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I. INTRODUCTION

Coupled transmission lines have continually received much attention in

many diverse areas of application. Multiconductor transmission lines have

been investigated in early power system studies and continue to receive

attention in this area with regard to the transient behavior of power lines

under fault and lightning induced conditions [1-13]. Modern emphasis on

multilayer distributed circuits, strip lines and microstrip associated with
integrated-circuit technology has produced a renewal of interest [14-19, 68]
as has the interest in predicting transiénts induced on cables by external
electromagnetic field sources such as high power radars or an electromag-
netic pulse (EMP) from nuclear detonations [20-27]. Determining cross-
talk in communication circuits [28-30] and digital computer wiring inter-
ference [30-32] are examples of other areas in which the subject of multi-
conductor transmission lines consistently arise.

Of particular interest within the electromagnetic compatibility (EMC)
community is the prediction of coupling between wires and their associated

termination-networks in closely coupled, high density cable bundles and

flat pack (ribbon) cables on modern electronic systems. Control of intra-
system electromagnetic compatibility for systems within the Department of
Defense is generally governed by MIL-STD-461 and 462. These are general
documents which prescribe limits on emissions and susceptibilities of the

individual subsystems and equipments with regard to undesired signals

(interference) and do not in themselves consider the coupling paths between

-1-



the equipments and subsystems within systems. The undesired signals as o
used in this context are with respect to the particular equipment or sub-
system, not all of which are undesired from the overall system standpoint.
For example, the undesired signals may be truly undesired ones, sucﬁ as
transmitter harmonics, or may be the result of an essential signal, such as
the fundamental frequency of a transmitter, coupling to a receptor for which
such coupling is not intended.
Even if all the equipments and subsystems within a system conform to
the limits in MIL-STD-461, it is, of course, not necessarily true that over-
all system compatibility will be achieved. Since these limits do not take
into account the various coupling mechanisms and proximities of the equip-
ments, a system whose equipments and subsystems meet MIL-STD-461 may
prove to be incompatible and numerous instances of required retrofit and -
interference suppression measures on systems meeting these limits illus- .
trate this fact. Thus overall system compatibility may not be achieved
unless all signals (desired and undesired) and actual coupling paths within
the system are considered, analytically., This deficiency has led to the
development of various computer-aided intra-system (as opposed to inter-
system) compatibility prediction programs which mathematically model the
systems and take into account the various coupling paths for unintentional
energy transfer (interference) as well as intentional energy transfer [33-37].
The various coupling paths can generally be classified into combinations

-
of wire, antenna and metallic box coupling, e.g., wire-to-wire, antenna- n
4
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to-antenna, antenna-to-wire, box-to-box, etc. In the case of wire-to-wire
coupled interference in cable bundles, this undesired coupling of energy
between circuits sharing a common bundle may be more severe than one
may realize. For example, numerous cases (both experimental and analyti-
cal) may be shown where, for certain frequencies, the ratio of the received
interference voltage across the terminals of a device to the voltage emitted
by another device, which is coupled via wire-to-wire coupling mechanisms,
exceeds unity. The two devices are not directly connected by a common
pair of wires; the wires connected to each device are only in close proximity
in 2 common cable bundle. Rarely does one encounter voltage transfer
functions with magnitudes greater than unity in antenna-to-antenna inter-
ference coupling problems and this illustrates the importance of considering
the mechanism of wire-coupled interference transfer.

It is the purpose of this repoft to provide a complete and unified discus-
sion of multiconductor transmission line theory as it applies to the predic-
tion of wire-coupled interference. The common approaches and assumptions
which are either explicitly or implicitly used in the problem formulations
which appear throughout the literature are discussed, In addition to provid-
ing a discussion of the limitations and advantages of each of these techniques,
some numerically stable and efficient techniques for solving the multicon-
ductor transmission line problem for large numbers of closely coupled,
dielectric-insulated wires will be presented. Methods for computing the

per-unit-length parameters will also be given. Some of the results can be

-3-



found in various places in the literature although the treatments of the sub-
ject of multiconductor lines generally either discuss the solution of the
equations describing the transmission line and associated termination-net-
works with the entries in the transmission line equations (the per-unit-length
parameters) assumed to be obtainable or they discuss the derivation of the
per-unit-length parameters without regard to the solution of the equations
describing the line. The purpose of this report is to provide a comprehen-
sive discussion of the complete problem solution and in addition present
some new techniques for considering large numbers of closely coupled,
dielectric-insulated wires.

Throughout this report, the emphasis will be on the frequency response
of the transmission lines rather than the transient response since EMC con-
trol documents currently apply predominantly to the frequency domain. If
one assumes linear termination networks (no hysteresis, etc.) and assumes
no nonlinear effects associated with the transmission lines such as corona
discharge, then the equations describing the problem (the transmission lines
and associated terminations) will be linear and thus the frequency response
provides a completely general characterization.

Matrix formulation of the equations and other results of matrix analysis
will be used where necessary for a logical and concise development and the
reader is referred to [38] or other texts on linear algebra listed in the refer-

ences,

Q
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II. THE TEM MODE FORMULATION FOR MULTICONDUCTOR LINES

Consider a Ax length section of an (n+l)-conductor, uniform transmis-
sion line in a homogeneous medium shown in Fig. 1 lying parallel to the x

direction in a rectangular coordinate system. The line is said to be uniform

if there is no cross-sectional variation with x either in the conductors or the
characteristics of the medium, i.e., ''end-on'' or cross-sectional views in

planes perpendicular to x are identical for all x. The medium surrounding

the conductors and contained within the zero-th conductor is assumed to be
linear and isotropic and therefore is describable by the scalars ¢ (permit-
tivity), u (permeability), and o (conductivity) which are independent of the
electric and magnetic fields in the medium but may be functions of frequency.

If ¢, yand o are independent of position in the medium, i.e., independent of

x, y and z, the medium is said to be homogeneous. Thus for uniform lines,

all (n+l) conductors have uniform cross sections along their lengths and are
parallel to each other and the x direction and in the case of an inhomo-
geneous med‘iurn, the characteristics of the medium (e, u, o) exhibit no
cross-sectional variation with x and are therefore independent of x.

The conventional distributed-parameter, transmission line model, of
course, describes only the TEM (Transverse Electro-Magnetic) mode of

propagation on the line and higher order modes are not considered. The

Y
electric field intensity vector, €(x,vy, z,t), and the magnetic field intensity
Y

vector, ¥ (x,vy, z,t), for the TEM mode of propagation both lie in planes (y, 2)

transverse or perpendicular to the direction of propagation (the x direction)

-5.



(a)

Figure 1. An (n+l)-conductor uniform
transmission line (cont.).
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Figure 1. An (n+l)-conductor uniform
transmission line.



and t is the time variable. Thus it has been shown a number of times that,

assuming (n+l) perfect conductors, a homogeneous medium and the TEM
méde of propagation, the nonzero components of the field vectors (the trans-
verse electric field, gT(x, ¥, Z, t), and the transverse magnetic field,

gT(x, v, z,t)) at each x along the line satisfy the same spatial distributions as
static fields [40]. Therefore one can meaningfully define voltages between
the conductors and currents flowing on the conductors [40]. For further
clarification, see Appendix A.

The emphasis in this report will be upon determining the frequency
response of the transmission lines and associated termination-networks.
Therefore sinusoidal excitation is assumed with the field vectors written as
F-“’(x, v, Z,t) = E(x, v, z)ejwt and ?l(x, v, z,t) = I——i(x, v, z)ejwt where E(X,y, z) and
;I(x, Yy, z) are complex-valued vectors independent of time t and y is the >
radian frequency of excitation (y = 2mf). To characterize lines in a homo- .
geneous medium such as in Fig. 1 under the TEM mode assumption, the
potential,Vi(x, t), of the i-th conductor with respect to the reference con-
ductor (the zero conductor) and the current, J.l(x, t), associated with the
i-th conductor are defined for i=l,--,n (see Fig. lc). The currents are
directed in the positive x direction and the current in the reference conduc-

n
tor satisfies Qo(x, t) = - izl Qi(x, t) [40]. Voltages and currents for sin-
usoidal excitation are written as?/i(x, t) = V.l(x)ejwt and Ji(x, t) = I.l(x)ejwt
where Vi(x) and Ii(x) are the phasor voltages and currents respectively and

are complex-valued scalars independent of time, t. In the cross-sectional i ?
~

-8-
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view of Fig. 1b, the voltage of the i-th conductor with respect to the zero-th
conductor chosen as a reference is defined as the line integral of —E:T along
contour C; in the y, z plane and the current associated with the i~th conductor
» A

is defined as the line integral of HT along the closed contour C..1 in the vy, z
plane. The assumption of TEM mode propagafion precludes the existence of
a component of the magnetic field intensity vector in the longitudinal direc-
tion (the x direction). This‘ assumption coupled with the assumption of per-
fect conductors insures that the definition of the voltages is unique [40]. The
assumption of a TEM fields structure also precludes the existence of a longi-
tudinal component of the electric field intensity vector. Therefore, no longi-

tudinal conduction or displacement current in the dielectric is considered

and any current flow in the dielectric will be confined to the transverse

plane. This assumption coupled with the assumption of perfect conductors

insures that the definition of the line currents is unique [40]. These results,

of course, provide the basis for representing transmission lines for the TEM
mode of propagation over ''electrically short' Ax lengths with lumped equiva-
lent circuits whose parameters, which are per-unit-length quantities and are
-+ -
derived under the condition that the transverse field vectors, €1 and HT, at

each x along the line satisfy static distributions, represent the TEM mode

of propagation for non-static excitation [40]. These important conclusions

are demonstrated in Appendix A,

Imperfect conductors, inhomogeneous media and electrically large

cross-sectional line dimensions preclude the existence of only the TEM

-9-



mode for the following reasons. With lossy conductors, there will neces- O
sarily be a longitudinal component of the electric field in the x direction due

to the nonzero surface impedance of the conductors [40]. If the surrounding
medium is inhomogeneous, then wave propagation can no longer be TEM as

a result of the different phase velocities in the different homogeneous por-

tions of the media. Imperfect conductors and inhomogeneous media are
nevertheless considered with the distributed-parameter, transmission line

model under the assumption that the conductor losses and the inhomogenei-

ties in the media do not significantly perturb the field distribution from a

TEM structure. The inclusion of inhomogeneous media which is termed the

""quasi- TEM mode'' assumption is particularly important in microstrip

problems and other associated integrated-circuit structures [14-18, 68].

Electrically large cross-sectional dimensions of the line (conductor separa- 3
tion, wire radius, etc,) evidently are also capable pf producing higher order
modes and this can be surmised from the fact that the infinite parallel-plate
transmission line, which is rigorously solvable and capable of supporting
the TEM mode of propagation, will support only the TEM mode for frequen-
cies such that the plate spacing is less than one-half wavelength. Also, it
can be shown that a two-conductor coaxial line will support higher order
modes when the mean circumference of the annular space between the two
conductors is greater than one wavelength. Thus throughout this report,
the cross-sectional dimensions of the line will be assumed to be electri-

cally small, i.e., much less than a wavelength, so that transmission line

(2D
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o

theory applies, i.e., the TEM mode is the dominant mode of propagation.
The specific cases of interest to be considered in this report are shown

as cross-sectional views in the y, z plane in Fig. 2 and Fig. 3. In Fig. 2,

n wires (circular conductors) are shown with another conductor, the refer-

ence conductor, denoted as the zero-th conductor. In Fig. 2a, the reference

conductor is also a wire whereas in Fig. 2b and Fig. 2c the reference con-

ductors are an infinite ground plane and an overall circular shield respec-

tively. These lines are uniform and the surrounding medium is homogen-

eous, In Fig. 2a and Fig. 2b, the surrounding medium is free space with

parameters €, and y_ . In Fig. 2c, the medium within the circular shield is

homogeneous with parameters ¢, y, and g. (The permeability of all dielec-

trics in this report will be considered to be that of free space, y_.)
In Fig. 3, similar cases are shown with the wires having circular

dielectric insulations (an obviously very common situation). Thus the

medium in each of these cases is inhomogeneous although the lines are

nevertheless uniform. The permeabilities of the dielectric insulations are

considered to be that of free space, b, 2s is typical of dielectrics. Each

dielectric insulation is described by the scalars permittivity, €yr and con-
ductivity, O;» i=0,1,---~,n and the space surrounding the dielectric insula-
tions is considered to be free space.

The corresponding cases for the more familiar two-conductor lines

-
(n=1) are shown in Fig. 4 and Fig. 5. Note in Fig. 4 that the lines of E and
-

H are shown perpendicular to each other, This is a natural consequence of

-11-



T

m
<
T
<

YAy
T G L

(b) plone

Figure 2., Multiconductor transmission lines in
a homogeneous medium,

=12~

(-



VA A A S Sy Sy S A A G A
@ (b) gr'gund
plane

Figure 3, Multiconductor transmission lines in an

inhomogeneous madium (cont. ).

-13-

/



(D -



(

Y
{
|
T |
!
!
|
|
|
A
I
!
|
1
I

[
d
L

x=0

*;

(o}
by

R o

g

Y T A AT
d )

ground plane

oy

|
<'¢

|

|
L

]

.""" A O\
\ 4@ \
) 8
shield : {"/‘ ‘4’0 @ )
’, ! T
jl:o : =Z "

(c)

Figure 4, Two-conductor transmission lines
in a homogeneous medium.

-15-



'x

R j

d EvrHy

l 5?92»/

-4

X, )

i |
=0 (a) w3

43

7

| %

1

. : fvbl"'v
|
|

VU e e S

ground plane

O\ E—

©)
s

e

T T T 7S

(c) Microstrip

Figure 5. Two-conductor transmission lines
in an inhomogeneous medium (cont. ).

~16-

ground plane

—

g

)



Sok

(d)

Figure 5. Two-conductor transmission lines
in an inhomogeneous

-17-




the TEM mode assumption [40].

‘If the medium is homogeneous as in Fig. 1 and Fig. 2 and all (n+l) con-
ductors are perfect conductors, then losses in the medium can be included
without violating the TEM mode assumption or the uniqueness of the voltage
and current definitions [40]. However, in the case of a homogeneous me-
dium in Fig. 2, it is only logical to consider a lossy medium for the case in
Fig. 2c since the surrounding medium in Fig. 2a and Fig. 2b is considered
to be free space. Dielectric losses can be introduced through a finite, non-
zero ohmic conductivity, o g (which generally will be quite small for typi-
cal insulation materials) and also through dipole relaxation effects [30]. To
include both of these effects, we may consider the material to be charac-
terized by a complex, effective permittivity (which is frequency dependent)
instead of a real permittivity, To include dipole relaxation losses, the per-
mittivity may be considered to be complex as [30] ¢ = ¢ -je''. Ampere's

law in a homogeneous medium possessing both of these loss quantities be-

2 >, . 2 . n . Og twe') 2

comes VXH=04E +jpe E =[(0g + we") +jwe'lE = jye' [ 1-] —r IE.
Y

The real part of the complex permittivity is expressed as ¢' = ey €, where

€, is the permittivity of free space and ¢ .. is the relative dielectric constant.
The effective conductivity of the homogeneous medium then becomes

0 =04 twe'. Thus the losses of the medium may be accounted for by using
a complex effective permittivity €aff = €y er(l-_] tan §) instead of a real per-
mittivity and tan § = o/(yw e, ¢,) is the loss tangent of the material [40].

Ordinarily, the loss tangent and the relative dielectric constant €. are

-18-
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€

(3

given for materials as a function of frequency. Therefore, it is quite clear

that for (n+l) perfect conductors in a homogeneous medium, losses in the
medium, i.e., 0#0, can be included without violating the TEM mode
assumption or the uniqueness of the voltage and current definitions since the

real permittivity for the lossless case (0=0) is merely replaced by a com-

plex permittivity, Eaff? to account for losses in the medium. Since the TEM

mode assumption is legitimate for the lossless, homogeneous case, there is

no reason why the use of a complex permittivity instead of a real permit~

tivity should change this.

The lumped-circuit model for a Ax length section of the two-conductor

lines in a homogeneous medium in Fig., 4 are shown in Fig. 6. The lines

have a total length £ and Thevenin equivalents of the linear terminations at

the ends of the line are shown.

The lumped-circuit model describing the TEM mode of propagation for

a Ax length section of any of the multiconductor lines in a homogeneous

medium in Fig. 1 and Fig. 2 is shown in Fig. 7. All A x length models for

other sections of the line will be identical since the line is uniform. Since

the cross-sectional dimensions of the line (conductor spacing, wire radius,
etc.) are all assumed to be '‘electrically small'" and Ax is assumed to be

"electrically short', then it is valid to characterize a Ax section of the line

with a lumped equivalent circuit.

Resistance elements r_ , rci, rcj and conductance elements g;0° 8jo-

g;j are included to represent losses associated with the conductors and
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Figure 6.

The termination-networks and equivalent circuits for
two- conductor transmission lines.
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medium respectively. The inclusion of a surrounding medium having a
finite, nonzero conductivity and dipole relaxation losses with these shunt
conductances is consistent with the assumption of TEM mode propagation
whereby no longitudinal conduction or displacement current can flow in the
dielectric and any current flow in the medium is confined to the transverse
plane. The shunt conductances account for the portions of the transverse
currents associated with conductive and dipole relaxation losses of the
medium, i.e., the transverse displacement and conduction currents due to

the imaginary part of €y Similarly, shunt capacitances account for the

ff’

transverse displacement currents associated with the real part of €off*

Also self inductance terms for the conductors, § 2,,1, ¢.; mutual inductances
J

O’

between the conductors, m;,, m.

, m..; and mutual capacitances between the
07 g

conductors, i0? CjO’ Cij’ are shown [39]. Lossy conductors also produce a
portion of the self inductances due to skin effect which is represented by the
elements ;LCO, ch_l, ECJ_ which are internal self inductances produced by cur-
rents internal to the lossy conductors [2,3,30]. The infinite ground plane
and circular shield in Fig. 2b and Fig. 2c are considered to be perfect
conductors and for these cases rCO = ch = 0. A method of including a lossy
ground plane is given in [29] and is frequently used to represent the earth
return path in power systems [13].

Some care must be exercised in interpreting the elements Los Ly !Jj
and Myq, My0, mij as strictly "self inductances' and ''mutual inductances"

respectively in the conventional sense. This interpretation relies on the

-24-
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property that the sum of the currents (at a particular x) associated with all

{n+l) conductors is zero, i.e., ¥ Ii(x) = 0. An excellent discussion of this
i=0

is presented in reference [3], Chapter 1 and the reader is referred to this

for further clarification. Our results will not rely on this interpretation

since we will not determine these individual external inductance parameters
but will instead obtain the per-unit-length external inductance matrix, L, of
the line directly. The entries in L, which are the essential items in our
analysis, will be linear combinations of these per-unit-length "inductances"
and once 1..4 is determined, there is no need to separate its entries.

All of the terms resulting from losses, rco, rci, rcj’giO’ gj()’ gij’ zco,

zc » L. 2are, in general, functions of frequency. The external parameters,

i J
Byr Ly Ej’ mij’ M Mugs €40 00 Cjor Bipr 8jpr By 2T derived assuming
perfect conductors such that the transverse fields satisfy a static distribution

at each x along the line [39]. These external parameters will also be func-

tions of frequency if the permeability, permittivity or conductivity of the

surrounding medium is a function of frequency. In this case, the parameters

are recomputed for each frequency assuming the transverse fields satisfy a

static distribution at each x along the line. All parameters are per-unit-

length quantities and therefore the total value of each parameter for a Ax

length model in Fig. 7 is the per-unit-length value multiplied by the section

length, Ax.

It is important to note that this is an exact representation of the TEM

mode of propagation for (n+l) perfect conductors in a homogeneous medium

-25-



as in Fig. 1 and Fig. 2. Imperfect conductors are considered as an approxi- O

j' ,QCO, gci, I,Cj under the assumption that the .

conductivities of the conductors are very large and much greater that the

mation through rco, rci, r.
conducﬁvity of the dielectric medium so that the fields structure is essen-
tially TEM. Although the presence of an inhomogeneous medium as in Fig.
3 precludes the existence of the TEM mode except perhaps in the limiting
case of zero frequency, the equivalent-circuit representation in Fig. 7 will
be assumed to be an adequate representation for the quasi-TEM mode for the
lines in an inhomogeneous medium in Fig. 3., The parameters for this case
will also be computed at each frequency by‘ assuming (as a first-order
é.pproximation) that the field vectors are entirely transverse and satisfy a
static distribution at each x along the line.

For the two-conductor cases in Fig. 4, the transmission line equations
- can be derived from the A x equivalent circuits in Fig. 6 for the sinusoidal, -
steady state in the limit as Ax -+ 0 as a pair of coupled, first-order, ordi-

nary, complex differential equations [2, 3]

dd\;(xz +(re +jws, tiwe) Ux) =0 (1a)
h 2
-%I;i) +(g +Yjwc) V(x) = 0 (1b)

where Z and Y are the per-unit-length impedances and admittances of the

line respectively. For each of these cases, r.=r_ +r_ , be = ﬂcl +

C C]. CO I’CO’

4= _1,1 + ZO - ZmlO’ ¢ =cy and g = 10° If an incident electromagnetic field ]
illuminates the line of Fig. 4a, the equations in (1) are modified to include n
the effects of the incident field and become [20] *J
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O d V(x)

dx

b2 I(x) =V (x) (2a)

d I(x)
dx

+Y V(x) = 1_(x) (2b)

where Vs(x) and Is(x) are distributed sources along the line induced by the

spectral components of the incident field and are given by [20]

. (-d (inc)
V. (®) =jwu, o H (y,x)dy (3a)
(inc)
d
I (x) = =Y §0 Ely,x)dy - (3b)

The two wires in Fig. 4a lie in the x,y plane with wire 0 at y = 0 and wire 1

aty = d. The components of the incident magnetic and electric field intensi-

(inc
ties at the radian frequency y in the z and y directions are denoted by Hz(y,zl)
(inc) .
and Eyéy,x),respectlvely.

Similarly for multiconductor lines, the transmission line equations can

be derived from the equivalent circuit in Fig. 7 for the sinusoidal, steady

state in the limitas Ax + 0 as a pair of n coupled, first-order, ordinary,

complex differential equations in matrix form as (see Appendix B)

Vx) + Z1(x) = V (x) (42)

i) + Y V(x) =1 (x) (4b)
which may be written in an alternate form as a set of 2n coupled equations

in partitioned form as

: V) 2l Z | |¥®) V(%)

. ) = - + (4c)
) 1o Yo% 2] L
N
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A matrix, M, with m rows and n columns is said to be m y n and the ele- O

ment in the i-th row and j-th column is designated [M]1J with i=]l, -==, m ‘

~

and j=1,---,n. The dot (*) denotes first derivative with respect to x, i.e.,

[_’\Z(x.)]i = % V.l(x), and qufn is the m ¥y n zero matrix with zeros in every
position, i.e., [ 0 ]J.=0 for i=l,~=-, m and j=1,---,n. The elements of
m~n-1l]

the n y 1 complex column vectors V(x), I(x), V (x), I_(x) are [V(x)], = V.(x),

[1(x)]

[T = I_l(x), [Xs(x)],1 = Vsi(x), [_Is(x)].1 = Isi(X) where the element of ann y 1

column vector V with n rows in the i-th row is denoted by [l/'_]1 for i=l, -~=,n.
The per-unit-length series voltage sources, Vs_l(x), and shunt current

sources, Isi(x), are induced by the spectral components of the incident

field and are complex=valued and functions of frequency and position, x,

.along the line. For (n+l) wires in a homogeneous medium in Fig. 2a, these

sources are shown in Appendix C and in [27] to be

d. . -
) i0 __(inc)
Ve, 09 = Jwuy (7 Hy (5, x) A8y (5a)
0
. n . %o (inc)
IS-(X) = - {(gio +Jw Cio) + J—Z]. (gij +Jw Ci.j)} Q Et (gi’ x) dgi (5b)
1 ) = 0 i

j#i

b B g +iwe) (OEIDE ) ae

j=1 BT So o T j

j#i
where &. is a straight-line contour between wire 0 and wire i and perpendic-

1 1

ular to wire 0 and wire i, H;l_nc)(gi,x) and E‘tl.nc)(gi,x) are the components of O
the incident field vectors normal to a plane formed by the two wires and N
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parallel to E_',.l (transverse field) respectively. Solutions for Vs, (x) and IS. (x)
1 i
for the other configurations are discussed in [22, 24,25] and Appéndix C.

The n x n complex-valued matrices Z and Y are the per-unit-length

impedance and admittance matrices respectively and are symmetric, i.e.,

IN

=z and Y = Y' where the transpose of an n y n matrix M is denoted as

Mt. These matrices are independent of x since the lines are uniform and

are separable as

Z=R +ivk +inl (62)

Y =G+jug (6Db)

where R . and %c are the per-unit-length conductor resistance and conductor
internal inductance matrices respectively and are real, symmetric. The
external parameter matrices, 9, ’I:. and g, are real and can also be shown
to be symmetric (for linear, isotropic media) regardless of whether the
medium is homogeneous or inhomogeneous thus permitting the equivalent
circuit representation in Fig. 7. [39]. The matrices S:, I:, and S‘ are the
per-unit-length external conductance, inductance and capacitance matrices

respectively. The entries in these matrices are obtained in Appendix B

and are given by

[Bc]ii - rci + rco [Bc]ij = rcO (7a)
i
L dii=e, +o [y = (7b)
1 0 . 0
i#j
Li.. =2. + 3 =-2m, R .. =-m, -m.
["]11 El 10 m10 [I‘J]q !’O +m1J rn10 mJO (7¢)
i#j



17£J I#J
n
= + C = -
(€] =<0 JEI ©ij ["']ij %3 (Te)
i#j i#

fori,j=1, -=--,n. Cand Gare said to be hyperdominant since each term on
the main diagonal Iis greater than the sum of the elements in that row [39]
and they can therefore be shown to be positive definite meaning that all n
eigenvalues of C and all n eigenvalues of (G are positive and nonzero [41].

The derivation of the per-unit-length parameters will be discussed in Section

V.
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III. SOLUTION OF THE TRANSMISSION LINE EQUATIONS

The set of 2n first-order, complex-valued, ordinary differential equa-
tions in (4c) which describe the transmission line for the TEM mode of pro-
pagation and the sinusoidal, steady state are in the form of state variable
equations [38,421. Systems of first-order differential equations in the state

variable form have received considerable attention in recent years in the

general area of linear systems and the solution to (4c) is

V(x) Vi(xy) x A V(%) A
= 8 (x, %) + 3 (x, x) L | 9 (8)
I(x) I(xg) Y X, 1.

where §(x, xo) is the 2n ¥ 2n complex-valued state transition matrix which is

the solution to (4c) with V_(x) =_£s(x) = and the parameter XO‘ is some

ngl
arbitrary fixed point along the line [38,42].

Obviously the difficult portion of the analysis (aside from the difficulty
in computing the per-unit-length parameters and equivalent field excitation
sources in lfs(x) andls(x)) is the determination of the state transition
matrix or chain parameter matrix, g(x,xo). Fortunately, for uniform lines
where Z and Y are not functions of x, the solution is fairly simple as will be
shown (although there are some important computational problems when
losses are included). For nonuniform lines where % and X are functions of
X, i.e., E(x) and X(x), (4c) becomes a set of nonconstant-coefficient differen-
tial equations (Bessel's equation is an example of a nonconstant-coefficient

differential equation) [43-46]. For these types of lines, {8) holds but the

ultimate difficulty is the determination of the state transition matrix and
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except for some very special structures one must resort to numerical
methods and approximations to obtain g(x,xo) [42]. If the line is "'abruptly
nonuniform' as with branched cables, i.e., consists of uniform subsections

in cascade, then the overall chain parameter matrix, §(x,x.), is the pro-

0
duct (in the appropriate order) of the chain matrices of the individual
uniform subsections between x and Xq and thus is straightforward to obtain,
As an example of this application to an "abruptly nonuniform!' line, consider
the line as a cascade of N uniform (n+l)-conductor transmission lines with

each section between x = X and x. . described by

i-1

Vix;) M. ) *i A Vi (%)
= B(xp, %)) 0 sk, % | 9)
\ .
1(x,) 1%, ) i-1 1%
X, 1 £x< X,
for i=l,---, N where gi(xi, xi-l) is the chain parameter matrix for the i-th

section between x = X, 1andx =X, (Xi-l <x< Xi) and _Vsiand_lsi are the equiva-
lentinduced source vectors for the i-th section. By sequential substitution, the
overall chain parameter matrix for the cascade of N sections between x_ and

XN (which are not required to be identical) becomes

8 s %) (10)
~ A
VixyN) Vix,)
= En0 2nc)) EneiCnep Xne2) et 320kps X)) 3%y Xo}
—I(XN) _I_(XO)
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N-1 X3 A .Ysi(x) dA
NN {EN‘XN’ o) B e2) RO ) e ) o
1= .

A

N A l]'SN(X) dA

+ g EN(XN, X) A b'S .
xN-1 Ign(x)

The overall chain parameter matrix for this cascade of nonidentical line
sections between x = X0 and x = XN is identified in (10) as the matrix product
g(xN, xo). Note that the indicated order of multiplication of the individual
chain parameter matrices must be preserved since they do not generally
commute. Lumped-element networks at discrete points along the line can
also be incorporated into the problem by writing the matrix chain parame-
ters of these networks and including them appropriately into the product of
the chain parameter matrices of the individual uniform sections in the above
manner.

When the line is uniform (as is being considered here) where E and X
are independent of x, the state transition matrix, 3 (x, xo), can be shown to
be a function of only one variable; the difference quantity (x-xo) [42]. Thus
for uniform lines, we may denote the state transition or chain parameter
matrix as ;i;(x- xo). The state transition matrix has the property that
E,(XO’ Xy) =1, where 1, is the 2n y 2n identity matrix with Ll,Zn]ii =1 and
[izn]ij =0 fori,j=1, =-=-, 2n and i#j [38]. This should be clear from (8) by
setting x equal to X0 Additionally, it may be shown that §~ 1(x,xo) = g(xo,x)

where the inverse of an n y n matrix M is denoted by M1 and therefore the
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inverse of the chain parameter matrix may be trivially determined [42].
This is quite obvious from (8) for V. (x) =_Is(x) = ngl by interchanging the
roles of x and Xqe

For two-conductor lines (n=l) the transmission line equations become a
set of two complex-valued, ordinary differential equations given in (1). The
solution of the transmission line equations for two-conductor lines can be
obtained quite easily by differentiating (lb) with respect to x and substituting
(la) to yield

a2 1(x)
dx?

= Y Z I(x) (11)

v2 I(x)

where the propagation constant, ~, is

v=Jvz (12)
The solution to (11) becomes
I(x) = e VX1t _ oVX 1~ (13)
where I+ and I” are complex, undetermined constants. Substituting (13) into
(Ib) yields
V(x) = Zg {e'Yx It 4 eV I'} (14)
where the characteristic impedan‘ce, Z, is given by
Zczy/Yz z/Y . (15)
t

To find the solutions in the time domain, multiply (13) and (14) by eJ®t to

obtain . :
Vix,t) = (2 eUmt = yx) 4y oy Zc St * vx) "] (16a)
& w+ _ \ ,
V(=) V =t
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Q Bty = [V Y gy Ut Y =) e
[\ . ) O ——
. dFx, 1) D (x, 0

Therefore the total solution consists of waves traveling in the +x direction
(forward-traveling waves) denoteci by ]/+(x, t) and J+(x, t) and waves traveling
in the -x direction (backward-traveling waves) denoted by"/'(x, t) and 3~ (x, t).
The characteristic impedance, ZC’ is the ratio .of the voltage and current in
the respective waves.

For two-conductor lines, the chain parameter matrix is 2 y 2 and can

easily be shown to be [2, 3]

cosh {V(x-xo)} -Z ¢ sinh {y(x-xo)}

_.Zl_c sinh {y(x-xo)} cosh {Y(X-XO)

where cosh and sinh are the hyperbolic cosine and sine respectively.

g(x,xo) = (17)

- Note that the determinant of the chain parameter matrix is unity. Knowing
this quantity, the solution for the voltage and current at any point, x, along
the line can be found from (8) in terms of the voltage and current at some

reference point, Xgs 28

V(x) = cosh {v(x-x0)} V(xg) - Zg sinh{v(x-x0)] 1(xp) (18a)
x A A . A A A

+ Q [cosh{y(x-x)} V(%) - Z sinh {V(x-x)} Is(x)] dx
o

I(x) = - i sinh {Y(x-xo) } Vi(x,) + cosh{y(x-xo)} I(x,) (18b)

n + SX [- Zl sinh{Y(x-}A{)} Vs(:’;) + cosh {Y(x-;;)} Is(;{)] dx .

X0 C
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For multiconductor lines, the equations in (4c) may be thought of as
"strongly-coupled' state variable equations since the block off-diagonal
terms, Z and Y, are nonzero whereas the block main-diagonal terms are
zero, ngn' The chain parameter matrix, §(x, xo), however, may be deter-
mined in the following manner whiah is similar to the method for solving the
two-conductor line employed above [18, 26, 47]. Assuming for the moment
that Vg (x) =_ls(x) = an, differentiating the second set of equations (4b) again
with respect to x, l.(x) = _:\:/(x), and substituting the first set (4a), V(x)

-Z 1(x), one obtains the set of n second-order differential equations

0 =YZ 10 . (19)
Note that even though Y and Z are symmetric, it is not necessarily true
that the matrix product YZ (or Z Y) will be symmetric.

The solution of (19) is usually obtained with similarity transformations
(13,18, 26, 38,41,42,47,48], which is referred to in the power transmission
literature as "modal decomposition'' [13]. Define a change of variables,
I(x) = I_Im(x) where T is an nyn nohsingular, complex-valued matrix and
lm(x) is an ny 1 complex-valued vector of ""mode currents'. Substituting
this change of variables into (19) yields

g -1

I =T

In=T X2ZI1, . (20)
Suppose there exists an nyn similarity transformation, T, which dia-

gonalizes Y Z, i.e.,

1

TlyzT=y (2

where Y2 is an nyn diagonal matrix with
~
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[12].. =y (22a)
[x?] ;5 =0 (22D)
i#]

and the terms, Y.lz, i=1, ~==-,nare complex-valued scalars. Then (20)
becomes a set of n uncoupled differential equations with the simple solution
[18, 26,47]

1(x) = T1_(x) (23)

-¥Yx +
=T~ 1 -1

where gl(x is an n¥Xn diagonal matrix with
X .
[T == (242)
(471 |5 =0 (24b)
i#j

andi+ and l' are nyl vectors of 2n complex,undetermined constants,

I:' = [-I-+]i and 1] = [_I_']i, which.will, in general, be functions of frequency
[47]. These undetermined constants will be evaluated by considering the
boundary conditions or termination-networks at the ends of the line. Since

from (4b) I(x) = - ¥ V(x), one may obtain from (23)

-1 di(x)
Vix) =-Y —=— (25)
- X
-lg. Y(E-lxl-l' +-x-1--)

H
N
it
1=,
[y
H
!
[a—y
~
H
]
2
+
i<
W
—



where v is an nyn diagonal complex-valued matrix with

One can easily show from (21) the identity Y'1 Ty = Z‘Z Y-

(25).

[¥];=0 - (26b)
i#]

1 which is used in

jw t
The solution in the time domain can be found since Z(x, t) = lf(x)er

Jw

j t
and d(x, t) = I(x)e)"* by multiplying (23) and (25) by e’”". It should then be

clear that the total solutions consist of forward-traveling waves, z+(x, t),

‘_9+(x, t), and backward-traveling waves, Z_ (x, t), Q- (x, t), on the line with

(18]

where

Vb =yxt) +y (%t (27a)
dix,t) =dtxt) - (x, 0 (27b)
Dhix, )= T e ¥ 1t (28a)
D 0x,t) = T eX¥r- et (28b)
Vs n =z 9%k, b) (28c)
V) =297 (%, 1) (284)

and Z is the ''characteristic-impedance matrix' relating the voltages and

currents in the waves with Zc defined from (23), (25) and (28) as

Ze=YlryT-l=2z7TYyl-1 (29a)
-1 -
Ze= Y iz-zfx . (290)
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The symbolic notation in (29b) conforms to the scalar characteristic imped-

ance for two-conductor lines discussed above., It can be shown that [18]

YZ =Ty T} (30a)
[zy=vlfvzy (30b)
Yz =v/zYy vl |, (30¢)

The relations in (30) may be easily shown [18] by forming VX—Z) g/-f—%) =
@I H Ty h =Ty 1t = ¥ Zand (Z) (Z7) = (X" /¥ 2Y) (L fYZ -
ZY. Note that /Y Z # /ZY and the order of multiplication of the matrices
cannot be interchanged since Z and Y do not,in general, commute.

If the mode currents, _I_m(x), are defined as in (23) and the mode vol-
tages are defined from (25) as V(x) = ZC EXm(x), then it is clear that the
mode quantities consist of n uncoupled waves and each mode has the propa-

gation constant Yie The velocities, v., and attenuation constants, Mi» asso-

i:
ciated with each mode are found by writing v; = n; + j(w/v;) where n; and v;
are real scalérs. Thus one might think of these ''mode' quantities as being
somewhat basic quantities in the overall propagation of the waves since the
total voltages and currents are linear combinations of the mode voltages and
mode currents,respectively. This concept, however, is not particularly
useful in obtaining numerical solutions to a given problem via machine com-
putation and is only offered as a link to the more familiar two-conductor
case discussed above. There are, however, instances where this concept,
when related to matrix scattering parameters, can prove useful in certain

synthesis problems [19].
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The state transition matrix or chain parameter matrix, @(x,xo), in (8) O

which relates voltages and currents at the two ends of a section of the line

extending from x; to x can also be obtained by eliminating _I_Jr and I~ from
(23) and (25) as [18, 26,47]
jax) EHXO) QJJX,XO) QAZ(X,XO) lﬂxo)

= ®(x,x,)
ljx) lfxo) 221(X,x0) EQE(X’XO) lfxo)

(31)

where the nyn submatrices, § (x, xo)‘, i, j=1,2 are given by [26,47]

1zylr (eXF=X0) | 'l(x'xo)) e

§11(x,%4) Y (32a)

~

Buabnxy) = -1/2 Y71 Ty (@O X)) 4o (32b)

—a1/2 Yl T v To1f1(eX F0) | L 0o%0),) T'l}
gal(x’ XO) = -1/2 I (gx (X-XO) 'S—\L(X-XO)) :{4-1 Z—lfg (32¢)

- -1/2{2(51 — _e ¥ %o, 2'1}2 ylrly :
8oa(nxg) = 1/2 T(EO7¥0) 4 T XOT0)) g7t (324)

From (21), one can obtain X~12X= ZI\('1 and therefore Y"ITY in (32) can
be written in terms of Z,
The state transition matrix can also be obtained as an absolutely con-

vergent matrix infinite series [38, 42]

- - 2 (yco 2 3w a
B(x, ) = oMOX0) |y Mix-xg) | MP(e-xg)? | MO (x-x)
3 0 ~ ~2n T = 5

where from (4c)

+--- (33a)

n~n -Z
M = ~ (33b)
-Y 0
~ n~n

After obtaining the indicated products of M, one can obtain [18]

(D -
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. . . JY Z (X-XO)
the following manner, The matrix exponential, ¢" ~ ~

- JRNRY':
wox) =1 42y 207 zyyr B0, (34a)
0 n ~ 21 ~ ~

- 2 x-%q)*
=Y”l(l yyz BX0® Ly zya X0l +_--}Y

5
(X'xo)
51

' - 3
- -2(TB M TZ teoxp) + (TR T
- B
Tz Rk ree- |

8, 2(x%y) = -2 (x-x.) - ZX Z -(ZY)2Z - --= (34D)

B
vy 0l -} /23 ¥

B
vzy LRz x SO L s

- 3
-3 (2D [ZX wexp v V700 S5
Jzoe B
+ NX) ——g—"'---J}
- 3
= -{/gg (x-x0) + ([Y 2)° _(3‘_3_’_"0_)_
(x-xO)E’ 1
R e L S A
(344d)

- 2 - 4
=Y{1 +ZY (x-p) +(zY? (foQZ_+---} y-!
~ ~~ 1

Matrix hyperbolic functions Cosh and Sinh may logically be defined in

, may logically
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be defined as the absolutely convergent matrix infinite series [18, 38, 42]

2
2./3% (X-XO):’\];n +/:YJ_AZ_I (X-X|0) + (/ﬁ)z X XO + ( "_ )3 X + L (35)

'V(X" xo)

The matrix exponential, e~ , can similarly be defined as an absolutely

convergent matrix infinite series [18, 38, 42]

Y(x-x%q) s

e~ =1 +v

~ ~1

(x-x%0) 2 (x-%5)% 3 (x-x)
TV Y e Al v el (36)

Since Y Z is assumed to be diagonalized by T as in (21), then the square
. _ -1 )
root of YZ may be defined as /YZ = Ty T"" as shown in (30). Therefore,
(35) may be written as [18, 38, 42]
- X-X
eVYZ (x-x%0) _ ¢ Y(=%g) 11 (37)

~ ~ ~ ~

JZ Y -
:Ze L L (X XO) Y_l

~ ~

where,/ZY is defined in (30b) and (30c). Thus the matrix hyperbolic func-

tions Cosh and Sinh may be defined from (35), (36) and (37) as

Cosh ‘/Eg (x..xo)} = 1/2{ \/ Z (X-—XO J YZ (X-XO)} (38a)
(x-34)? (x-%4)*
L, + T2 B0 (T e

1/2 E{SX(X'XO) + S'I(X'XO)} -1
1/2{2“35‘ (x-30) _ oVYZ (X'XO)}

il

(38b)

[3z 0 T2y ‘X-XO’
+(JYz)® (x-%0)°, ___
51

= 1/2 g{gl(x'xo)- e'x(x'xo)} 7-1

~

Sinh {fﬁ (x-%, )}

~-42-
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Therefore, it should be clear by utilizing the relations in (35), (36), (37)
and (38) that the expressions for the chain parameter submatrices in (32) and

(34) are equivalent and may be written symbolically as [18]

8, (x, %) = Cosh{j?? (x-xo)} = Y- Cosh {jfg (x-xo)} Y (392)

21500%0) = -2(/T 217 sinh { JYZ (x-x)} = -sinb [ /ZY tx-x)} /2 Y
’ (39b)

-z S { fYZ (e-xp)} = -sinh { /2 ex } 2o
-z sinh { f2X (eexp)} = -sink { [TZ e} 22
822 (x,%0) = Cosh { fYZ (x-x)} = ¥ Cosn{ [z¥ xexp) b ¥ (399)

where the characteristic-impedance matrix, 50’ is defined in (29) and (30),

321 (Xs XO)

(Note that these reduce to the scalar elements for two-conductor (n=1) lines
in (17),) For numerical machine computation, however, one would use the
forms of the submatrices given in (32) since the equivalent expressions in
(34) and (39) would be of little practical value in obtaining numerical resulis,
Also one can show certain fundamental matrix identities involving the

submatrices of the chain parameter matrix [18]:

Identity 1: 8, , 35, 3;1? 8, - %28%:,=1, (40a)
Identity 2: &,, &, g‘gi 822 - 35, 8,5, =1, (40b)
Identity 3: 31; 322 3;12 = 8, (40c)
Identity 4: 221 311 3;1 = Egg (40d)
ldentity 5: 8,, = 85, (40¢)
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where Eij refers to ,?,ij(x’ xO). Identities 1 and 2 reduce, in the case of two-
conductor lines (n=1) where the submatrices become scalars, to familiar
results, described above i.e., &gz &, - 8,2 &,, = 1 and the determinant of
the chain parameter matrix is equal to unity. Similarly, Identities 3, 4 and
5 also reduce, in the case of two-conductor lines, to familiar results, i.e.,
8,5 = &;,. These identities may be proven by substituting the forms of the
submatrices given in (32) and utilizing the fact that Y, Sl(x-xo)and g—x(x-xo)
are diagonal matrices whose products may therefore be interchanged. The
identities may be more directly shown, even when Y Z is not diagonalizable
by a similarity transformation, by recalling that the inverse of the chain
parameter matrix or state transition matrix is given by 2-1(x,x0) = g(xo,x)
[42]. Forming this relation as g(x, xo) g(xo,x) =A1JZn yields in partitioned
form [18]

~n n~n

211(){’ Xo) Elg(x: XO) 211(XO’X) g’lg(xosx) 1 0 (41)

EQI(X’XO) zgg(x’xo) ggl(xosx) Egg(xorx) ngn ’ln

Multiplying this result out and observing from (34) that gli(x,xo) = gll(xo,x),
Eiz(x’xo) = '312("0”‘)’ $21(%,%5) = =85, (%3, %), 3a2(%,%5) = 8aa(x, x) yields
Identities 1, 2, 3, 4 directly [18]. Identity 5 is easily shown from (34a) and
(34d) since Y and Z are symmetric, i.e., g = gt and l{ = Z’t, and the trans-
pose of a sum of matrices is equal to the sum of their transposes [18, 38, 42],

This also shows from (34b) and (34c) that $,2 and §,, are symmetric, i.e.,

t t
$12= 312 2nd 35, = &5, (18]

~

~44.
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Thus the result conforms (symbolically) to the two-conductor case in
which Y and Z are complex scalars instead of matrices. This use of sym-
bolic notation for the square root of a matrix and the matrix hyperbolic func-
tions Cosh and Sinh of course makes sense because it was assumed that the
matrix product Y Z was diagonalizable by the similarity transformation, T.
It is not necessarily true that the matrix product ¥ Z (and also Z Y) will be
diagonalizable by a similarity transformation [41, 42]. If the product is not
diagonalizable, then a similarity transformation may be found to place YZ in
the Jordan Canonical form and this result is found in [47] although numerical
results become more complicated to obtain,

Thus one of the important simplifying assumptions is that Y Z is diago-
nalizable by a similarity transformation as in (21), It is often assumed that
Y Z can be diagonalized by a similarity transformation regardless of the
numerical entries in ’X and g and this is,of course;not necessarily true
[41, 42]. To more completely investigate the problem, determine the eigen-
values of EZ as roots of the n-th order complex polynomial in v*[18, 41, 42]

det @2ln-gg> =0 (42)

where det denotes the determinant., If the resulting eigenvalues, v2, are
i

distinct, then diagonalization of Y Z is assured and the n x 1 columns of T =

[—Tl’ IZ’ _——, In]’ _’Z_[_‘.l, are eigenvectors of Y Z satisfying
2 -YZ) =
(210 -x2) 1,2 0 (43)

fori=1, ---, nl18, 41, 42]. But,of course,one does not generally know a’

priori if the eigenvalues will be distinct and considerable computation may
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be required to determine this. If there exist repeated eigenvalues, then it O
may or may not be possible to determine n linearly independent eigenvectors
via (43). If n linearly independent eigenvectors can be found, then diagoné-
lization is assured [18, 41, 42]. It can be shown that the eigenvalues of YZ
are the same as the eigenvalues of ZY (see [42], pp. 101-102). When either
Yor Z are nonsingular, this can be easily shown by forming [18]

det <Y2 },n -X%> = det @ {Vz fln -%X} X-1> = det (5-1 {ya l:n "%X %)z
det 6(2 ln -ZX) since the determinant of a product of square matrices is

~

equal to the product of their determinants and det (X) det(¥‘1> =

det (Z'1> det (Z) = 1. Also one can form (43) as X(yi2 ,ln '%X)Q_l ’_Ti)z

0

0, and z-1 (v 1, -ZY)NZT,) =

0, so that if Y is nonsingular then each of
~n ~ o~ ~ - .n.—l ~

the eigenvectors of gz is equal to the product of X'l and each of the eigen-
vectors of Xg (within a scalar constant), and if E is nonsingular, then each
of the eigenvectors of gz is equal to the product of g and each of the eigen-
vectors of Xg (within a scalar constant) [18]. These facts can be used to
form the relations in (23), (25) and (32) in terms offg_l{- and its eigenvectors.
When discussing the question of distinct eigenvalues in numerical com-
putation, it is important to consider the question of '"how distinct''., For
example, if two of the eigenvalues are distinct only after the 16-th digit,
then although they are technically distinct, the two eigenvectors from (43)
associated with these two '""almost-distinct'' eigenvalues may be very nearly
collinear causing T to be an ill-conditioned matrix with a very small deter-

minant, i.e., T will be "almost singular''. Thus numerical instabilities

D
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and other associated errors can occur when, for example, computing the
inverse of T, :lj'l, since T may be an ill-conditioned matrix having a very
small dete rminant [49].

This is one of the reasons why determining numerically stable similarity
transformations such as orthogonal or unitary transformations are important
in numerical machine computations[49]. For example, a real, orthogonal
similarity transformation, E, can always be found which will diagonalize a
real, symmetric matrix and E‘l = It where the transpose of a matrix Mis
denoted by {\V/It [41,49]. Also, complex,unitary transformations, I, can
always be found which diagonalize complex matrices which are either hermi-
tian or normal and 3‘1 = T where the complex conjugate transpose of a
matrix M is denoted by M=l< [41,49]. Hermitian matrices satisfy M = I’\V/[* and
normal matrices satisfy (M)(M*) = (M*)(M) [41].

Machine computation of the eigenvalues and eigenvectors of Y Z is not
generally performed by a direct application of (42) and (43). Instead of
directly applying (42) and (43), a more efficient method would be to tranform
Xg with a similarity transformation to some other more convenient form
whose eigenvectors and eigenvalues are related to these of Xg For example
it is known that it is always possible to obtain an nyn complex,similarity tran-
formation, U, which is unitary that will reduce any nyn complex matrix (in

particular XZ) to upper triangular form, i.e., LJ* Egg = M and U* = LJ"I

where M has zeros below the main diagonal [41]. Then since M is similar to

l{g (in the mathematical sense of similarity), the eigenvalues of M which are
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the elements on the main diagonal of M are the same as the eigenvalues of
Y Z T41,49]. A commonly-used algorithm is the QR transformation [49]. The
eigenvectors of Z%, Ei’ are related to the eigenvectors of M, —Si’ by;I‘.1 =
US; where S; is an nyl eigenvector of M associated with the eigenvalue Yie and
corresponds to the eigenvector T, associated with eigenvalue Yiz [41,49]. The
transformation to Hessenberg form is also commonly employed [49].

In addition to the question of the existence of a numerically stable simi-
larity transformation which diagonalizes the matrix product Zg, there is
the problem of recomputing the eigenvalues and eigenvectors at each fre-
quency being considered. Since the matrix product Xg is a function of
frequency, then one is, in general, required to repeat the determination of
the eigenvalues and eigenvectors of this complex-valued matrix product,
Y Z, at each frequency and this can be a very time-consuming task when the
response at a large number of frequencies is desired. There are, however,
certain practical cases where Y Z can bé diagonalized by a numerically
stable transformation and, moreover, for these cases, T is independent of
frequency and need only be computed once. These important cases will now
be discussed.

3.1 Transmission Lines in a Homogeneous Medium

This section will consider the (n+l)-conductor lines in a homogeneous
medium represented in Fig., 2. Although the lines in Fig. 2a and Fig. 2b
can only logically be considered immersed in free space which is considered

lossless, the formulation which will be investigated will assume losses in
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the medium in order that the situation in Fig. 2c may be considered, The
following important relations which are well known in the case of two-con-
ductor lines in a homogeneous medium are shown in Appendix A for the
case of (n+l)-conductor lines in a homogeneous medium which is assumed to

be characterized by y, €, o:

LC=CL=uecl (44a)
LG=GL=uol . (44b)

When the dielectric medium is lossy as in Fig. 2c, the conductivity in (44b)

refers to the effective conductivity as o= og twe'" =we €. tan § and includes

v
the combined losses due to ohmic conductivity, Ogs and dipole relaxation

effects, The loss tangent of the medium is denoted by tan §, is the per-

€v
mittivity of free space and e is the relative dielectric constant, The per-
mittivity, e, refers to the real part of the complex effective permittivity,
loe., e= e, €., and the permeability, M, will typically be that of free space,

Uy+ In addition, since the medium is homogeneous it can also be shown [54]

that C = ¢ K and from (44) it follows that

C=c¢cK (45a)
L=pk! (45D)
G=0K (45¢)

where K is an nXn real, symmetric, positive definite matrix independent of
€(and therefore frequency) and is dependent only upon the cross-sectional
structure of the line (conductor separations and wire radii). The matrix

product Y Z with the relations in (44) and (45) becomes
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YZ=(o+jwe) K Re +ink.) + (Guuo- w?ue) L (46)
and if perfect conductors are assumed, then all n mode velocities and
attenuation constants degenerate into one set, which represents the true
TEM mode of propagation,

If perfect conductors are assumed, i.e., R =L = then from (46)

0,

C ~C n~n

T = l,n and Vig = (jwuo- w?ue) in (21) where 1, is the nyn identity matrix
with ones on the main diagonal and zeros elsewhere. Thus, the matrix

chain parameters for the homogeneous-medium case with (n+l) perfect con-

ductors become from (32)

31,06 = cosh {ylx-x))} 1, (47a)
215(%,%) = - sinh {Y(X-XO)} [Gw/v) L] (47D)
821(x,%5) = - sinh {v(x—xo)}[(jw/v) ]! (47¢)
822(x,%5) = cosh {Y(X-xo)}l,n (474)

where v =/ju)u(o+ jwe) and the characteristic impedance matrix becomes
from (29a)

Z= —_Jud k-1 (48)

= (w/v) L .

For a lossless medium, g =0, v = jwfue and (47) becomes [26]

811 (6, %)) = cos {plx-x)}1, (492)
8,505, %0) = - j sin {glx-x0) }Tu L] (491)
85, (x,3)) = - j sin {g(x-x) }[v L]} (49<)
a2, %0) = cos {alx-x0) 1, (494)

-50-
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where the wave number, 8, is given by = 21/, A= uv/f, v= 1/,/u_g and the
characteristic-impedance matrix is real and becomes '{JC = an:.

If perfect conductors cannot be assumed, then from (46) it is sufficient
to finda T which diagonalizes K (BC + ij’:C), i.e.,

T {KR + oL} T - 42 (50)
where L\,z(‘”) is an nyn diagonal matrix with [L\,e(m)]ii = /\2i (w) and [Az(w)]ij =0
for i #j. The eigenvalues can then be found from (46) and (50) as

V3 = (0 + jwe) AF () +(j uMo - wiue) . (51)
In general, diagonalization as in (50) is not assured since K(R_+ jwaJc) is a
complex matrix with no particular structural proéerties which would be
useful in determining a’ priori whether the matrix is diagonalizable, i.e.,
hermitian or normal,

If one neglects the internal inductance of the conductors, i.e., I,:‘,c =
nrgn’ or neglects the resistance of the conductors, i.e., BC = ngn’ then
numerically stable transformations can be found which diagonalize each of
these cases but not both, i.e., there exists a T such that [13]

T1KR T = 2w{1, - 40, (52)

or there exists a T such that
I K L T = =R = 0.} (53)
but the same T will not necessarily simultaneously diagonalize both. That
this can be done relies only on the fact that K is real, symmetric, positive

definite and that R, and LC are real symmetric [13, 41, 42]. The construc-

tion of a numerically stable transformation, T, which will diagonalize the
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product of avreal, symmetric, positive definite matrix and a real, symmet- O
ric matrix will be shown in Section 3.2 and may be computed very effi- s
ciently with the subroutine NROOT in the IBM Scientific Subroutine Package
(SSP) [50]. Generally for high frequencies, the entries in L. are much less
than the corresponding entries in ’I\_I,and the approximation in (52) would be
relatively accurate [13]. However, in either case, since both Re and rI:.C
are functions of frequency, the transformation matrix, I, and the eigen-
values must be recomputed at each frequency under consideration and this
increases the overall computation time.

There are cases where one can include both resistance and internal
inductance of the conductors and obtain a numerically stable, frequency-
independent transformation. For example, consider Fig. 2a in which all
(n+l) wires are assumed to be identical, In this case, (50) becomes (see (6)
and (7)) ’

(re + jwe.) I—I K {,J;n + Hn} L= A% (w) (54)

where the (n+l) conductors (including the reference wire) have resistance,
r., and internal inductance, Lc, and Ljn is the nyn unit matrix with one's in
every position, i.e., [»gn]ij =1 i,j=1,---,n. Note that even though K and
ﬁn + En} each are symmetric, it is not necessarily true that their product
will be symmetric. Since K is real, symmetric and positive definite and
L.+ LJn} is real, symmetric then, as discussed before, the product can be
diagonalized and NROOT in SSP can be used to perform the reduction [50].

Furthermore, T will be independent of frequency and need be computed ‘ !\
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only once in the frequency response solution and the eigenvalues can be re-
computed very simply at each frequency from (51). Assuming that the n
wires in Fig. 2b and Fig., 2c are identical, then this technique applies since
Un does not appear in (54) because the ground plane and circular shield are
assumed to be perfect conductors. In this case one only needs to diagonal-
ize K which can be accomplished with the subroutine EIGEN in SSP [50] since
5 is real, symmetric,

3,2 Transmission Lines in Inhomogeneous Media

One of the main problems under consideration in this report is the case
of circular wires with circular,dielectric insulation as shown in Fig. 3 which
appear in the form of bundles of closely coupled,dielectric-coated wires.
These commonly occur in electronic systems in the form of densely packed
cable bundles and flat pack or woven cables [51]. The inhomogeneity in the
surrounding medium (free space and insulation dielectric) makes the identi-
ties in (44) no longer true. However, it is always possible to diagonalize
the matrix product X% with a numerically stable transformation, I, when
perfect conductors and dielectrics are considered regardless of the entries

in C and L.

First consider the case where losses are neglected, i.e., G = R.= LC =
nOne The matrix product becomes
YZ=-¢g*CL . (55)

Recall that L and C will be real, symmetric and C will be positive definite

even for this inhomogeneous medium case [39]. Since C is real, symmetrig
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then there always exists an nyn real, orthogonal transformation U such o

that

-1

ulcu=p (56)

where D is an nyn real, diagonal matrix and u-l = ut [41, 49]. Further-
more, since C is positive definite, the eigenvalues of C which are theele-
ments of the diagonal matrix D are all positive, real and nonzero., Thus

one can quite easily (and meaningfully) form the square root of the matrix

D, Dl/z, and write

-1/2 D1/2 1 1/2 1/2 1/2

D u-lcup Ut L -p/“utLup (57)

lc
tg

~

which is real, symmetric. Thus (57) may be diagonalized again by an nxn
real, orthogonal transformation, S, such that

~ ~ ~

and one can identify the transformation matrix T in (21) as

T=U 1/2 g (59)

~ o~ ~

and propagation matrix v? in (21) becomes

The propagation constants become from (60), Vi = jm/\.1 where [Az]ii /\211,
[Az]ij =0, i #j and it is a simple matter to verify that

Thertot, e
The matrix chain parameters for this case are given in (32) and [26] and the
subroutine NROOT in SSP will again perform this type of reduction [50]. If
the real parts of the permittivities of the insulations are independent of fre-

quency (or assumed to be) then this reduction need be performed only once n

and if the real parts of the permittivities vary significantly with frequency, N
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one must recompute I and ya (as well as g) at each frequency. In either
case, T will be real-valued and numerically stable.
In the general case, the matrix product ’Xg becomes
YZ=(G+jwC) (R, +jnL.)) +(G+jwC) (GuL) .  (62)

Even if perfect conductors are assumed, i.e., R

_ - . —
R AI:JC ngn’ diagonaliza

tion of X,Z, would require the diagonalization of the complex matrix jw’g’\lf -
w® CL. However, G in general bears no simple relationship to L, or C such
as in (45) since the fields associated with conduction current or dipole
relaxation losses will be confined to the insulation dielectrics whereas the
fields associated with the real parts of the complex,effective permittivities
of the dielectrics can fringe into the surrounding free space medium, Thus
the diagonalization of Y Z is not assured a priori. If diagonalization is
possible, T would in general be complex and a function of frequency.

If the dielectrics are assumed to be perfect (no ohmic conductivity or
dipole relaxation effects), then assuming all n conductors are identical
(including the reference conductor in Fig. 3a) Y Z becomes for Fig. 3a

YZ=jwlre +juwe) CAy+Uy)-w?CL . (63)
For a real, frequency independent transformation, Z‘, which diagonalizes
X% to exist, it would be required in general that the same T diagonalize
both C (ln + En) and C L. This is, in general, not possible. Even if the
reference conductor is assumed lossless, i.e., En = n,gn in (63) for Fig. 3b

and Fig. 3c, the existence of a real, frequency-independent transformation

which diagonalizes Y Z would imply
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T-1C T = A? (64a)

TleLT =T LT = A2 (64b)
where Af and Ag are nyn diagonal matrices. This would therefore imply
that the same T would diagonalize both C and L and this is generally ndt
possible.

Therefore, the inclusion of losses generally requires that a complex
transformation T be obtained. The existence of a numerically stable trans-
formation is not guaranteed, in general, when losses are included. E’ is
also a function of frequency which requires that it be recomputed at each

frequency which increases the overall computation time.

3.3 Cyclic-Symmetric Matrices

If the n conductors and dielectric insulations are identical and if the
cross-sectional structure of the line exhibits certain physical symmetry
with respect to each of the n conductors and the reference conductor, then
the matrix preduct Xg can be diagonalized a priori with a transformation
matrix, T, which although complex, is independent of frequency even when
lossy conductors and lossy, inhomogeneous media are considered. For
example, if the n conductors are identical with identical dielectrics all of
the same thickness, and are equally spaced with respect to each other, on
a ring symmetrical about the reference wire or are equally spaced with
respect to each other on a ring concentric with the circular-shield reference
conductor as shown in Fig. 8, then l{g is always diagonalizable by a fre-

quency independent transformation T.
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For each of the lines in Fig. 8, Z and Y will quite obviously be of the

form
(2, 2,2, " * Z,2,] Y Y, Y, " T Y, Y,
2,2,2,2, z, Y. Y, Y, Y, Y,
Z,Zg + . - Y, Y, . ..

- cRL T v=[-27%. 0 T ] s

3 * . L] . . Z3 * " Ya
z, . z,2, Y, Y, Y,
Zaza.....zazzzu YEYS..... YsYzYl
- — -

where ["Z']u b Zy, [X]ii A Yy, [%]ij’ [X]lj are defined in (6) and (7).

Matrices with this special structure are cyclic-symmetric matrices and the
general nyn cyclic-symmetric matrix, M, is defined by [M]ij = M| 141
~ ~ l-J

where M.+ =M, M = Mj and indices greater than n and less than 1

jtn j n+2-j
are defined by the convention n+j = j and n+i = i [52, 65]. Because of the
special structure of the matrices, there always exists a transformation, I,
which is independent of frequency and the numerical entries in Z and Y

which will diagonalize both Z and Y, i.e., -1

- -1 2
YT=v2, TT"ZT = and
v2 = yzz Y%— where 'Ygz and YEY are nyn diagonal matrices [1, 5, 52, 65]. The

elements of T which diagonalize any cyclic-symmetric matrix of the form in

(65) are [5, 52, 65]

1 2T 1y
1205 = T /(n (G-1)-1) (66)

where a complex number c with magnitude Cm and angle em is written as

cm!em. T is unitary such that I'l = T* and cyclic-symmetric matrices
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can be shown to be normal matrices, i.e.,. I\N/IIXI* = AN4>?<M, since it can be
shown that the product of any two cyclic-symmetric matrices of the same
order commute under multiplication [52]. The eigenvalues, of the product
of two cyclic-symmetric matrices of the form in (65), Xg, can be shown to
be [5, 52]

_[n 2m . [n 2n :
-8, (5 e e i, [Fen s} e

where [E]Ip and [Y], are the elements in the first row and p-th column of

~"1p
% and X in (65) respectively, p=l,---,n.

Thus if the line consists ;Df n identical conductors with identical insula-
tions and thicknesses and exhibits certain cross-sectional symmetry, then
the matrix product Xg ‘can always be diagonalized regardless of the numeri-
cal entries in Y and ?, and the transformation matrix is independent of fre-
quency. Neither the transformation matrix T, I"l nor the eigenvalues need
be computed since they are known d priori through (66), (67) and I'l = T,

Cyclic-symmetric matrices are obviously quite desirable from a com-
putational standpoint and have been used in modeling cable bundles under
the assumption that the conductors are arranged symmetrically about the
axis of an overall shield or occupy all possible positions within the shield
randomly [52], Special cases of cyclic-symmetric matrices are encountered
throughout the power transmission literature under the assumption that the
power line is balanced or completely transposed and the transformation
matrix is often referred to as a symmetrical-component transformation

(6, 13].
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This method cannot generally be applied when the reference conductor
is an infinite ground plane since the special structures of Y and Z in (65)
will not result unless the system of n wires and the n images used to re-
place the ground plane possess the required symmetry. However, for the
case of a three-conductor line (n=2) consisting of two identical wires both
at the same height above a ground plane, i.e., ¥ =T o, t,=ta, & = €5,
0y = Oz, hy = hy in Fig. 2b and Fig. 3b, then Y and Z will be cyclic-symmet-
ric regardless of the wire spacing, d, ,, or any form of transposition. In
this case, the elements of the eigenvectors become realas T,, = 1//2_,—
Tz, = 1/‘/2—,- T,p5= l/ﬁ-, Taz = -1//2—and the eigenvalues are easily shown
tobe vy = (Z +Z WY +Y_), v3=(Z- 2 )Y - Y _)where Z="12],, =

[g]gay Zm = [%]12 = [%]31 and Y = [X]'j,l = [X]ZE’ Ym = [X]iP = [2]21'
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O IV. INCORPORATING THE TERMINATION NETWORKS

Note that in (23) and (25), the only unknowns are the Z2n undetermined
constants in I_+ and I 7. These will be determined by the boundary conditions
(termination networks) at x = 0 and x = & for a line of total length § (sce
Figure 9). The incorporation of the termination-networks can consume con-
siderable computation time for large numbers of mutually coupled conductors
and this necessary step in the total problem solution is generally dismissed
as a trivial, straightforward problem. It is straightforward (conceptually)
but is certainly not trivial when a large number of mutually coupled con-
ductors are involved,

For two-conductor lines, the terminations (which are assumed fo be
linear) are represented by Thevenin equivalents as shown in Fig. 6. The
terminal equations become
) V(0) = Vo - Z1(0) (68a)

V() =V +Z 1S (68b)

£ £

where V, and VS are equivalent open-circuit port voltages with respect to
the reference conductor,

For multiconductor lines, the termination-networks are similarly con-
sidered to be linear n-ports and are characterizable by ""Generalized

Thevenin Equivalents'' as

= - Z
Y(0) = ¥, - Z, 10) (69a)
X(S) = XS, + g&i(‘s) (69b)

(-
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where V, and XS are nyl complex-valued vectors of equivalent open-circuit
port excitation voltages with respect to the reference conductor and ZO and
Zg are nyn complex-valued, symmetric matrices. The linear n ports can
quite obviously be characterized by (69) and [l/’o].1 = VOi’ [—Yéi]i = V£i as shown
in Fig. 10. For arbitrary termination-networks, the entries in (69) can be
quite easily obtained by treating V(0) and V(§) as independent voltage sources
and writing the loop current equations of the networks, The currents I(0) and
_I(£) will comprise subsets of the loop currents for the networks and the

remaining loop currents can be eliminated to yield (69). If the i-th conduc-

tor is connected to the reference conductor only through impedances ZOi and

Zﬁ’ then the entries in go and 55: are easily obtained as [Z‘O]ii = ZOi’ [go].lj
=0, [g&]i.1 = Zﬁ, [g£]ij =0 for i,j=1,---,n and i#j.

Combining (23), (25) and (69) one can obtain straightforwardly [26, 48]

foz-ytzd f fprertzy ] %
\ . ~ = (70)
{g T+ylT yjeist zoroylT y}e‘l‘s - v
L~ ~ 2 S R L § B -£1 .
1 -1 1

Since I_ YZT=v?, then ¥

~

T v in (70) can be replaced by Z T I
Once this set of 2n equations in the 2n unknowns, £+ and I 7, are solved (by
Gaussian elimination and back substitution, for example, [49]) then the
response, _\_f(x) and_I(x), at any point on the line can be determined from (23)

and (25). For two-conductor lines, the matrices and vectors in (70) become

scalars and E becomes 1 (see (13) and (14)).

It is also possible to indirectly solve for the response via the matrix
chain parameters. With x = £ and Xq = 0 in‘(31) and (32) and using (69) one
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can straightforwardly obtain [26, 48]

[Zg 833 (9) - Zg 801 (9) Zg - 8,0(8) +2,, (9 Zo11(0) = (231 () - Zg 8ay (D] Vp - Vg (71a)
1(8) = 854 (8) V) +[252(8) - 22, (8) 2] 1(0) (71b)

where 3(£, 0) A 8(£). Vx) and I(x) can be obtained for any x from (8) with

1(0) from the solution of (71a) and V(0) determined from (69a2). Here one

need only solve n equations in n unknowns, equation (71a), as opposed to 2n

equations in 2n unknowns in (70). However, certain matrix multiplications

are required in forming both (70) and (71).

Using the matrix chain parameter identities in(40), it can be shown

that (71) may be written in an alternate form [18]

$., (5) Zo - gza(s:)} 1, 1(0) i 35, (DY, 2
Lo {00 Zo- B @Y 1O)] |- 01 (03

which has a highly sparse (large number of zero elements) coefficient
matrix with 2(n® - n) of the 4n® elements identically zero. Equation (72)

can also be solved explicitly for 1(0) and I(£) as [18]

[ -{ 201 (9 Zg- 32 (9H22,(9 20 - 309} 1100) = - 35, (0 Vg (73a)
| o2 9 Z- 1.0} 1,0
19 = - {5,002, - L,.0}10) + 3, Y, . (73b)

The advantage of the formulation in (73) as opposed to (71) is that only two
of the matrix chain parameters, §,, and §,5, need be determined in solving
for 1(0) and 1(£) via (73) (see (32)).

The most efficient method of solving n linear, algebraic equations inn

unknowns is Gaussian elimination with back substitution (LU decomposition)
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which requires (n®/3 + n® - n/3) operations (multiplications and divisions) O
or on the ordef of n®/3 for large'n [49]. Thus solving (70) instead of (71a)
or (73a) requires on the order of (2n)3/3 or 8 times the number of operations
and the complete solution of the problem requires, at a minimum, -the solu-
tion of n complex equations in n unknowns. The impact of this requirement
on the overall solution times for large cable bundles can be illustrated as
follows, The time.required to solve 50 complex equations with a standard
Gaussian elimination subroutine with full pivoting (DGELG in SSP [50] which
was converted for complex arithmetic) was 12,6 seconds on an IBM 360 /65
computer. So if it is required to solve for 100 frequencies, then the overall
comput&}tion time would Be, at a minimum, on the order of 21 minutes. It
is not uncommeon to find 100 conductors in cable bundles on modern avionics
systems and since the number of operations required increases on the order
of n®, then solutions for 100 conductors and 100 frequencies would require, »
at a minimum, 2.8 hours! Of course, additional time will be required for
matrix multiplications (as well as the computation of Y and 5 and diagonali-
zation of” Xg) as indicated in (70), (71), (72) and (73). This could be quite
substantial since n® multiplications are required to multiply two 'full" nyn
matrices which is precisely the number of operations required to invert an
nyn matrix which is "full" [49],

Using the matrix chain parameter formulation in (71) and (7.3) has an
additional advantage over (70). It allows a straightforward incorporation of

incident electromagnetic fields into the solution. Consider (4) and (8) where !‘ )
—
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the effects of an incident field are included as distributed sources along the

line, Xs(x) and_[s(x). From (8) and (31), define equivalent sources

<
&
I

£
g {311 (‘S”;\() -YS(;() + gl g(‘g: )A()_I_s(;c)} d}A( (746,)

,_.
—
ta
S
1l

Ss{sm(&,?c) VoK) + 8p(8, 20 I (M fdk . (74b)
~0

A
One can modify (71) and (73) to include these sources by simply adding_IS(£)

A
to the right-hand side of (71b) and (73b) and replacing XJS with _Y£- _\_’S(S) +

A .
Z£_I.s(£) on the right-hand side of (7la) and (73a)., This is quite obvious

since (8) shows that for x = §£ and x0 =0, _I_(j:) is increased by_fs(i) and l/’(i)
is to be increased by lAfs(‘S:) over the case without incident field illumination,
From the boundary conditions (69b), XS:: M) - %é:_l(él), then l/’son the right -
hand side of (7la) and (73a) is to be decreased bylA/S(S) - ELI_\I_S(S,) and I(£) is
to be increased byis(£) in (71b) and (73b). Thus equations (71) and (73) are

quite easily modified to consider incident fields and the final equations

become [26]

[Zg 822(8) - Z¢ 85,(8) Zj - & o(8) + 814(8) Zo) 1(0) = (75a)

[311(£) - %5: 221(‘5:)] Xo - X;

A A
+V (80 - Zg 1(9)

A
I(9) = 8,,(9) [822(8) - 85,(9) 2,11(0) +1(8) (75b)

vV 4+
-0
or [18]

(1, - {221(43) Zg- Eazw)}{gu(&) Zy - §g<£)}]_1(0) = - 3,,(8) Vg (76a)

- {221(&) Zl£ - 22 2(5:)} ga 1(é:) XO

b7



A A
t 22,(8) Xs(‘s) - ,?,21“:) g£_15(£)

1) = 8ay(9) Vg + (82009 - 824(9) Zo]10) +1(0) . (76b)
A more detailed discussion of efficient incorporation of the boundary condi-
tions is given in [26].

The equations in (75) become particularly simple for the multiconductor
line in Fig. 2a consisting of (n+l) perfectly-conducting wires in free space
illuminated by an incident electromagnetic field. It is shown in Appendix
C that (75) reduces for the case of Fig. 2a with incident field illumination

to

[cos(BE) {Z'O + g£}+ j sin(BL) {EC + %51 EE}I go}]_I(O) = (772)

-Vg t [j sin(gEL) Ze ZE:]' + cos(BS)}Jn] Y
(inc)

£
+ QO {lcos (a(g- 0 1_ + jsin(a(e- 1) zg Z E, (B} at

(inc) -1, [(inc
- E(5) + {[cos(g.&)’ln + jsin(ps) Zg Z ] E(0)

-1

I(£) = - jsin(Bg) Z¢ [cos(BL) 1, + jsin(BS) g&l Z1100) (77b)

XO ' (inc)
- £
-ize SO {sintae- 2 E, B} ot
- (inc
-izg {sin(es) _gt(O)}

(inc)  (inc) (inc)
where :E_z(x), ;E_t(s) and Et(O) are nyl column vectors with the entries in the

i-th rows given by

(inc) inc (inc)
[El(x)]i = ﬁzi(&m’ x) - E’zi(o’ x) (77¢c)
(inc d.n (inc)
[Et(s:)ﬁ. = CO8 &, 9 de (774)
1 t. 1 1

. i
0
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(

(inc)

(lnc)
[E (0)], = g 10 RERUES (77e)
—t 1 o

E(:‘an inc) ST
for i=l,---,n. 4 d_o, x) and . (0, x) are the components of the incident
1 i
electric field intensity vector in the longitudinal (x) direction along the
inc) é é

axis of wire i and wire 0 respectively. The terms E (g T 0) and 0 £
are the transverse components (lying in the vy, z plane) of the incident elec-
tric field intensity vector at x = 0 and x = £ respectively along the contour
gi between wire i and wire 0. The contour Ei is a straight-line path between
wire i and wire 0 and perpendicular to these wires, The entries g and Z -

are the wave number and characteristic-impedance matrix respectively
with 8 = 2w /), A = V/f, v = 1// €, and Z = yL. The corresponding solu-

tion for Fig. 2b is also discussed in Appendix C,

4,1 Lumped-Circuit Iterative Approximations

In deriving (4), "electrically short' Ax sections of the line were con-
sidered and since the line was assumed to be uniform, a1‘1 Ax sections will
be identical. Requiring that the Ax sections be 'electrically short" for all
frequencies, the transmission line equations in (4) are obtained in the limit
as Ax +0, Alternately, one can construct lumped-circuit models for the
line consiéting of N identical sections of length £/N so that each of the sec-
tions would in itself be '"electrically short'", e.g., the section would be no
more than, for example, 1/10 of a wavelength long for the frequency under
consideration. Note that since £/N is assumed to be ''electrically short"

and the cross-sectional dimensions of the line are assumed to be ''electri-
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cally small" so that transmission line theory applies, then a lumped-circuit
representation of this portion of the line is valid. Perhaps the more common o
models of the transmission line are the lumped-circuit iterative approxima-
tions which use this philosophy. Models are shown for (n+l)-conductor lines
in Figure 11 as the lumped I' model, lumped'-l model, lumped Pi (1) model
and lumped Tee model, The lumped'-’ section is similar to the circuit in
Figure 7 but with Ax replaced by :/N. The lumped T section is the opposite,
i. e., the capacitance and conductance elements appearing at the end of the
lumpedr-l section appear at the beginning of the lumped T section, The lumped
Pi section is similar to the lumped'-l section but has half the values of the
capacitance and conductance parameters placed at the beginning and at the
end of the section. The lumped Tee section is again similar to the lumped
'_l section but has half the values of resistance and inductance (self and
mutual) elements placed at the beginning and at the end of the section. The
lumped T mpdel has been used in the program STRAP [36]; the lumped Pi
model has been used in the program IVEMCAP [34], and lumped Pi and Tee
models have been used in power transmission line studies [9].

The 2ny 2n chain parameter matrix of a section of line of length £/N
characterized by any of the lumped iterative approximations can easily be
shown in terms of ,% and X to be (see Appendix D)

1.} {-zem}

8 = {-X(S/N)} {ln s Xg(S/N)E} (Lumped")) (78a)

D
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(-

s zvemd) zem)

g =
frem} g}

{-ze/m}

(Lumped T') (78D)

[ {ln +1/2 gg(;/N)z}
(Lumped Pi) (78c)

o eyem - 14 Yz yem} {ln v/ Xg(x/N)E}J

{;n +1/2 gg(,s:/N)z} {-~Z(£/N) -1/4 ggg(x/N)a}
(Lumped Tee) (78d)

{1, +1/2 Y Z(£/m%} 1.

{-xem}

These models are referred to as lumped-circuit iterative approximations
since the overall matrix chain parameters for the line of length £ and N

. . . . N . .
sections (all of the same type) is quite obviously § = (Qk) , i.e., multiply
the chain parameter matrices in (78) together N times, since the chain para- ‘

meters for each section only relate the voltages and currents at the two ends

of each section as

Y (‘IIEI'“") _ 2k11 gkﬁ X<-%L£>-l (79)
1E3) |oer b 1059
2k

where each submatrix 8 ,,, 8,2, ¥koy» 3kss 18 nyn and corresponds to
submatrices in (78) and k =1, 2, ---, N,

Generally an N section lumped-circuit iterative approximation is solved
(the boundary conditions or termination-networks are incorporated) as
strictly a lumped, electrical circuits problem with circuit analysis programs

such as ECAP, SCEPTRE, TRAFFIC, etc. [53], The node-voltage equations
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or loop-current equations of the network of N sections with termination-
networks are written and solved via these programs, It is possible to write,
for example, the node-voltage equations directly from the matrix chain
parameters without employing a circuit diagram, Using (69) and (79), one

can straightforwardly obtain (see Appendix D)

Y, o n2nccceoe o0l o) B2 XOYO
A .
o Y . ° .
n~m . « .
. : . . L. . = ) (80)
: . . .o i .
[ SR N1 '
: ok X | G [
_n—QJn. ' o-gn flvn XN+1J _-_-Y-(S) gklz XSYSJ
where 1
X, = Z, (81a)
Yo= 23! © (8lb)
Y= {Q,k:.s X - iku} (81c)
v =- {s o
~ 7 13k + 2k1a ikaz ,?,kw (81d)
_ -1
INHL = {Eklz Y8 Bas Skez B (81e)
In deriving (80) from (69) and (79), use is made of the relation
-1 -1
gkza ,?;1(12 ,gk]_]_ - 21(21 = J(le (82)

which one can readily verify from the partitioned forms of the chain
parameters in (78). In fact, this relationship can be shown to be true in

general for any lumped, linear, reciprocal 2n-port characterized by the
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chain parameter matrix in (79) by writing (79) from the nodal-admittance -

matrix characterizing the 2n-port and invoking symmetry of this nodal

admittance matrix via reciprocity.

In (78a), (78b) and (78¢c), g]:llg = - (N/9) 27 and in (784) ¥iy,= {1 +
1/4 Xg(.ﬁ/N)z}'l {-(N/&)g"l}. Therefore when writing the node-voltage
equations in this fashion, it appears that the inverse of the per-unit-length
impedance matrix, Z, is réquired. The inverse of Z is needed when

writing node-voltage equations strictly from a circuit diagram when mutual

inductances are present [53]. However, one can show from (78) that

-1 t
gk12 Ek?,z 31(12 = ,gkgg (83)
A
which can be used in forming Y and YN+1 in (80) as
o t
Y=- {gku + ,?,kzz} (84a)
Yaoe1 = 1Bae Yoo & (84b)
Yol ™ e Yoo Sxeep |

Thus the inverse of 5 is not needed when writing the node-voltage equations
in this fashion as in (80).

It should be noted that the formulation in (80) provides an additional
method of obtaining the exact, distributed-parameter solution for V(0) and

V (£). For example, taking N=l and using the distributed matrix chain

parameters ’gu, giz, 221, and §,, from (31) and (32) one obtains a set of
2n equations in the 2n unknowns, V(0) and V(£), which can be solved for the

exact, distributed-parameter solution instead of using (70), (71), (72) or (73).

1

For the distributed case, one can also show %Q @;12 8., -85, = @;2 (see (40)).

In addition, one can show that 8,0 %50 Q;,‘} = §,, (see (40)) and this can be

~
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used in forming YN+1 in (81). Thus, for the distributed case, (80) becomes

-1 -1
{8920 - 49} *n YOI [49 % Yo 85)
-1 1
1, {goz, - zgag)} v(s) ¥ % v

and (85) may be explicitly solved for _\_7(0) and l/'(j:) as was done in obtaining
(73) from (72). Note the similarity of (85) to (72),

An important consideration in using the lumped-circuit iterative approxi-
mations is that to obtain correlation with the distributed-parameter formula-
tion described by (4) (which these models are intended to approximate), each
section must be electrically short and therefore the number of sections used
to represent the line must be increased for increasing frequency. For an
(n+l)-conductor line with N sections, (N+l)n simultaneous, complex equations
in terms of the node voltages, V(0), V(£/N),---, V(£) must be solved at
each frequency as is evident from (80), For N>I1, i.e., using more than one
section to represent the entire line, the equations become sparse (large
number of zero entries) which is clear from (80) and the fact that each
section interacts directly with only its two neighboring sections, This high
degree of sparsity can be used to drastically reduce the storage and compu-
tation times over that which would be required if the nodal-admittance
matrix were treated as ''full'" and no advantage taken of the zero entries,
These considerations are implemented in the program, TRAFFIC [53].

Even if only one section were used to represent the entire line, i.e., N=1,
(80) shows that 2n complex equations in 2n unknowns must be solved at each

frequency. However, these equations can be solved explicitly for V(0) or
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V(£) so that for N=1 a minimum of n simultaneous equations in n unknowns,
V(0) or V(£) need be solved. In obtaining the solution of the distributed-
parameter, transmission line equations directly rather than approximating
the line with lumped-circuit iterative models, one is also required to solve
2n simultaneous equations in 2n unknowns through a solution of (70), (72) or
(85) or n equations in n unknowns through a solution of (71a) or (73a) and the
number of simultaheous equations which must be solved need not be
increased with increasing frequency as is required with the lumped-circuit
iterative approximations,

Incident fields may also be incorporated into the solution via the lumped-

circuit iterative approximations., Define from (8)

V(kE/N) (k-1)§ X((k-l)s/N) k&/N Vo (%)
. = 3(k&/N, /N) k1) $ + R 3 (%4/N, %) R dx
L(kE/N) I /N) (k-1)£/N I,(%)
(86)

N v P ka/N v, (%]

= §k +

~ k-1) 3

1V kene/N L@ [ 9%

k-1
( )S/N) :gk for elec-

for k=1, 2,---, N since it is assumed that 3 (k&/N,
trically short sections. Thus, for electrically short sections, the lumped -~
circuit iterative models can logically be modified to include incident fields
by adding appropriate voltage and current sources to the beginning of each
section as indicated by (86). The node-voltage equations in (80) will be

modified by adding appropriate additional forcing functions to the right-hand

side vector and the coefficient matrix will remain unchanged,
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The question of convergence of the lumped-circuit iterative approxi-
mations to the distributed-parameter solution is difficult to answer quanti-
tatively., A preliminary indication can be obtained by observing the con-
vergence of the overall chain parameter matrix for an N section represen-

N . . . - ) -
tation, Sk’ to the distributed-parameter chain matrix (or state transition
matrix), §. The state transition matrix §(£) (equations (31), (32)and (33)

with x = £ and Xq = 0) can be expanded into an absolutely convergent

infinite series as shown in (34) as

(87)
~1'n n~n an:n ',g £ AZHX n,gn £2 nfgn ",\Z,,X,g g3
&(8) = + T + STt 3T + -
n’n Lln -Y 2O ndn Y2 -YZY 0,

Expanding the chain parameter matrices for the lumped iterative approxi-

mations in (78) one obtains for the lumped '-' model:

in ndn n~n £ ndn nSn
~ 0 1 -Y 0 0 YZ '
n~n ~n ~ n~n n~n ~~
and for the lumped I' model:
P - r - F—Z —
,\]211 n'gn n,gn -'Z ~ ,X n~0n
< g2
3, = + <+ ) (88b)
hl.lf(\)ln fln_l _-X nglL ngn n,gn_J
and for the lumped Pi model:
0 0. -2 ZY 0 0 0 (88c)
~Nn n~n n~n ~ ~ ~ h~n n~n ~
3y + £+ 17222 + T a?
nln In -Y n,g ngn Yz -X%X o

and for the lumped Tee model:
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So%

1 nn non -Z zy nOn g ndn -ZYz £
5. -|~" | <y 1/2(2)2 + 1/4(29)°
o y oM 0 Y Z N 0 0 N
n~n ~n n (884)

Note that for N =1, i.e., one section is used to represent the entire line,
the lumped Pi and lumped Tee models appear to be better appr_oxiniations to
the distributed solution, g(,&‘) in (87) than do the lumped I and lumped '—l
models in the sense that the first three terms of (88c) and (88d) avre identi-
cal with the first three terms of §(£) and the fourth term is only partially
the fourth term in R(S,). In the expansions (88a) and (88b), only the first
two terms agree with the first two terms of g(&) and the third term partially
agrees with the third term in 3(&).

There are certain other lumped approximations which at first glance
seem to be not included in this discussion but are, in reality, versions of
lumped-circuit iterative models using only one section to represent the
entire line and with certain circuit elements neglected [35]. In addition,
with these approximations the capacitive and inductive coupling are com-
puted independently of each other and added together which is generally only

valid for weakly-coupled lines (see reference [30], pp. 287-291).
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V. THE PER-UNIT-LENGTH PARAMETERS

Derivations of the per-unit-length parameters of internal resistance and
internal self inductance, i.e., the entries in R. and LJC, which account for
skin effect associated with imperfect conductors are well known for solid,
round-wire conductors and are found in numerous texts [2, 3, 30]. These
internal parameters are derived by assuming that the currents internal to
the conductors are symmetric with respect to the centers of the conductors,
However, for closely-spaced conductors, this assumption may not be valid
since proximity effect can alter the internal current distributions (see
reference [40], Chapter 9).

The derivations of the per-unit-length external parameters, i.e., the
entries in G, L and C, assume all (n+l) conductors are perfect conductors
and are more involved especially for close conductor spacings. These
parameters generally only exist in closed form for the simple cases of two-
conductor lines in homogeneous media in Fig. 4 consisting of two bare wires
in an infinite, homogeneous medium in Fig. 4a (reference [55], pp. 133-136),
one bare wire in an infinite homogeneous medium above an infinite ground
plane in Fig. 4b (reference [55], pp. 183-185), and one wire within a circu-
lar shield which is homogeneously filled with a dielectric in Fig. 4c (ref-
erence [55], pp. 125-133),

Having accurate values for the entries in the per-unit-length parameter
matrices, especially the external inductance and capacitance matrices L and

C, is obviously important in obtaining accurate solutions and the per-unit -
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length parameters must be obtained even when using lumped-circuit jtera-
tive approximations discussed in Section 4.1. Tt is important to remember
that with the assumption of TEM mode propagation on the line, the trans-
verse fields at each x along the line satisfy a static distribution and there-
fore the per-unit-length external parameters, i.e., entries in Sx, E and S,
are obtained as the solution to a two-dimensional static fields problem [39].
This also is implied in the inhomogeneous medium case under the ''quasi-

TEM mode' assumption,

5.1 The Per-Unit-Length External Parameters for Lines in a Homogeneous
Medium

The per-unit-length parameter matrices, S’ ’I: and 9 for lines immers-
ed in a homogeneous medium possess the important properties given in (44),
LC=CL-= ue’lvn and AI:.S} = S’L" = uoLn. It can be shown [54] that, for a
homogeneous medium, each of these matrices is related to an nyn matrix,

K, which is independent of the parameters of the medium and dependent

only on the cross-sectional structure of the line as

C-ex (892)
G =0K-= (o/e) c (89b)
L=uK'-pec! . | (89¢)

For two-conductor lines in a homogeneous medium, the per-unit-length
parameters in the transmission line equations in (1) are obtainable, exactly
in closed form even for close conductor spacings where proximity effect
produces a nonuniform charge distribution around the conductor peripheries
[55], The matrix 5 in (89) becomes a scalar K and the parameters in (1)
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become ¢c = e¢K, g = 0K, £= uK'l.

For two wires in a homogeneous medium in Fig. 4a, the per-unit-length

capacitance becomes [56]

2
c = re . (90)

cosh™? ,:(da - r:vl- rsvo)/(Z Tl Two )]

For widely-separated conductors, (90) can be approximated by [3]

2T e

cz 77 ) (91)
mE )
wl w0
where gn is the natural logarithm, For identical wires withr_, =r =r ,
wl w0 w

(91) yields less than 5% error for (d/rw) >5 [55,56]. For the case of one
wire in a homogeneous medium above an infinite ground plane as in Fig. 4b,
the per-unit-length capacitance becomes [55]

c = _2me (92)
cosh™?! (h/r_)

and for (Zh/rW) > 5, (92) can be approximated by [55]

c g ZTI'e (93)

n (2h7rwi

For the case of one wire within and centered on the axis of a circular shield
which is homogeneously filled with a dielectric as in Fig. 4c, the per-unit-

length capacitance becomes [55]

- 2me
c=s — = . (94)
gn (ro/ry)
In all of the above cases, ¢ = ¢ Kand K is easily identified. In addition,

-1
=u, K "and g = cK. For Fig. 4a and Fig. 4b, ¢= e, and 0= 0,
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The parameters for lines consisting of more than two conductors are,
in general, not obtainable in closed form for closely-spaced conductors and
numerical approximations must be used. These techniques generally fall
into two classes; the method-of-moments techniques [56-62, 22, 66-68] or
imaging techniques [63, 64, 65]. A particularly successfulytechnique is the
use of harmonic expansion functions to describe the charge distribution
around the conductor peripheries [56,57].

Consider the system of (n+l) bare wires in Fig., 2a. With the moment
method using harmonic expansion functions, the free-charge distribution,
;s around the cross-sectional perimeter of the i-th conductor per unit of
length in the x direction is described as a Fourier series with respect to a

cylindrical coordinate system at the center of the i-th conductor as shown in

Fig. 12a, i.e.,

P; (9.1) =a., + m§1 ajy cos rne.1 + rnz=1 birn sin mei (95)
i=0,1,-~-,n.
The absolute potential} qu (rp, 8 ), atan arbitrary point P located at a

radius rp and angle ep shown in Fig. 12a due to this charge distribution over

the i-th isolated conductor is [56,57]

1 2m |
tp(rpr 8)) = - 7o {ajo SO 1(9,) d6; (96)
Ai 2m Bi 2 .
+rr§:1 aim SO cos (m@;) 1(6;) d6; +rr§:1 b SO sin(m@;) 1(8;) dei}

1. The term "absolute potential'' refers to the potential with respect to infin-
ity and the reference potential terms are omitted in (96). This is valid
for a system with zero net charge and is demonstrated in Appendix E.
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Figure 12, The geometry of the charge distribution problem.
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where [(6;) = &n {,?) bl

Pl Arp o €08 (6; - epl}rwi’ These integrals

can be evaluated in closed form yielding |56, 57] (Sece Appendix E )

(m+1)
o) Ty 4n (rp) . A£ /rwl cos(m@_) ,
= ~a. R, a. c
¢p(1‘p, b 2i0 e Y, m=] im \ Zmer > (97)
(m+1) |
B; i sin(m6 )
+ v b, f P
m=l  im \ 2me r™ Ji .
p

Associated with each conductor in Fig. 2a there are A.1 + B, + 1 un-

a b in (95). These unknowns

knowns; the expansion coefficients a,_, a, , b,
i0 im" im

will be determined by enforcing the boundary conditions that each conductor

(including the reference) is at an absolute potential ®;, 1=0, l,---n. A total
n

of 'Zo(Ai + B_1 + 1) match points will be chosen on the (n+l) conductors at
1:

which the potential due to all charge distributions in the system (including

the charge distribution on the conductor associated with the match point)
n

will be enforced. This results in a set of by (Ai + Bi +1) equations in
i=0

the same number of unknowns and can be written as [56,57]

Pp=¢ (98)

n :
where p is a vector of length _ZO(A.1 + B.1 + 1) containing all of the unknown
- i= -

expansion coefficients 2i00 3;m’ birn and ¢ is a vector of the assumed con-

ductor potentials as
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T m e ]
2i0 ?;
%i1 %

2= | 2, o =| o (99)

b
Jil ?;
biBi 4,

- " . J

where qu is the potential of the j-th conductor at each of the chosen match

points on that conductor surface. Inverting P in (98), one may write

p=P1 g (100)

From the solution in (100) for the expansion coefficients, the total free
charge on the i-th conductor is [56,57]

2m
P1(6;) Ti 96 (1o1)

9

2m Tori aiO

I

and an (n+l) y (n+l) '"generalized'' capacitance matrix é’ may be written as

o R':oo C u C %

et om
* = Clo 11 4 . (102)
a4 Cno. Cnn 6n .

In (102), note that [C]lJ 2 Cij =q, if the excitations are chosen as ¢j =

with all other potentials chosen zero, i.e., d’p =0,p #j, and i, j=0,1,~--,n.

-88-

D -



€

However, from (101), q; = 21 r, . a.ge Therefore, to find C’ij simply add

all elements of E‘l in (100) which are in the row associated with a,. and the

i0

columns associated with (bj and multiply the result by 2w i'w_l [56,57]. From
energy considerations, one can show that (: is symmetric, i.e., éij = C_b
[58].

The nyn external capacitance matrix, G, used in the transmission line
equations in (4), (6) and (7) where potentials V., i=zl,---,n are defined with
respect to the zero-th conductor chusen as reference instead of absolute
potentials, d’j’ can 4then be obtained directly fromg . To do this, note

that choosing the zero-th conductor as reference, V. = (3, - ¢g)» i=l,---,n

and the transmission line capacitance matrix C becomes

d Cy =777 C1in Vi
. = . . (103)
9n Cnl ----- Can Vn
where [C]lJ A C for i, j=1,---, n.
Since the system is electrically neutral, we have
a3 4
9 7 - El % (104)
and the potentials V; with respect to the reference conductor become
V. = (8, - <1>0) . (105)

Thus (102) can be written as

n

- 5 %t (."’Olv1+(f’ v, +---+C Vi *

=C°1 v, +(.b v, +-_-+C‘ n Vot L

[
»

n
C v+ Co v, st E v, +(m>?=0(:nm)¢0 .

||~1:3

IIMU

" Con)
é (106)
ltn

ses 0
—

o]
=]
1}
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Adding all equations in (106) together we obtain
0‘( C )V +<rnz V +--+<rnZ C )V (107)
n n n
¥ <mz=0 éOrn ¥ rnz=:0 Clm A mZ=.O Cnm> ¢O

or

n n
kzl [(mréoemk) Vk]
b9 = - n n ¢ (108)

;zzo [mEO Cam]

Substituting (108) into the last n equations in (106) and arranging these last n
equations in the form of (103) yields the entries in the per-unit-length trans-

mission line capacitance matrix C as

=c.=C. -<m§0¢im) (mz:(’cmj> (109)
ij ij ij ISI ( erI é )

£=0 \m=0 " gm

) Cij [zré%o (m?:o szﬂ ) <m§=OCim> (mzocmj)
(B wio € 4m)

2=0 m-=0

Note that the denominator of (109) is simply the sum of all the elements of

C . The numerator of (109) can be written as

CIJ [1 Z0 m=0 pm] ) Cij (mgio émj>‘ Cij (m%:oéim) (110)

m#i m#j
) (mrzlzoéim) (mlzlz'oémj>- Cijz
m#j m#i
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n n n n

- ¥ 7

- Cij [1;0 mgo c gm mZO ij - m‘lo Cim 'tij_]
m#i m#j

— - _

sum of all terms iné except those in the i-th

row and j-th column.

- (rr?ioélm> <m1;=0¢m3) .

m#]j m#i

| & -~ __J \ — -
sum of all sum of all
terms in terms in the

the i-th j-th column of &
row of Q except eij
except cij

Therefore, Cij can be written as

) Cij(MO ~iM- M ‘Gij> - iM M (111)
Cij = My

MO = Sum of all terms inC
M = Sum of all terms in the i-th row oféexcept C'ij

Sum of all terms in the j-th column ofgexcept Cij .

<

For two conductors (n=1) (1l11) becomes

Cll cbO - é01610

Coo +Co1 +Cpo +C€yy
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This result for n=1l is also obtained in reference (58], pp. 211-213.

This numerical technique can also be applied to the systems in Fig. 2b
by replacing tﬁe ground plane with the conductor images having equal but
opposite charge distributions. As an example, consider the system of n
bare wires above an infinite ground plane in Fig. 2b. Replacing the ground
plane with images results in Fig. 13. Note that the orientation for 6, on the
image of the i-th conductor is the same as the orientation for ; on the i-th
conductor however, the charge distribution on the i-th conductor image is
-p; (-6.1). Also, note that the potential of the i-th image conductor is taken
to be -¢,. By symmetry and the use of image distributions, the voltage of
the i-th conductor with respect to the ground plane, Vi’ is equal to d)i since
the potential difference between the i-th conductor and its image is ¢; - (-a,)=
2¢;. Therefore, we only need to enforce the potential ¢, at match points on
the n conductors above the ground plane due to all charge distributions in the
system (those on the n wires and on the n image wires), Thus a set of
El (Ai + B.1 + 1) equations can be written as in (98). However, these equa-
tions will differ from those in (98) in that the expansion coefficients for the
zero-th conductor (the ground plane), aOO’ 20m’ bOm’ will not be included
in the vector P and the potentials ¢, will not be included in the vector 3.

n n
These vectors will be of length iEI(A.1 + B, +1) instead of i§0 (A; + B, +1).
Furthermore, we may replace ¢; in ¢ by V.. Inverting E’ we then may obtain

the entries in the transmission line capacitance matrix directly without the

need for (l11) since osi = Vi' Therefore, Cij is simply the sum of all elements
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Figure 13,

Multiconductor transmission lines above a ground plane
and the use of image distributions.
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in P'l which are in the row associated with aio and the columns associated
o~

with qu = Vj multiplied by 2n r i for i=l, ---,n and j=1,---,n.

Consider the case of n wires within a circular shield shown in Fig. 2c.
Rather than imaging the conductor charge distributions across the shield
boundary, one may expand the per-unit-length free-charge distributions
around the n conductor peripheries in a Fourier series and also expand
the per-unit-length free-charge distribution around the interior periphery of
the shield. Note that in this case, the voltages of the n wires with respect
to the shield, V;, will be V; = ¢; - ¢g. Thus (11) can be used to obtain C.

Note that for all these cases, once (is determined, I,and G are
obtained through (89) as L =uveg'1 and G = (O/¢) C. For Fig. 2a and
Fig. 2b, € = ¢, and 0 = 0.

It is also possible to obtain closed-form approximations for ¢, L. and
G under the assumption that the conductors are widely spaced and these
formulas represent the predominant method of computing the entries in
these per-unit-length matrices [55, 57]. If it is assumed that the wires in
Fig. 2a are sufficiently separated so that the charge distributions around
the wire peripheries are consta.nt; i.e., proximity effect [55, 56, 57, 58]
is not a factor, then only one expansion function is needed in (95), ajp. In
this case there are only (n+l) unknowns , a;g, i=0, 1,---,n, Further=
more, since the wires are assumed to be widely spaced, then rp in (97)
can be taken to be d;,, djO or dij’ whichever is appropriate, when compu-

ting the contribution to the potential of a conductor due to the charge on

-94.
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another conductor. When computing the contribution to the potential of a
conductor due to the charge diétribution on its boundary, the match point
is taken on the conductor surface, i.e., rp=rwi. This assumption of
widely-spaced conductors has been consistently used in the power trans-
mission area [ 3, 4, 13, 55, 57 J]and is generally valid if the smallest
ratio of wire separation to wire radius is on the order of 5 or greater
[ 55, 56, 571
Consider Fig., 2a. Assume as an approximation that the (n+l) wires

in Fig. 2a are sufficiently separated such that the pe r-unit—length charge
distributions around the wire peripheries are constant with each wire
bearing a per-unit-length total free charge

q; = 2TT 4 250 (113)
and

pi (81) = ajp : (114)
for i =0, 1, ---, n, Because of the assumed large separations, this is
equivalent to replacing the wires with filamentary line charges [55].
Since the wires are assumed to be widely sepafated so that the assumption
of a constant charge distribution around each periphery is valid, i.e.,
proximity effect [55]is not a factor, then we may choose match points for
the potential at the centers of the conductors rather than at some point on
the periphery. However, for a match point on the conductor surface
bearing the charge under consideration, we take the match point on the

conductor surface, i.e., Tp = Twi in (97).
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From the previous’ results and (113), we may then write (utilizing the O

first term in (97))

- - _ - . (115)
¢0 Rn(rwo) Zn(dlo)o P «Jl,n(dnr)) i)

) 4n(dy) JZ,n(rW]r ) zn(dlz) ’ q,

. = - 1 L4 . . ']

. 2me ¢ * . v .

. : * P ' [

bn Jln(dno)o s s o 0 ¢ -Ln(l"w‘n) 9n

Applying (105) to (115) results in a typical equation
Vi =8i- ¢
Fwo dio’

+--- +4n (_J_di')q- + ===ty din) qn}
d: J Gi-no
jo .

fori, j=1, ---, n. Applying (104) to (116) yields

Vi=- L f--+anfrwitwo ) q; +-- (117)
2rre ai()aio
-~= 4+ ¢n di.jryz()) q; 4=+ 4n dianm qn} .
di0djo no %io
Comparing (117) to (103) shows that
1 dz
-1 e = z i
]:Q ]11 7=z in r_“%l_rwo) (118a)
dind;
(€] =5 tn ( 10 30_) (118b)
i3 2me rwodij
for i, j=1, -=--- , h.

(2D
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Thus the per-unit-length inductance matrix is from (89)

O (L] = ue [&Y]y;= -2% ¢n

(119a)
(Llij = ue [&]i; = (119b)
i#j i;l]j m _
for i, j=1, ---, n. Note that for Fig. 2a, ¢ = ey, y = uy and d = o.

Similarly, large-separation approximations c'an be obtained for the

case of n wires above an infinite ground plane in Fig. 2b. Consider
Fig. 13 and assume that the wires are separated sufficiently from each
other and the ground plane so that the per-unit-length charge distributions
around the peripheries of the wires and their images are constant and given
by (113) and (114) for i=l, ---, n. Again, due to the large-separation approx-
imations, we may take the match points at the centers of the conductors
when computing the contribution to the potential due to the charge distri-
bution on another conductor and take the match point on the conductor

- periphery when computing the contribution to the potential of this conduc-
tor due to its own charge distribution, From Fig. 13, a typical equation

for the i-th conductor may be written as (again using only the first term

in (97))
. . . 2hi (120)
B = Vi = ----+aj, {rwdn(rwﬂ + Iwifn( 1)} +
€ €
%
0 € e
D U SRR 3 ) I VA I }
2Te 1 rwi - T dij o
; for i, j=1, ---, n where d{‘; is the center-to-center separation between the
{ ) i-thwire (j-th wire) and the image of the j-th wire (i-th wire) given by
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1]

J(h; +05)% + &;;° - (hj-hy)? (121) o

2 ‘h »
Jdij +4 hih;

di‘j

Comparing (120) to (103) and using (89), we obtain

2 .
Llii=welg*li=gs r:{l.l ) (122a)
[k]. s = ue [9—1 ]_ . - 2 di". ) (122b)
i) A U T

for i, j=1, ---, n. Note that for Fig. 2b, €€y, U= Uv and ¢c=0.

large-separation approximations may also be obtained for the system
of n wires within a circular shield in Fig. 2c., We assume that all n wires
are sufficiently separated from each other and the shield so that the wires
may be replaced by filamentary line charges. The circular shield
(assumed to be perfectly conducting), may then be replaced by filamentary
line charge images. TEach filamentary line charge has an image on a
line joining the line charge and the center of the shield and is at a dis- s
tance of rg/r; from the shield center where rg is the shield radius and
ri is the radial distance of the i-th wire from the shield center [58]. One
can then straightforwardly derive, by superposition

- Vi

[C-]ii = (123a)
A 195 === 9, 94y, ---, Q=0

1 2_p.2
= The 4n | Fs™-Tj
’ s Twi

Vi
€] =
= q: _—— _
i:!)j it , qj_l,qj+1, ---, Q,=0 (123b)
1 e [(r:ra)2 4 . 2 - i
=— ¢n fry (rirj)® + rg®- 2ririjrg® cos@;
Zme {(rs) \l (ril‘j)z + rj‘* - 2rirj” cos 8i; ﬂ
where §j is given in Fig. 2c. wJ
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To derive (123), consider an infinitesimal line charge of radius r
w

bearing a total per-unit-length free charge q, The potential at a point

r >2r,, with respect to the line charge surface as reference is (see reference

q
V=- in (rr ) (124)
Znev w ¢

Equation (123a) can then be derived from Fig. 14a with (124) and g =0 as

J
q. r2 . 2 -1 r - Tr.
_ i s/ Ti) - T} (Fe /%) s\ s i
Vi 2_11'€V in ( rWi - 4n rwi1 / + 4n _———rwi

q. 2 2 ‘ (125)
r - T
1 [In _—s.—_._-.l:-....
r r

(58], page 92)

21 ey,

Equation (123b) can be derived from Fig., 14b by making use of the result in

(124) and the law of cosines. With q; = 0, we obtain

q- d d>:< d d:}:
Vi=23 En(—za -Zn( 2)-£n 1)+zn 1

w (126)
- 9 dz 43
2 In 1353
Te€yv 29 .
Utilizing the law of cosines, one may obtain
:}:2 2 2 ) 2 3
d, = T + (rs /rJ- - (er /rj) cos eij (127a)
2 2 2 2 2
d2 =r; + (rs /rj ) - (Zr-lrs /rj) cos eij (127b)
>:<2 _ 2 2
d1 =T + rj - (errj) cos eij (127¢)
2 2 2
d =i +r - (Zr-lrj) cos §;; - (127d)

Substituting (127) into (126) yields (123b).
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The revlacement of the wires and the shield with
infinitesimal line charges for shielded, multicon-
ductor lines with large separations in homogeneous

media, ﬂ

-

Figure 14.
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5.2 The Per-Unit-Length External Parameters for Lines in an Inhomo-
geneous Medium

Derivations of the entries in G, L and C for the lines in Fig. 3 are
complicated by the inhomogeneity of the surrounding medium introduced
by the interface between the dielectric insulations and free space. The
inhomogeneity is introduced through the permittivities and conductivities
of the insulations since the dielectric insulations are characterized by
free space permeability, py. Therefore, the per-unit-length external
inductance matrix, I,, can bé found as %=uvgvgal where 9_1 is determined
as in Section 5.1 with the dielectric insulations removed and may be ob-
tained accurately with moment methods and harmonic expansion func-
tions or may be approximated for large conductor spacings by (119), (122),
or (123).

The computation of the entries in Gintroduces some conceptual dif-
ficulties for the inhomogeneous medium case. Consider the computationof
G for static excitation (reference |—39], Chapter 6). The transverse con-

-
duction current density 9T, is related to the transverse electric field,
ET: in each dielectric as 5.11 = odi ET' The boundary conditions on the

must vanish over the

. 3 -’ .
potential function ¢, where #p = -grad ¢, is thate,

conductor surfaces (perfect conductors are assumed for this computation)
and the derivative of ¢ normal to the dielectric-free space boundaries
must vanish at the boundary (see reference [39] chapter 6). The latter

-
requirement insures that the normal component of T is zero at these
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boundaries, i. e. no current flow into the free space medium. The con-
sequence of this is that if none of the dielectric inSulavtions touch each
other or the ground plane or circular shield, then Gcomputed for static
conditions with a straightforward application of the above boundary con-
ditions would be identically zero since no conductive path between the
conductors would exist for nontouching dielectrics, However, dipole
relaxation effects will nevertheless produce certain losses even for a
transverse field distribution and nonstatic excitation since the trans-
verse displacement current will have a portion in phase with the transverse
electric field, Therefore, equivalent shunt conductances should be de-
termined to represent these non-static losses.

Assuming perfect dielectrics, however, one can compute the en-

tries in C in a straightforward fashion., A moment method of solution

with harmonic expansion functions as in Section 5.1 can be used for this
problem [56, 57]. Consider the system of (n+l) dielectric-insulated
wires in Fig., 3a. Represent the bound-charge distributions at the di-

electric-free space boundaries with Fourier series as [56, 57 ]

A A
A Ai Bi .
pi (9_1) = aiO +rr£1\:‘=1a im cos m#§; +rr21=1 bim sin mei (128)

i=0, 1, «--, n,
Represent the charge distributions at the conductor-dielectric boundaries
(which is total charge, bound plus free for this case) with Fourier series
as in (95). The contributions to the potential and electric field at a point
P in Fig. 12b due to each of the components of the charge distributions

are given in Table I with respect to Fig. 15 [56,57].
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TABLE I

Contributions to the Potential and Electric Field at a Point P in Fig. 15

due to Harmonic Expansion Functions on a Circular Boundary.

Expansion Contribution to the Contribution to the
Function Potential at P Electric_Field at P__J‘
1 - Tb #n(rp) b 2
€y €yl
(m+1) m+l
cos m@, b cos mbp ifhlfnl. {cos mo_7
2ey m r;n 2 ey p
-5
+sin mgpe}
(m+l) m+l s
sin m 6 b sin meD (r_b{..I..P)_ {sin m@., r
b TTT o)
2€V m rp ZCV
'y
-COSs mequ
(a) r,p >ry
Expansion Contribution to the Contribution to the
Function Potential P Electric Field at P
r}, 4n (r)
1 JIb AR 0
€v
m m-1
T coOs me (r /r )
P D - b -
cos mfy Ze,m (rb)rrr.l : TZ::EV—_ {cos mf r
-
-sin m#@, 9}
m . 6 1 D
r. sinm -
sin m@y, £ 5 ) (rp/rbjn{ . -
& m(rb) Ze sin mepr
+cos mep§¥

(:’\"

(b) rp <r

-103-



Figure 15,
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Thus there are 2 + A, + B.1 + Ai + %i unknowns associated with each
A A A

wire, 2j0, 2im» Pims 2i0s 2ims Pime The boundary conditions will be
enforced by requiring that the potential on the i-th conductor due to all
source distributions be ¢; and the normal component of the displacement
vector due all source distributions be continuous at the dielectric-free
space boundaries. Generally 14A; + B; match points are selected on the
i-th conductor and 1 + Ai + 3?31 match points are selected on the interface
between the i-th dielectric and free space. The component of the total
electric field (from all source distributions) normal to and just inside
the dielectric-free space surface at each match point on this surface is
multiplied by €; and set equal to the product of €, and the component of
the total electric field (due to all source distributions) normal to and just
outside the boundary at this match point. A set of igo (2 +A; +B; + Al + ABi)
simultaneous equations can bé written to enforce these conditions as
[56,57]

P £ ; 2 (129)

where P and ¢ are defined in (99) and_’éis a column vector of the expansion
coefficients in (128) arranged as in p andg is a column vector of zeros of
n A A
length i}_‘__,_o (1 +A; + Bj).
Inverting P in (129), one can obtain [56, 57 ]

(130)
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The total free charge on the i-th conductor (which defines the general- o
ized capacitance matrix) is given by [56, 57]

2m 2
Qg =93 +4; = S o (67 rwi d6; + S 0 Bi(6;) (ri + t;) d6j - (131)
0

= 2mry; ajo + 21 (ry + ti)agg
since q; is the total charge at the conductor-dielectric boundary which is
the sum of the total free charge and bound charge with the bound charge
being identical in magnitude but opposite in sign to the bound charge on the
dielectric-free space surface, Qi, i. es, 95 = qy - Qi, and t; is the thick-
ness of the i-th dielectric. The generalized capacitance matrix can be
written as in (102) where q; in (102) is replaced by Ay from (131). By

using the excitation <25j =1, ¢. =0,p #j, [Q]ij equals the sum of two terms,

p

One term is 2nrr multiplied by the sum of all elements in P~! which are

wi

in the row associated with ajg and columns associated with d&j and the

¥

other term is 2m (ry,; + t;) multiplied by the sum of all elements in P-*
which are in the row associated with AiO and the columns associated with
¢j [56,57} The entries in the n yn per-unit-length capacitance matrix, G
used in the transmission line equations can then be straightforwardly ob-
tained from the (n+l) y (n+l) generalized capacitance matrix, g , as in
(111).

Typical computed results for two dielectric-insulated wires are
shown in Fig. 16. By symmetry, the coefficients of the terms in (95) and

(128) are zero, i. e. bim = 0 and f’im = 0., Therefore the expansion func-
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Computed results for two dielectric-insulated wires.
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tions on each boundary consist of the constant term and only cosine terms,
Similar results for a 5-wire flat pack cable are shown  in Fig. 17.
Selected entries in the first row of the generalized capacitance matrix,
COO’ cOl’ eoz, 603, CO4 are shown. Again by symmetry, the sine ex-
pansion functions are not included since the coefficients of these terms will
be zero for wires in a linear array such as flat pack cables,
These results can be extended to include the case of n wires above
an infinite ground plane in Fig. 3b in the following manner. Consider
the set of n dielectric-insulated wires above an infinite ground plane shown
in Fig. 18, To treat these cases, we replace the ground plane with a cor-
responding set of image wires. The i-th wire image is at a distance of
h; below the ground plane. Each image wire is identical to its correspond-
ing wire above the ground plane and the potential of the i-th conductor
image is -¢;. The charge distributions around the i-th conductor and
i-th dielectric-free space boundary are denoted by p; (8;) and &(ei),reSpec-
tively. The charge distributions on the corresponding boundaries of the
image wires are identical in magnitude but opposite in sign to those of the
corresponding wires above the ground plane, i.e. -p; (6;) and -6.1(-91).
The charge distributions p; and ﬁl are again expanded into Fourier series.
A set of simultaneous equations in terms of the unknown expansion
coefficients in p; and bi can again be formulated to enforce the boundary
conditions on the potential of the i-th conductor and the continuity of the

normal components of the displacement vector at the dielectric-free space
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o boundaries of each wire due to all charge distributions in the system
(the distributions on the wires and their images).. By symmetry and the

n A A
use of image distributions,we only need to write ¥ (2 +A-1+B-1+,Ai+B.1)

i=1
equations to enforce these boundary conditions on only the original n wires
above the ground plane. Once these equations are solved, the per-unit-
length transmission line capacitance matrix, C, can be directly obtained
as before since, for this case, ®;= Vi where V.l are the transmission line
voltages with respect to the ground plane as shown in Fig. 18, Thus for
this case as for Fig. 2b, there is no need to reduce the generalized capa-
citance matrix to the transmission line capacitance matrix via (111),

The per-unit-length transmission line inductapce matrix, L, can be
obtained accurately by repeating this solution with the insulation dielectrics
removed and using (89) as indicated in Section 5.1 or using the large-separa-
tion approximation in (122).

The solution for n wires in a circular shield in Fig. 3c can be ob-
tained in the same fashion as discussed in Section 5.1 for the case of
Fig. 2c.

The above discussion of the solution for C assuming perfect dielec-
trics indicates a method for incorporating dielectric loss and therefore
obtaining an equivalent per-unit-length conductance matrix, G, to repre-
sent these losses, If each dielectric permittivity is considered to be
complex, i.e., € = e-l'— je; " - j(og;/w then (129) can be formulated as

1

above with the only difference being that P will now be complex. In
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particular, the last1l + AA.I + }?3-1 rows of P will be complex. Thus the ny n o
complex,capacitance matrix can be obtained as above as ¢ = (’:“R +jCy so .
that juo = juCg - w2 C; and the imaginary part of C can be identified as
G=- W= 91- The real part, SR’ is identified as the usual capacitance ma-
trix and will of course not be the same as the matrix which would be com-
puted assuming a perfect dielectric.
Large-separation approximations can also be obtained in a fashion
similar to Section 5.1 by requiring that the separation between all wires
be large enough so that the charge distributions around the dielectric-free
space boundaries and the conductor-dielectric boundaries are essentially
constant. However, this is generally not the problem of interest since
wires are closely-coupled in densely-packed cable bundles and flat pack

and ribbon cables and it is to be expected that the charge distributions

around the boundaries will exhibit large variations,

However, to illustrate the application of the technique, the per-unit-
length capacitance between two dielectric-insulated wires which are widely
separated will be derived, Consider the case of two dielectric-insulated
wires shown in Fig, 19. Because of the assumption of large separations,
we may assume that the charge distributions around the conductor-dielec-
tric boundaries and the dielectric-free space boundaries are constant,

Therefore, only four expansion terms are needed in (95) and (128), agg>

A -
agg» alO’ 3.10. To facilitate the derivation and provide an upper bound on
the per-unit-length capacitance, we will take the match points at the O
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boundaries on a line joining the centers of the wires as shown in Fig. 19.

From the previous results and Table I, one may obtain Q
30 = - 200 (rwo ln(rwo)) -ayg ( Twl gn(d-ry) ) (132a)
€v Ev
'goo (rwo+ to) £n (rwo + to)) 'Aalo ( (Twl + t1) £n (d-_rwo))
€v €y
r ¢n (d- ) gy 00 (Tpq)
%) = -aoo( wo 17 {d-Twl ) -a10 ( =1 =1 (132b)
ev €v
+t -r (re,, +t1) sn (rgny T t)
v €y
a rwo (r0-1) ~apg rwl ( €ro-l) ) (132¢)
00 \ (w0 * f0) (d-Two-T0)
+dg ( 1) -3, ( (fwi + &) (€1p-1) ) =0
(d-rwo - to)
ago ( rwo (61 ) [ Iwl (€r1 -1) ) (132d)
(d-rw) -t1) (rwl +t1) | .
+3.00 ( (*wo + tO) (QT‘\ -1) +$.10 ( 1 ) =0
(d -Twl - tl)

where €0 = ®0/ €v and €, = €1/ €ve

These equations may be solved for numerical values of the parameters
as outlined previously., However, in literal notation, the solution is quite
complicated. Therefore, to simplify the solution and obtain a closed form

expression for the per-unit-length capacitance, we will assume that the

3

wires are identical, i.e.,



w0 - Twl = Tw (133a)

tg =t =t (133D)
€O = €1 = e (133C)
er = fley  ° (1334)

With this assumption we may take the charge distributions on wire 0 to be

identical to the charge distributions on wire 1 by symmetry. Furthermore,

q) = 2mry 2, (134a)

(134b)
=-q
A A
q =2m (rg +t) 2y (134c¢)
=q
4o = 2m(ry + t) 499 (134d)
= _q .
Substituting (133) and (134) into (132) yields
! inf Tw r_+t A
% “zmey { (#5) o+ () 4 (1ee)
w
1 d-r d-r
/Mm w A
= —— + 4n - W
% = 2mey { ( Tw ) 4 (r—w-_pt) q } (135b)
(ee=1) 4 _Lep-1) (°r -1) 1 -0
((rw+t) (@rg-t )] 17 \(drgy-v - (ry ) 4 (135¢)
(fr-1) (€r -1) ( (ep -1) 1 A _
— + —_— q + _—r - _ =0. 3
( (d-tv - 1) (rg +9) ) (d-tgy - 1) r, ) ¢ (135d)
Note that (135a)and (135b) show that
b = - & | (136)
and (135c) and (135d)are identical, Therefore
V= 81 - & (137)

20, .
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Note also from (131) that 9 =9+ 31 and therefore

q=q¢-9q - (138)

Substituting (138) into (135b) and (135¢)with (137) yields
Vs e— Ln( + f,n( r'w 4 (139)
ey rytt

and

q=leg-Dd g (140)

€r(d— rw - t)

Substituting (140) into (139) yields the per-unit-length capacitance as

c =4
A\
= TEy
o SoEw Y ffex = D N, /Ty tt . (141)
T €p(d=ry,-t)
w r\8=fw- Tw

As a check on this result, note that for €r=1 and t=0, (141) reduces to
(91) for identical wires and large separations such that d- T = d.

As a final illustration of these methods, we will compute the entries in
the per-unit-length transmission line capacitance matrix for the case of two
dielectric-insulated wires above an infinite ground plane. In order to sim-
plify the procedure and to obtain closed-form expressions for these quanti-
ties, we will assume that (1) both wires are identical and are at the same
height above the ground plane, and (2) the wires are separated sufficiently
from each other and the ground plane so that we may assume constant charge

distributions around the conductor and dielectric boundaries, i,e.,
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qp = 2nr 2., (142a)
A A
q]_ =2 rdalo (rd =Ty + t) (142Db)
qZ = Zﬂrwazo (142C)
A A
q, = errda.zo (rd =T, + t) - (1424)

The ground plane will be replaced by images as shown in Fig., 20. We
choose the match pointsl, i\r, 2, and 2 on a line joining the two wires
(other choices are of course possible).

Applying the results of this section and utilizing symmetry we only
need to write constraint equations at match points 1 and f. The equation for
the potential at 1 becomes (see Table I)

1 A
¢>1 = _Z_TTGV { zn(rw) qy + 4n (rd) q1 (143)
+ gn(d-ry)ag + m(d-r )4,
+ gn(d))(-q)) + #n(d))(-qy)
+ gn(dy)(-q,) + zn(d_z)(-&z)} .

A A
The distances dl’ dl’ d, and d, in Fig. 20 are given by

dy =/4n% + r 2 (144a)
w

A
d, =/ 4n% + r (144b)
d, =/4h + (d- r )2 (144c)
A
&, =/an? + (@rp? | (1444)

The equation for the continuity of the normal component of the displace-

ment vector at f becomes (see Table I)

L q + L 4 qQ - a (145)
-1 -——r——3,
€,Tg €yTq ev(d-rd) ev(d-rd)
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Figure 20. A two-wire line above a ground plane and the selection

of the match points. v
"n :
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,:4c:> , L (Qﬂi)(-q y o+ L (od) 4
T d l evé T 1

. €yl 1 1 1
- 1 (d-rd ) -1 d-rg ) A
(-q,) (-9,)
Gvaz 7&2 2 G:VHZ —8_2 2
1 A 1 1 A
= € q +(0) 9 - ———— -—_ q
r{evrd 1 L e (dry ¢ Tedry 2

+ 1<—(r‘f‘)(q> +—%—(rd) (-q,)
€:f-avl -gl— 1 €vh -a]__ 1

1 ( d'rd) 1 ( d-r4 ) A }
S (cay) - —i _ (-45)

Collecting terms, (145) can be written as

1 r'd o & . SrTa ) q 6
Td (31)2 ry (@)% 1 (146)

A

1 rq T4
Fly 0 ®E e )4

-1 (d-rd) T _ger(d-rdz) )
+ + - !
( (d-rq) ' (82)° (d-14) (d2) ?

1 (d-rgq) € ep(d-rq) ) A
+ ( - (d-r 4) * (52)2 * (d-ry) B (éz)2 42 )

Since the wires are assumed to be sufficiently separated from each

other and the ground plahe, we may make the following approximations:

d, ¥ 2h (147a)

d) ¥ 2h (147b)
. d, 2 /an? +q2 (147¢)
() L o
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dZ = dZ (1474d)
d-r = d , (147e)
w
d-rd =T d . (1471)
Utilizing these relations in (143) and (146) we obtain (Vl = ¢>1)
~ (2h 2h ) A
2re,vi ¥ {m(Z) o + m(Z) § 142)
d* d*\ a
T o (‘d‘) 9 * m (—d-) qz}
{e-(3E -F)) qp + {ter-n =547 } 4 e
r ah? T rg 1 r- Y T ro T 9
- - d 1
{(er 2 ((E-*)Z - d—)} 4,
- d 1 A
(er=D (L2 - L)} =0 .
{ r <(d*)2 d) 1,
The total free charges on the conductors are given by
=q + 14Ya
U =9 &1 (14Ya)
A
=q + .
9, qz q, (149b)
Therefore (148) (along with similar equations at match points 2
A
and 2) may be written as
v A 87 [ J
e 0] -1 2 ] F ] [
V2 _B AJ _q_z D C q2
c o] [ [(A-C) (B-D)]
- f - q1]
o c] lag] " Le-p @-o] s
and _ - -
0 E F q G H 4
= 1 + ]-
. A »
0 B E qz _H G _ qZJ (151)
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C

_ e Hf Jan| , [®-0 @80 [q
" lu ¢ EP (F-H) (E-Q) q,

where from (148)

A =gn(— (152a)
d>}<~
B = 4n (d ) (152b)
C=tn (Zh ) (152¢)
rq
D= B (1524)
r 1
s (e d _
E = (e,-1) " Td-) (152¢)
F=- (c.-1) ((d_i?)-’- - _;_> (1521)
Ir
G = -1y _d 1
(ep-1) 4hZ ¥ Ty (152¢g)
H=F . (152h)

The variables ql and q, can be easily eliminated from equations (150) and

(151) since D=B and H=F and the result is

V]. - 1 C D _ (A-— C) G H qﬂ
Vi 2me, (|[D C -G |1 dp (153)

Therefore the entries in the inverse of the per-unit-length trans-

mission line capacitance matrix are given by

{c- %:%) G} (154a)

1 2h rq rq r 1
e @) 2 (o) (e )]

-1 _ 1
(€0 = s
&

v.,
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1 (A-C) i
'1 = ) - H 54b
[(E, ]lj Z'TQV { (E-Q) ( )

7%{“(%)“ -ei)rd d>)( d(d«)‘ )

for i, j=1, 2 and a* is given by
d* = Van? + 4% . (155)

For this case, we assumed that (1) the two wires are identical,

(2) they are at the same height above the ground plane and (3) the wires

are sufficiently separated from each other and the ground plane such that
the assumption of constant charge distribution is valid. When these assump-
tions are no longer valid, the expression for the entries in 9'1 or C cannot
be easily obtained in closed form and a digital computer must be used,

1 winl be used in a later

The expressions in (154) for the entries in c-
publication in the analysis of certain experimental data for which this
approximation is reasonably accurate. It should be noted that an approx-
imation for cy, for this specific example has been obtained in [33] although

the derivation is not presented and evidently relies on certain empirical

data,
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VIi. SUMMARY

A complete and unified discussion of multiconductor transmission line
theory has been presented. The general solution of the problem under the
assumption of TEM mode propagation in the case of a homogeneous medium
or quasi - TEM mode propagation in the case of an inhomogeneous medium
has been presented along with parameter derivations and lumped-circuit
approximations. If losses can be neglected, then it appears to be as efficient
to solve the transmission line equations directly and incorporate the termina-
tion networks through the solution of (70), (75) or (76) as it is to use lumped -
circuit iterative approximations described in Section 4,1, The matrix chain
parameters for the distributed-parameter approach can be easily obtained in
closed form suitable for numerical computation so that "abruptly' nonuniform
lines can be handled and the per-unit-length parameters must be obtained for
either the distributed-parameter or the lumped-circuit iterative approach.
When solving the transmission line equations directly, one is not required to
solve an increasingly-large (although sparse) set of equations for increasing
frequencies when the line is not electrically short as is required with the
lumped~-circuit iterative approximations, For the homogeneous-medium case,
a lossy dielectric can also be included with no additional computational dif-
ficulties. Lossy conductors will also present no additional computational
problems for the homogeneous-medium case if the n conductors are assumed
to be identical, When losses cannot be neglected in the case of an inhomo-

geneous medium, the question becomes more difficult to answer since
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diagonalization of YZ, which is required in a direct solution of the trans-
mission line equations, is, in general, required to be performed at each
frequency and is not necessarily guaranteed except in the case of cyclic
symmetry matrices which assumé certain structural symmetries of the
line as described in Section 3.3, For this case, it may be preferable to use
one of the lumped-circuit iterative models for frequencies where the line is
electrically short, e.g., £< 1/10 X\, and approximate the line with only one
section, i.e., solve (80) with N=1. For frequencies such that £> 1/10)" it
may be preferable to solve the transmission line equations directly rather
than increasing the number of lumped-circuit sections to approximate the
line since no quantitative criterion for determining the required number of
sections for a given approximation accuracy can evidently be obtained.
Numerical techniques for obtaining the per-unit-length parameters for
bundles of closely-coupled,dielectric-coated wires as well as large -
separation approximations for wires in a homogeneous medium are also

given.
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APPENDIX A

; O The purpose of this appendix is to demonstrate certain important pro-
perties of the TEM mode assumption given in Section II. An appropriate
reference for these results is [40].

The first objective is to show that, for the TEM mode of propagation,
the transverse electric field vector and transverse magnetic field vector
satisfy the same spatié,l distributions as static (DC) fields at each x along
the line. The electric field intensity vector and the magnetic field intensity
vector for the steady state and sinusoidal excitation are written as

-

nd i -+ - 3
e(x,y,z,t) = E(x,v, 2) e'](”t and H(x,v, z,t) = H(x, vy, 2) e‘]mt

respectively where

-+ - - -+

E(x,v, z) =Exx+Eyy+Ezz (A-1a)
-+ - >

H(x,y,2z) = H, x + H y + H, Z (A-1b)

. > . e . . .
and x,y,z are unit vectors in the x,y and z directions respectively. Assum-

- ing the TEM mode of propagation, E;, = H, = 0, the field vectors are entirely

transverse to the x direction and are denoted as

- _ - -

Er(x,y,2) = Eyy+E;z (A-2a)
_.’

Hp(x,y,2) = Hy y+H,Z . (A-2b)

Now consider the general (n+l)-conductor, uniform transmission line in
Fig. la consisting of (n+l) perfect conductors in a linear, isotropic and
homogeneous medium. Faraday's law and Ampere's law become for the

TEM mode of propagation (in the sourcezfree medium)

@)
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-+ . -+
VX Eq = - jwd Hp (A-3a)

(o +jwe) ET (A-3b) o

where the medium may be lossy through the effective conductivity o which

-

includes ohmic conductivity and dipole relaxation losses and ¢ refers to the

real part of the complex permittivity.

Separating the curl operator into a transverse and a longitudinal com-

ponent as
3 -+ -+
V= (”_+z 5)+x5 A-4
Y3y 3z 3% (A-4)
\ J
v
VT'

and applying to (A-3) we obtain

i 3 bt . 4
Vp X Ep +30 (XX Eg) = - joM Hy (A-5a)
- 3 - - . -
vp X Hp +5— @ X Hp) = (0 + jwe) Ep - (A-5b) ;
- -

However, vp X Er and VX Hp are vectors in the x direction only. There-

fore we have by matching components

-
Ve X Ep =0 (A-ba)
3 - - . 2
3x R XEp)=- juu Hyp (A-6b)
-
vy X Hp = 0 (A-6c)
3 ;2 2 . =l -
_BT(X X HT) = (o + jwe) ET . (A-64d)
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. .
Note also from veD = p and v: B = 0 so that

- - 0

V‘ET = VT' ET = -—5— (A—?a)
- -»

vHp = ype Hy = 0 (A-7b)

(since Ex = H, = 0) where p is the free-charge density in the surrounding
medium (which will decay to zero with time constant ¢/g). Therefore,
equations (A-6a), (A-6c), (A-7a) and (A-7b) show that the transverse field
- -» .

vectors E1 and Hy satisfy the same spatial distributions as static fields in
any transverse plane (y, z) at each x along the line.

This may be more easily seen ifr we write Faraday's law and Ampere's

-+ -»

law in integral form by applying Stokes' theorem to v XE = - jyUH and

-+ . -+
YXH=(r+jwe) +3as

—» -» - &
Sé E~dz=-jwu§ H- da (A-8a)
C S

&ﬁ- a - F.@+0+iwe) ( E. & (a-8b)
C 'S )

where C is a closed contour enclosing the open surface S. Taking C to be a

contour in the transverse (y, z) plane denoted by Cyz and S to be a flat

surface in the transverse plane denoted by Syz which is bounded by Cyz then
(A-~8) becomes

§> (Ey dy + E, dy + Ey dx) = - jul - dy d, (A-9a)
Cys Syz

§ (Hy dy + H, d, +Hy dx) =\ Ty dy d, + (0 +jwe) {  Egdgd, (4-9)
Cysy Syz Sys
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where J, is any source current in the x direction penetrating Syz. However,

under the TEM mode assumption E, = Hy = 0 and (A-9) becomes

-

g> (Ey d_+E, dz)=§> ET* (Zdz+ydy) =0 (A-10a)
Cyz Cyz
§ & _. 3 S (A-10b)
H,, d H = Hp e dz +y dy) = Jye dy d -
CYz( vy + Hz da) CYz T @ da y 4y) Syz x Ty "2
-+ -+
which are of course indicates that ET and Hp are no longer coupled together

as is the case for static electromagnetic fields.
Thus we may uniquely define the voltage of the i-th conductor and the

current associated with the i-th conductor as

- -+ -+
V.(x) = - XCi Ep* dg (A-11b)
L) = S8, Bp - d2 (A-11b)

where C.1 and éi are shown in Fig. lb as contours in the transverse plane at
a particular x along the line,

The second objective is to demonstrate that for (n+l) perfect conductors
in a homogeneous medium, the per-unit-length inductance matrix, L, per-
unit-length capacitance matrix, (5, and per-unit-length conductance matrix,
G, satisfy the important relations given in (44). From (A-6b) and (A-6d)
one may obtain by taking the partial derivative of each equation with respect

-
to x and taking the curl of x with each equation.
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3% -+ ) -+
2 Ht = (GwHo - w® ue) Hy (A-12a)
F - . o -
axg E’I‘ = (JLUU'O - W u €) ET . (A.-].Zb)

From equation (19) assuming perfect conductors

ar LX) = ¥YZ I(x) = (juGL - w®CL) I(x) (A-13a)
d2
T VX =2Y V(x) = (jwLlG - »’LC) V(x) . (A-13b)

Performing the operations indicated in (A-1l) on (A-12) one obtains two sets

of n equations

dz
dx?

I (x) = (jwio - wPue) I;(x) (A-142a)

d=

axZ V; () = (jwHo - wue) Vi(x)

(A-14Db)

Arranging these fori =1, ---,n as in (A-13) shows, by matching real and

imaginary parts, that

LG=GL=yol, (A-15a)
LC=CL=uel ) (A-15D)

-129-



APPENDIX B

The purpose of this appendix is to demonstrate the derivation of the
multiconductor transmission line equations in (4), (6) and (7) from the per-
unit-length lumped equivalent circuit in Fig. 7.

Utilizing Kirchoff's voltage law counter-clockwise around the loop con-

sisting of the i-th conductor and the zero-th conductor in Fig. 7 yields

n
Vi(x + AX) - VSi(x) Ax + juw Z-l Ax T, + k§0 jwmik Ax Ty (B-1)
k#i

t(re, &x+jul M) I - Vi(x)
; .

1

C

- (rCO AX + jw ECO Ax) Ip - jwlgy Ax IO
b 1

- jwm AX =0 .
k=1 kO k

This equation can be rewritten as

Vil + 80 - Vi) n
Ax =-dudi Lo 20 Jwmyy I (B-2)
k#i
- (r_+jwL. )T
i i
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and the current in the reference conductor satisfies

n
I.=- T I (B-3)
k .
0 k=1
Substituting (B-3) into (B-2) one obtains
Vi(x + Ax) - Vi(x) (B-4)
Ax == Jwdy I - Julemyg Ty -eee -myg Ty +myy Ly 4eee +my), 1)

- (I‘Ci + jml,ci) L

+ (rco +J'(MCO tiw )= Ij = oees Iy)
+jw(m10 [ teeee +mgl)

+ Vg (%)

which may be rewritten as

:_(r

A co TIwley *iwky - jwmiyo - jomijp +jumy) Iy (B-5)
- soese o (rci + jmfzci + ju)f/i + rCO + jm,@co + jwﬂo
- jmmio - jwmio) Ii - e oo
co e _ (rco + jwzco +jw£/0 - Jwrnno - J(]Jmlo +j(1)m1n) In
+ Vg (%) R
i
Arranging these equations for i=l, ---,n and taking the limit as Ax + 0 yields

(4a) and the per-unit-length impedance matrix, Z, can be separated as in
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(6a) with the entries given in (7a), (7b). (7c).

The derivation of the second transmission line equation, (4b), proceeds

similarly. Utilizing Kirchoff's current law for the i-th conductor in Fig. 7, .

we may write

Li(x + 8%) = [j(x) - (8,9 8% + jwe;g 8x) Vi(x + Ax) (B-6)

n .

- E) (@ Bx + jwep 8 (Vi(x + %) - Vie(x + 4x))
k#i

+ Isi(x) Ax

which may be rewritten as
Ii(x + &%) - T;(x) _
A = (g +jwey)) Vi (x + &%) (B-7)
: . n
F oo (giO + jwegg + kEI (gik + jmcik)) Vi(x + Ax) »
k#i

+ oo 4 (g.ln + jmcin) Vn (x + Ax) + [S'l(X) .

Arranging for i=l, ---,n and taking the limitas Ax 4 0 yields (4b) and the

per-unit-length admittance matrix, l{, can be separated as in (6b) with the

entries given in (7d) and (7e).
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APPENDIX C

The purpose of this appendix is to derive the expressions for the per -
unit-length equivalent sources in (5) which are induced by an incident elec-
tromagnetic field on the uniform transmission line in Fig. 2a consisting of
(n+l) perfect conductors in a lossless, homogeneous medium (see Fig. C-1).
The expression for the currents induced in termination networks given in
(77) will also be obtained. The solution for Fig. 2b is also discussed.

| The solution for the special case of a two-conductor line (n=1) was
obtained by Taylor, Satterwhite and Harrison in '20] and later in a more
convenient form by Smith in [21]. The solution for the case of a uniform
plane wave incident on a three-conductor line in the transverse direction
(perpendicular to the system's longitudinal (x) axis) with the electric field
intensity vector polarized parallel to the line axis was obtained in [24].
Procedures for extending this result to multiconductor lines were indicated,

It is convenient to consider the effects of the spectral components of
the incident field as per-unit-length distributed sources along the line [26].

The sources appear as series voltage sources and shunt current sources as

indicated in Fig., C-2 for an '"electrically small" Ax section of the line. The
multiconductor transmission line equations may then be derived for the

Ax subsection and are given in equation (4), The termination networks are
given in the form of generalized Thevenin equivalents as in equation (69) and
the solution for the termination currents is given in equation (75). Substitu-
ting the expressions for’the matrix chain parameters given in (49) into (75)

for this case of
-133-
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Figure C-1. A multiconductor line with incident field illumination, Q
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perfect conductors in a lossless, homogeneous medium (free space)

described by €, and le, we obtain o
[cos(BS){Zo + %s} + j sin(g £) {éc t+Z¢ Z¢ "1’%0}]_1(0) = (C-1a)
-Ve+ [j sin(B £) Ze ,%C-l + COS(BS)Jn] Vo

A A
+ V(8) - Zg1(D)

1(8) = - jsin(B8) Z&! v, +Tcos(BS) L+ sin(p$) gc'l Zy,]1(0)  (C-1b)
A
+1.(9) .

where the wave number is g = 2T/}, \ = v/f, v = 1/\/|-lV €y = 3x 108 m/sec.
The characteristic-impedance matrix Z; becomes

Ze = uL (C-2) g

A A
and l/'s(él) and_I_s(£) are obtained by substituting (49) into (74) as

g

A
Vo0 = § {cos(a(s- ) VB - j sin(p(£-2) Zc 1,60 }at (C-3a)

0
A _ S{ g A A .. A Z-l A } dA 3
1.9 -go cos(p(£- %) I (%) - j sin(a(g-2) 251 vV (W] & . (C-3b)

Solution of (C-1la) for the termination current vector, I(0), requires the
solution of n complex equations in n unknowns (I.l(O)). Once (C-1a) is sblved,
(C-~1b) yields the termination currents I(£) directly.

Although the equations may appear formidable, they are in a compact

form and can be straightforwardly programmed on a digital computer, f P
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Furthermore, the form is not restricted to any particular value of n, The
only difficulties are in determining L and determining l’}s and_fS (which
require that we determine ys(x) and__I_S(x)). The determination of the equiva-
lent sources Vs_(x) and Is.(x) induced by the incident field will be the next

1 1

objective,

C.1l. Determining the Equivalent Induced Sources

In order to determine the equivalent induced sources, V (%) and Is (%),
i i
consider Figure C-1. The method used in [20] can be adapted here in a

similar fashion. Faraday's law in integral form becomes

-
§> E-dz’=-jwuv§ H- 1nda (C-4)
!C. -

where Si is a flat, rectangular surface in the x,y plane between wire i and
wire 0 and between x and x + Ax as shown in Figure C-1. The unit normal n
-

is n = 2 where z is the unit vector in the z direction, da= dx dy and Ci is a

contour encircling S; in the proper direction (counter-clockwise according to

the right-hand rule). Equation (C-4) becomes for the indicated inl:egration1
d.
io
(P, (v, x4a0) - B, (y, 0)]dy (C-5)
‘0 1 1
X+Ax

X+ Ax d.

. i0
=-jwHy S S Hn. (y, x) dy dx
“x 40 1

l. In integrating from y=0 to y=d;g, We are implicity assuming that ri and
rwp are much less than djp, i.e., the wires are sufficiently separated so
that they may be replaced by filaments.
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where E; is the component of the total electric field (incident plus scattered) -
i < )
transverse to the line axis and lying along a straight line joining the two

conductors, i.e., E. = E ; EL

v is the component of the total electric field
i i

t

along the longitudinal axis of the line, i.e., EE- = Ex; and Hn- is the com-
i i

ponent of the total magnetic field perpendicular to the plane formed by the

two wires, i.e., Hni = Hz.

Defining the voltage between the two wires as

. d‘
i0
Vi(x) = - Q Et.(y, x)dy (C-6)
Y0 i :
then
av;(x) 1 cdio
- —— =lm o (T E o - B umlly | (Co)
Ax-0 0 1 1
The total electric field along the wire surfaces is zero since we assume -

perfect conductors., (One can straightforwardly include finite conductivity
conductors through a surface impedance as was done in [20]). Therefore

(C-5) becomes in the limit as Ax-+ 0

avi(x) dio :
= jw le g H (v, x)dy
J :

. (C-8)

dx

The total magnetic field is the sum of an incident and a scattered field:

Hni(y. x) = H,(y, x) (C-9)
(scat) (inc)
=H,(y,x) + H,(y,x) R
| S | N —
scattered incident L, 8
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and the scattered field here is produced by the transmission line currents.
The scattered flux passing between the two conductors per unit of line length
is directly related to the scattered magnetic field and the per-unit-length

inductance matrix, L, as

(scat) d. (scat)
8. (x) =-§0 My Hni(Y,X)dY
-ilz((x;)-
= L4 450 ===-» 4] (C-10)
100

.= [L]

where j&i_] Llije

Substituting (C-10) and (C-9) into (C-8) and arranging for

i=1, «---, n yields

. d.10 (inc)
Yoo +julie = fjwuy 7 Hy (0 (C-1)

and the source vector V_(x) in (4) is easily identified by comparing (4a) and
(C-11).

For transmission line theory to apply, the cross-sectional dimensions
of the line (wire spacing, etc.) must be electrically small, i.e., Bdio <<l

and Bdij << 1. Thus the result indicates that the voltage, V_ , induced in

1

s

the loop between the i-th conductor and the zero-th conductor and between x
and x+Ax is equal to the rate of change of the incident flux penetrating this

""electrically small' loop which, of course, makes sense.
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Ampere's law yields

dz dx

[»H, aH
z (C-12)

E_ will consist of scattered and incident field components and is written as
(C-13)

E, (y,x) = Egly, %)

i
(scat) (inc)
= Ey(y,x) + Ey(y, X)
k-—W_J | S
scattered incident
Substituting (C-12) into (C-6) we have
(scat) (inc)
0 1 dlo BHZ(Y’X) . aHz(Y:x)
Vi == (7 By xdy = — | + (C-14)
0 Jwe,, 0 d3x 3x
(scat) (inc)
- 3H (y,x)  3H_(y, x)}
- dy .
dz dz
Utilizing (C-10) we obtain
Vi(x) = 1 d [2.., £ 2. J1(x) (C-15)
i = o JoM € dx i’ 7i2* *77* Tin—= -
v v
(scat) .
1 %0 3H (v, %) d, (inc)
- - S X dy - S Et (y,x)dy .
Wey dz J i

If we assume that the currents on the wires are directed only in the x

direction i.e., (there are no transverse components of the currents on the

(scat)
wire surfaces), then Hy(y,x) = 0 and (C-15) becomes
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Vi(x) = - — d {”11' TS Jlin]_I(x)] (C-16)

d. (inc)
io
- (Ve owey
0 1

Arranging these equations for i =1, ---, n we obtain the second transmission

line equation

. . -1 o -1 i0
_I_(x) + quvev .Id _y_(x) = - quvev La g Eti(y, x)dy (C-17)

Utilizing the important relation for a homogeneous medium, C = My e, L..'l in

(C-17) we obtain by comparing (C-11) and (C-17) to (4)

]
did (inc)

Vo) = juu, | § Hp (y, x)dy (C-18a)
0 ‘o
d,10 * (inc)

1,69 = -jug | E, (v, x)dy (C-18b)
0 S

The shunt current sources in_I_s(x) are therefore a result of the line voltage
induced by the incident electric field being applied across the per-unit-length

line-to-line capacitances which, of course, satisfies our intuition.

-141 -



A A
C.2. Solution for l/_s(x) anclls(x)

A
The final problem remaining is to obtain simplified versions of Xs and

A
I in (C-3) to be directly used in (C-1).

A
V. (%). Substituting (C-18) into (C-3a) yields

\ s d
V(9 = juu, So {cos(s_(.s:-&)) g

0

i0

A
Hni(y, x)dy

. (inc)

£ ) A dio c(inc) A A
- B sin(g (£- %)) g E, (y,Ddy | } ak
0 0 o 1
L i
From Faraday's law we obtain
(inc) (inc)
(1nc)= 1 aEzi aEti
n; J'wuv oy 3x ®
Substituting this into (C-19) yields -
A £ (inc) . (inc)
v (9 = g {cos(s(.s-!é)) E, (dg, %) -E, (0,8 } as
— 0 i o

) | .(inc)
A dio dE. (v, %)
3 Q {cos(B(.S.‘,-x)) Q g, (¥
0 0 dX
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First consider the determination of

(C-20)

(C-21)

O



Q

»

i A
- B Q {sin(B(S-x))
‘0

d

~0

Sio éz-t?yc')gg) ay }
R 1

A

Utilizing Leibnitz's rule,(C-2l) is equivalent to

£
V(9 = SO{ cos (B (£- %)

By

-goga,{

{cos(aél- §))

and this may be written as

\ £ .
V(8 = g {cos(s(,t- x))
0

(inc)
1

(inc) (inc)

Ezi(dio,s&) - E, (0,

1

r L]
d.10 *(inc)
g Et. (Y’ k) dy
0 Wt

(inc) (inc)

Ezi (dj. &) - Ezi(o, x)

+ cos(B£L)

Qdi(;
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(inc)
E, (y,0) dy
1

(C-22)

(C-23)



A
Similarily_[s (£) may be obtained as

£ (inc) . (inc)
1(8)=- jz.~1 g sin(g(£-%) |E, d. ., X -E, (0,%) | tdx (C-24)
—S - - JNC 0 n(g - f'l_ 0’ - 1’1 ’ -
L. -

., -1y .
- 124 {sm(BS)

A A
The important quantity in (C-1la) is XS(S) - gé! 1;(£). Combining (C-23)

and (C-24), this becomes

A A £
V(£) - Zg 1(8) = go{[cos(B(S-gc))’ln +] sin(p(£-%) Zg gc"l] (C-25)

X

(inc).

L.

A A
Ezi(dio,x) - Ezi(o,x)

(inc)

} dx -

-144-

0

siO.

(inc)
Et. (y, £ dy
i




»

1 d.10 (inc)
+ [cos(B &) Al,n +j sin(g &) %S Z’C- ] g Et (y,0) dy
0. i

e M .J .

Note that the equivalent forcing function on the righthand side of (C-1a),

A A

y_s(S.) - zé‘, _IS(S.), given in (C-25) is simply determined as a convolution of
differences of the incident electric field vector along the wire axes,

(inc) (inc)

EL-(diO’x) - EE_(O,x), and a linear combination of integrals of components of
i i

the electric field vectors at the endpoints of the line which are transverse to
_ (inc) (inc) ,
the line, E, (y,£) and E, (y,0). This is, of course, precisely the result
i i
obtained by Smith [21] for two conductor lines. Substituting (C-25) into (C-1la)
and setting Vo= 0 , V. = 0 , i.e., no independent sources in the termina-
=& p=1 0 n-1

tion-networks, one can verify that the result reduces for two-conductor lines

Z_ become scalars for

(n=1) to the result given by Smith [21] since Ze, ES,’ 0

two-conductor lines and (C-la) becomes one equation in only one unknown
I(0). For uniform plane wave illumination of the line (which is usually the
case of interest), (C-25) reduces to a much simpler form although the result
allows for the more general case.

The final equations for the line currents then become (substituting (C-25)

into (C-1))
[cos(BS){Zo +z£} +j sin(g£) {zc +Zg gc‘lzo}]ym = (C-26a)
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. -1 "
- Vo+ljsin(8f) Zg ZgT +cos(BE) 11V, O .

(inc)

1 A A
1 E& }ak

. |
+ Q’o {rcos(g(.s:- %) 1, +jsin(B(£-%) Zg Z°

(inc) - ) (inc)
- E(0) + {Tcos(a0) 1+ sin(89) Zg Z 1 E(0) }

9 !

_jsin(B9 Z ot Vg +lcos(B) 1, +]sin(Y) ZoT! Zy]10)  (C-26b)

(inc)

jzg! Qs{sm(stx-fc));r:_z(éc) }dsc
0

(inc)

iz " {sin(a ) Eg0)}

(inc) (inc) (inc) ;
where Ez(x), _E_t(£) and _I_E_t(O) are n y 1 column vectors with the entries in the

i-th rows given by

(inc) (inc) (inc) B
[E, (x)]; = Ezi(dio,x) - Ezi(O,x) (C-26¢)
(inc) d;y (inc) .
[E(£)], = SO E, (g, ) dg; (C-26d)
(inc) d.,, (inc)
[E(0)], = So Eti(gi,O) dg. (C-26e)
fori=1, ----, n which are equations(77).

A word of caution in the interpretation of the notation is in order.
Although it should be clear from the derivation, the reader should neverthe-
(inc)
less be reminded that the integration path for the component E; is inthey
direction when the i-th conductor is concerned. When other conductors are

concerned, the integration path is a straight line in the y, z plane which i }
ﬁ
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joins the conductor and the zero-th conductor and is perpendicular to these
two conductors. This is designated as E.l in (C-26) and replaces the y vari-
able for the path associated with conductors i and 0. The notation may be

cumbersome but the idea and implementation is quite simple.

C.3. The Per-Unit-Length Inductance Matrix, L

~

One final calculation remains; the determination of the per-unit-length
inductance matrix, L. Ordinari.ly this is a difficult calculation as discussed
in Section V., However, if we assume that the conductors are separated
sufficiently such that the charge distribution around the periphery of each
conductor is constant, then the conductors can be replaced by filamentary
lines of charge. Typically, this will be quite accurate if the smallest ratio
of conductor separation to wire radius is greater than 5 [56]. In this case,

the entries in I,d are shown in Section V to be

2
d,
r _ -1 ~ Uy i0
:I;]i-l = U~V€V[§ ]ii = Z—T:T- 4n (r—-r———— (C-27a)
' wi w0
u di0 950
TL]i. = uvev[c“l]ijg _2__" ¢n (r . ) (C-27b)
~ ~ TT L]
i;fj w0 Tij

For closer conductor spacings, proximity effect will alter the charge distri-
butions from constant ones and numerical approximations must be employed
to find L as was discussed in Section V.

The entries in the per-unit-length inductance matrix

for large wire spacing given in (C-27) can be derived in an alternate manner
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which more clearly illustrates its relation to the total scattered flux passing

(scat)
between the wires. The matrix L relates the scattered fluxg passing
between the wires to the wire currents as

B (scat)) B T1T7. 9
®1 211 ¢ o o Eln Il
(scat) . . . .
9 =1. = . . . (C-28)
(scat)
Re . -l’nl f’nn_ _In .
(% -
L
The respective entries are determined as
(scat)
g, = %
11 T. -
L 11’ === Ii-l, IH-].’ === In =0 (C-29a)
(scat)
g, = =k '
ij o1, -ee=, L. e, L = _
ijj L Iy, ’ 13-1’ Ij+1’ , I, =0 (C-29b)
and g.. = ¢

ij = 4ie Large wire separations are assumed so that the wires may be

replaced by filaments of current.
Consider Fig. C-3a., The magnitude of the magnetic field intensity

vector due to I, on wire i at a distance r > r; away from wire i is

]'_.
H = =+

r 2mrr (C-30)

and the total flux passing between wire i and wire 0 due to both currents is
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) Figure C-3. The nroblem geometry for the calculation of the entries
D in the per-unit-length inductance matrix.
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(scat) d. d.
_ M 0 0 31
% ‘z—w{g ;d”S + & (C-31)

2
2m Twi Tw0

Thus zii is easily identified as in (C-27a),

Consider Fig. C-3b. The portion of the flux d)i(scat) passing between

wire 1 and wire 0 due to -Ij in the reference conductor is as above

(scat) _ uVIj n ( dio )

%i0 5 Two (C-32)

and the portion of the flux passing between wire i and wire 0 due to IJ. in the

j-th conductor can be found to be

(scat) dio p‘_'d'O (p - pg)
¢ij =-Hy \ H dp=-2¥1, S 1 2 2 > dp [ (C-33)
Jo B 2m ) Jp=0 [go + (p- po) ]

2 2
_ Yy 1 (E’O * p0 )
"mhl oz 2

0 i0

Combining (C-32) and (C-33) we obtain

(scat) (scat) (scat)
1. d..d.
_— = v jo i -34
1] w0
since
2 2 2
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2 _ ¢ 2
dj0” = 5" * P

2 (C-35b)
and 2y is easily identified as given in (C-27b).

C.4. Computed Results

To show the simplicity of the result and indicate its equivalence to the
result obtained by Harrison in [24], Example 1 considered in [24] will be
computed by this method. Three wires all of radius 10-3m lie in the x, ¥y
plane as shown in Figure C-4, A uniform plane wave with an electric field
intensity magnitude of 1V/m is propagating in the y direction and 5000

(purely resistive) loads connect each line to common nodes, The various

2 2

distances in Figure C-lare dj, = 10" “m, dyq = 2 x 10-2m and d;, = 10" “m,

50 and Z

g can be easily shown to be

1000 500

500 1000

The characteristic-impedance matrix, using the values for the per-unit-

length inductance matrix given in (C-27), becomes

4n(100) £n(20)
AZ«C =uL =60
#4n(20) in(400)
(inc) ‘
E; = 0 in (C-26) and the electric field intensity of the wave is
i
(inc)

Ef,(y’ x) = Exe-jBY
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Figure C-4. The geometry for the example.
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From this, one can determine

(inc) (inc) . 2

- --jBlo~
Ell(dIO’x) - EEI(O,X) = e -1
(inc) (inc) -stlO'Z

Ezz(dZO’x) - EEZ(O’X) = e -1 .

Two frequencies are considered in [24] in terms of 8£; g£= 1.5, g&£= 3.0.
Equations (C-26) with the above items were programmed on an IBM 370/165
computer in double precision arithmetic. @ The execution time (cpu time)

was .0l seconds (1/100 sec) and the results are

r]10(0)|= 1. 7662556 E - 5A 410(0)= 70.77°

BE=15 9 I,(0)] = 9.0756083E - 8A {11(0) =-13.9°

L|12(0)|= 1.7671218E - 5A {12(0 = -109.52°

|10(0)]= 5.4543875E - 5A {IO(O) = 9.845°
BL=3.0 [11(0)] = 7.7363155E - 7A {11 (0) = -75.8°

[, (0)|= 5.46081I0E - 5A 1,(0) = -170.96°
The computed results obtained by Harrison's method and given in [24] are

I[,(0)] = 1.766E - 54
BE=15 1 [[;(0)] =9.076E - 8A

|12(0)] = 1.767E - 5A
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|IO(O)l = 5,454E - 5A
BL= 3.0 |11 (0)]|= 7.736E - 7A

112(0)| = 5,461E - 5A .

The results computed by this method are exactly those computed by
Harrison's method in [24]. However, with this method only 2 simultaneous
equations in the 2 unknowns, 11(0) and IZ(O), are required to be solved

(IO(O) = -Il(O) - IZ(O)). Harrison's method required the solution of 10 simul-
taneous equations in 10 unknowns. Furthermore, Harrison's method was
restricted to uniform plane wave illumination of the line with the wave inci-
dent perpendicular to the line. Since g£= Z for this example and since the
uniform plane wave is propagating broadside to the line, I(0) = I(£).

C-5. Extension of the Method to Wires Above a Ground Plane.

Consider the system of n wires in free space above an infinite
ground plane shown in Fig. 2(b). The result for (n+l) wires given in (C-26)
can be extended to this case with the following observations. Consider Fig.
C-5. Clearly we may apply Faraday's law in (C-4) and the previous devel-
opment to the flat,rectangular surface in the x,y plane shown in Fig., C-5b
between the ground plane and the i-th wire and between x and x+Ax., This
flat,rectangular surface S; lies in the x,y plane. Equations (C-26a) and
(C-26b) will again be obtained. Equations (C-26c), (C-26d) and (C-26e) be-
come for this case

('an‘)I (inc) (inc)
[Eg(x) i~ Ef'i (hi,X) - Ezi (0, x) (C-36a)
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Figure C-5. Multiconductor lines above a ground plane,
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(inc) th (inc)

[E, (£)], = o Et; (5,9 d (C-36b)
(inc) h; (inc)
[E, (0)]; = ({01 By (5;,0) dg; (C-36¢)

where g; is a straight-line contour in the x,y plane between the position
of the ground plane, y=0, and the i-th wire which is perpendicular to the

ground plane, i.e. § =y. This is indicated in Fig. C-5a,

(inc)

E, (hi’ x) is the component of the incident electric field parallel
71

(inc)

to the axis of the i-th wire at y:h-l and Ezi (0,x) is the component of the

incident field parallel to the ground plane directly beneath the i-th wire.
(inc) . .. .
Eti is the component of the incident electric field parallel to §.1 and
directedin the +y direction.
The per-unit-length inductance matrix, L, can be obtained in a
fashion similar to Section C. 3 by determining the scattered magnetic flux

passing through the surface S; between the i-th wire and the position of the

ground plane (the ground plane is replaced by image wires) and is given

in (122) as
[L].. ==Y 4n [2hi (C-37a)
it - .
u digk
[L]..= =¥ 4n < (C-37b)
~l s ij
i#j

d%= [d 2 +4h.nh, (C-38)
1] 1] 1]
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APPENDIX D

O The purpose of this appendix is to derive the simplified form of the
nodal-admittance matrix for the lumped-circuit iterative approximations
given in (80) and the forms of the matrix chain parameters given in (78).

To derive the first equation in (80) consider the equations for the termin-

ation-networks in (69):
V(o) =¥y - Zol(o) (D-1a)

V(9 = Vg + 2, 19 (D-1b)

£

and the matrix chain parameter equations for the lumped-circuit iterative

models given in (79) for a line of N sections:

> A (%;_;) = ha X (% £> * o L (%{%’“) (D-2a)
i 1 (“11:? 5) - b1 2 <EI:I—1— £) Y2 L (51:?1‘ £) . (D-2b)

For the first subsection rewrite (D-1a) as

10) = ¥, V, - Y, Y(0) (D-3)

0

where ZO = 50-1 and substitute into (D-2a) with k=1 to yield

V(E/N) = Byyy YO + Bypp (Yo Vg - Yo V(0D (D-4)
= yn - Bz Yo) XO) + 3, Yo Yy

3
O which is the first equation in (80).
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To derive the last equation in (80), rewrite (D-~1b) as

I =Y V(O - Yo V (D-5)

£ =&

where ¥ = Z3'. Substitute this into (D-2b) for k = N to obtain

Ye V(O - Yo Vo= ¥ (7 ) +beal ('I\%l ) . (06

Substitute (D-22a) for k = N into (D-6) to obtain

(D-7)

Ye V(O - Ye Ve= 321 X(Eﬁl- ’) + Ekzz{?;iz v - 2;(12 & X(yﬁl S’)}

which can be rewritten as

{?.k?,l - 522 3-112 S }X(%Tl S) + {;‘Lkzz Eﬁz- Y }X(s) =- Yo Vg (D-8)

However, one can eé.sily prove the identity in (82)

-1 -1
ngl T k22 3};12 31(11 - Eklz (D-9)

associated with the forms of the lumped iterative matrix chain parameters
in (78), Therefore, substituting (D-9) into (D-8) and multiplying on the left

by - 3%

Sz yields the last equation in (80),

The derivation of the intermediate equations proceeds similarly,

Substituting (D-2b) for k=m into (D-2a) for k=m+l yields

X(‘r%;r'l‘ 55) = E,RIIX(ENI £> * a2 {?,ku ‘l(mT-l' £> t B2z I—<m—1\}L £>} (D-10)

Writing (D-2a) for k=m as
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1) s o V(RS - S s ¥ (inI\Tl— ) (D-11)
and substituting into (D-10) yields
{ Bz Bz1 - Bz Bz B B} YO ) (D-12)
{ b * bz e B} Y (T 9)
-y - 0, -

Again substituting the identity in (D-9) into (D-12) we obtain

X(‘ﬁ—) {~k11+~k129kzz~k12}"( £>+V(m+1£> 21

(D-13)
which is the form of any of the intermediate equations in (80).
In addition, it can easily be verified from the forms of the matrix chain

parameters for the lumped-circuit iterative models given in (78) that

t

a2 B2 T 22 Yaz (D-14a)
or

T R R 1 (D-14b)

AK12 ~Kk22 212 T 222 . -

Substituting (D-14b) into (D-8) (along with the identity in (D-9)) and substi-
tuting (D-14b) into (D-13) along with (D-4) yield the final nodal-admittance

matrix equations in (80):

(B2 Yo = By YO + V(E/N) = 8195 Yo V (D-15)
]
'
]
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X(EN:i S) - (B :’31222) X<% s) * X(T s) R
1
1

Y-(N_Izrl' ‘5:) t (@2 Le - g';.2.2) YO =8, L ¥
for m=1, ----, N-1,
The forms of the matrix chain parameters for the lumped-circuit
iterative approximations given in (78) can be derived in the following
manner,

For the lumped ’7 model, the terminal equations are (see Fig. 11(a))

(&9 - vt -2 ()L o) (P-162)
L(Tlir «55) = .[_(E{-Wl S) - Y (%) y (‘1%’@ . (D-16b)

Equation (D-16a) corresponds to the first matrix chain parameter equation

in (78a)., Substituting (D-16a) into (D-16b) yields
l('§£>='x<%>x<k—1;££) +{~1an+35 (%j}ﬂk;Nl‘Y’) (D-17)

which is the second matrix chain parameter equation in (78a).

For the lumped ' model, the terminal equations are (see Fig. 1ll(b))

Y(Tlir‘:): "_’(&I\?l‘s) -Z (%\I—) L (1;—\; S) (D-18a)
159 -tEy &) + Ll5he) . (D-18b)

Equation (D-18b) is the second matrix chain parameter equation in (78b).

Substituting (D-18b) into (D-18a) yields

V() Lt ez (@ () 2 R )

which is the first matrix chain parameter equation in (78b).

For the lumped Pi model, the terminal equations are (see Fig. 1ll(c))
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-



ACERRC DR (I ICORE RCIRAC ) S
{La s (E v () 2Bkt
l(’%"t) =1 (l%\rl_s) -%X (Ti)y- (‘%1'&) (D-20b)

-3 1 (3) viFe)

Equation (D-20a) is the first matrix chain parameter equation in (78c). Sub-

stituting (D-20a) into (D-20b) yields
3
(k'l ;:) (D-21)

s {-u(f)-3121®) ) L5

N

2
1 } k-1 )
i, 51z2(R) Ll
which is the second matrix chain parameter equation in (78c¢)

For the lumped Tee model, the terminal equations are (see Fig. 11(d))

w5 o) v(h) Lz (Hue)
4 2(E)il%e)
L ) - L) x(B){v ()
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Equation (D-22b) is the second matrix chain parameter equation in (78d).

Substituting (D-22b) into (D-22a) yields O
vk 9 - bex(E)] vl ;-

34 -
{-2()- 1 AxER) ()

which is the first matrix chain parameter equation in (78d).
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APPENDIX E

The purpose of this appendix is to provide justification for omitting
the reference potential terms in the potential expressions in Chapter V.
Consider Fig. E-1l(a) in which infinitesimal line charges lie on a cylindrical
surface of radius r+ The potential (bp(rp, Gp) with respect to the potential

reference point due to one of the line charges is (reference [58], pp. 91-92)

= - ) I E-1
@p(r‘p: ep) Zﬂ- - Zn < dr ) ( )

where the distances from the line charge to the potential and reference

points are given by

dp2 = rp2 + r‘i - errw cos (06~ ep) (E-2a)
df = rrz + rwz - er r,COS8 (6 - 6,) . (E-2b)

If the cylindrical surface supports a per-unit-length charge distribution of

the form

A B
= +2 +2 b si -3
o (8) aq am cos m@ Z_1 Pm sin mA (E-3)

m=] )

then the potential ¢p (r., 8

p p) can be obtained as the limiting case of an

infinite number of infinitesimal line charges with appropriate weighting
given in (E-3) as [56]

bp(rp, Bp) = ;E gzv in <_d_a)rwd6 (E-4)

0 dp

e

1 ;P: em dp
- =1 SO apy, COSs mé gn <E;>rwd6

-1l Szwb sin m@ zn(EE>r dg
2me m=1.0 m d./ W
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(b)

Figure E-1, The geometry for the derivation of the potential expression.
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Substituting the expressions for d_ and dr given in (E-2) into (E-4) yield

P
integrals which can be evaluated in closed form. The result is [56]

0] (rp, ep) = aO DO (rp) e-p: rW ) - a’ODO(rr, 61" rw) (E"'5)

c c
+n?=1 { 2mPm (rp’ Op, T = 2Pty 6r’ rw)}

> [
+I’§=1 Lb (rp’ep’r )"b (1" I"r )}
where
-Ty in rp
DO(rp’ Op, rW) = e o 2 Tw
Ty In T (E-6a)
e rp S rw
(rw) cos m@, rp > T,
ng(r Z2em(r )™
(r 2 , r ) = (E_6b)
(rp)™
2em(r ym-1 cos m@ rF’s Tw
(r )m+1
. 5 em (rp)m sin mep rp 2T,
D =
m(rp, ep’ rw) ( -6C)
(r)™m
- __ sin m@ r r
2em (T )m-l P o) W e

The third argument in the expressions of (E-6) will designate the radius

of the boundary supporting the charge distribution. The terms D T B, Ty,
Dfn(rr, 8., ry)and D§ (r.,@.,r ) in (E-5) are the reference potential

terms which were omitted from the potential expressions in (96) and (97).
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Consider a typical system of (n+l) wires shown in Fig. E-1(b)
bearing per-unit-length charge distributions of the form

0;(8;) = a;g +n? a; ., €os mp; + r%ﬂ b

2, #im sin m@; (E-T7)

im

fori=0,1, ---, n. A typical expression for the potential at a match

point on the i-th conductor in Fig. E-Il(b) is

¢; = 290 D0 ( r50> epo, rwo) - 200 D() (rrO ’ erO, rWO) (E-8)

C
+
Z’ {0 ( pO’9 O’rWO) 20m Dm( r0* rO’ )}
BO .
+% { S
"~ 1Pom Pm (%50 » Bpo’ Two) ~Pom PrmlTros Aro2 o )}

+2i0 Do (Twis O s Twi) =2i0 Do (Tpi 5 Bpi s Tigi)

Aj
c c
+r§:1 i m(Twi Opi* Twi) “®inPm (T is Pris Twi )}
B; I3
S
+rr21:=1 {bimDm(rwi ’ epi ’ rW1 ) - bLmDm( ri’ 6ri’ 1.Wi) }
4 cmmmemaaa-
*2j0 Do (rpj » Opjs Twj) =2jo Do (1 » Orjs Tg)
g c
+ 2 {a. D ) ) ) € }
1 { imm(%j + Opj7 Twj) ~3mPm(Trj » 61 Top)
j
+ 20 [ DS (r . . 8 }
m=1 ‘J™ m{";j + Opj* Twj) “Om Py » 610 o)
4 ccem e r e —-
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If we allow the reference point for the potentials to move to infinity,

the reference potential terms for the a; ;oS mei and bim sin m9i terms,

i.e., D (

,r_.) and D° (r_.,H
m wi m ri’’r

T eri T rwi) go to zero for i=0,1,~-~-,n

as is clear from (E-6b) and (E-6c). In addition, if the total per-unit-length
charge on the system of (n+l) conductors is zero, then the reference poten-
tial terms due to the constant expansion terms a;p° i.e., DO (rri’ eri’ rwi)’

may also be removed for all i=0,1, -~~,n. This can be shown in the following

manner. The total per-unit-length charge on the i-th conductor is

_ (2m
q = SO o; (8)) T; d6; (E-9)

=2 .a.
Tr 0

and the portion of the potential expression in (E-8) consisting of the refer-

ence potential terms due to the constant charge expansion terms is

-—-  -aggDg (Tpo s Br0s Twp) ---- (E-10)

=== =20 Do (ryjs Bpy s T) ----

--- -2jo Dy (rrj, Orj, Twj) ----

n
==

1= 2k0Po(Frie Orkcs Twic) .

Utilizing the expression for DO of the form given in (E-6a), equation (E-10)

can be written as

I
VE

N (' wk 48 (rp) ) (E-11)

€

With the expression for the total per-unit-length charge on the i-th conductor
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given in (E-9), equation (E-1l) can be written as

n

b q /n(rrk)

_ k —/H

k=0 2me . (E-12)

Requiring the system to be electrically neutral, i.e.,
n

kZJO q =0 (E-13)

equation (E-12) can be written as

n T n
{2 g )ﬂ_r.@_ + Y q 220r
\j 3 K 2me k=1 ¥ T 2rme . (E-14)

By combining associated terms, equation (E-14) can be written as

T S (v
k=1 2n¢ r0 . (E-15)

As the reference potential point moves to infinity, the distances from the
centers of the conductors to the reference point become equal, i.e.,

Tpg = Fp] = ==== = Tp.s and (E-15) approaches zero, Therefore, the

rn
reference potential terms in the potential expressions may be omitted,
Implicit in this is the fact that the potentials, ¢i, are with respect to

infinity., This is permissible as was shown in this appendix only if the

net per-unit-length charge on the system is zero, i.e.,

n

oy G =0 . (E-16)
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