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Abstract

A simplified theory of shielding of steady-state and transient

nknown current in the thin shield is discussed, and an equivalent cir-

uit representation is given. Comparisons with exact solutions are
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Summary
A simplified theory of electromagnetic shielding by enclosures with
conductive and/or magnetic walls is presented. The theory is based on a
simplified type of boundary condition at the enclosure walls. Theoreti-
cal results are compared with exact solutions for steady-state and tran-
sient excitation and the approximations turns out to be extremely good in
all cases of praatical interest. For enclosures of arbitrary shapes, the
problem is formulated as a single integral equation in the unknown cur-
rent in the shield. Numerical solution of the equation is discussed, as

.

well as a possible equivalent circuit representation.




1. The Problem

The problem of computation of shielding efficiency of conductive or
magnetic shields on incoming electromagnetic radiation is certainly an old
one. The first paper on the argument seems to be that of Larmor [1], pub-
lished in 1884, and essentially based on a low frequency analysis. If we
scan the technical literature on the argument during the last 10 years, it
appears that papers can be broadly grouped into three categories: study of
shiélding cavities with no coupling holes, so that the field which leaks
inside is essentially due to the imperfect conductivity of the walls [2-18];
study of shielding cavities with coupling holes [19-28]; transmission through
grids [29-33]. Then, there are papers of more general interest, which cover
more than one argument [34-37], and papers which are related to the case of
shielding using magnetic materials, wherein the non-linearity of the shield
is taken into account [38-42]. A number of papers is mainly experimental [43-
48]. The above referenced papers are not exhaustive of the bibliography on
the argument, but only representative of general research trends in the area.
It is also noted that the only available standards for measuring the shielding
effectiveness for quasi-static, sinusoidal and transient excitation are still
those of the MIL Report of 1956 [49].

In all cases, the theoretical approach of study is based on the solution
of Maxwell's equations with the appropriate boundary conditions on the shield
surfaces. The excitation is generally assumed to be sinuscidal, with some
noticeable exceptions in more recent papers which consider pulsed fields;
in some cases quasi-static incident fields are considered, especially in the
case of sources in presence of plane screens [10,13-15], which is important
for the MIL standard specifications (which are, however, objectionable [50]).

A circuit type of approach is also used in some cases [51-54].

—
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Examination of the body of theoretical papers shows that, with the
eventual exception of the circuital approach, the mathematical machinery is
so heavy that the physical insight is often missed. Most of the papers, if
not all of them, require extensive numerical computations, even if the
approach is not purely numerical from the onset. In the casé of papers which
make use of a circuit t&pe analogy, the connection with a rigorous approach
is not completely clear either.

From the above considerations, it seems worthy to develop a simplified
theory of electromagnetic shielding, in order to obtain simple expressions
for the electromagnetic field inside the shielding enclosure. The basic idea
which underlies the theory is briefly sketched in this section and is
rigorously developed in the following ones. An impoftant feature is that
the approximation theory is compared with the exact one in some canonical
problems, so that the approximation involved is clearly understood. The
Tesult is that the new theory is always an excellent approximation, in all
cases of practical interest, for both steady-state and transient excitation.
The theory is developed for the case of a shield with no apertures, although
this limitation can be relaxed, sometimes very easily, as discussed in the
conclusions of the paper. Interesting results are very simple expressions
for the transient field inside the shielding enclosure which beautifully check
with existing numerical data; the rigorous justification of the equivalent
circuits, wherein the heuristic approach similar to that already available [53]
is referred to for completeness under Sect. 6; the development of a simple
integral equation, valid in any frequency range, whose numerical solution
would allow the study of shielding properties oﬁ enclosures of arbitrary shape
under steady-state or transient excitation. The basic idea on which the

theory is based is the following.




When the electromagnetic field inside a shielding enclosure is being
computed, a three-region problem is studied; the outside region, where the
incident field is applied; the inside region, where the shielded field is
present; and the region occupied by the shielding material. This last
region is generally thin with respect to the incident wavelength or, if a
transient field is applied, its thickness is small compared to the pulse
spatial width or, eventually, pulse rise time multiplied by the velocity
of light. The shielding material is usually highly conductive and may
exhibit magnetic properties; it may be inhomogeneous, either due to
variable thickness or to the presence of holes, gaskets, etc. These are
essentially the reasons why the problem is rather complicated to analyze:
a multi-region problem, with at least one region highly lossy and possibly
inhomogeneous, wherein different field expansions should be used. And it

is easily predictable that results of a theoretical analysis turn out to

be so complicated that physical implications are difficult to assess.




For all of the above reasons, it seems worthwhile to try to simplify the
mathematical model of the shielding problem. And the idea, that the geometry
of the problem naturally suggests, is to substitute to the region occupied
by the shielding material something which is equivalent, or nearly equivalent,
but mathematically simpler to analyze. The incident field will induce in the
shielding material a density current J and a density charge p, related by the
continuity equation. These density current and charge will flow or be pre-
sent inside the shielding material and will be responsible for the rapid
decay of the field in the shield. Letting § represent the shield thickness,

the current and charge per unity length will be J

Jg = J6 and pg = pS respectively.

The basic, intuitive idea is now fo substitute to the real shield, of thickness §

s

a sort of Anfinitesimally thin shiedd on which, however, surface density current
Jds=J6 and charge pg = pS are present. The original three region problem -
outside, inside, shield - with everywhere continuous fields (save eventually on
edges or tips) has now been replaced by a two-region problem - outside, inside -
with partly discontinuous fields on the boundary surface between the two regions.
From another viewpoint, the iapid variation of some §ield components inside the
shield has been approximately accounted gon by a discontinuous behavior.

It should be noted that a new unknown has been introduced in our problem,
namely the surface density current Js. However, it is related to the field
vectors through the properties of the shield. For instance, in the case of a
homogeneous conducting shield of conductivity ¢, Jg is simply equal to o8 times
the tangential component of electric field component, continuous across the
shield.

In the presentation of the basic ideas of this theory, reference has been
made to an electric type of shield. We will show that similar reasoning applies

to the case of a magnetic type of shield, wherein the surface electric density




currents and charges are substituted by surface magnetic density currents
and charges respectively. The procedure is formalized, for both cases, under
Sect. 3.

A key point is obviously the assessment of the limit of validity of
this approximate theory. This is made under Sect. 4 for steady-state and
Sect. 5 for transient fields, comparing approximate and exact results. Then,
the theory is fully developed in the ocase of an enclosure of arbitrary shape,
with the only limitation that no coupling holes are present. The possibility
of encompassing these more complicated situations is outlined in the conclu-

sion of the paper.

2. Relevant Formulas and Pertinent Expansions

For the reader's convenience, relevant formulas and pertinent expansions

used throughout the paper are hereafter collected.

Bessel and Hankel functions

56 =[5, 100 - 3,00 2.1)
Jx(x) = 4 [Jn_z(x) - 2Jn(x) + Jn+2(xi} (2.2)
(%) = %[ I 00 - 3G+ 300 - Jn+3(x)] (2.3)

and similarly for the Hankel functions. A prime means derivative operation.

w2 ™t ™
J_(X) = gTaT— - IRyt 2T T (2.4)

For x >> 1, x >> n:

3 (x) N-J%; cos(x - %;—— %J- (2.5)




Wronskian relation:

Héfi(x)Jn(x) . H£2)(x)Jn_1(x) - Héz)'(x)Jn(x) - Hiz)(x)Jé(x)

z ﬁé?i . : (2
I = (% (). | 2.
For x>0, n>1: HZ ()= i(%gn (-1t 2.
Sphesrical BeAxséE Functions

1,00 = Y TG (2.

and similarly for the spherical Hankel function.

. 3 5
. 2 Sinx  _cosx x xoxT
1, = T2 X T 3736 " 840 2.
. . 2 . 3 4
@y =L o L ix) = Lo S S
hl (x) = - X(l X) exp(-ix) = X2 (1 + - Tz gt ) (2.
. v 1. 1 _2 2 3. 1 .5
[le(X)] = (1 ~ ;-2—)§1n X + - COs X = TX - g X+ Tes X - .o (2.
, . . 2 .3 4
(2) ] 1 i oy o L i x~  2ix 3x
[%hl (x) = X(l - X) exp (-ix) = - Xz (1 - 5 * —5 5 ced)
Fowdcien Trhans forms
00
LW
_ exp(—lz—x) -1 X
————— exp(iwt) dw = 6&-—? (2.
~0 4mx ’ 4mx

+ . W
exp(-i = x) ‘ -1 % X X
i/(.v —————— exp (iwt) dw = V(ZE§J [6(t - EJ + E-S'Ct - EJ] (2.

~0 4mx

where a prime means derivative operation with respect to t.

.6)

7)

8)

9)

10)

11)

12)

(2.13)

14)

15)




3. The Shielding Boundary Conditions

Let us consider an enclosure of finite volume and of large dimensions

compared to the wall thickness § (see fig. 1), with no coupling apertures

to the outside, The bounding surfaces, Se and Si’ are sufficiently smooth

§

Fig. 1. Geometry of the enclosure.

so that the unit normal vectors ﬁe’ ﬁi can be unambiguously defined every-

where. Let also S be an average surface between Se and S.1 , with unit nor-

mal fi. The medium outside and inside the enclosure is assumed to be the E
same (although this limitation can easily be relaxed) and of electromag- |
netic parameters € ,H. The material of the shield is characterized by per-
meability H,» permittivity €8s conductivity o. Let us further indicate
with (E?,_EO) the known incident electromagnetic field, Qge,'ﬂe} the field ;
outside the enclosure, sum of the incident and scattered field, (Ei,.gi)

the field inside the enclosure and (E, H) the field in the region occupied ;
by the shield material. In transient analysis, fields will be functions
of position r and time t; in steady-state analysis of position r and angu-

lar frequency «, wherein a time dependence exp(iwt) is assumed. The same

symbols for fields in time and frequency domain are used except where confu- e

sion could occur. t
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We assume the tangential components of electric field and normal com-
ponents of magnetic field to be continuous across S; and tangential compo-
nents of magnetic field and normal components of electric filed to be dis-
continuous due 'to equivalent surface current density J and surface charge

density pg respectively, both unknown for the moment, and located on S.

Hence:
.p

e -g'- 53 , | , LG
£

B -H' =J x4# (3.2)

On the other hand, gg and p, are related by the continuity equation:

t
Bps(g, )

Ved @)y ST =0 (3.3)

]
o

Ve J (x, w) + iwpg(r, w) (3.4)

in time and frequency domain respectively. Equations (3.1-2) will be
referred to as elfectiic shield boundary conditions.

For the case of a shield with no apertures (which, however, may exhibit
a variable conductivity ¢ or thickness &) the introduced new vector field gs
can be easily related to the electric field. If J is the density current in-

duced by the electric field inthe shield, we have

Jg=J8= (0 +iwee) § i xExfi=~o6ixE xf, ons§ (3.5)
since the tangential component of the electric field is assumed to be conti-
nuous across S and ¢ >> iweoe as usually in good conductors. Accordingly,
the electric shield enclosure problem is specified in terms of the fol-
lowing boundary conditions, which stem out from (3.5 and 1.2):

i

A x E®

w3}

X

»
tr3
i}
()

(3.6)

>
X
s
[}
=
X
|z
If
87
=
X
| to
X
o5

(3.7)
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Consider now the same geometry of fig. 1, when the shield material is
characterized by permittivity € and permeability u M. We will assume the
tangential components of magnetic field and normal components of electric
field to be continuous across s; and tangential components of electric field
and normal components of magnetic field to be discontinuous due to equivalent
magnetic surface current density ims and surface charge density Pos respectively,

both unknown for the moment and located ons. Hence

. o . .

E? } E} _oms 2 (3.8)
1JC)

g - gl = -3 A (3.9)

On the other hand, gms and pms are related by the continuity equation

9 (Ts )
Vg @)y —p— =0 (3.10)

ot
(3.11) e

in time and frequency domain respectively. Equations (3.8-9) will be

1}
[w]

v (zow o+ iwe,  (r, w)

referred to as maghetic shield boundary conditions.

For the same case of shield with no apertures the introduced new vector

field gms can be easily related to the magnetic field. As a matter of fact,
the magnetic field in the shield, H, is associated with a magnetic induction,

B =y u H. Then, use of integral form of Maxwell equations shows that
-_— O —

=>4

x B¢ - A, x B = -iwp u§ fi x H x A (3.12)

(S 1

Comparison of (3.8 and 12) leads to the identification
' . A A a L od oA
= X X = X X
gms 1wpou6 i xHxn 1wuou6 fi x H f (3.13)

The last equality results from the continuity of the tangential component of

magnetic field across . Accordingly, the magnetic shield is specified in terms

12
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of the following boundary conditions, which stem out from (2.13 and 8-9):

e i

3ﬁ><§1_-ﬁ><51_=0 (3.14)
ﬁXEe-i‘:XEl=—iwpou<Sﬁ><§l><ﬁ ' (3.15)

It is explicitly noted that in the static case, wherein pure electric
or magnetic fields exist, boundary conditions (3.6-7 and 14-15) are not ap-
propriate, and use should be made of (3.1) and (3.8) respectively. Broad-
band problems which‘include static or quasi-static fields require, as a
consequence, some attention. A suitable formulation of this probiem is
given under Sect. 7, wherein a proper normalization for the surface current
is introduced.

It is interesting to examine what happens when electric and magnetic
shi¢lds are used together. When two shields are used, there are two pos-
sibilities (see fig. 2): either the magnetic shield can be located outside
(case a) or the electric shield can face the incident field (case b). For

the former case appropriate bouhdary conditions are the following:

Fig. 2. Possible geometries of two-shield problem.
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ﬁxge-ﬁxgi=oaﬁx_ﬁ_ixﬁ (3.16)
3ﬁ_x E® - fix BN = ~iwyu p8 A x HS XA (3.17)
while, for the latter, we have

fx B -axH =08fxE xh (3.18)

fi x ge - % _E_i = —iwuouéS A x Ei X fi (3.19)

Accordingly, different positioning of the shields is not irrelevant. This

problem will be dealt with under Sect. 5.

4. Approximation Study. Steady-State Analysis.

In order to check the validity of approximate boundary conditions on
which previous analysis is based, a specific example is worked out. To
this end, let us consider a plane wave normally incident on an infinitely e
long metal cylindrical enclosure (see fig. 3). Let superscripts "i' and "e"
be used for fields inside and outside the cylinder, respectively, while no
superscript is used for the field in the shieilding material. Let ksﬁ V—iwuoc
be the propagation constant in the shield material and L= Viwuo/c be its
intrinsic impedance. Furthermore, k and  are propagation constant and intrinsic

impedance in free-space inside and outside the enclosure.

A
T (e, )

Fig. 3. Plane wave incident on a cylindrical enclosure. H-polarization.

14

‘——_—__




Appropriate expansion of the electromagnetic field in the three

regions of fig. 3 are the following:

v
il

1° Zn in [Jn (kr) + anHIEZ)(kr)] exp (ing)

27}
i

5 iCHO'z;n in[}Q(kr) + anHﬁz)%kr)]exp(in¢)

H = HO_z;n in[}an(ksr) + dnYn(kSr)] exp (ind)

t
]

s i;SHO.Z;n it l}aJﬁ(ksr) + dnYé(ksr)] exp (ing)

0w .n ' .
H" = H .z;n i ann(kr) exp (ind)

tm
]

5 igH° E:n inanﬁ(kr) exp (ing)

)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

where a prime means the derivative operation with respect to the argument.

Exact boundary conditions lead to the following 4x4 linear system for

the expansion coefficients
JKR) +a HP(kR) = ¢ J (KR) + dY (kR)
n- ¢ nn e nn-s’e nn’'s e

ann(kRi) = ann(ksRi) + dnYn(ksRi)

JHRR) + anHéz)'(kRe) =y [ané(ksRe) . dnYA(ksReﬂ

B 0R) = x[o, iR ¢ 4R )

when yx = Viweo/c .

(4.7)

{4.8)

(4.9)

(4.10)

On the contrary, the approximate sh{eld boundary condition (3.6-7)

leads to the 2x2 linear system
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- [Jn(ka) . 5nHIE2)(ka)] + B I (ka) = iGcSCEnJI'I(kaj (4.11) ®
Jr'l(ka) . énﬁxgz)(ka) = §_J! (ka) (4.12)

where én, En are the new expansion coefficients outside and inside the en-

clousure, respectively, and a = (Re + Ri)/2. Note, for future reference,

that 106z = - ksd/x.

A comparison between the systems (4.7-10) and (4.11-12) is simplified

when (4.7) is subtracted from (4.8) and (4.10) from (4.9), thus obtaining
[ (kR)+aH(2)(kR)] b J (KR, = ¢ |7 kKR) - J (kR -
n e nn e nn i nln s e n- s i
- dn Yn(ksRe) - Yn(ksgiﬂ (4.13)
J0R ) + a BB R ) = b IR, + e [Tk R - I (K R.)] .
n- e nn ~ © nn 1t m|n se¢€ n s i
. an[Yé (k Ry) - Yn(ksRi):l (4.14)

Equations (4.13-14) will now be compared to (4.11-12), after proper manipu-

lation. To this end, note that

J (kR - I (KR = (kS * ) k% + .. (4.15)

Y (kR - Y (KRR = YI(x) k S+ zr_l's_[(f}_ (ksd)3='+ (4.16)
| IV )

3k R - TI(KR) = In(x) k8 e (k,8)° + ... (4.17)
A

YRR - YIOGR) = Y0 kS k... (4.18)

when x = ksa. Then, using (4.15-18), we have

cn[Jn(ksRe) - Jn(kSRi )] + dn Yn(ksRe) - Yn(ksRi)] =

16




'

(k8
= [}nJﬁCX) + dnYﬁ(xﬂ k56 + [an;'(x) + dnYH[x)} —3Tt - (4.19)

c_ [Jr'l(kSRe) - J];tksRi)] + dn[YI'l(ksRe) - Yr;(ksrii)] =

iv iv ] x_§)°

= [ang(x) + dnYH(x)]ksé + [c (x) +d Y (x) —-—g,—- . (4.20)

an
We will now explicitly assume that the shield thickness 8 is very -

small compared to the wavelength of the {ncident field, namely

ké << 1, (4.21)

Accordingly, kR, = kR, = ka with an error of order ké§ << ks6. An estimate

of the quantity [anﬂ(x) + dnYﬁ(xi} and subsequent derivatives can then

be gained from (4.10). Hence,

X[an;l(x) s dnYI;(x)] = b Jt (ka), (4.22)
bn

X[}nJg(x) + dnY;(x)] = i—'J;(ka) (4.23)
S

and similarly for higher order derivatives. Then, using (4.22) and sub-
sequent derivatives for simplifying (4.19-20) and then substituting in

(4.13-14), we get the final result

K § 2
- [9, a) + a1 k)] + b (ka) = - =, [0« e B ] a2
J!(KR) anHrEZ)(kR) - bnl:Jr'l(ka) + JU(ka)ks + ] (4.25)

The original system (4.7-10) has now been cast in the form (4.24-25) which is
similar to (4.11-12) and a comparison is meaningful. The two systems differ
in quantities involving ké, so that it can be anticipated that the approxi-
mation in using the shield boundary conditions will not depend on shield mate-

rial parameters, but only on its thickness compared to the {ncident wavelength.
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Since the field inside the enclosure is of interest, the two coefficients, ‘

bn’ bn’ should be compared, hence

(2) (2)'
b = Hn Jﬁ } Jan (4.26)
n o 4@ C 3 5@ e g

13 n nn n n

W@ 5 y@

b = n n nn .

n @5 - H@ L e Ty« 1@ e ks ¢ sosgut® g LT (4.27)
n n n n n n n n 3!

n n

where all functions are computed for the argument equal to ka. From (4.25-6)

it follows that

5 -b  H@ g4 soeu® g key3
n n_. n °n n n

=~ kS (4.28)

by w@5 Ju@®y s seen®

n n n n n n

in all practical situations o8f is a very large quantity. Accordingly: e
= 2
b -b Jnr(ka) (k$)
n__ 0o 0 (4.29)

b J'(ka) 31

n n

which gives the relative error in using the approximate expansion coefficients
Bn instead of the exact ones b_.

For ka < 1, it is useful to transform (4.29) using (2.3), thus getting

bn - bn i E-(kﬁ)z . 1 Jn_s(ka) - Jn+3(ka)
b 8 24
n Jn_l(ka) - Jn+l(ka)

(k8)2 (4.30)

Use of (2.4 and 7) shows that the second term at the right hand side of (4.30)

is of order (ka)2 for n = 0, 1, and of unity for n = 3. Accordingly, the rela-

ve error is of order (ké)z. For n > 3, the second term is of order

(n-l)(n-Z}(S/a)z, so that the approximation may become worse for exceedingly *

large values of n. , ]
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For k2 > n and large, use of (2.5) shows that

n - Pn x8)?
B g
n

o

(4.31)

The gonclusion is that the shield boundary conditions are a very good
approximation fo the exact ongé‘bnovéded that S/x 44 small, X being the
incident wavelength. In passing, we note that the field inside the cy-
lindrical enclosure takes the following remarkabl simplé expression upon

solution of (4.11-12) and use of (2.6):

R Z‘” o Tn ) exp (ing) ' (4.32)
- ~n 1+ L oop aosi® ' (ka)ar (ka)
2 0 n n
o exptin¢) ~ A
E' = ¢H [ n J_(kr)r + i Jr'l(kr)cb] (4.33)

T 2y |kr
1+ E@poaoﬁﬂn (ka)Jﬁ(ka) |

In particular, at r = 0, only one term of the series is different from zero,

and we get

o}
H(r = 0) = - = ; ° (4.34)
B - T (2) B U _acé ’
1+ iw“oaOSHl (ka)Jl(ka) 1+ iw 2 5
2€ a
. E° i —2 - i
e 0 s o L BT e w
1
1+ iwuoaoéHl (ka)J' (ka) 1+ iw 2

when the last equalities are valide under the assumption ka < 1 and use has
been made of (2.2,4 and 8). Results (4.34-35) will be used in Sect. 6 for

a circuital description of the shielding phenomendn.

5. Approximation Study. Transient Analysis.

The introduced shield boundary conditions <an be successfully used for

studying the performance of a shielding enclosure under transient excitation.
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The example of a spherical shielding cavity will be considered (see fig. 4), ‘

so that a comparison with the numerical data of ref [18] is possible.

Fig. 4. Transient field incident on a spherical enclosure.

Let us first consider a steady-state incident plane wave, (E?, E? =
; X _E_O/f:). Computation of the field inside the cavity (_E_i, g_i) is straight- ‘
forward and parallel to that for the cylindrical case. Only the final re-
sult will be hereafter referred to. The reader interested in the exact
analysis can consult [18].
The field in the cenfer of the cavity, i.e., v = 0, is given by

i £
' - ' | (5.1)

1+ 06T [kahl(z) (ka)J' [kajl(ka)] '

. HC
l —_—

jas)
]

(5.2)
1+ Gﬁc(ka)zhgz)(ka) i, (ka)

where hgz)(x) and jl(x) are spherical Hankel and Bessel functions res-

pectively, as defined in (2.9). Accordingly, the field in the center of

the enclosure has the same polarization of the incident field.
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Consider now an incident field which is bandlimited to an upper
frequency such that ka < 1. Then, a series expansion of the denomination
of (5.1-2) 1is appropriate. Let T = /E;ﬁ; a and is the transit time along
the radius of the cavity and g = COGG and is the (normalized} surface con-
ductance of the shield. For Kka small we get

. 3T
i ) le]
E* () . E” () (5.3)
. 3T :
T

0Q

1

s 8L
1 + 1w 3

i @) Ew 5. 4)

where use has been made of (2.10-13). Equations (5.3-4) provide the trans-
fer function for computing the Fourier transform of the electromagnetic
fields in the center of the spherical enclosure excited by a bandlimited
incident plane wave.

The time dependent electric field in the center of the caﬁity,
E}(t), is expressed as the convolution product of the inverse Fourier

transforms of the two factors appearing in (5.3). Letting U(t) be the unit
step function,

. de® (t)
B (t) = EO()¥ [scu-e—’i&(;?g—tﬁi)u(t)} —~ s [exp(—th/fST)U(t)]:

31/2g dt

2g

ULl ORI ¢S
- * Jexp(-2gt/3t)U(t) (5.5)
dt 2
dt
where the asterisk means the convolution operator and successive inte-
gration by parts have been performed. Accordingly, the electric field
is highly shielding provided that its rate of change with time is small

compared to 31/2g. This is always the case for all practical situations.

For instance, an enclosure of radius a = 1 m, thickness § = 1 mm and with
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copper walls (0 = 5.8 x 107 siemens/m) has 31/2g = 2« 10~lésec.

Equation (5.5) shows that the dominant part of Zhe electric §ield
in the center of the enclosure is proporticnal Zo the Zime derivative of
the incident f4ield. This behavior is clearly displayed under figs. 3 through
7 of ref. [29], where a plane wave with.a gaussian pulse variation in time
has been assumed.. Results of ref. [29] have been obtained by numerical
Fourier inversion of exact steady state solution.

The time depedent magnetic field in the cavity, E}(t}, is similarly

expressed as

Ei(t) = Eo(t) * [ﬂﬂl&i)_u (t):l (5.6)
gt/3

For the same enclosure with copper walls and a = 1 m, § = 1 mm, we have
gT/3 = 25 msec.

.An incident field pulsed in time, with a measure of pulse width T,

produces a completely different magnetic field inside the enclosure ac-
cording to the values of T compared to gt/3. As a matter of fact, inte-

gration by parts of (5.6) gives

; . dﬂ? dzﬁ?
H(t) = H (t) - g—;- T * 5 * [exp(-Bt/gT)U(t)] (5.7)
dt
Accordingly, for T >> gt/3
H(t) = HO(t) (5.8)

and the magnetic fdield is not appreciably shiefded. On the contrary,

for T << g1/3, we have directly from (5.6)

. t t
g}(t) = g;-exp(-St/gT) f ﬁ?(u) exp(3u/gt)du = g;-exp(-St/gT) f E?(u]du (5.9)

~00
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It follows that the magnetic §ield in the center of the enclosure .4
proporitional to the time integhal of Zhe incident fdield and is extinguished
with a time constant gt/3. This behavior is clearly displayed under figs. 11
through 13 of ref. [29].

The case of a magnetic type sphericél enclosure can be treated simi-

larly. Relations dual to (5.1-2) are the following

o
; H
H" = (5.10)
. (2) ' . !
1 + ikdu kahl (ka) kajl(ka)
(o]
i E )
L = (5.11)
1 - ik 6 (ka)’n () (ka3 | (ka)
And the equivalents of (5.3=4), valid for ka < 1, are
: H () | |
H (w) ———— , : : (5.12)
2u6 .
1+ 3a
. E° ()
B (w) (5.13)
1 - w2 T2 Jﬂi

3a
Accordingly, no significant shielding is provided for the electric field
in the low frequéency range, while the magnetic field may be appreciably
shielded if 2ud >> 3a,
It is interesting to consider the case of two shielding sheets,‘one
electric and one magnetic and one o&er the other. If the magnetic. sheet
is located ocutside and the electric one A{nsdide, the expressions equivalent

to (5.3-4) are the following

iw T ‘
E (W) = 2 E° () (5.14)
1+ iw ST W2 12 Hé
2g
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(W) =

H® (w) 1
2u8 1+ i & 3a + U6 (5.15)

1+ =5 3 32 % 208
It is seen that the best of pure electric and magnetic shield is taken,
also with some minor changes in time comstants.

Slightly different results are obtained when the efectiic shield is

located outsdde and the magnetic one inside. Hence:

i imgT o}
E @ = & E(w) (5.16)
.3t 2.2 ué
1+ iw 2g-fw T 55
. H® () 1
H (w) = : (5.17)
2ud . g7 3a + 6ud
1+ 3a L+a 3 3a + 2ul

It is recognized that the latter configuration produces a better shielding

at higher frequencies. The physical reason is that the electric shield has,

in this case, a sort of magnetic core so that its efficiency increases. On
the contrary, in the other configuration, the magnetic shield has a sort of
electric core, whose induced currents tend to counterbalance the external
magnetic field, thus decreasing the efficiency of the magnetic shield.

The transient analysis for these other cases parallels that for the

electric shield. No significant new results are obtained.

6. The Circuital Viewpoint,

Equation (5.3), as well as (4.35), suggests the possible use of the
equivalent circuit of fig. 5a for an estimate of the field inside the
shielding enclosure in the case of a low-frequency bandlimited incident

fied. For the spherical enclosure,
3e a
(o]

3t "o . (6.1)

RC = 2g° 256
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L

Fig. 5. Equivalent circuit of a shielding enclosure.

and VO,Vi are yet unspecified input and output voltages respectively.

Similarly, Bq. (5.4), as well as (4.34), suggests the circuit of
fig. 5b, wherein IO,Ii are yet unspecified input and output currents and,
for the spherical enclosure,

o&uoa

= 8L .
6L = %= —3

(6.2)

An heuristic justification of above circuits may be considered to be
a narcisistic academic exercise. However, it is not so, since it provides
a way to estimate shielding efficiencies for enclosures of either compli-
cated shape or uneasy surface boundary conditions (enclosures with holes,
gaskets, etc.). We will justify hereafter the equivalent circuit of fig.
5a. Consider the solution of a metal sphere in a uniform static field Eo’
thus described by an incident potential ¢O = -Eor cosf [55]. We will iden-
tify the voltage VO of fig. 5a with thé applied potential difference across
the sphere, hence

V0 = 2an | (6.3)

On the other hand, the applied potential ¢o will interact with the surface
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éharge distribution Py = 380E0c056 with a resulting work W

-

1 7 21 2 2 2.3
- W= 5 £ ads g a sinbd¢ Sz%Eo a cos“6 = ZNQOEOa (6.4)

We will assume the negative of this work to be stored in an equivalent

capacitance with an applied voltage Vo’ i.e.,

1 4E§a2
-W = E— _C—-—- (6'5)

Then, solving for C, we have

C = TE a (6.6)

The finite (high) conductivity of the spherical shell and the (slow)
dynamical behavior of the field will result in a slight perturbation. A
density current J will flow in the shield, given, via (3.4), by

-iwa3e Eosine
J = = (6.7)
§

Accordingly, we will have a total chmic power dissipation

2.2

9w a’e 2Ezsinze 32

1 7 2T o w2a4€iEo f
P=3 g ade £ a sinfd¢ = = 127 ——— (6.8)

The total potential difference due to this current is given by

0 ' iwa3e Eosine GimaZEOEO
- 0 -
Vg = 7j;ade o5 = 3 (6.9)

We will assume the power P to be dissipated on a resistor R'with an applied

voltage Vpo 1.e., :

v 2

R
Then, solving for R, we have

3
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Now, it can be immediately checked that (6.6) times (6.11) gives the

exact value>(6.1) for the time constant of the circuit of fig. la. Then,
Vi/2a gives an estimate of the field inside the cavity, which is described
by a potential equal to Vi times a coordinate function. For instance, for
this case of spherical geometry, the potential inside the enclosure would
be equal to - Vircos 8/2a. If we assume the above procedure to be valid
for an enclosure of arbitrary shape, we conclude that the sofution {or Zhe
static sunface charge on the enclosure may result in valfuable information
about the intensity of the shielded efectric f{4iefd. An approach similar to
the previous one has been exploited elsewhere [53].

7. Integral Equation Formulation for the Field in the Shielding Enclosure.

Steady-State Case.

Let us now consider the general case of an enclosure of arbitrary shape,
as depicted in fig. 1. The two surfaces Se’si are sufficiently smooth so
that unit normals ;e’;i can be unambiguously defined everywhere, as well as
the unit normal ;.

Let us first consider the case of an electric shield. The integral

equation for the field on the two surfaces Se,Si are well-known and are

just quoted hereafter with reference to a Green's function:

Y = (r,r') = - exp(-ik|z-r'])

, k=wkeuy '= 2 (7.1

4m|zer!|

They are, for the electric field

%Ee = g° -—H"[(n' x E®) x V'Y + (n' « EYV'W - iwy (n' x He)w]ds' (7.2)
- - S e - e — oe —
e
-;—El = [(n.‘ x EY) x Vg + (n! + ENV'Y - dop (n! X Hl)w]dS' (7.3)
= g im = i = o1 —
1
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In (7.2-3) the prime in the operator, V', means that the gradient ope-

ration is performed with respect to the primed r' coordinate; the inte-

grals are intended as principal values in the Cauchy sense; and ¥ = w(ge,;é)
in (7.2} while ¢ = ¢ (Ei’zi) in (7.3). The similar equations for

the magnetic field are easily obtained from (7.2-3) by changing E with H

and vice-versa, and uo with -eo. Hence:

%ﬁe = H° --)S%L[(né X H) X V'Y + (n) + BV + dwe_(n] x ge)w:lds' (7.4)
<]
Lyt - 7SLJL[(ni < B <V (f + BV v due (n! X giyw]ds' (7.5)
i

From (7.1-2), (3.1,2,4) and (7.4-5), (3.1-2), it follows that

1 e i o 1 .

5 (E +E)=E ++fs—[iweo VEe J U+ muoqsw]ds', ronS (7.6)
1 e i o

7(5+§)=_H_—{-é—gsxv'apds', ronS (7.7)

Then, from (7.6) and (3.1,4),

Ved

i_ Lo 1 =s 1 . .
EN=E +5 r— n+ﬁ—[iw€ A isv'w+1wu0gsw]ds', r on S (7.8)
o S o
and, from (7.7) and (3.2),
i o 1 -
H =H -5J xn- éf—gsxvupds', ron$S (7.9)

Equations (7.8-9) express the electromagnetic field (E},E}] in any point
r of the surface S = Si and, therefore, completely determine the field inside

the enclosure when the surface current Q@ is known.
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The integral equation for the unknown vector field gs can be obtained
when gs is related to the fields on S. For an enclosure with no apertures
the éppropriate relation is (3.5). Then, the projection of (7.8) on the

surface S will provide the integral equation for is’ hence

l ~ A ~ v' .is Fal

6—6——_J_s=n'><Eo><n+nx JS|——— v+ i Jy|ds' xn  (7.10)
S 1we

or, in a convenient normalized form,

WE = E +n x]é/;[vv .« BV - Bzf_\!)}dS' X 1 (7.11)
S

where all lengths are normalized to a typical dimension "a' of the enclosure,

B = 2m/A (remember, all lengths are normalized), ¢ = VUO/EO s

E=aixE xn (7.12)
Cais anxg X n

F = el = (7.13)
iweoa

n= — - (7.14)

The particular nowmalization fon F 45 suggested by the cpporntunity to

have a vectorn field which does not vanish as the frequency £s neduced %o
zerto. And this is certainly true for F, whose divergence is proportional
to the induced density charge on the shielding material. Note further that
E and F have thg same dimension, i.e., volt.

The case of a magnetic shield can be treated similarly. From (7.4-5),

(3.8-9,11) and (7.1-2), (3.8-9), it follows that

1l.e i, _ 0 ;fgfz 1 . , . . -
2(5_ + H) = H + iwuo v gmsv P+ 1w€ogmsw ds', r un & (7.15)
S
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%(ge+51)=§° +]{7[gmsxv'gu ds' , ronsS (7.16)
S

Then, from (7.15) and (3.8,11)

i o 1 v .gmé ~ v gms
H =H + = ———n + ——= V" + iwe J ¢}dS', T on S (7.17)
- — 2 Ciwu 1 o—ms -
o) 0

S
and from (7.16) and (3.9)
E' =0+ Ly ><n+f][J x Y'ydS', r on S (7.18)
- - 2 —ms —ms =

S

which are the equations dual to (7.8-9).

Also, in this case, the integral equation for the unknown vector field
J _ can be obtained when J is related to the fields on S. For an enclosure
-ms —ms

with no apertures, the appropriate relation is (3.13). Then, the projection

of (7.17) on the surface S will provide the integral equation for gms’ hence

J ~ n N VAT .
-ms o} %' —ms ., . ] .
EEE;H@ nxH Xn+n x.jf ) Vg + 1w€0£msw dS!' x n (7.19)
S °© J

or, in a convenient normalized form,

n ff{v' C GV - Bzg_t,l)]dS' x & (7.20)

S

o™

|
n

[
+

where all lengths are normalized to a typical dimension '"a'" of the enclosure,

~ ~

H = an x E? X n (7.21)
aly,  mxHxn

[} 180 = a £ , (7.22)
a

E-ﬁ— (7.23)

Note that the vector field G does not vanish as the frequency approaches
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zero, since its divergence is proportional to the induced magnetic density
charge on the screen; and that G and H have the same dimensions, i.e., ampere.

Equation (7.20) is the dual of (7.11).

8. Integral Equation Formulation for the Field in the Shielding Enclosure.

Transient Case.

Equations (7.11) and (7.20) allow, in principle, the computation of
steady-state surface electric or magnetic current on the electric or magnetic
shield respectively. Then, use of inverse Fourier operator will allow the
computation of the transient surface currents. Alternatively, an integral
equation formulation for time-dependent surface currents is possible. These
time-dependent integral equations can be obtained starting from the time-
dependent integral equation corresponding to (7.2-5); and then following
the same procedure of Sect. 9. Or, more simply, eqs. (7.11 and 20) can be
directly transformed in time-domain. Note that the w-integration can be
inverted with the spatial integration, since it does not change the singular
behavior of the integrand at r = x'.

In order to get the final results in a convenient form, the time is

normalized to T = E M, 2= a/c, while all lengths are still normalized to
"a¥, The retarded time t* is defined according to
t¥ =t - |r - 1| (8.1)

(remember that all quantitites are normalized). Then, a time-independent

Green's function

P = - 4—ﬂ|—;%—rrr : - (8.2)

is introduced, and results (2.14-15) used. We get
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,  9E(,t) N _ dF (', t*)
L T = 1 ! . t * - - 1 —_—
osz ot E@) +nx .7[][ v [E(E SRR 3% ]+

t
S o

32F(r', t* ~

P ——:fgi————;l— dS' x n (8.3)
at*2

which is analogous to (7.11); and, for the equation corresponding to (7.20),

a ~ - 3§_(_1;'> t*)
— G(r,t) = H(zr,t) + n x ;{;fT Vvt - [G(xf,t*) - |r - ||
g =Lt S - LR T
S
3%G(x', t¥) ~
P dSt x n (8.4)
de*?

9. Considerations About the Solution of the Integral Equations.

Equations (7.11 and 20), or their time-dependent counterparts, should be

solved numerically in all cases of practical interest. Formally, the equations
are of the second kind due to the presence of terms nE_and &G and, as a con-
sequence, their numerical solution is stable. However, when the order of mag-
nitude of the two parameters n and £ is observed in practical situations, it
follows that the above statement is really true only for eq. (7.20). Unfortu-
nately, n is so small that the term nF cannot play any significant role in the
numerical solution of (7.11). Accordingly, some effort seems necessary in order
to overcome this difficulty.

The form of eq. (7.11) suggests the expansion of the unknown field

vector F as follows:

_ 2
E=F + NE; + NE, ¢ oL (5.1)

Then, substituting in eq. (7.11) and equating terms of equal power in n

leads to the following integral equations in the vector coefficients of the
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expansion (9.1):
E+ L (F)=0 (9.2")

F_ o+ L (F;) =0 (9.2™

where Le represents symbolically the operator

n X L > xvﬁgés'[v'wv' . -ezw} (9.3)

S
Eq. (9.2) 45 the usual EFIE (electric field integral equations) £o which (7.11)

rneduces when o8 + «, It is important to enquire if also (7.9), projected on
S, reduces to the usual MFIE (magnetic field integral eqation) in the same
o - « limit. We have

~ 5 N o iwe
n X E_ = n X E. -

O .
F o+ iwe Lm(E) ' (9.4)

2
L »n xffds{v'w ] (9.5)
' S A . ~
When ws= 0, n x H = n x H°, which states the obvious result that the
static magnetic gfLeld is not shdelded by a metal enclosure. Eq. (9.4)
reduces to the MFIE only if the additional condition n X El = 0 {5 dmposed.

.On the other hand, solution (5.4) for the spherical case shows that

. , #°
l —

Hi(r=0) = 3]3;;55377?— 0 (9.6)

only if wuoa05/3>>l. For instance, for a = 1m, § = 1 mm,régdra shield
with copper walls, we get the following lower bound for the incident fre-
quency: £>> 6 Hz., Then, even at very small frequencies we can assume the
dominant term for E% in (9.4) to be of order . Substituting (9.1) in (9.4)

and equating terms of equal powers in n, wc get
iwe
0

o o
n x g_ = >

Eo - iweo Lm(Eo) (9.7)
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~ i iweo
nxH = ——E——-(nf_1 + ..00) - iwe Lm(nﬁ_1 + ...) (9.8)

Eq. (9.7) is the usual form of the MFIE for a body of infinite conductivity
and can be conveniently used for computing the term Eo of the expansion (9.1},
wherein the tangential component of the electric field on Si ~ § is given,

via (7.13), by

~

n X (Eo +nF, + ... ) = OnxF (9.9)

~ i
nxg" =
- 1 a -0

o [3

The computation of the dominant term for the tangential component of the
magnetic field on Si =5, i.e.,

o i . 1

nx H = 1w€on[2 F 1 Lm(i l)] (9.10)
requires, unfortunately, the solution of eq. (9.2'), whichis of first kind
and, consequently, possibly unstable from a numerical viewpoint. For the

stabilization of the solution, several techniques can be used [56-57].

-

10. Conclusions and Recommendations.

A simplified theory of electromagnetic shielding by métal and/or
magnetic type enclosures has been presented. The study of the approxima-
tion involved has proved that the theory 4s absolutely reliable up Zo in-
cident wavelengths, orn spatial pulse widths, Larger than the shicld #hickness.

Most of the theory has been presented with reference to continuous
shields, i.e., shields with no apertures. However, the theory is capable
of handling the most general case of discontinuous shields (shields with
apertures, gaskets, etc.) provided that the proper relationship between
tangential (ields and currents on zthe shield 4is given. This relationship
is &lready known for a number of practical situations, e.g., for the case of
a shield of coplanar conductors or of a wire grid [29-33]; and can be

obtained with reference to a number of canonical problems.
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In all these cases of complicated configuration and, consequently,

difficult analytical solution, a first estimate of the field inside the

enclosure can be obtained by using the equivalent circuit point of view

exploited under Sect. 6.
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