dimen-
sions of matrix R are large enough (N greater than or equal
to M), the use of scratch vector S provides that A and R can
share the same storage locations. This is useful when two
large matrices are to be multipled, and the first one is no
longer needed after the multiplication, thus saving the
amount of storage needed by the matrices. In the GETCAP
program, the large size of the D1 matrix makes this savings
considerable. The flowchart of Fig. 6.3 illustrates opera-
tion of the MPC subroutine.

Subroutine MPRT is used for printing a matrix in matrix
format. Elements are printed in scientific notation rounded
to three digits. The rows and columns are numbered on the
printout to provide easy identification of any element.

The argument list of MPRT is shown below:

SUBROUTINE MPRT (A, M, N, B, J)

where the arguments have the following meaning:

A - The matrix to be printed.

M - The number of rows in A.

N - The number of columns in A.

B - The title of the matrix in Hollerith format.

86



ENTER

A4

I=I+1

T>L RETURN

Stope

row of A w
vector §

I th

2 J=J+1

Y J>N

MKH;Flg

Jth row of B,

—P\tt result "t;mgs C,
mfo R (x,3),

vector § bg

Figure 6.3. Flowchart of Subroutine MPC.
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J - The number of characters in the title.

‘The title, given in B, is printed on the header of the
first page of the printout. The first twelve columns are
then printed on page two, and so forth, until the entire
matrix has been printed. The printout can then be separ-
ated, and page two connected to the right of page one, page
three to the right of page two, etc., so that the printed
matrix can be viewed in its normal matrix form. An example
of a general matrix printed with MPRT is given in Fig. 6.4.
The calling statement was

CALL MPRT(A,6,7,'TYPICAL OUTPUT OF A',19)
with the contents of A stored as shown in the printout.

The listing of the program found in Appendix B includes
comment statements to provide an interested user the ability
to check or find any particular portion of the program. The
program was designed to operate in as little time as poss-
ible, using as little duplicated storage as possible. The
object code consumes approximately 167K bytes for the
capability to work with up to twenty wires and a total of
ten Fourier series terms per wire. Run times can be signi-
ficantly reduced by running the program on the FORTRAN G or
H compilers with an object deck. Compilation is no longer
necessary, and execution time is much faster than on diag-
nostic compilers such as WATFIV available at the University
of Kentucky. Typical run times on the IBM System 370/165 at
the University of Kentucky using the FORTRAN G compiler with

no printout of the source listing are shown below.
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COMPILE TIME - 1.9 sec.
EXECUTION TIME - 37.5 sec. -

VI.4 Verification of Program Operation

Unfortunately, there is no way of comparing these
computed results to known data on the capacitance matrices
of ribbon cables since none apparently exists. Comparisons
can be made, however, to known exact and approximate formulas

for the capacitance where the dielectric effect is
ignored; i.e., bare wires.

The data in Table 8 show how the capacitance for the
two bare-wire case converges rapidly to the exact value

found by the equation [5]

Te
v

C =

-1/-49_ p (6.7)
0 cosh 1(2rc)

where d is the center-to-center separation of the wires, and
r, is the radius of the conductor. The per-unit-length
inductance L is related to C0 by Eg. (5.16). Ribbon cables
typically have a conductor separation greater than four
times the conductor radius. 1In this range, results for the
per-unit-length inductance for a two-wire cable are ex-
tremely accurate with even small numbers of Fourier series
terms.
Results from GETCAP for a multiwire bare cable assembly
can be compared to the approximate transmission line capaci- .

tance matrix derived in Chapter V. These results are shown

*
20 wires, 10 coefficients per wire, IOPT=0. dl
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reference conductor

o~
®» O O O 0O ...

] sep I sep=10.0

Figure 6.5 Five wire bare ribbon cable.

in Table 9 for the cable shown in Fig. 6.5. The approximate
results agree with the GETCAP results to at least two
digits, and the largest error is approximately 2% between
the two sets of results.

Another check was made of the results from GETCAP by
checking the rate of convergence of the elements in the
first row of the generalized capacitance matrix for a five

wire ribbon cable (with the dielectric included) as shown in

reference conductor

‘ o r, = 1.0
‘E?' rq = 2.0
sep= 4.0

P*-se9-*ﬁ Er = 4.0

Figure 6.6 Five wire flatpack cable.

Fig. 6.6. The results in Fig. 6.7 indicate smooth conver-
gence to the final values for increasing values of NF. (The
magnitudes of the elements are plotted since the off-diagon-
al terms of Q are negative.) These results are for the
worst case problem (dielectric boundaries touching, high

relative dielectric constant).
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Elements of the Transmission-Line Capacitance
Matrix for a Five-wire Bare Cable

Element

(Elements *10

GETCAP Results

-12

+ PF/M)

Approximate

Cc(1,1)
C(1,2)
c(1,3)
c(1,4)

Cc(2,2)
c(2,3)
C(2,4)

C(3,3)
C(3,4)

C(4,4)

18.87646053717670
-6.851495768047740
-2.129410716129314
-1.843114316184374

19.14682911214455
-6.851495768052782
-2.721918788019494

18.87646053717669

-8.052439736815269

14.81610887311056

Physical conditions:

sep =

18.78148468923442
-6.854631737467468
-2.066002017837609
-1.826053886227327

19.03688696351830
-6.854631737467466
-2.663811744291685

18.78148468923442
-8.034797047702019

14.72743429621767

= 1.0
c

10.0

End wire chosen as reference.

Table 9

Comparison of GETCAP results to

the approximate formula derived
in Chapter V for the capacitance
matrix of multi-conductor bare

wire.
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Figure 6.7. Convergence of the elements of the

generalized capacitance matrix.
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CHAPTER VII

USING GETCAP

VII.1 Introduction

This chapter will describe the use of the GETCAP
program for two different purposes. Section VII.2 will
consider use of the GETCAP subroutine for cases where it
will be required to compute and deliver the generalized and
transmission line capacitance matrices to other program
units written by the user. More commonly, though, the
transmission line capacitance matrix of the ribbon cable is
used as input data for another program, such as in a cross-
talk aznalysis. Section VII.3 will describe the entire
GETCAP program with its facilities for outputting the
elements of the transmission line capacitance matrix in

punched card format.

VII.2 Using Subroutine GETCAP

Subroutine GETCAP is the workhorse of the GETCAP
program. It is used by calling the subprogram from another
FORTRAN program unit, using the following statement and
argument list:

CALL GETCAP (NW, NFC, NFD, NF, RC, RD, CCSEP, ER,
IREF, IOPT, CG, CTL, D, D1, SCR, LT)

As described in Chapter VI, the arguments have the following
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meaning:
NW - Number of wires in the cable.

NFC — Number of Fourier series terms to be used
to represent the charge distributions
around the dielectric surfaces. Note:
the charge distribution is assumed to be
of the form

(NFC-1)
o) = z g i =
i(9) {mCos no for i=1,...,NW.
m=0
NFD - Number of Fourier series terms to be used
to represent the charge distributions around
the dielectric surfaces. Note: the charge
distribution is assumed to be of the form
(NFD-1)
1 _— 1 ] =
Oi(e) = i_o 0! npcos M for i=1,...,NW.

(See Section III.3 for a discussion of how to
choose these.)

NF - Total number of Fourier series terms per
wire. (NF = NFC + NFD).

RC - Radii of the conductors.

RD - Radii of the outer dielectric insulation
surfaces.

CCSEP - Center-to-center separation of any two

adjacent conductors.

(These cable dimensions must appear in the same
units: meters, mils, inches, etc.)

ER - Relative dielectric constant of the insulation
material (relative to free space).

IREF - The reference conductor for the transmission
line voltages. (1<IREF <NW)
IOPT - Option selector.
0 - fast solution
1 - long matrix inversion
2 - dielectric insulations removed
(bare wire case)
CG - Holds the computed per-unit-length generalized
capacitance matrix in vector format. (dimension
NWZ)
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CTL - Holds the computed per-unit-length transmission
line capacitance matrix in vector format.
(dimension (NW—1)2)

D - A working matrix of dimension NF x NF.

2

D1 - A working vector of length (NF - NW) -

SCR - A scratch vector of length NF(NW+1) .

—_—
LT - A scratch vector of length 2-NF-NW.

All that is required in using subroutine GETCAP is to
provide for and properly dimension these required matrices
and vectors in the calling program. One must be especially
careful about the size of vector D1. A typical case of
twenty wires and ten Fourier coefficients per wire requires
that D1 be dimensioned to provide (20 x 10)2 = 40,000
storage locations. The user should note that D1 is dimen-
sioned in the main program as a matrix D1(NF*NW,NF*NW). In
subroutine GETCAP, however, D1 is stored in vector format.

GETCAP requires two other subroutines. They are:

MINV - A standard IBM SSP matrix inversion program [16]

and MPC - The product of two matrices with a scalar
constant multiplying the result.

Both of these routines are included in the program listing

found in Appendix B.

VII.3 Using the GETCAP Program

The full GETCAP program is a user-oriented method to

find the capacitance matrices of ribbon cables. The input to
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the program is through three data cards, (1) a problem

description card, (2) a physical characteristics card, and

(3) an option card. Their format is shown below.

(1) Problem description card:

Cols. 1-3, NW
Cols. 4-6, NFC
Cols. 7-9, NFD
Example:

Assume a fifteen wire flat pack cable,
four expansion terms for the conductor
charge distribution and eight expansion
terms for the charge distribution
around the dielectric surface.

The problem descriptor card would look like:

Col. 1 Col. 4 Col. 7
—— ——

| S —

‘ - T ———
B15pp4pp8
where P denotes a blank item.
(2) Physical characteristics card:

Cols. 1-10, RC
Cols. 11-20, RD
Cols. 21-30, CCSEP
Cols. 31-40, ER

The dimensions of RC, RD, and CCSEP can be
in any units convenient to the user. Each
of these dimensions, however, must be in the
same units.

Example:
Assume an orientation as shown in Fig 7.1.

r.= .16002 mm. €= 3,65

:
Fy=.508 mm. l‘___d—v-l-d———&‘——" d=1.27 mm.

Fig. 7.1 Typical physical characteristics
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The physical characteristics card would be:

Col. 1 Col. 11 Col. 21 Col. 31

Nemrm——yscsm®

— — -
. 16002BBYK . S08PBBBYY1 . 2TBBBBYIY 3 . SEBBBBIBY
(3) Option card:
Cols. 1-3, IREF -- the reference conductor.

Note:
Conductor numbering is sequential from
the end of the cable, as illustrated
below:

OO~ ©

Therefore, IREF can range from 1 to NW.

Cols. 4-6, IOPT -- option.
IOPT = 0 fast solution
IOPT = 1 long inversion
" IOPT = 2 dielectric insulation removed
IOPT = 10 same as 0, 1, and 2 above except
IOPT = 11 that the upper triangle of the
IOPT = 12 transmission-line capacitance
matrix is punched on cards.
Example:

Assume conductor 1 chosen as reference and
execute in fastest time, with a punched
copy of the transmission line capacitance
matrix generated.

Then IOPT = 10 and the option card is:

Col. 1 Col. 4
"
—y e
BB1B10

Typical output from the GETCAP program is shown in Fig.
7.2. Fig. 7.2a shows the header page which is printed at
the beginning of a batch of problems to the program. Fig.

7.2b is the first page of output associated with a problem.
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khkhkhkkhkhkhkhhhhkhkhkhkkhkkhkhkkhkhhkhkhkkhhkkhkhkhkhkhkhkhkhkhkhkkhhhhkhkkhkhkkhhhhhkkhkkkhkkkkkkkk

GGG EEEEE TTTTT CCcC AAA PPPP

G G E T c cC A A P P
G E T C A A P P
G GG EEEE T C AAAAA PPPP
G G E T C A A P

G G E T C C A A P
GGGG EEEEE T CCC A A P

khkkhkhkkhkkkhhkhkhkkhkhkhkkhkhhhkhhkhkhkhkkhkhhkhhkhkhhkhkhhhkhhhkhhhkhhkhhkhkhhkhkhkhkhkhkhkhkhkkk

GGG EEEEE TTTTT CCcC ARA PPPP

G G E T Cc cC A A P P
G E T C A A P P
G GG EEEE T C AAAAA PPPP
G G E T C A A P
G G E T C Cc A A P
GGGG EEEEE T Cccc A A P

GENERALIZED AND EBANSMISSION LINE CAPACITANCE MATRICES

OF RIBBON CABLES

khkhkkhhkhhkhhkhhhkhhkhkhkhhkhhkhkhhkhkhkhkhhkhkhhkhkhkhkhhhkhhhkhkhhkhkhkhkhhkhkhhkhkhkkkhkkkkkkhkk

BATCH RUN

Fig. 7.2a Typical Output from the GETCAP program.
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All of the input data are printed as they are read in, and any
errors in the data are flagged on this page. The item,
(METERS), on this printout is used to show that all wire
dimensions must be in the same units (meters, inches, mils,
etc.). Fig. 7.2c is the output of the generalized capa-
citance matrix associated with the ribbon cable described by
the data in Fig. 7.2b. The elements have units of Farads

per meter., Fig. 7.2d, the transmission line capacitance
matrix with a conductor chosen as reference for the line
voltages, is the final page of output for each problem.

VII.4 Format of the Output of the Transmission Line
Capaciltance Matrix

An algorithm was developed in Chapter V which is used
in the computer program to determine the transmission line
capacitance matrix from the generalized capacitance matrix;
any of the conductors in the ribbon cable can be chosen as
the reference conductor in this algorithm.

In the printout of the transmission line capacitance
matrix, the row and column indices are numbered from 1 to
(NW=-1). Thus, if the last wire, NW, is chosen as the
reference, the indices will correspond to the elements
correctly. However, if another conductor is chosen, the
user will have the responsibility for correctly interpreting
the results. For example, the case of a 10 wire cable can
be considered. TIf conductor 5 is chosen as reference,
CTL5,1 is actually the element of C describing the capaci-

tance between wires 6 and 1. Similarly, CTL; ¢ describes
14
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« .

the self capacitance of wire 6.

The punched card output is of a similar format. One
upper triangular element is punched per card, with the row
and column indices of the element punched as well. Suppose
the capacitance matrices were determined for a twenty wire
ribbon cable with the 20-th wire chosen as reference. A

sample punched card would look as follows:

C 10 3 -4.384692E-10

10

This element would be C with value -4.384692x10 '°. The

10,3
user has the responsibility for correctly interpreting the
results if any wire other than the last wire is chosen as

the reference conductor.
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CHAPTER VIII

SUMMARY

A method for computing the capacitance matrix for
dielectric-coated conductors was applied to the case of
ribbon cables. Simplifications in the method were made
possible by the symmetry of the cable dimensions; the radii
of the conductors are all identical, the radii of the
dielectric insulations are all identical, and the center-to-
center spacing of adjacent wires is identical. In addition,
the wires are oriented in a horizontal plane which is main-
tained throughout the length of the cable. An attempt was
made to optimize the selection of matchpoints to ensure
valid results and reduce computation time.

Using the generalized capacitance matrix, a technique
for obtaining the transmission line capacitance and in-
ductance matrices was developed; these matrices are used in
frequency response and crosstalk analyses of cable systems.
An approximate method for determining the transmission line
inductance matrix was also developed.

Computer program GETCAP was written to utilize the
results of this report. Given the wire dimensions and the
number of wires in the cable, GETCAP will compute the per-

unit-length generalized capacitance matrix, and from that
106



determine the per-unit-length transmission line capacitance
matrix for a ribbon cable. Results indicate rapid
convergence of the matrices to accurate values. The GETCAP
program is written to be useful even to the person who is
not a computer specialist, with simple input formats and
error correcting facilities.

Ribbon cables are now widely used in the intercon-
nection of electronic systems. The ability to compute the
transmission line capacitance matrix for such cables enables
the multiconductor transmission line equations to be solved.
This in turn will enable a more precise analysis of ribbon

cable systems through a detailed analysis of crosstalk.
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APPENDIX A

The purpose of this appendix is to provide justifi-
cation for omitting the reference potential terms in the
potential expressions in Chapter II. Consider Fig. A.1(a)
in which infinitesimal line charges lie on a cylindrical
surface of radius r'. The potential @(r,6) with respect to
the potential reference point due to one of the line charges

is (reference [7], pp. 91-92)

_ A d
¢(rre) = - yme ln(a—-\) (A.1)

v 0

where the distances from the line charge to the potential

and reference points are given by

d2 = r2 + r'2 - 2rr'cos(8'-8) (A.2a)

and

onN
i
R

g + 'l 2r0r'cos(6'—90) . (A.2Db)

If the cylindrical surface supports a per-unit-length charge

distribution of the form

c(®') =o0,. +

] 1 s ]
0 (o cosmB' + om51nm9 ) (A.3)

m=1
then the potential @#(r,0) can be obtained as the limiting
case of an infinite number of infinitesimal line charges

with appropriate weighting given in Eq. (A.3) as [4]
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%

27
P(r,8) == e S ln(%)r' e’ i
V3

1 g 2T
- ) d
2Te z { jh 0 cosmé' 1n r' de’
Vo1t o M (ao)
2™
+ f orsinme' 1n(g)r' ae (A.4)
. ; . :
0

Substituting the expressions for d and do given in Eq. (A.2)
into Eq. (A.4) yield integrals which can be evaluated in

closed form. The result is [4]

@(xr,0) = OODO(r,B) - OoDo(ro'eo) (A.5)

k
+ 2 {GmDm(r,e) ~ P (ry,8g)

=1
+ 01D! (r,8) - 01Dt (r,80)]
where
- r' lnr r>xr'
t =t r
v (A.6a)
D (r,8)=
0 -r'" lnr' r<r'
€v
vym+1
(x') cosme ryr'
2 §;mr
D, (r,8)= (A.6b)
m .
(r) —, cosm@ rs<r' -
2, m(r")
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m+1

1
(r') sinmb r>2r'
2e mr
D&‘(rle)___ (A.GC)
m
(r) 1 sinm@ r<r'
26 ym(r')

The terms Do(ro,eo), Dm(ro,eo) and D%(ro,eo) are the ref-
erence potential terms which were omitted in the potential
expressions in Chapter II;

Consider a typical system of n circular conductors
shown in Fig. A.1(b) bearing per-unit-length charge distri-
butions of the form

k.
i

g = ! i

i(Gi) 90 * ) (Gimcosmei + Gim51nmei) (A.7)
m=1

A typical expression for the potential at a matchpoint on

the i~th conductor in Fig. A.1(b) is
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= (o) - g
2, T %0Pi0(Tcir®i) ~ %30Pi0(Tgir80y)

1 .
+ mi {Oimpim(rci’ei) = 9iwPin(Toi 801’

+ 0! D! (r

- ' '
im im ci’ei) oimDim(rOi’QOi)}

(0] . .
* 950P50(ri4084) = T3P 39 (rg5.805)

K.
j
+ I {o. D. (r..,8.) — o. D. (rn.,0,.
m=ql Jm Jm Tij’ 3 jmP3m 0303’

' 1 - O '
* 9 5n03n (5595 - *4nPin(Fos S0y ]

* 900Pn0 Tinr®n) = %noPno Fon’®on’
K
f
5 _
+ m=1 Oannm(rin’en) Oannm(rOn’eOn)

gt ' _ [}
* annm(rin’en) OrllmDnm(rOn'eOn)}

(A.8)

If we allow the reference point for the potentials to
move to infinity, the reference potential terms for the
Uimposmei and OJ!_msinmei expansion terms go to zero as 1is
clear from Eg. (A.6b) and (A.6c). If the total per-unit-
length charge on the system of conductors is zero, then the
reference potential terms due to the constant expansion
terms may also be removed. This can be shown in the follow-

ing manner. The total per-unit-length charge on the i-th
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conductor is

27
q, = g
i 5r 1(85)r 548,
(A.9)

=2T r , O,
ci 10

and the portion of the potential expression in Eg. (A.8)
consisting of the reference potential terms due to the

constant charge expansion terms is

-0 -
10Pi0To17%01) 950P50 (Fo57905)

-0
n0°n0 Fon’®on’ (A.10)
o
_ mODmO(rOm’BOm)
m=1
Utilizing the expression for DmO(rOm’eOm) of the form given
in Eq. (A.6a), Eg. (A.10) can be written as

_ ? g ( _ rcmln(rOm)
' mo .

— €
m=1 v

(A.11)
With the expression for the total per-unit-length charge on
the i-th conductor given in Eq. (A.9), Eq. (A.11) can be

written as

m — (A.12)

Requiring the system to be electrically neutral, i.e.,
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n
Z qm =0 ’ (A.13)
m=1

Eq. (A.12) can be written as

n
- 22 qm\ Inlro) 4 3 g 1n(rgy

m 2TE 2TE * (A.14)

v v

By combining associated terms, Eg. (A.14) can be written as
g In Tom
—TE— ln(r—) . (A.15)
m=2 v 01
As the reference potential point moves to infinity, the
distance from the centers of the conductors to the reference
point become the same, i.e., r91=rgo= e =Yon and Eqg.
(A.15) approaches zero. Therefore, the reference potential
terms in the potential expressions may be omitted. Implicit
in this is the fact that the potentials, ¢i’ are with re-

spect to infinity which is permissible only if the net per-

unit-length charge on the system is zero, i.e.,

Ioq =0 . (A.16)
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APPENDIX B

Listing of Computer Program GETCAP.

The listing will be divided into its individual program

parts:

MAIN

GETCAP

MINV

MPC

MPRT

main program controlling input of data
and output of results

subroutine which computes the per-unit-
length generalized and transmission line
capacitance matrices for ribbon cables
of the specified dimensions

subroutine which computes the inverse of
a matrix (from the IBM Scientific
Subroutine Package [161])

subroutine which multiplies two matrices
and then multiplies the result by a
constant

subroutine which prints a matrix in

standard matrix format
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