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COMMON NOTATIONS AND CONVENTIONS

The SI units and time convention exp~iwt are used.

Unless stated otherwise, the medium is the free space with the wave

2
number k = m(eu)l/ .

+i o>r =>d =t - N , . i
E°, E, E, E and E are, respectively, incident, reflected, diffracted,

total, and scattered fields. Unless stated otherwise, Et = Ei + E

everywhere.

In a two-dimensional problem (no z-variation), u = EZ and R = -1 for

E-wave, and u = HZ and R = +1 for H-wave.

{i -~ r} means to repeat all the terms after the equal sign and change
TIRT;

the superscript "i" to "r'" in those terms. For example,

>t -

E(r) = 9(-81) B+ {i » r!}
means
ES(T) = 8(=c) B + 8(=c") BT
AT s F Bl’r means At = --Bl and Ar = + Br.
g(kr) = L el(kr+ﬂ/4) which is a "unit" cylindrical wave.
2v2akr

The Fresnel function for a real x is defined by

i/ fw 9
-1 A
* it

F(x) = = e dt

|
m

Jx
Its large argument asymptotic expansion is

F(x) = 9(-x) + %(x) + O(x—3)

where % is a unit step function and
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CHAPTER 1. PRELIMINARIES

1.1 Maxwell's Equations

This part of the book discusses the application of ray techniques to
electromagnetic edge diffraction at high frequencies. As a preparatory step
we will in this chapter review some basic concepts of edge diffractions, and
explain some notations, conventions and special functions that will be used
frequently later.

The behavior of the electromagnetic field in a continuous medium is
governed by Maxwell's equations. Except for a few isolated problems we
consider exclusively the electromagnetic field which

(1) propagates in the free space with permittivity e and permeability p;

and

(ii) has exp(-~iwt) time dependence.

Under the above two conditions, Maxwell's equations in SI system of units

assume the form

- -
V x E = ipyuH (1.1
- > >

Vx H= -iwek + J (1.2)
7.E=0 C(1.3)
ved=0 . (1.4)

Here E is the electric field (in volts per meter), H is the magnetic field

(in amperes per meter), and J is current density (in amperes per square meter).

—
All three quantities are functions of spatial variable r only, while the
common time factor exp(-iwt),as usual, has been suppressed. In a source-free

region where J = 0, Maxwell's equaticns in (1.1) through (1.4) can be replaced by



W+ E=0 (1.5)

v.-E=0 (1.6)
-> e 1 >
] /;EVxE (1.7)

where k = w/ue = 2m/A is the wave number and A is the wavelength. In a given
problem we usually concentrate on solving E from (1.5) and (1.6), and

>
next calculate H from (1.7).

At the surface I of a perfect conductor, the boundary conditions are

>

»

N
[]

o

(1.8)

>
n
i
[}
[

(1.9)

where N is the outward unit normal of L, and js is the surface current density
(in amperes per meter).

In problems involving either unbounded space or containing geometrical
singularities, it is possible to derive several mathematically acceptable
solutions of Maxwell's equations, only one of which is consistent with
anticipated physical phenomena. Therefore in these situations it‘is
necessary to introduce additional physical constraints to ensure the
uniqueness of the solution.

In an unbounded space with all sources contained in a finite region)
the additional physical constraint that governs the field behavior at

infinity is known as radiation condition. It may be stated in any one of

two ways described below. (i) Introduction of loss: The lossless free space

is regarded as a limiting case of a lossy medium, i.e., k > k + i§, § > 0.

In a lossy medium, the field vanishes at infinity. (ii) Sommerfeld radiation

condition: At a large distance r for the source region, the field has a phase

. . . , -1
progressing outward and nas an amplitude that decreases at least as rapidly as r .



The other situation where the solution of Maxwell's equations may not
be unique arises when the configuration of the problem contains -sharp edges ~

or tips. The additional physical constraint needed here is the edge condition:

the energy stored in the electromagnetic field in any finite region must be
finite. 1In particular, as volume V containing a point on edges or tips

contracts to zero, We require

[ (|8 + u]H]®) av >0 . (1.10)
v

In a given problem, the requirement in (1.10) can often enable us to derive an

explicit upper bound for the field behavior near an edge or tip.* For later

applications let us consider the configuration of a two-dimensional (no z

variation), perfectly conducting wedge in Figure 1-1. The exterior angle

of the wedge is mm. It can be shown that the enforcement of (1.10) leads

to the following conclusion about the singular field behavior near the edge -

/2 2
as p = Yx° + y~ - 0:

- (1-m) /m
Ex’Ey’Hx’Hy 0fe ] (1.11a)

- 1/m .
EZ,HZ 0(p ) . (1.11b)

Thus, near the edge, the field components parallel to the edge are always
bounded, while transverse components may become singular when 1 < m < 2.

(The symbol O is defined in Problem 1-~1.)

* Explicit edge condition for a wedge was first derived in J. Meixner, ''The
behavior of electromagnetic fields at edges,’ Inst. Math. Sci. Res. Rept.
EM-72, New ‘York University, New York, 1954. Discussions on edge condition can
be found, for example, in D. S. Jones, The Theory of Electromagnetism, Macmillan,
New York, 1964, pp. 566-569; R. Mittra and S. W. Lee, Analytical Techniques in
the Theory of Guided Waves, Macmillan, Jew York, 1971, pp. 4-11. ~

10
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Figure 1-1l. A two-dimensional perfectly conducting wedge.
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1.2 Asymptotic Expansion

Thé central theme of this book is to study an asymptotic expansion of -
the edge diffraction problems at high frequencies. Thus, it is important
that the meaning and implication of an "asymptotic expansion" is understood.*

We are interested in the behavior of a function f(k) for large values
of k. - In the simplest case, f(k) may be conveniently approximated by a

formal power series of k, namely,

J ak™=a +—+—+ ..+ D4 (2.1)

M
£,0) = z am/km ) (2.2)

Then (2.1) is said to be the asymptotic (power series) expansion of f(k) if -
for a fixed M
. M
lim K [£(k) - fM(k)] =0 . (2.3)
koo ’
We write it with the symbol """ .
(k) ~ ) a /K" (2.4)
m
m=0
* A. Erdelyi, Asymptotic Expansions, Dover Publications, Jew York, 1956.
d. Jeffrys, Asymptotic Approximations, Oxford University Press, 1962.
E. Copson, Asymptotic Expansions, Cambridge University Press, 1965.
L. Sirovich, Techniques of Asymptotic Analysis, Springer-Verlag, Wew York,
1971.
~—

12



Using the symbol O (big oh), (2.4) may be rewritten as

k—(M+l)

f(k) = — + 0]

=0 k

1 . (2.5)

| ~11=
=]

Using the symbol o (small oh), (2.4) may be also written as

M a
£0) = [ Beoa™ . (2.6)
m=0 k
Symbols O and o are defined in Problem 1-1. From the viewpoint of application,
we list below several common properties of asymptotic expansions.
First, for a fixed M, the difference between f (k) and fM(k) can be made
arbitrarily small provided that a large enough k is used. This is simply
a restatement of (2.3). Readers undoubtedly are familiar with the fact that,
in many asymptotic expansions, the first few terms of the series often give

surprisingly accurate results even in non-asymptotic regimes.

Second, for a fixed k, the difference between f(k) and fM(k), however,
cannot be made arbitrarily small by increasing M. Unfortunately, in almost
all the practical problems in electromagnetic theory, we face problems with
a fixed k. In such cases, the higher-order terms of an asymptotic series are
useful only in the following sense:

(i) For a fixed k, the error bound of using fM(k) for f£(k) is often
given by the magnitude of (M + 2)th term, the first term neglected.

(1ii) For a fixed k, the magnitudes of terms in (2.4) usually first
decrease until, say, the (Q + 2)th term. Starting from the (Q + 3)th
term, the magnitude of each term becomes larger and larger, and the

series diverges.

13



For an asymptotic expansion with the above two characteristics, it is obvious

that, for a fixed k, there exists a 'best" asymptotic approximation of f(k),

which is fQ(k).

(k) = /1

*
where erfc(*) is an error function .

positive k is given by

3 -5

2
kek

erfe (k)

To illustrate this point consider the following example:

(2.7)

Its asymptotic expansion for large

£(k) ~ ) (- 1 . , k> 4o (2.3)
n=0 2K?)
PR SR T S-S T
2k 4k 8k 16k 32k

Let us calculate f(k = 2), which has an exact value (after rounding-off

at the fourth decimal place).

f(k = 2) = 0.9054

The partial sum fM’ the error of fM’ and the (M + 1) term are tabulated

for M = 0 to 5.

M fM(Z) Error (M + 1) term
0 1.0000 + 0.0946

1 0.8750 -~ 0.0304 - 0.1250

2 0.9219 + 0.0165 + 0.0469

3 0.8926 - 0.0128 - 0.0293

4 0.9183 + 0.0129 + 0.0256

5 0.8894 - 0.0160 - 0.0288

‘The error function is defined later in (3.14).

Its asymptotic expansion

(2.8) may be obtained by using (3.15) and (3.5).

14



Note that (i) as a function of M, the partial sums oscillate around the

exact value; (ii) the fifth term has the minimum magnitude (0.0256);

and (iii) the best approximation of £(2) is f3(2) and the error is 0.0128,

which is bounded by the magnitude of the first term neglected (0.0256).
Third, for a given function f(k), the asymptotic power series expansion

in (2.4) is unique. This fact may be used to construct the asymptotic series

by the successive application of the following limits:

a. = lim kO[£(K)]

0 ko

.1
a, = lim k" [f(k) - a.l
1 0

>0

n ‘n-l -m

a_ =1limk [f(k) - ) ak | (2.9)
n m

ko m=0

A useful consequence of this property is that, if f(k) = 0, each coefficient
am in (2.4) must be zero individually. This fact will be frequently used
in later discussions.

In addition to the power-series in (2.1), the function f(k) may have a

more general asymptotic expansion

£ (k) f\JmZO a o (k) , k >~ o (2.10)

with respect to a set of functions {¢m} subject to
(6 /¢ ()] >0 , k> (2.1
Then, for a fixed M, we have

lim [f(k) - fM(k)]/¢M(k),= 0 (2.12)

ko>

which is a general version of (2.3).

15



1.3 Fresnel Function

A special function that will be used frequently in this book is the

Fresnel function F(x) defined by

-in/4 = it2

F(x) = 2—7?r— f e dt, for real x
X

We will list below several useful properties of the Fresnel functiom.

(i) Symmetry relation

F(x) + F(-x) = 1

(ii) Differentiation

d 1 ., .2 3n
. F(x) = 7= exp i(x" + Z—j

(iii) Series expansion

n
e (ixz)

1
F(x) R i z AT (¥ D

n=0
(iv) Asymptotic expansion
F(x) ~ 8 (-x) + F(x)

., 2
+ e1(x +r/4) 1

ZTrxn___l

where

1, if y > 0
8(y)={
0, if y < 0

N 1 2 T
F(x) = ———5— exp i(x" + =)
2(w)l/2x 4

e+ =F @ ... &L

16

27 ra +%) (ix?)

(3.1)

(3.2)

(3.3)

(3.4)

x| >

(3.5)

(3.96)

(3.7)

(3.8)



(v) Special values

F(ew) = 1
F(0) =%
F(+w) = 0

(vi) Integral representation

, 2 2
JixT ot
F(x) = 1 J‘m . eiﬂ'/z" dt, x > 0
2
., 2 w© -t
1l i(x"-m/4) e
e x | ;7 5 dr, x>0
0t - 1ix

The proofs of (3.4) and (3.5) are given in Problems 1-2 and 1-3. The
trajectory of F(x) in its complex plane using x as the parameter is
presented in Figure 1-2. This curve is known as the Cornu Spiral
(after A. Cornu).

The Fresnel function may be related to other special functions.
Some of the relations are listed below*.

(i) Error function

z 2
erfc z = 1 - %¥ f e“t dt
0
F(x) = % erfc(ze—lﬂ/A)
(1ii) Real Fresnel integrals
z T 2
C(z) = [ cos(E t7) dt
0
z T 2
S(z) = | sin(~ ¢t )y dt
J O 2

*

All the notations are the same as those used in M. Abramowitz and

L. A. Stegun, Handbook of Math. Functions. Chapter 7, Dover Pub., Inc.

New York, 1965.

17

(3.9)

(3.10)

(3.1L)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Figure 1-2. Cornu spiral for the Fresnel integral F(x).
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~
1

-3 7 0T 7
F(x) = ii—§-52-<I% - o) +i[F- s 0] (3.18)

(iii) Probability integral

—22: 21 2 2 ﬁ
w(z) = e il + 5= [ e dt | (3.19)

F (x) =-% eI L (xe™Y (3.20)

*
(iv) Plasma dispersion function

Z(z) = iv/T w(z) (3.21)
1 ixl (/4
F(x) = 5= e z2(xe'™™ (3.22)

The Fresnel function has been defined in the literature of electro-
magnetic theory in several different forms. We will list some of them

and relate them to the present definition.

(1) 5
e—ix X it2
Fl(x) = —-/T?—em {m e dt (3.23)
—ix2
Fi(x) = e F(-x) (3.24)
(ii)
_ 2 it [T -2
Fz(x) == e f ' e dt (3.25)
(1-1)x
P
F,(x) = 2e EOF(T x) (3.26)
(iii)
2 e 2
G(x) = e ** [ &' at (3.27)
X
in/h  ~ix?
G(x) = /7 ™™ ™ F(x) (3.28)

Numericalvalue of Z(x + iy) and its derivative Z'(x + iy) are tabulated
for x = 0(0.1) 10, y = -10(0.1) 10, in B. D. Fried and S. D. Conte,
The Plasma Dispersion Function. Academic Press, New York, 1961.

19



(iv)
2
Q) = [ e F 4t (3.29)
y

“in/4y T E(x) (3.30)

Q(xe
In the above, the Fresnel function F(x) has been defined for a real argument

x:; When the argument is a complex number z = x + iy, we define F(z) as

the analytical continuation of F(x) in (3.1), namely,

-in/4 o 2
F(z) = 2—7%7— f elt dt, for complex z (3.31)
z

where the path of integration in the complex t-plane is subject to the
restriction Arg t + o with 0 < a < /2 as \t\ -+ ® along the path. All
the equations given in this section remain valid when x is replaced by z,
except for (3.5) and (3.12). The latter two equations should be modified

to read
F(z) ~ v(z) + F(z)

@ -n
21 ra+g3 Gz, [z] » = (3.32)

i(z2%4n/4) 1
+ e Py
2Trzn

wheie

0 , if (-m/4) < Arg z < (3n/4)
v(z) =¢ 1/2, if Arg z = (-n/4) or (37/4) (3.33)
1 , if (3w/4) < Arg z < (In/4)

and F(z) is given by (3.7) after replacing x by z, and

i22 e —t2
_ & . e in/4
F(z) = 53 im i zei”/4 dt, Im(ze ) > 0 (3.34a)
iz2 —it2
_ e ¢ e im/4, .
= 53 jc - dt, Im(ze Yy > 0 (3.34b)

where contour C in the complex t-plane is the straight line from

. ,
-i7/4 -i7/4
L = —= g / to £ = = g 1 /.

20



1.4 Sommerfeld Half-Plane Problem I.

Two-Dimensional Case

To facilitate our later discussion of ray t

for us to have some understanding of the basic e

echniques, it is desirable

dge diffraction phenomenon.

Hence, we will in this and the next sections examine the exact solution of

the famous Sommerfeld half-plane problem.

The problem of a half plane is sketched in

Figure 1-3., A perfectly

conducting plane is located at (x > 0, y = 0), and illuminated by an

incident plane wave.

convenient to resolve the fields into two modes:

solve the problem associated with each mode separately.

For the present two-dimensional problem, it is

E-wave and H~wave, and

From the Maxwell's

equations, it is readily found that the non-zero field components of the

E-wave are governed by

21

a2 a2
d-wave: — +—=+ k"] E (x,y) =0 , 4 .1la)
2 2 z

Ix dy

-1 _ i 3

hx ~ iwp 3y Ez ? Hy Wi 3% Ez ’ (4.1b)

1 1 3 i 3

H = — == H, = = — .

o) iwp o 59 Ez ’ H¢ Wl dp Ez (4.1e)
where (p,%) are the cylindrical coordinates. The corresponding equations for
the H-wave are

82 82 2

H-wave: — — + k| H (x,y) =0 , (4.2a)
X 9y
«_Li I =———l i

Ex we 3y Hz ? by iwe 9x Hz ’ (4.2b)
-1 13 g =i 3

Ep T owe o 3¢ B By % T 3 'z (. 2¢)



(p, ) "

- - e 4
yary
P
/ X;
/ \
7 ur

Figure 1-3. A perfectly conducting half plane illuminated
by an incident plane wave u®.
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In the following we study the half-plane problem associated with the
E~wave and that with the H-wave simultaneously, To do so conveniently,

let us introduce a scalar function u such that

E , for E-wave
K

u(x,y) = 4.3)

L?Z , for H-wave

The incident plane wave is specified by, for all (p,9),

L ikocos (47-¢)

ul(o,4) = (4.4)

Note carefully that the plane wave travels into (not comes from) the

, , i i, ,
direction ¢~. Thus, ¢  1is the angle measured counterclockwise from the
x-axis to the "head" (not the '"tail") of the incident direction. Without

. . i
loss of generality, we restrict the ranges of ¢~, such that

0 < ¢l < T . (4.5)
(This restriction will be relaxed at the end of this section.) The
problem at hand is to determine the scattered field u, or the total

field u® defined by

ut(D,¢) = ui + u (4.6)

at an observation point (p,¢), where 0 < g < ©®» and 0 < ¢ < 2.
The necessary equations and conditions for solving this problem are -the

wave equation for ut [cf. (4.1a) and (4.2a)]

P2 2
19x 3y !

the boundary condition for ut
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E-wave: ut = Q, x >0 and v = 0, (4.8)
3ut
H-wave: 757 = (0, x >0 and v = 0; 4.,9)
the edge condition for ut
t t
du du_ _ -1/2
% ' 3y 0(p ), o >0 (4.10)

and finally, the radiation condition for the scattered field u as p + .

Based on the above equations and conditions, the half-plane problem was
first solved exactly by A. Sommerfeld in 1896, using a double-valued function
(A. Sommerfeld, ''Mathematische theorie der diffraktion," Math. Ann., vol. 47,
pp. 317-374, 1896). Later, the same solution was obtained by several different
methods*. The steps of solution are not the main concern here. -We simply give

. X t . .
below the exact solution for the total field u at an observation point (p,9):

N . .
u (p,4) = F(ED) u'(p,9) + F(EY) u (0,0) . (4.11)
The notations used in (4.11) are explained below. ur(p,¢) is the reflected

field from the half plane due to the.incidence of ul in (4.4), and is given

by

ikpcos ($7=¢) (4.12)

r
u (p,¢) = Re
Here R is the reflection coefficient of u' from the half plane
-1, for E-wave
R = . (4.13)
+1, for H-wave
The reflected angle ¢r specifies the direction where the reflected field

. . . ; . i .
travels into, and is the mirror image of the incident angle ¢~ with respect

to the half plane, i.e.,

*
See, e.g., M. Born and E. Wolf, Principles of Optics. 2nd ed., Pergamon

Press, New York, 1964, pp. 560-578; B. Noble, Methods Based on the Wiener-
Hopf Technique. Pergamon Press, New York, 1958, Chapter 2; R. Mittra and

S.W. Lee, Analytical Techniques in the Theory of Guided Waves. MacMillan

Cc., New York, 1971, pp. 137-147. A method involving elementary steps is
given in J. Boersma, "A simple solution of Sommerfeld's half-plane

diffraction problem,”" J. Appl. Science and Engineering A, 2, pp. 187-193, 1977.
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o8 = 21 - ¢ . (4.14)
Because of the restriction in (4.5), we note that T < ¢" < 2m. The

Fresnel function in (4.11) is defined by

e-in/4 ® it2
F(X) = T—f e dt (4-15)
X

which has been studied in detail in Section 1.3. The two functions gl,

and Er, called detour parameters of the incident, and reflected fields,

*
respectively, are given by

9T (0,0) = /2Kp sin 31T - 8) . (4.16)

Several remarks about the exact solution for the total field in (4.11)
are in order:

(1) The total field consists of two symmetrical parts: one due to
the incident field ui and the other the reflected field u'. To emphasize

this symmetry, we rewrite (4.11) as

a“(p,4) = u*t + ofF (4.17a)
where
i . .
u(p,9) = F(ET) u (p,9) (4.17b)
and utt is the same as utl after the superscript "i" is replaced by "r."

Alternatively, we write (4.11) as

uo,0) = FEEY ulo,0) + (4 > £} (4.18)

where the symbol {i + r} means to repeat all the terms after the equal sign

"t .t

and to change the superscript "i" into "r" in those terms.

*
Physical implicaEion of gegour parameters Yill be given_in Chapter 5.
Note also that A7’ = +B™ means A~ = -B~ and AT = +B".
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(ii) Because of the sine half-angle function, gi,r are double-
valued functions (with one value being the negative of the other). Thus,
the restriction in (4.5) must be observed in order to assure the correct
signs for Ei’r.

In the remainder of this section, we will study the exact solution
given in (4.18) on the following aspects: (i) the field components
transverse to the edge, (ii) the field behavior near the edge, (iii) the

field behavior far away from the edge, and (iv) the relaxation of the

s i,
restriction on ¢~ in (4.5).

Complete Field Solution. With ut given in (4.18), all the field
components can be calculated from (4.1) and (4.2). &e will present the
final solution in a simple and suggestive form. This would require some
proper arrangements. Let us concentrate on the case of the E-wave. The

complete incident field is given by

. . , i
E;(o,cb) = u (p,9) = elkpcos(¢ ~¢) (4.19a)
H(0,0) = (2 sin® = ) u'(e,9) (4.19b)
qu(o,@ - —J% cos (6T - 9) ul(p,0) . (4.19¢)

In particular, with respect to the incident direction ¢ = ¢l, the in-

cident field at the edge is

E;(O,;bl) =1 (4.20a)

H:(o,¢i) =0 (4.20b)

H;(O,ﬁi) = -4 (4.20¢)
|5

Now, note the manipulations [Problems 1-4]
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L2 gty Wi, = sinGet - o (7D - BeEDHT ol L, (4.21a)

2 rreehy Wlo,8)] = cosel - & [FEEDH - BEH T uo, )

+ glkod xF ul(o,6h . (4.21b)

Here F(x) is the term of order x_l in the asymptotic expansion of F(x),

and is given in (3.7) or

-~ 1 2 i
F(x) = ——— exp i(x” + 5 . (4.22)
2(77)1/2 . 4

*
The factor g(kp) is a cylindrical wave factor

ei(kp+Tr/4)
g(kp) = ‘§7§#E§—" s (4.23)
i r .
and x~ (and x ) are defined by
e _ /TG 1
x0T 2 L L eee 2T -y (4.24)
E s

*
The outgoing-wave solution of the two-dimensional wave equation

2 2
3 3
f +—2+k

\
2
\8x2

3y /

G = ~-8(x) §(y)

is given by

) i(kr+n/4) 1 =
G(x,y) = % Hél)(kp) i — {1 + O[ki\ii
2/2mkp & Py

ymn1+0%?]

for this reason, g(+) is sometimes known as a "unit" cylindrical wave.
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Substituting (4.18) into (4.1) and making use of (4.21), the complete exact

solution of the total field for the E-wave is found, namely,

ES(p,8) = F(E)) EL(p,0) + {1+ 1) (4.252)
i (0,) = Feh) - Fehl Hi(p;cp) + {1 > 1} (4.25b)
HS(0,0) = reeh) - #eh] H$<p,¢> + gko) H$<o,¢i>

+{i~-»r} . (4.25¢)
Because of (4.20b) and
Feh ELGo,0) = (ko) (T EL(o = 0,0%)
*

(4.25) may 'be rewritten as

W o,0) = [FeD) - Feh] tr e, 9) + gko) xF vH(0,4D)

+ {i -+ r} (4.26)

where U stands for Ez’ Ho’ or Hm. In exactly the same manner, it may be
shown that the exact solution of the total field for the H-wave is also given

by (4.26) with U representing Hz’ Ep, or E¢. As a third way to express

the exact total field solution for the present half-plane problem, we may

rewrite (4.26) in a vector form, namely,
£ G, = [F(EN) - FeD] E16,0) + gke) x'[2 £;(0,67) + 3 E,(0,67)]
+ {i > r} (4.27a)

B 0,0 = (FEH - FEH1 86,0 + gke) k(2 810,67 + 3 H1(0,61)]

+ {i->r} (4.27b)
% , . .
Note that as ¢ - ¢l, H; in (4i19b) bicomes Zero as (¢ - ¢) while xl in
(4.24) becomes infinite as (¢ . Here, however, we use the definition -

in (4.20b), and the second term 1n (4 26) is identically zero when ULl - Hl
More discussion on this is given in Chapter 5.
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which applies for both the E-wave and the H-wave. Since

i i r T i i r r
- E O) ’
ES(0,07) = =E_(0,9"), E (0,67) = +E((0,07)

i i r r i i T r
H(0,07) = +H_(0,07), H (0,07) = -HI(0,8)

(4.27) may be rewritten as

B o,e) = [F(eD - Fh] BEED) + (FED) - FEDHTET D

+glko) (20 - D) EL(O,8) + b0

+ x5 Ei<0,¢i)] (4.27¢)
B0, = (F2D) - 521 B2 @) + (FEED - FeDH] B Q)

+g00) [20¢+ %) HL0,00) + 305 - XD H (0,801 (4.270)

The induced surface current on the half plane may be calculated

from (4.25b) for the E-wave and from (4.18) for the H-wave. The result is, for

x > 0,

E-wave:

I8 - A LI
J (x) =311 -2 LF(VZKX sin *) - F(VY2kx sin *—)(>2 H (o = x, = 21=) (4.28)
z 2 2 / X

i\ Y

H-wave:

I's ai .

J () =i - 2 F(V2kx sin ~2—-)} (-2) H]Z'(p = x,5 = 27=) . (4.29)

Near Field. When the observation point is close to the edge (ko = 0),
the series expansion of the Fresnel function in (3.4) may be used in

(4.18), then the total field becomes

2. 2T (ko)l/zj Lo =0

+ {i~>1r}+0(ko), ko -0 . (4.30)
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Since ur(p = (0) =R ul(p = 0), (4.30) may be written more explicitly

E-wave: As kp > O,

E5Goue) = —e 4 2 roh L 0BT @ el = 0) +0te) .
H-wave: As kp.+ 0,

H (0,4) = BL(o = 0) - e‘i"/“j—%_uxi)"l + 6O w) P El e = 0

+ 0(kp) . (4.

When (4.31) and (4.32) are used in (4.1) and (4.2), the transverse field
components as kp > 0 can be determined. It is found that all the latter

1/2, which satisfies the edge

components have a kp-dependence as (ko) "~
condition for singular field behavior specified in (4.10).

Detour Parameters and Shadow Indicators. Away from the edge (kp >>

-1,

. . . r
the field behavior is governed by the detour parameters § . Let us
i . . -> i . .

concentrate on £ . At an observation point r = (p,¢), & is defined in

(4.16) or

§7(F) = /2kp sin 367 - o) (s.
Note that the sign of El denoted by

el(¥) = sgn £ (D) (4.
is +1 if T is in the shaded region in Figure l-4a (¢ < ¢l), and is -1 if
; is in the unshaded region (¢ > ¢l). These two regions correspond to
exactly the shadow and lit regions of the incident field according to the
(classical) geometrical optics theory. For this reason, e’ is called the

indicator of the incident field, thus,

i - +1, if ; is in the shadow region of the incident field 4
e (r) = {- )

-1, if r is in the 1lit region of the incident field
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(a)

Figure 1-4.

(b)

Shadow and 1it regions of the incident field, and those of
the reflecrted field.



The shadow and lit regions are separatea by an incident shadow boundary

3B at o = ¢l, where El = 0., In exactly the same manner, we define the

shadow indicator of the reflected field sr and the reflected shadow boundary

SB" (Figure 1-4b).

An equimagnitude contour of £' is defined by |£l| = C, or
ko = % c?lesc %(qbl - $)1° (4.36)

which describes a parabola with its axis at SBi(¢ = ¢i) and focus at the
edge (p = 0) (Figure 1-5a). As usual, a similar equimagnitude parabola
exists for Er (Figure 1-5b).

Far Field. Return to the exact solution in (4.18). For a given
accuracy requirement, a sufficiently large constant C can be always found
i,rl

such that, provided IE > C, F(El’r) can be approximated by the first

two terms of its asymptotic expansion in (3.5), i.e.,

FET) 2 o= + b, 2T s ¢ (4.37)
where we have made use of the fact

8(-g7 ) = 8(-e7T) . (4.38)
Therefore, when the observation point is outside of the two dotted transi-
tion regions indicated in Figure 1-~5, the total field in (4.18) may be

asymptotically approximated by

W00 = [8C-eh) + FeD T ulo,0) + (113 -0 (4.39)
We will separate u® in (4.39) into two components:

W 0,0) = B, + i) . (4.40)
Here ug, called geometrical optics field, is given by

W¥Bo,0) = 8(-cY) ul(o,0) + {1 > 1} (4.41)
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(a) (b)

Figure 1-5.

Two parabolic transition regions (dotted areas) around shadow
boundaries SB ’T. Outside these two regions, the exact total
field (4.18) can be asymptotically approximated by (4.40).



which is the field predicted by the geometrical optics theory for the
d .
half-plane problem. The second component u in (4.40), called (Keller's)

diffracted field, is given by

/2

W o,0) = glko) ¥t ui(o = 0) + (i >} +o . (4.42)

In deriving (4.42) from (4.39), we have made use of (4.22), (4.23), and

(4.24). Since ur(o = 0) = R ui(o = 0), (4.42) can be written more explicitly

as
E-wave:
20, = () [ - (¥l ul(e = 0 + 0D (4.43)
H-wave:
H:(o,rb) = gko) B+ Tl et = 0 +owh (4.44)

Several remarks are in order: (i) u® is of order kO and ud of order

-1/2 € is the dominant term. ud may be regarded as the cor-

k Hence, u
rection term for the geometrical optics theory, accounting for the dif-
fraction phenomenon. (ii) ud is a cylindrical wave emanating from the
edge. (iii) At the shadow boundaries SBi’r, u® becomes discontinuous
and ud infinite. This, of course, should not disturb us as the field
representation in (4.40) is valid only outside of the two parabolic

transition regions shown in Figure 1-5.

Field on Shadow Boundaries. When the observation point T = (6,%)

is inside the two transition regions, we have to use the exact representation
in (4.18). For a fixed C, the transition regions become narrower as k
increases. They collapse into SBi’r as k » ». Therefore, for large k,

the total field varies very rapidly in the tramnsition regions and no

further simplification from (4.18) is possible. When T is exactly on
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SBi and away from the edge, we have El = 0 and ar >> 1; then the total

field in (4.18) becomes

Elorohy = 2 uto,8h) + go) Jese o] WG = 0 + 07D
= % etP 4 R g(kp) |esc ¢i| + O(k-3/2) . (4.45)

When T is exactly on sB' and away from the edge, we have El >> 1 and

r

g = 0; then the total field becomes
- . _3 2
uClo,6T) = ut(p,0T) + % W (o,8)-g ko) |ese o7 | ut(p = 0) + O(k /2y
= uto,0D) +<% Rel®® _ o(kp) [esc of| + 03 . (4.46)

The values of other field components on shadow boundaries are given in
Problems 1-5 and 1-6.

o i .
Removal of the Restriction on ¢~ . As a final remark, we have so far

restricted the ircident direction by O §_¢i < 7 in (4.5). For the other
case T < ¢i < 2w, it may be shown that all the equations given in this
section remain valid only if the definitions in (4.16) and (4.24) are
replaced by

@) = /2o sin 37T - 9) (4.47)

i,r

X = -csc %‘(cbi’r

- 9) . (4.48)

This change in sign may be explained by the following fact. When

0 < ¢i < m, the increasing direction of ¢ or ¢i is from the shadow region
toward the lit region of the incident field; whereas in the case of

T < ¢i < 27, the increasing direction of % or ¢i is from the lit region
toward the shadow region. Combining the definitions in (4.16), (4.24),

(4.47), and (4.48), we may write them in two single expressions:

DT E) = M7 [V2ko sin %<¢l’r - 9 (4.49)
x T = e !csc-%(q‘al’r -9 . (4.50)
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Using the new definitions in (4.49) and (4.50), all the equatioms given in

this section are valid for any value of ¢l in the range of (0,2m).

Numerical results. For a normally incident plane wave given by (4.4)

with ¢i = 1/2, the magnitude of the total field ut has been calculated

from the exact solution in (4.11). The results for the observation point

in a 2) by 2A square region around the edge are presented in Figure 1-6

for an E-wave, and in Figure 1-7 for an H-wave. As an aid to visualizing

the three-dimensional plots, some remarks about the approximate values of

}ut| are in order. (i) In Region A, the total field is a standing wave

such that !utl ~ 2|cos ky| for the H-wave and |ut| ~ 2|sin ky!| for the

E-wave. (ii) 1In region B, which is the geometrical shadow, |ut| is very
small. (iii) As the observation point moves away from the edge in Region

C, ut approaches ui in the limit. The rate of approach generally is faster
for the H-wave than that for the E-wave. (iv) At the edge point (x =y = 0),
ut = 1 for the H-wave, and ut = (0 for the E-wave. (v) At x = 0, [u
as ky - 4=, and )utloscillates between (1/2) and (3/2), as ky » -=, (vi) At
the 1it side of the half plane (x > 0, vy = 0-), ]ut] roughly equals 2 for the
H-wave, and is identically zero for the E-wave. (vii) At the shadow side of
the half plane (x > 0, y = 0+), \ut!decreased gradually from 1 to O for the
H-wave, and is identically zero for the E-wave.

In summary, for an incident plane wave, the exact solution of the half-

2 ’r

. . . , PR , i,r i . .
plane problem is given in (4.18) and (4.27) with £ and ¥y defined in
(4.49) and (4.50). When the observation point is outside of the two para-
bolic transition regions in Figure 1-5, the asymptotic expansion of the

exact solution in (4.40) consists of two terms: the geometrical optics

field in (4.41) and the (Reller's) diffracted field in (4.42). Exactly on
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Magnitude of the total field Ez calculated from
the exact solution in (4.11) for the half-plane
diffraction. The incident field is given in
(4.4) with $1 = /2 (normal incidence).
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Magnitude of the total field 5 calculated from
the exact solution in (4.11) £3r the half-plane
diffraction. The incident field is given in
(4.4) with ¢+ = 7/2 (normal incidence).
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the shadow boundaries but away from the edge, the total field is given in
(4.45), (4.46), Problems 1-5 and 1-6. In the transition regions next to
shadow boundaries, the total field varies rapidly according to the exact

solution.

39



1.5 Sommerfeld Half-Plane Problem II. Three-Dimensional Case

In the two—dimensional half-plane problem studied in the previous
section, the incident plane wave propagates in the plane transverse to
the edge. Now let us consider the same problem with an obliquely incident

plane wave given by

. k i(+) i
>
El(r) N eg (5.1a)
where
sl(?) = x sin 9~ cos ¢l + y sin 8% sin ¢l + z cos 6 . (5.1b)

The spherical angles (Gi,¢i) describe the direction where the plane wave
travels into (not comes from) as shown in Figure 1-8, and their values
are restricted in the range

i

0<% <Tr,0_<_cpi<1r . (5.2)

{The restriction on ¢i will be removed later.) The problem is to deter-
mine the exact total field everywheref Since the half plane is uniform
in z, the total field shall have the same z-variation exp(ikz cos ei)as
the incident one. 1In this sense, the present problem is quasi-two-
dimensional. In fact, it tumms out that its solution can be deduced from
that of the two-dimensional problem discussed in the previous section.

As a preparation for this deduction, let us consider the following three
points:

(i) Incident Field. With respect to the incident direction

i i , .
(87,¢7), we introduce three constant unit vectors

- c i i A i . i ~ i
r = X sin 8 cos 9% + y sin 6% sin $l + 2 cos 8% (5.3a)
2l a i i, oa i i . i

= x cos 5 cos ¢ + Yy cOs 5% sin @l - z sin 8" (5.3b)
~1 A i - i <
¢° = -X sin ¢~ + y cos ¢ . (5.3¢)

The two-dimensional case studied in Section 1.4 is a special case
of the present problem with 8! = 7/2.
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Figure 1-8. Diffraccion of an incident plane wave provagating in
the direction (5%,9%) by a half plame at (x > 0, v = 0).
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We emphasize that (fi,éi,$i) are constant vectors, independent of ob-
servation point T. At points where (8 = Si,¢ = $i), (;i,éi,$i) coincide
with the spherical unit vectors (9,5,5), but this relation does not hold
elsewhere. Furthermore, we define a propagation vector Ei for the in-

cident field such that

B =k vst (5.4)
which in the present case becomes

skt . (5.5)

Then (5.la) can be rewritten as

» . . . s . > -
B = 3t at+ptgh T (5.6)

-1 | ~1 . -
The fact that eO in (5.1a) must be transverse to k= is made use of in (5.6).

(i1) Reflected Field. According to the gecmetrical optics theory,

the incidenceof E® in (5.6) on the half plane gives rise to a reflected

field

r > r r

EF(r) = (87 A" + 3T 8D (5.7)

r r A

. . ) . r T AT AT . .
which travels in the direction (8,9 ). Here (k",8 7,9 ) are again given

by (5.3) and (5.5) after replacing superscript "i'" by 'r'" in the latter
equations. From Snell's law, we have
37 = 57, 3 = 27 - 2 . (5.8)
r i r i

A" = -at, 8" = +3 . (5.9)

(iii) TM and TE Waves. When a scatterer is uniform in the z-direction

and is illuminated by an incident plane wave, the rfield (E,ﬁ), representing
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incident, scattered, or total fields, can be decomposed into TM and TE

waves with respect to z. These waves are derivable from two scalar

o
w

potentials as follows:

™:

i = /% 7 x (zu)

s Tig . g.d ;

E =Je & vV xH P vV x Vx (zv)

TE

E=7x (zu)

T- €L z. /el 7
=T ik VxE =Ju ik VxVx (zy)

Both potentials satisfy the scalar wave equation

T
oL im0
LY ()~

(v2 + k2

Now, let us return to the half-plane diffraction problem sketched

(5.10a)

(5.10b)

(5.11a)

(5.11b)

(5.12)

in Figure 1-6. Concentrate on the case when B® = 0 in (5.6), i.e., the

incident field is given by

. . . .Izl >

- ~ .
gl(r) =3t at .t T

. — .1‘51 ->
>l ~1 1 1 *
Hi() =37 Fat e 7F

1

, . , i -
i~ i i ik7er
v (r) = ———— A" e

k sin 91

Since the incident field is TM and the half plane is uniform in z, the

I can be simply verified that (5.13) is derivable from (5.10) with

(5.13a)

(5.13b)

(5.14)

scattered (total minus incident) field is also TM, derivable from a scalar

potential u(?). The conditions on w(;) are studied below:

In the two-dimensional case, TM becomes E-wave and TE becomes H-wave.
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(a) Since the half plane is uniform in z, the scattered field has

+ 3
the same z-variation as the incident one. Thus, y(r) can be written as
. i
> e1kzcose

y(r)

The use of (5.15) in (5.12) leads to

32 52 2|
=+~ + (k sin o™) iwo(x,Y) =0 (5.16)
Lox dy -/

which is a two-dimensional wave equation.
(b) The boundary conditions for the total field to be satisfied on
the half plane are

t t

wo(x,y) . (5.15)

EX = EZ =0, forx >0, y=20 . (5.17)

Note that (5.10b) can be explicitly written as

B "(cos & (x —2—; +5 g—y-) + 3 ik(sin 892 v . (5.18)
s

It follows that (5.17) is equivalent to the condition
( , , . .1 i,y
by + i _E£X11 eleSln 87 cos(d -0
k sin © J
(c) The scattered field wo(x,y) should satisfy the radiation con-
A 2 2 .y 2 2
dition as (x” + y7) - =, and the edge condition as (x~ + y ) =+ 0.

In view of (a), (b), and (c) above, it is clear that wo(x,y) is
precisely the E-wave solution of the two-dimensional half-plane problem
discussed in Section 1.4 except for a multiplicative constant and the
replacement of k by k sin at. Explicitly, the scalar potential of the

total field may be written down from (4.11), namely,

" The fact £(x,y) = 0 for x > 0, vy = 0 implies 5f/3x = 0 for x > 0, y = O.
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. RN S iy oo i
wt(¥> - ( i Ai) e1kzcose [F(El) e1kpcos(¢ ¢) sind

or,

k sin 61

. r . . i
_ F(Er) e1kpcos(¢ —¢;31n.6J (5.20)

in a more symmetrical form,

. . . i
v (@) = (——-—1—1 Al) Feedy T 4t o 1) (5.21)
k sin 8 '

where k= is given in (5.5),

and

and

due

for

the

Ei(r) = (2kr sin 8 sin Gi)l/z sin %(¢i - ¢) . (5.22)

the symbol {i - r} means to repeat all the terms after the equal sign
to change the superscript "i" to 'r" in those terms. In conclusion,
to the incident field in (5.13), the scalar potential of the total field

the half-plane diffraction problem is given in (5.21). From (5.10),

complete field components may be calculated. With the manipulations

outlined in Problems 1-7 and 1-8, we give the final result for the exact

total field as follows:

t 1

i .
i () + & M g(kr) —2‘——1 1Y (0) .

sin 6§

@ = [rehH - #eH1 &
+ {i~>r} (5.23a)
. . . i ,
ES(D) = [F(e) - FEH] B @ + 4 glke) —E— [% sin(o - 8%)
sin 8

+ 8 cos(a - 84)] Eg(O) + {i~> r} (5.23b)

where

' L
X" = cse F(T = 4) (5.23¢)
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g(kr) = 573%ﬁ= ei(kr+ﬂ/4) (5.234)

exp{ikr[cos (8 =~ Bi) - 11} . (5.23e)

de emphasize that E;(O) in (5.23b), for example, is the 6-component of
Ei at (r = 0,8 = ei,¢ = ¢i), and equals to Ai according to (5.6). It
is not the 6-component of Ei at (r = 0,8,¢). The result in (5.23) is
valid only for O §_¢i < 1. To make it valid for all values of ¢i in

the range of (0,2m), we only have to replace the definitions of El in

(5.22) and x© in (5.23c) by

1/2

Ei(?) = si |2kr sin 6 sin ei| lsin-%(¢i - )| (5.24a)

(@)

it

si ’CSC‘%(¢1 -] (5.24b)

where ei(;) is the shadow indicator defined in (4.35).

Next consider the incident field in (5.6) when Ai = 0. The solution
due to this incident field can be determined in exactly the same manner.
We combine this result and that in (5.23), and present them below in a
single equation. When the hair plane is illuminated by a general incident

plane wave in (5.6), the exact solution rfor the total field is

. . 1 .
EC@) = [FGEY - FEDHT B @) + M g(kr) —L—l- {[* sin(e - &%)
sin 8
+ 8 cos(o - 81)] 33(0) + 4 Ei(O)} +{i~r) (5.25)

The same equation (5.25) holds for ﬁt(;) after replacing Et’l by ﬁt’l

This solution can be put in a simpler form. WNote that, for a given
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incident field and observation point, we can always choose an origin

such that

5 = 6 , (5.26)

. >i or >
which implies that the three vectors k™, .k, and r lie on the surface

of a cone whose axis is the edge of the half plane (Figure 1-9). Then

(5.25) becomes

i X .
£t T+ glkr) —E— (5 E;(O) + 5 E;<o>]

sin 8

@ = (reh - FehH1 B

+ {i>7r}, if 8 = 8% . (5.27)

. >t R >t,1 >t,1
The same equation (5.27) holds for H  after replacing E by H . It
should be remarked that the half-plane solution appears in the literature
in several different (but of course equivalent) forms. None of them is
as simple as the one in (5.27). The latter was suggested by the uniform
asymptotic theory to be studied in Chapter 5.
When the observation point T = (r,8 = 61,¢) is away from the edge

, i,r , ‘ i,r
(kr >> 1) and away from the shadow boundaries SB defined by ¢ = ¢ s
i.e., ; is outside the transition regions in Figure 1-5, the relation
[cf. (3.5)]

FeBT) - DT - s(-ghT) = (=) (5.28)

may be used in (5.27). The manipulation leads to the result
i >g >d
E (r’e ,d)) = E° + E . (5'29)

Here E® is the geometrical optics field given by

E3(D) = (%) BXP) + {1 > r} . (5.30)
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1-9. Diffracci
the origin O is chosen so that 3 = 31,

on of a plane wave ov a half plane when
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Ed is the (Keller's) diffracted field given by

i . .
EU@) = glkr) —X— [ EL(O) + § EL(O)] + (L > £} + 0k 32y . (5.31a)
sin 8

1

Since EI(O) and Er(O) are simply related by (5.9), the diffracted field

may be rewritten as

B = gkr) —2— 18 (P - x5 EL0) + 8¢t + D) EL ]
sin 91 9 ¢

+o (5.31b)

A detailed discussion of (5.29) in terms of rays will be given in

Chapter 4.
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1.6 Some Scattering Parameters and Theorems

For convenient reference, we summarize here some scattering parameters
and theorems. Detailed discussion of them can be found in standard books
. *
on electromagnetic theory .

(i) Radar cross section. Consider a three-dimensional perfectly

conducting scatterer I illuminated by an incident linearly polarized
plane wave (Figure 1-10)

217y = alaetkx (6.1)

where éi is a unit constant real vector normal to x. At an observation
point ; = (r,9,9%) at a large distance from I, let us assume that the
scattered (total minus incident) field E is a linearly polarized spherical
wave which has the form

ikr

> >
E(r) - kr

e AS(8,8), T - = (6.2)

Here S(8,¢) is commonly known as the far-field scattering pattern -nd is

dimensionless. We define the (back-scattered) radar cross saction RCS of T bv

2 |EGE = -2 n)!?
RCS = lim 4rr° LE(X = -x 1) (6.3)
>+ 2
e ET(r) |

which has a dimension of square meters. In terms of scattering pattern

S(3,¢), (6.3) becomes

RCS = 2T [s(e = T, o = AR (6.4)

*
M. Born and E. Wolf, Principles of Optics, 2nd Ed., Pergamon Press,
New York, 1964. J. J. Bowman, T. B. A. Senior and P. L. E. Uslenghi,
Electromagnetic and Acoustic Scattering by Simple Shapes. YNorth-

Holland Publishing Company, Amsterdam, Wetherlands, 1969.
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In case that T is an infinite scatterer and is uniform in the z-directionm,
the above definition should be slightly modified. Let the incident field

be a linearly polarized plane wave
ut(x,y) = aelt® (6.5)

i i i i . .
where u” = Ez for E-wave and u = Hz for H-wave. At an observation point
3 = (p,¢) at a large distance from I, we assume that the scattered field

is a cylindrical wave

ei(kp-+-‘r\'/4)
u(y) - T A8, e e (6.6)

The (back-scattered) radar cross section per unit length along z defined

by

_ 2
RCS = lim 27p luGe = '.|x|’ y = 0) (6.7)
i 2
preo |u™ (x,3) |

is found to be

RCS=%‘S(¢=W)|2 . (6.8)

The RCS in (6.7) or (6.8) has the dimension of meters.

(ii) Scattering cross section. Consider again the scattering problem

sketched in Figure 1-10 with the incident field given in (6.1) and scat-
tered field in (6.2). We note that the time-averaged incident power

density is given by

, -
Re(El x H ) ,

and the time-—averaged total scattered power in the far field is given by

*
Re ﬁj (E x H ) - da
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igure 1-10. A conducting scatterer illuminated by an incident
“
nlane wave.
2, z )
~N
~ ~ |
/4 E /{ E
~N
Tigure 1-11. A plamar aperturs, Or ics complemencarv dlate
illuminatad v 2n incident olane wave.
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where the surface integration is carried over a sphere r = R with R - «.
Then the scattering cross section SCS of I is defined by the ratio of the

above two quantities, namely,

> >k ->
scs = Re [I ff X Ell da (6.9)
|Re (E” x H™ )|
which has a dimension of square meters. In terms of the scattering
pattern S(8,¢) in (6.2), it can be shown that
scs =22 @ty mse=245=0 . (6.10)
k2 2

This relation states that the SCS of a lossless scatterer is proportional
to the imaginary part of the scattering pattern in the forward direction

of the incident plane wave. Next consider the case when £ 1s an infinite
scatterer and is uniform in the z-direction. With respect to the incident
field in (6.5) and scattered field in (6.6), the scattering cross section

per unit length along z is found to be

=

SCS = Im S(¢ = 0) (6.11)

which has a dimension of meters.

(iii) Transmission cross section. At y = 0, there is an infinitely

large perfectly conducting plane I, with an aperture as shown in

1

Figure 1-lla. It is illuminated by an incident linearly polarized plane

wave

L@ = elae™™ (6.12)

~1 >1i . , . .
where the vectors e~ and k™ describe, respectively, the polarization and

propagation direction of El. In the half space y > 0, let us assume
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that the total field in the far zone is also linearly polarized and has
the form

ikr
e
kr

éAS(f), y>0and r » (6.13)

at an observation point rT=1 r. We define a transmission cross section
TCS of the planar aperture as the ratio of time-averaged power transmitted
through the aperture and the time-averaged incident power density. It

may be shown that

S = - —2% @r ) mse =ik (6.14)
k

which has a dimension of square meters. TCS normalized with respect to

the area of the aperture is called the transmission coefficient of the

aperture. In a corresponding two-dimensional problem (no z-variation),

the incident field and total field transmitted through the aperture at a
. - ~

point p = p p are represented by

i

ulix,y) = aetk P (6.15)
‘ ei(kp+ﬂ/4) .
u (x,y) ~ -§7€ﬁﬁaf——- AS(p), v > 0 and p - = . (6.15)
Then TCS per unit length along the z-direction is given by
TCS = - 3= Im S(p = &) (6.17)
2k ’

which has a dimension of meters.

(iv) Scattered field from a planar aperture or plate. Consider

the infinitely large perfectly conducting plane L. with an aperture, and

1

the plate I, at y = 0 shown in Figure 1-11. For an arbitrary incident

2
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field, show that the following symmetry exists for the scattered (total

minus incident) fields:

E (x,7,2) = B _(¢,-y,2), H _(x,y,2) = -H (x,-y,2) (6.18a)
E 'y Y = -E y = , H DA = H X,-Y, ) (6']‘8b)
y(x v,2) y(x ¥,2) y(X v,2) y( v,z

Ez(x,y,z) = Ez(x,—y,z), Hz(x,y,z) = —HZ(X,-y,z) . (6.18¢)

The above result is a consequence of the fact that the scattered field is
due to the radiation of induced currents on Zl or 22, and those currents

radiate symmetrically into the two half spaces y > 0 and y < O.

(v) Babinet's Principle. Consider the following two scattering

problems:

(1) An infinitely large perfectly conducting plane Zl with

an aperture is illuminated by an incident electrical

field Ei = 7+ as shown in Figure 1-lla. The total electrical

field everywhere is the sum of the incident field Ei and

scattered field El'

(2) A perfectly conducting plate which is complementary to

D
P
the plane zl,is illuminated by an incident magnetic field

ﬁ; = T' as shown in Figure 1-11b. The total magnetic field

i

? and scattered

everywhere is the sum of incident field H
field H2.
Suppose that the incident fields in both problems come from the half

space y < 0. It may be shown that,

EC+HE +F =0,vy>0 (6.19a)
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in the transmitted half space; and

~ =S >S T, _
[’ZX(E]._H +F)—0

N

Ly <0 (6.19b)
(s . (—fi+ﬁ§+fr)=0

in the incident half space, where fr(x,y,z) = fl(x,—y,z). The relation

in (6.19) remains valid if the roles of Zl and 22 are interchanged

(i.e., if Z. is a plate and Z, is an infinite plane).

1 2
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PROBLEMS

1-1. The symbols O and o used in this book have the following meanings:
(a) f(k) = O(g(k)] as k + » means that f (k) does not grow faster than

g(k) as k + =; or there is a constant A such that
f@] < alg@] , k.

(b) £(k) = o[g(k)] as k + » means that f(k) grows slower than g(k)

as k -~ »; or

lim [£f(k)/g(x)] = 0

ko

Jdow show that, as k + =,

]
(@]
—~
=~
|
o
A

-
h(k) o(k LI) implies h(k)
and

h(k) = 0(k™) implies h(k)

]
(o]
—
-
~

1-2. Show that the Fresnel function

~-in/4 = it2

F(x) = SLTE?__ f e dt, for real x
X

has its Taylor series expansion given by

0 2.n
_1 1 -irn/4 (ix%)
F) =5 -Jxe x ] n(2n + 1)
n=0
2 4
_1 1 -in/4 ix X
=3 Fﬂ_e x[l+—-3 ~—lo+. . ]
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Hint: Rewrite the integral in two: one fromt = 0 to = and the other

from O to x. Expand the integrand of the second integral as

and carry out the integration term by term.

1-3. Show that the Fresnel integral defined in Problem 1-2 has its

asymptotic expansion given by, as |x| -+ o,

L, 2 T, ®
F(x) ~ 8(-x) + 7}& ellx ﬁ)nzo I'(n + %) (1x%) ™

ix3D ~ ~
= §(-x) + L. A RN SR S !
2/7x L_ AR lj

Hint: First consider the case x > 0. Integration by parts gives

e-lﬂ/4 ©

_ 1 it
PG = == Ix Gio) %
~-in/4 eix2 © eltz o
i w t] T
— x 2it —
L, 207 - =
p tx "'2') : _ix> 1 ie?
=27?rTx'e :l - (2ix) e fxmde
N P

Repeating integration by parts, the desired asymptotic series is obtained.

For x < 0, the above procedure cannot be used directly, as the integrand would

contain (l1/t) which is infinite at t = 0. This difficulty can be

circumvented by using the identity F(x) = 1 - F(-x).
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1-4., Derive the relation in (4.21).

Hint:
9 Fx) = i2x F(x)
dx X X X
3 4 K i
gt =~ [ - cos(s - 9]
0 26
i;—Cb:l=-iisin(i>l—~p)
] 2&

1-5. From the exact solution given in (4.26) show that the
total fields on the incident shadow boundary o = ¢l (where
0 <« ¢l < 27) and away from the edge are given by

E-wave:

. . 2/
elkp - g(kp) Icsc olj + 0(k 3/“)

3]
1
NS

Ho = F 2 28(ko) + o %

i = - ZES 4 o P

? ~ u Z

H-wave:

H™ = % elk‘O + g(kp) Jcsc ¢l} + O(k-3/2)
EY = 1 = 23(ko) + 0k /%)

A -3/2

E = L H, o)
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Here the upper sigr
sign applies when
to the fact that,

the incident field.

1-6. From the exa:
total fields on the

0 < ¢¥ < 2m) and

E-wave:
Sote
H:—H;'=t\}-
H;-Hi=-\!’:
H-wave:
H:-Hz=%—e
EE-E;=$\![
N

where the upper (1l

(r < ¢i < 2m).

in H: or ES applies when 0 < ¢l < 1, and the lower
< ¢l < 27. This change in sign may be attributed
en 0 < ¢i <, H: or E;

and when m < ¢l < 2w, it points to the shadow region.

points to the 1lit region of

solution given in (4.26) show that the
reflected shadow boundary ¢ = ¢r = 21 - ¢i (where

y from the edge are given by

ke _ ko) |ese o] + o3

/2

2g (ko) + 0k~ 3/?)

t i -3/2
(Ez - Ez) + 0(k )

° - g(kp) |csc ¢i| + O(k-3/2

/2

2g(ko) + 0(k"3/%)

£ _ 4i =3/2
2 Hz) + 0(k )

er) sign in H; or Ez applies when 0 < ¢i <7
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1-7. Given

Ei = (2kr sin 6 sin ei)1/2 sin %(Cbi - ¢)

~in/4 = 2
F(x) = e—y?——f e dt

X

N 1 2 T
F(x) = ———— exp i(x" + 5)
2(1r)]'/2 X 4

Show the following identities

vet = 2ehy™t ko sin oh) ¢ - 5D

VF(eY) = (ik sin 8D Fghy ¢ - 5D

(ik sin 1) (1+ 2 (D78 Feh ¢ - 8D

vieh)

vIE(gh) - BN = 3k sin o) &H T2 FEH 6 - 5D

Hint:
g—r F(&i) = i f‘(gi) (1~ cos(¢>i - ¢)] k sin 6 sin ei
%_g_e. F(gi) = i ﬁ'(gi) (1 - cos(¢>i - ¢)] k cos 8 sin ei

13 OO Y IS |
r—'s—in—gggF(E)—lF(E)(ksme)sm(cb-¢)
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1-8. Using the results in Problem 1-7, derive the exact total field in

(5.23) for the half plane from (5.21) and (5.10).

Hint: To calculate ﬁt, note the vector identity
Vx (VA) = VWU x A + UV x &

>
To calculate Et, note that

i

Bigyreh -1 2@ - redh - seh1 2@

Je k

. . , -1 i, .1
+z M g(kr) T (2ikr sin 8) Ee(0,¢ )

sin 8

= o
B L
e k

~ sin ei ¢ sin 8

+ 6 cos(6 ~ 6) - 2(24kr sin 8) 1] E;(O,cpi)

62
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i
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Chapter 2. ASYMPTOTIC SOLUTION OF MAXWELL'S EQUATIONS

2.1. Introduction

For a prescribed source and boundary conditions, only a few electro-
magnetic problems can be exactly and explicitly solved. Thus from a
practical viewpoint, it is extremely important to develop approximate
(analytical or numerical) techniques that can be used for different

occasions. Throughout this work we are concerned with high frequency

electromagnetic fields, that is, fields with small wavelengths compared to
either a significant dimension of the object that the fields interact, or
the distance between the source and the observation point. At high
frequencies, several well-developed analytical asymptotic methods in
mathematics can be applied to the solution of Maxwell's equatioms.

These applications generally can be grouped into two types: the direct
application and the indirect application, according to the stage in the
solution process when the asymptotic method is introduced.

In the indirect application, we work with the Maxwell equations in
their exact forms (as given in Section 1.1.). For a small class of
problems, e.g., problems with separable geometry, we may be able to derive
the exact solution in jntegral representations; a typical form is given

below:

i(akx+sky)

E(®) = [ da [ dg K(a,g,k2)e (1.1)

-0 -

where k = wv/ue 1s the wavenumber of the free space. Frequently, either the

above integral cannot be carried out explicitly, or when it does, the result
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is too complex to be useful. At a high frequency (or more explicit.y,
k/§2 + y2 is large), the well-known saddle point integration method can

be applied to (1.1) to derive an asymptotic series

ED -] TV EGEK , kee (1.2)
v

+
where {v} is a set of integers or fractionmal numbers, and {Ev} are, in
general, rfunctions of k and are bounded as k +~ =. We call (1.2) the

asymptotic expansion of the exact solution in (1.1). Studies on such an

indirect application of asymptotic methods are well-documented in books
on electromagnetic theory.*

In the direct application, we apply asymptotic methods directly tc
Maxwell's equations at the beginning of the problem, instead of to its
solutions. Since it is no longer necessary to derive (if possible at all)
a representation such as (1.1), the direct application is 'invariably
simpler, and, more importantly, can be adopted to a much broader class of
problems. It is the direct application of asymptotic methods to electro-
magnetic edge diffraction problems that will be studied in this book.

Based on our experience with edge diffraction problems, an "educated"
conjecture is that an asymptotic solution of Maxwell's equations in the

free space may take the following form,+ as k » =,

*
e.g., D. S. Jones, The Theory of Electromagnetism, Macmillan, New York,

1964. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves,
Prentice-Hall, New Jersey, 1973.

'The use of the asymptotic series in the form of (1.3) for solving Maxwell's
equations was first suggested by R. K. Luneburg in his mimeographed notes
on Mathematical Theory of Optics issued by Brown University in 1944, and
also in M. Kline, "An asymptotic solution of Maxwell's equations,'" Comm.
Pure Appl. Math., 4, 225-263, 1951. This series is sometimes called the
Luneburg-Kline expansion.
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ED - ™ T o™ @ (1.3a)
m=0

Tlks(X) v TR () (1.3b)
m=0 "

HE) - k

where the amplitudes {gm,ﬁm} and the phase function s(;) are functions of
the space variable ;, and are independent of k. When the incident field

is assumed to be of order ko, the parameter tv in (1.3) takes a value
between ~1 and O, and determines the nature of the field represented by the
series, e.g., geometrical optics field (t = 0) or edge diffracted field

(t = -1/2). 1In a given problem, a complete solution of the total field may
be a superposition of several asymptotic series with possibly different t.

We call (1.3) an asymptotic solution of the problem under consideration.

No general proof that the asymptotic solution (1.3) is identical with the

asymptotic expansion of the exact solution (1.2) exists. Nevertheless, the
agreement found at various special problems provides strong evidence of the
validity of the present direct application of asymptotic methods.

The purpose of this chapter is to study some general properties of
the series (l1.3) as imposed by Maxwell's equations. Those properties will

be used throughout the remainder of this book.
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2.2. Equations Governing Asymptotic Solutions

An asymptotic solution in the form of (1.3) must satisfy Maxwell's
equations. Based on this fact we will now derive explicit equations that
govern the variation of the phase function s(;) and the amplitude vectors
{e ,K }. In the free space, Maxwell's equations in a source-free region

m° m

for a time-harmonic field take the following form:

VxEe= 1wuﬁ y v xH= ~im€E , (2.1a)
v-E=0 |, v-H=0 , (2.1b)

where the time dependence exp(-iwt) as usual has been dropped. Eliminating

> > > >
H(r) in (2.1) leads to two equations that govern E(r), namely,

@2+ kHED =0, (2.2)
v.ED =0 . (2.3)
Once ﬁ(;) is determined, ﬁ(;) may be calculated from (2.la) or

AT = Zﬁﬁ'v x BE(D) . (2.4)

Let us now concentrate on (2.2) and (2.3).
When an asymptotic solution in the form of (1.3) is substituted into
(2.2) and (2.3), the results are obviously independent of the multiplication

factor k'. Thus, for simplicity, let us set T = 0 in (l.3a) such that
> > - > >
E(T) ~ e %V 7 Gy e (1) kK >o . (2.5)
m=0
This is the form of E that will be considered in the remainder of this
chapter. A word about the meaning of k + = is in order. Although there is
nothing inappropriate mathematically, it is desirable that the parameter of

the asymptotic expansion be dimensionless. As a built-in property of

Maxwell's equations, the parameter k always appears together with one
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(or more) parameter of distance, say d, in the solution (except perhaps
for a proportional constant in the solution which is independent of d). As
kd is dimensionless, our asymptotic expansion can be also regarded as one
for kd - ». The precise definition of d becomes apparent only after the
problem is explicitly specified. Thus, for the time being, we are satisfied
with an asymptotic expansion with respect to large k and we understand that,
in a specific problem, the same expansion often can be interpreted as the
one with respect to large kd, a dimensionless parameter.

Return to the asymptotic series in (2.5). We desire to determine the
conditions imposed by Maxwell's equations (not including boundary and
source conditions yet) on the phase function s(r) and amplitudes {gm(;)}.
Substituting (2.3) into the source-free wave equation in (2.2) and collecting

the terms of the same power of (ik)-l, we have

=]

) (ik)-m+2{[(Vs)2 ~11 8 4= 120s - M) 3+ v E ]+ —L 7 Zm} =0

2
=0 k (k)

(2.6)
where (Vs)2 means Vs ¢+ Vs, As k + ®, the coefficients of each power of
(ik)_l must be zero, cf. Section 1.2, namely,

[7s(H 1% = 1 (2.7)

- s . * . . +
which is known as the eikonal equation for the phase function s(r), and

200s - V) 3 + 725 ¢ @ - 2 e N (2.8)

em—l

*
The word eikonal is derived from the Greek z1k@v meaning image. The term
was used first by H. Bruns in 1895.
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> >
which are known as transport equations for amplitudes {em(r)}. Furthermore,

the use of (2.5) in (2.3) leads to

o

. y—mrtl e B S
Y (ik) (Vs e, YR " em) 0
m=0
and it yields in turn
> > > >
. = =7 °* 2.9
Us em(r) v em_l(r) R (2.9)
>
m=20, 1, 2, ; e = 0

which is a relation imposed by the Gauss law. Finally, the use of (2.5) in

(2.4) gives

B (7) = /%—[VS e (M +Txe (D], (2.10)

m

which may be used to calculate the magnetic field in (1.3b) once {gm} are
known.

In summary, an asymptotic solution in the form of (1.3) satisfies the
source-free Maxwell equations provided that the four conditions in (2.7)
through (2.10) are satisfied. 1In the next four sections, we will study the

implications of the four conditions.
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2.3. Wavefront, Ray, and Pencil

We will now study the solution of the eikonal equation in the free

space as given in (2.7) or

[vs () ]% = 1 (3.1)

by the concept of rays. The surfaces of constant phase defined by

s(¥) = constant (3.2)
are called wavefronts. The curves everywhere orthogonal to wavefronts are
called rays. They are tangent to the unit vector Vs. In optics, a set of
curves filling a portion of space in such a way that, in general, a single
curve passes through any given point is called a congruence. If there exists
an infinite family of surfaces cut orthogonally by the curves of a congru-
ence, the congruence is said to be normal; if no such family of surfaces
exists, the congruence is skew. Obviously, rays form a normal congruence.

Along each ray the partial differential equation in (3.1) can be
reduced to an ordinary differential equation, which, of course, is more
manageable. This will be demonstrated below. Since a ray is a curve in
space, it can be represented by a parametric equation

x = x(a) , y = y(a) , z = z(g) , (3.3)

or in abbreviated form,

r(0) = (x(0),y(0),2(0)) (3.4)
where 0 is a parameter. For studying rays in an isotropic, homogeneous
medium, the parameter ¢ is invariably taken as the arc length of a ray.

The positive direction of o defined by the direction of increasing s(;),

i.e., the direction of wave propagation. Then the unit tangent of a ray is
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do do’ do’ do

which is equal to Vs,

dF _d oo, 4 3s d 3s d 3s
42 do s do 3x’ do 3y’ do 3z

-
2

(3.5)

(3.6)

(3.7

(3.8)

where the third identity follows from (3.6). Similar equations to (3.8) can

be derived for y and z components of (3.7). Combining these results with

(3.1), we obtain the desired ordinary differential equation governing a ray

in the free space,

The solution of (3.9) is

¥(o) = gUs + b

>

- . >
where Vs and b are constant vectors independent of r.
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describes a straight line with tangent Vs. Thus rays in the free space

* s
are straight lines. The variation of the phase along a ray from point

- - R .
r. to point r can be calculated in the following manner:

0
-
- > ds
s(r) - s(ro) i i d
-
o
T -
T
= L] g—r-
= [ (s dc) do
>
o
N
T
-
= f Vs ¢« dr . (3.1
5
o
Using (3.10) in (3.11) leads to
-> >
s(r) = s(ro) + (0 - oo) . (3.12)

>
This relates the phase of an asymptotic solution (2.35) at one point r on a

-
ray to that at another point r. on the same ray. Thus, tracing along a ray

0
we can determine the phase at any point once an initial value is given.
Since ¢ is the length of a ray, (3.12) reveals that the distance between a

. -> -> >
wavefront defined by the value s(r) and another wavefront by s(ro) is
(g - OO). This distance is the same for all rays; therefore, the wavefronts

form a family of parallel surfaces.

Ray and Pencil Coordinates. To label rays, we may introduce two

parameters (B,a). Along a given ray (fixed 8 and a), points on the ray

are identified by the arc length o measured positively in the direction

%
The ''phase,'" according to (2.5), is given by ks. For simplicity, we will
refer to s as the ''phase" while the common factor k is understood.
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. . >
of wave propagation and from a rei..e.ce point T, (where o = 0). Thus,

(B,a,0) form ray coordinates and, in general, they are curvilinear coordi-

nates. For example, consider the family of radial rays emanating from a
point source at the origin (point ?o). We may choose the spherical coordi-
nates (8,%,r) as the ray coordinates such that (6 = B,¢ = a,r = ). A fixed
set of (B,a) specifies a ray, while a fixed value of o defines a wavefront.
Let us concentrate on a typical ray passing through ;O and labeled by
(Bo,ao) (Figure 2-1). Our later study will show that the variation of tbe
field amplitudes {gm} along ray (Bo,ao) depends on the geometrical properties
of neighboring rays. For this reason, it is convenient to consider a small
itube of rays centered around ray (Bo,ao) called a pencil, rather than a
single ray. With respect to this pencil, ray (Bo,ao) is the axial ray
and the others are paraxial rays. To describe the position of a point in
a pencil, we introduce a rectangular coordinate system (xX,y,z), or alterna-

-
,Zz), such that its origin is at r, and its z-axis

tively written as (xl,x 0

2

coincides with the axial ray (Bo,ao). The coordinates (xl’XZ’Z) are called

pencil coordinates. On the axial ray, we note that

z =20 (on an axial ray) . (3.13)
Since any ray may be considered as the axial ray of a certain pencil, all
the formulas developed later for an axial ray with the variable z are also
valid for any ray with the variable o [compare (4.2) and (4.3)], and vice
versa.

Curvature Matrix. The wavefronts of a pencil are parallel surfaces.

Let us concentrate on the particular wavefront passing through a reference

point T. where (x, = 0,x, = 0,z =0) and (8 = B,,a = a,,0 = 0) (Figure 2-2).

0 1 0 0

In the neighborhood of ;O’ the wavefront may be approximated by a

2
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» axial ray (35, @)
fixeq (B, a)

Figure 2-1. Ray coordinates (3,s,7) and pencil coordinates (xl,xz,z).

74



>
=
-

S
b3
O

Figure 2-2. Wavefront of a pencil with (x,,x,) in the principal
directions. In the sketch, both™R

1 and R, are positive
(divergzing pencil). =
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second-degree surface (Appendix A). Thus, a typical point (Xl’XZ’Z) on the

wavefront satisfies the following equation

_ 1 2 2 3
Wavefront: 2z = - 5 (Qllxl + 2Q12xlx2 + Q22x2) + O(xl,Z) (3.14a)
where O(xi 2) means that terms of order xix; with v + p = 3 and higher have
been neglected. In matrix notation, (3.l4a) can be rewritten as
1 (-"1 = X
z=-3 | 3z=0 [1 F0(x],)  (3.14b)
=2 2
where 6 is a symmetrical 2 x 2 matrix
. 1 Q
Q(z = 0) = . (3.15)
R12 2

As discussed in Appendix A, if (il,iz) are the principal directions of the

surface (Figure 2-2), 3 is diagonalized such that

]
|

WlH
o

(3.16)

where (Rl’RZ) are the principal radii of curvature of the wavefront passing

through ;O' The sign convention of (Rl’RZ) is chosen to be (Figure 2-3):

+ |Rl, for a divergent pencil ,
(3.17)

- |R|, for a convergent pencil .

In (3.17) R stands for either R, and R,, and the terms "divergent" and

"convergent'" are, of course, referred to rays passing through the respective
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Wavefront

Wavefront

Z=-R|

(a) R,>0O (diverging pencil) (b) R,<O (converging pencil)

Figure 2-3. Sign convention for principal radii of curvature of a wavefront.
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normal section of the pencil. If the base vectors (il,ﬁz) do not coincide
with the principal directions of the wavefront but make an angle ¢ with
respect to them (Figure 2-4), it is a simple matter to verify that 6(2 = 0)

then becomes

(;os Y sin y T li—' 0 cos Y sin
| ( R]_
Q(z = 0) = | (3.18a)

sin ¥ cos Y 0 1 sin ¥ cos

)
F;OSZ Yoy sin2 b 1 (j; —-J;) sin 2;7
Rl R2 2 Rl R2
= (3.18b)
1)1 1 in 2y sin%gy - c052 Y
t? {ﬁ— -3 sin 2y R ' R
1 2 1 2 J

where T is the transpose operator. Since a(z = 0) is determined by the

principal curvatures, it is called the curvature matrix of the wavefront

-
passing through z = 0, i.e., point r Two interesting properties of

0
Q(z = 0) are
det 6(2 = ()) = —— = Gaussian curvature (3.19)
R.R
172
% - trace 6(2 = Q) = % Cl; + ;L) = mean curvature . (3.20)
2 2 Rl R7

These two formulas are valid when 6(2 = 0) is given by either (3.16) or
(3.18). More discussion on the curvature matrix is given in Appendix A.
According to differential geometry, paraxial rays in the plane spanned

by the principal directions x, and z intersect at focus F. defined by

1 — 1
(Xl = O,x2 =0,z = _Rl) (Figure 2-2), and those in the plane (%7,2) intersect
at focus F2 defined by (xl = O,x2 =0,z = —RZ)' Other rays in the pencil
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Figure 2-4. Case when (% ,iz) do not coincide with the principal directions
of a wavefront.
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may be considered to intersect approximately at two focal lines AF. B,

1

which is parallel to iz, and CFZD, which is parallel to X This property

Ik
can be seen better from Figure 2-5. If we do not restrict our consideration

to a small tube of rays, the focal lines of a family of wavefronts generate

two surfaces known as the caustic surfaces. (In Figure 2-6, only one of them

is shown.) Note that all rays are tangent to caustic surfaces. Sometimes
a caustic may degenerate to a curve (e.g., in the case of edge diffraction)
or a point (e.g., the focus of a paraboloidal reflector).

Phase Variation in a Pencil. Referring to Figure 2-2 let us consider

>
another wavefront passing through r' on the axial ray. Since all wavefronts
are parallel surfaces, the principal directions (ﬁl,iz) remain unchanged.

Corresponding to (3.14) the second-degree surface that describes the wave-

front passing through T =71 or (xl = O,x2 =0,z = z') is given by
) )
1 1 _ c 7L 3
z-z' =~ > .t Qz =2z i+ 0(x; o) . (3.21)
W F2J

When (il,iz) are the principal directions, it is easily seen from Figure 2-2

that

(3.22)

1
R2 + 2z

«

which is the curvature matrix of the wavefront passing through a general
point (xl = 0,x, = 0,z) on the axial ray. 1In terms of 6(2 = 0) in (3.16),

we may rewrite (3.22) as
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N>

2-5., All ravs in a pencil intersect at the focal line AFlB.
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Line of
curvature

, Line of curvature

Wavefront

caustic

Figure 2-6. One of the two caustic surfaces of a family of wavefronts.
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B = Bz=0)1"  + 2 (3.23)

It can be shown (Problem 2-5) that the formula in (3.23) is also valid when

(x ,&2) are not the principal directions and Q(z = 0) is given by (3.18).

1

For a given pencil, (3.23) relates the curvature matrix at one point on
the axial ray to that of another. Thus, once an initial value is given,
the curvature matrix can be continued to any other point along the same
ray via (3.23).
The variation of the phase function s(?) along a fixed ray is given by

(3.12) (% and r. are on the same ray). Now we will derive a more general

0

—
formula that governs the variation of s(r) within a pencil. Suppose an

= 0,x, = 0,z = 0) is known, then

initial value of the phase function at (x )

1

phase variation along the axial ray is determined from (3.12), namely,

s(0,0,z) = s(0,0,0) + z . (3.24)
The question of interest then is to determine s(xl,xz,z) when \xl} and {xz[
are small (on a paraxial ray). Since point (0,0,z) and point ¢ are on the

same wavefront (Figure 2-7), the difference between the phase function at

(0,0,2z) and that at (x 2,2) is given by e, the distance from point ¢ to

1%

the tangent plane of the wavefront at (0,0,z). From elementary differential

geometry € is found to be (Appendix A):

3 s
T 1)

N § L2y 3

€ =5 Q(Z)i | + O(Xl,Z) (3.25)
‘XZJ \.X:)_J

Then the desired formula is
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Figuré 2-7. Phase of 2 pencil.
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s(xl,xz,z) = 5(0,0,0) + z + i

which includes (3.24) as a special case.

In summary, the wavefronts in the free space Aare parallel surfaces, and

rays are straight lines. The phase variation of a pencil is described by

the quadratic approximation in (3.26). The curvature matrix 6(2) is given

by (3.22) when (ﬁl,ﬂz) are the principal directions of the wavefront, or by

(3.23) and (3.18), when (il,iz) are not.
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2.4 Expansion Ratio and Divergence Factor

As may be seen from Figure 2-7, the cross section of a pencil may
expand (diverging pencil) or contract (converging pencil) as it propagates.
This fact will later play an important role in the solution of the transport
equations for the field amplitudes {gm}. We will now examine the detailed
computation procedures for such a variation of cross section.

Because rays in the free space travel along straight lines, the cross
section of a pencil can be expressed simply in terms of the principal
curvatures of the wavefront. Referring to Figure 2-8, consider two differ-
ential cross sections at z = 0, and z = 2y denoted by da(0), and da(zo),
respectively. (We have drawn the cross sections as rectangles and will
calculate their areas as so. However, it is not difficult to show that
our conclusion is not restricted by this assumption.) From the geometrical

construction in Figure 2-8, we have

~ S f
da(0) _ ap  ad _ % ! 1% (4.1)
= = . ‘ = 4.1
da(ZO> YO 2y ¥ R, zy TR (Rl + ZO)(R2 + ZG)

where <R1’R7> are the principal radii of curvature of the wavefront passing

through X T %, = z= 0. Written in a more general form, the expansion ratio

of the cross section at ZO and that at z is

calzy) (R + 2)(R, + 2

da(z) ~ (R * D (R, * 2 -2

det S(z)

et O
det ‘<ZO)

Gaussian curvature at z
Gaussian curvarture at z

0
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Figure 2-8. Variation of cross section of a pencil. In the sketch, both

Rl and R, are positive (diverging pencil).
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In (4.2), z may be identified with the arc length along the axial ray
measured from the reference point ;0 (Figure 2~1). Since any ray may be
regarded as an axial ray, we can replace z in (4.2) by the arc length o,
namely,

da(co) ) (Rl + 00) (R2 + 00)
da(a) (Rl + o) (R2 + )

_ det Q(a)

det 6(00)

Gaussian curvature at ¢

Gaussian curvature at OO

(4.3)

where (Rl’RZ) are the principal radii of curvature of the local wavefront
passing through o = 0.

An alternative formula for the expansion ratio is expressed in terms
of the Jacobian of the transformation from the ray coordinates to the
pencil coordinates (Section 2,3). This will be discussed below.

The position of a point in a pencil may be dezcribed by (rectangular)
pencil coordinates (xl = X,X, = v,2), or by (curvilinear) ray coordinates
(B,a,0), as indicated in Figure 2-1. For a fixed o, the variation of

(8,a) defines a wavefront:
Wavefront: ;(x,y,z) = (x(B,a),y(8,a),z(B,a)) , with fixed ¢ . (4.4)

By a standard formula (7.8) in Appendix A, the differential area on a wave-

front at ¢ is given by

d
x
d

J

mln%
&%y

d8 dao

da(o) = ’

On the other hand, for a fixed (B,a), the variation of o defines a ray:
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Ray: ;(x,y,z) = (x(o),y(9),z(a)) , with fixed (B,u) (4.
whose unit tangent is given by
it _ 3 >
~ r
=== = — r(s . 4,
t =3 = 35 r(x,y,z) (
Since the vector
-> ->
3r or
or or
3B do.
is normal to the wavefront and, therefore, parallel to E, the differential
surface in (4.4) can be rewritten as
3T _ 3T |, ar|
= |8 ,9r  9or /
da (o) 38 X 3% 50| df8 da . , (4.
The factor in the absolute value sign is identified as the Jacobian of the
transform from the ray coordinates (8,a,0) to the pencil coordinates
(x,y¥,z), namely,
, ) g - a—»
. N = 3(X,v,2 NER 3r r ,
3809 =5ETS TR e @
Tix o3x x|
B I 50 !
= deti i‘\i -l —}: |
PR 30 G
iz sz oz
\—)8 20 )LJ

Usually, we are interested in the value of the Jacobian along a given ray
(fixed 3 and «). Then, j(B,x,5) in abbreviated form is written as j(o).
Making use of (4.7) and (4.8) in (4.3) we have a new formula for the
expansion ratio

da(zo) (Rl + :O)(R2 + co) det Q(3) ilc)

: S U o

da(z) (Rl + :)(R7 + 2
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>
Thus, at a given point r = (x,y,z) or (B,x,0) on a ray, (4.8) and (4.9)
may be used as an alternative way to calculate the expansion ratio.

Along a given ray, the divergence factor DF from a reference point

9 to a general point ¢ is defined by
da(OO) 1/2 J(OO)J 1/2
= | = 4,10
DF da(o) j (o) (4.102)

which is equal to the square root of the expansion ratio. With the help of
(4.9), we find

DF = L . (4.10b)

Yl + [(0 - oo)/(Rl + oo)] Yy 1+ [(0 - oo)/(R2 + oo)]

The factors in (4.10b) have the following meaning: (Rl + oo) and (Ré + oo)
are the two radii of curvature of the wavefront passing through the reference
point oo; and (o - oo) is the signed arclength along the ray measured from
0.. In the remainder of the section, let us choose 9 = 0 (without loss of

0

generality) and study

DF = L (4.11)

V1 + (o/Rl) V1 + (o/Rz)

The proper value of the square root function in (4.11) must be defined. As
discussed in the next section, DF describes the variation of field amplitudes
{gm} along a ray. Guided by rigorous solutions of some canonical problems.
it is found that the proper value of the square root function in (4.11) must

be chosen such that

+|f] , if f is real (4.12a)

f=/1+-L =( +i[fl , if f is imaginary and o > 0 (4.12b)
n

-ilf] if f is imaginary and o < 0 (4.12¢)

\

where n = 1 or 2. Note that, with respect to thewave propagation, ¢ > 0
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corresponds to a point in the forward direction of the reference point

5 = 0; whereas 5 < 0 corresponds to a point in the backward direction.
Because of the choice in (4.12), we conclude that, along the direction of
wave propagation, DF has a phase jump exp(-in/2) whenever a focus is crossed.
If the number of foci between o = 0 and a positive ¢ is M (Morse index), it

is readily verified that

-
th
=
]
o

+|pF|

(4.13)

o
s
it
4’A-_ﬁ

1
}—-l.
(W}
j
H
th
=

1]
—

Consider the divergent cylindrical pencil in Figure 2-9a as an example.

At the reference point O, where 01 = 0, the two radii of curvature of the

1

wavefront are R, = +5 and R2 = ». We measure 9 positively from Ol in the

direction of wave propagation. Then the divergence factor relative to Ol

i3 ziven by

DF = __l— , fOf - < 7T < R (4.14)

vVl + (‘jl//i)

According to the convention in (4.12), DF in (4.14) is positive real for

< (-5). At the focus where

i
Wt

Z,, and positive imaginary for jl

-3, DF in (%4.14) becomes infinite, as the cylindrical wavefront degen-

erates inte a line. TFor che same pencll, we next choose a different rerfer-
2ncz peint ar O, where 7, = 0 (Figure 2-9b). The cylindrical wavefront that
nasses through O, is convergent, with Rl = -7 and R, = ». Then the divergent

Taccor relacive o 0, is

DF = , for == <« I < ® (4.13)
yl - (33/’/7) -
wnich 1s positive real for 5, < 7, and negative imaginarv for 7 < 7
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Figure 2-9. Examples for calculating divergence factor of a cylindrical
pencil.
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2.5 Continuation of Field Amplitudes

We now turn to the solution of the transport equations in (2.8), which

is repeated below:
- 2
2(Vs + V) e + Vs e = -V e y m=90,1,2,...;e =0 . (5.1)

-> -> R .
Here em(r) is a function of position, e.g., a function of ray coordinates

= ao) and study the variation of gm(?)

(8,a,0). We will now fix (8 = Bo,a
with respect to ¢. If one makes use orf the identity
dr 5x 3, 0v 5, 0%z 3 _ d
r IxX 2 o] 3z -
Vs « 7 = — +« 7 = -— - + —_— = — 5.2
do 90 93X 56 I3y 3o 3z dc ( )
(5.1) becomes
d - 2 - 2 - N -
2 i em(o) + 77s em(c) = -V em_l(o) R m=0,1,2,... . (5.3)
Thus, along a given ray, the partial differential equation in (5.1) is
simplified to an ordinary differential equation (5.3). We emphasize that
. , -+ 2~ ) < .
the symbols em(c) and 7 em(g) in (5.3) have the meaning
em(a) = em(SO,aO,c) (5.%a)
2—’ 2_‘ i
77e (g) = 77e (3,2,3): (5.4b)
m m }
| 2=2 o=y
J‘v *‘O’“‘ JO ~
The solution of (5.3) can be derived by a standard method in differential
equations (Problem 2-6) and is given by
g «(g,3,)
- - 1l >70 2 -
s () = (3 Vel = Y 5 (5" ds' Q= 0.1.2 (3.5
ﬂ( ) eT\UO) (2, 0) 20 «(3',3.) em—l\j ) da ’ m 9,1,2, \D.2a)
/ 0
0
where «<(7,3,) is defined by

0
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1 (% 2
K(O,OO) = exp[- 5 [ Vs(g") do'). (5.5b)
g
0

To calculate the integrand in (5.5b), we use (3.26) and (3.22):

2 2
X X
_ 1 1 2 3 ,
s(xl,xz,z) = 5(0,0,0) + z + > Rl g + R2 g + O(xl,Z) {5.6)
2 _ 2
7 s(g) = S(Xl’xz’z)
xl=x2=0,z—0
1 1
"R +5 TR, +3 (5-7)

1 2

where (Rl’RZ) are the principal radii of curvature of the local wavefront

passing through ¢ = 0. The use of (5.7) in (5.5b) leads immediately to

\((Rl + 00)(R2 + oO) 11/2 ( j(oo) 1/2
K(o,oo) = ’ = - = DF . (5.8)

[ (Rl + o')(R2 + ) j(g)

The divergence factor DF was studied at the end of Section 2~4. Then the

solution for the transport equation in (53.35) can be written as

- -> (J(OO)\li -
eo(o) = eO(OO) [ o) J = eo(oo)(DF) (5.9)
[J(U ) 1!1/2 (f 11/2
- _T ! 0 i __]; i(g") 2 ' ' =
en(c) = em(uo) { e J 3 JO { (o) J v em_l(o )y do' , m 1,2,
0

The above results can be also derived by an alternative way using the Jacobian
ratio directly (Problems 2-7 and 2-8).
~ ) . + . . . .
Consider the zeroth order solution 80(5). Once an initial wvalue is known

at one point Iy on a ray, it is determined along the entire ray bv (5.9). The



-> . .
direction of eo(o) is maintained constant along a given ray. Using (4.9),

we have an interesting interpretation of (5.9), namely,

da(OO) Wl/z

>

eO(O) = eO(OO) L mj . (5.11)

Thus, the magnitude of g0<0) at a point on a ray is inversely proportional to
the square root of the cross section of a pencil centered around that ray.
This is a well-known fact in optics. An alternative way for deriving this
conclusion is given in Problems 2-9 and 2-10.

The solutions for the higher-order {gm}, m=1,2,..., given in (5.10),

o>
are not as simple. In addition to the initial value em(oo) on a ray, it is

necessary to know 72 gm_l(o') for all ¢' in the range 9y < g' < g before the

=
value of em(o) can be determined. The simple geometrical interpretation in

(5.11) no longer applies to higher-order {gm}.

From (5.9), (5.10) and (4.9), we note that {gm(o)} become infinite

whenever g = -Rl or ¢ = —Rz. These points lie on caustic surfaces (Figures 2-2

and 2-6). The ray techniques discussed in this book, in general, cannot pre-
dict the field correctly in the neighborhood of caustic surfaces® and, there-
fore, we have to avoid these points in using (5.9) and (5.10).

Another complication in association with a caustic point o _ = —Rl or -R,
o <

is that, whenever Oy € 9. <9 the integral in (5.10) may diverge. Thus, it

is necessary to deduce an alternative representation which remains valid

L

when a caustic point appears on the path of integration'. For this purpose,

let us introduce the definition of the "finite part' of a divergent integral.

Lo
®

One exception 1is when the caustic is the edge of a screen. This case will
be studied in Chapter 5.

"R. M. Lewis and J. Boersma, ''Uniform asymptotic theory of edge diffraction,”
J. Math. Phys. 10, 2291-2305, 1969.
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"

Assume f(e) has an asymptotic expansion in powers of ¢ as ¢ = 0

g(x) dx va, + ) a ¢ °, e >0 (5.12)

€ n

(b Q
f(e) = J
where an's are nonzero real numbers (positive or negative; integer or

fractional). Then, the finite part of the integral is defined by

b b

I g(x) dx = finite part of [ g(x) dx = a (5.13)
J J 0

0 0

where the slash on the integral sign denotes this special operation. As may
be seen from (5.12), this definition is simply equivalent to that we evaluate
the result of the integration at the upper limit x = b only and ignore the

lower limit x = 0. Now return to (5.10). Without loss of generality, let us

choose the origin of ¢ at the caustic point, 0. = 0, and rewrite the integral

in (5.10):
(C o el
, ;
I 40 (5.14)
J
% o0 o
Then (5.10) becomes
3 1e)
. 1/2 - 1 1/2 - 1 170 L
(§(a)] em(c) +3 ?O = [J(GO)} em(so) + 5 Fo (5.13)

The right-hand side of (5.15) is independent of 5. If we denote its value by

, then we obtain

This is a modified version of (3.9) and (5.10), and it is valid even when
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g = 0 is a caustic point. Setting ¢ = 0 in (5.16), we have

1/2

gr'n = lim Em(c:)[j(c)] (5.17)

o0

At the caustic point o = 0, j(o = 0) goes to zero but gm(c = () goes to
infinity in such a way that g; is finite. This may be considered an inter-
pretation of the initial wvalues {gé}.

In summary, along a given ray (fixed A and a), the continuation of the
field amplitudes {gm} as a function of ¢ is governed by (5.9) and (5.10).
If the reference point 9y = 0 is a caustic point, the latter equations should

be replaced by (5.16).

97



2.6. Condition Imposed by Gauss' Law

The condition imposed by Gauss' law is given in (2.9), which reads

- -
e

Us - Em(o) ==Y e (o) , m=0,1,2,...3 =0 . (6.1)

m-1
*

It has an interesting property which is stated as follows : If (i) s and

{gm} satisfy the eikonal equation (2.7) and the transport equation (2.8),

and (ii) the relation in (6.1) is satisfied at one point ¢ = 0y on a ray,

then (6.1) is satisfied at all other points on the same ray. This property

will be found useful later on. We will now establish it by induction.

Starting with the m = 0 case, (6.1) becomes
Vs - Eo(o) =0 . (6.2)

Because of (5.9), it is obvious that if (6.2) holds for one point ¢ = o, on

0

a ray, it holds for any other point on the same ray. The relation in (6.2)
indicates that the zeroth-order solution gO always lies in a plane perpendi-

cular to the direction of propagation and, therefore, represents a trans-

verse wave. Next, given the conditions that

(1) s (0) = -9 + e .(s) , and (6.3)

3
(ii) 7s - §m<oo> = -7 ) (6.4)

we would like to show that

Vs - Em(o) (6.5)

[}

|
<3

.

=

~~

Q
S~

"J. Boersma and P. H. M. Kersten, "Uniform asymptotic theory of electromagnetic
diffraction by a plane screen," Technical Report, Department of Mathematics,
Tech. University of Eindhoven, Eindhoven, Netherlands (in Dutch), 1967.
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- 1/2 , .
for all o. To this end, let us multiply (6.5) by [j(o)] / and differentiate

the resultant equation with respect to o. Then, the right-hand side becomes

Fo= L (1500)1Y2

1 (- 1) v -em_l(o)} (6.6)

I S R C-) NI SR PO V0 - B S o
=73 Ve - B@ITTGe (Ve )

Y2 g25(v . e ) +2(Ts - M@ e ]

= _ 1 .
= 2 [J (0)]
where the last identity follows from (5.3) and the relation (Problem 2-11)

2 _j'(e) _ 1 d

Vs ) 7oy do jlo) (6.7)
while the left-hand side becomes
=L (51 s - 0} (6.8)
Y 1/2 » d d . 1/2 »
= [§(o)] en " 3o Vs t Vs 'd—O[J(O)] el

0 -2 3@ 2ws - F 2

m-1

/2

[v%s(v - e ) *2(vs - W@ - &

1
-3 @] D!

where the third identity follows from (3.28) and (5.10), and the fourth identity

is established in Problem 2-12. Compare Fl in (6.6) and F, in (6.8). We

2

note that they are equal, or

<4 (150012

= [9s + e (@) +7 « e (@1} =0
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or

. o _
Js « e (g) + 7 « e ()] = a constant independent of 7 . (6

1/2r
¢ m m~1

[3(o))

Because of (6.4), the constant in (6.9) is zero. Thus, we have established

the desired relation in (6.53), and completed the proof bv induction.
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2.7. Summary

(1) In this book we are concerned with the high-frequency asymptotic
solutions of electromagnetic edge diffraction in the free space. The total
field solution in a given problem often can be conveniently identified as a
superposition of several partial fields, such as the incident field, the
geometrical optics field, and the diffraction field. For each partial
field, we conjecture that it can be represented (at least in some regions)

by a formal asymptotic series:

ED - k" 0 T ™I @, ke (7.1a)
m=0 m

D -k P T TR @, ke (7.1b)
m=0

which is called an asymptotic solution. There is no general proof that the
asymptotic solution always agrees with the asymptotic expansion of the exact
solution, even though there exist many affirmative examples. In order for
(7.1) to satisfy the source-free Maxwell equations, it is subject to the

following constraints:

2
(Vvs)™ =1 (eikonal equation) (7.2)
2(7s - 7) 5 +¥is e =-7°2 ( {ons) (7.3
2(s e s e e 1 transport equations .3)
> >
Vs e = -V - e (Gauss' law) (7.4)
m -1
> E > -
hm = \/U [Vs x e + 7 x em—l] (7.5)
where m = 0,1,2,3,..., and g—l = 0. In addition, (7.1) has to satisfy the

source boundary and edge conditicns in a given problem, which have yet to be

enforced.
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(2) Ray and pencils: Rays in the free space are a family of straight

lines described by two parameters (8,a). Along a given ray, its arc length
is denoted by ¢ which is measured positively in the direction of increasing
s (direction of wave propagation). The curvilinear coordinates {(B,a,d) form
ray coordinates. A pencil is a small tube of rays (an axial ray and
surrounding paraxial rays). To describe a point in a pencil, we use the
(rectangular) pencil coordinates (xl,xz,z), whose base vectors (ﬁl,iz,i) are
right-handed and orthonormal. The axis z coincides with the axial ray, and
(;1,;2) may or may not coincide with the principal directions of the wavefront

of the pencil.

(3) Phase of a pencil: At any point T = (xl,xz,z) within a pencil

(Figure 2-7), the phase function s(;) can be approximated by a second-degree

equation:

YT

s(xl,xz,z) = s5(0,0,0) + z + ) . (7.6)

X

2

When (;l’;°) are the principal directions, we have
(_1_ 0

J

! i
| L |
0 Lo
R

When (xl,xz) make an angle i with respect to the principal directions

(Figure 2-4), we have
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cos sin 1T ( L 0 [ cos Y sin Y

QO
~~~
N
[}
(@]
~
1]

- sin Y cos ¢ 0 — - sin Y cos Y

(7.8)
In either case, the continuation of 3(2) is described by
- -1 - -1 1 0
[Q(z)] = [QO)] ™ + z . (7.9)
0 1

The sign convention of (Rl’RZ) is that they are positive (negative) for

diverging (converging) normal sections of the wavefront (Figure 2-3).

(4) Divergence factor: Along a given ray, DF at a general point o with

respect to a reference point GO is defined by

[ s
1(og) |1/2 . . 1/2
DF = - = [Jacobian ratio] (7.10)
i(o)
[ \
= ’ Eiﬁigl L2 [pencil cross-section ratio]l/2
| @ J P

1/2

| = [Gaussian curvature ratio]

O-Oo

Ry + 9

—_— 1 +
+
R OOJ

where (Rl’Ro) are the radii of curvature of the wavefront passing through the
origin o= 0. The square root function in the last line of (7.10) is defined

such that
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+ ]fl s if £ is real
£ = 1 ={-i [£] , if f is imaginary and (¢ - oy >0 (7.11)
g - 9,
1+ Rn ™ 5
\Ti Efl ) if f is imaginary and (¢ - oo) <0

(5) Zeroth-order solution: Along a given ray, we have

1/2
> > { J(OO) >
eO(G) = eo(co) k o) = eo(oo)(DF) (7.12)
7s - €O<o) = 0 (7.13)
hy(o) = %Vs x €O<a) (7.14)

which indicates that the zeroth-order solution is locally a plane wave.

(6) Higher-order solution: Along a given ray, the propagation of the

amplitude vectors is governed by the relation

: 1/2 ( 1/2
- N iCey) ) - B .
e (@) =e (3,) j(;) | - % ! (-%%%jl ! e (@) do',
) JJO L J
m=0,1,2,. (7.13)

(7.13) are
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m=0,1,2, ... (7.16)
where the slash on the integral sign indicates the "finite part' of a
(possibly divergent) integral.
(8) A useful property of (7.4) is that if it is satisfied at oae

point on a ray, it is satisfied at all other points along the same ray.
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2.8. Propagation of Cylindrical Waves

Consider a field represented by the asymptotic series
Kk >
> > -m > .-
ED - MW T o @, ke (8.1)
m=0
The continuation of the amplitude vectors {em} along a given ray is governad

by the relation in (7.15) or

1/2 n1/2
J(G ﬂ g r [}
e - 2 0 - 1 (CAD) 2 > ' 1
0@ = 2009 1T | 5 fco ij—j (O)J v e (') do'
J
m=0,1,2, ... , ande, =0 . (8.2)

In this section we will give a simple example* to illustrate the application
of (8.2). Consider the two-dimensional problem (no z-variation) sketched
in Figure 2-10:an infinitely long line source at the origin O radiating an
E-wave (with nonzero field compongnts Ez’Hx’ and Hy) or an H-wave (Hz’Ex’ and
Ey). Let u stand for Ez or Hz. Away from point 0, we assume that zu can be

asymptotically represented by a series (8.1), or

Wi, ~ e T W™z (), ke . (8.3)
m=0

(Do not confuse the amplitudes {zm} with the coordinate z.) Over an
arbitrarily closed surface I enclosing O and defined by the equation

Z: p = a(9) , (8.4)
we assume that the values of {zm}, i.e., {zm(a(¢),¢)}, are known. The

problem is to determine {zm} away from & from (8.2).

Jo

"J. B. Keller, R. M. Lewis and B. D. Seckler, "Asymptotic solution of some
diffraction problem," Comm. Pure Appl. Math., vol. 9, pp. 207-265, 1956.
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Ay

A
ray
(p, )
0 > X
a(ep)
Figure 2-10. A cylindrical wave emanating from the line source at O.
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For the present system of rays emanating from the focal line passing
through 0, it is convenient to introduce ray coordinates
B=¢,aa=2,0=p . (8.5)
Then a fixed p defines a wavefront, and a fixed (¢,z) defines a ray. Along
a given ray, e.g., ray OA in Figure 2-10, p represents the arc length
measured from the focal line. The variation of the asymptotic field

solution with respect to p is governed by (8.2) or

j(poﬂl/z 1.2 [3ehH 1/2 P ' '
z () = zm(oo) T | oy f ey vz (') de
Po |
m=20,1,2, ... , and 2_q = 0 (8.6)

where p, is a reference point on ray OA. In the present problem, p, is
0 0

taken to be the point on I according to (8.4), i.e., po = a,

To apply (8.6), the Jacobian ratio must be calculated first. There
are two ways of doing this. With the ray coordinates given in (8.5), the

determinant in (4.8) is readily calculated with the result

j(o) = -p . (8.7)
Then the Jacobian ratio is

J(OO) _a 5.8)

i(p) o )

Alternatively, we note that the radii of the present cylindrical wave at a

point 0 on ray OA are 0 and ®. Thus, the curvature matrix may be written as

6(9) = | -1 , where b » = . (8.9)

The use of (8.9) in (7.10) leads again to (8.8).
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Setting m = 0 in (8.6), we obtain the formula for continuing the

zeroth-order field:

2,00 = (/0 % 20(a,0) (8.10)

To calculate 215 the Laplacian of ZO is needed;

2 15 3 1 32 1/2
v zo(p,¢) =13 5 (o—a'p-) +—2——-2'] (a/o) zo(a,ub)
p 39
2 _ 2 )

- o732 {(%) SRR RO (8.11)

00

Using (8.8) and (8.11) in (8.6) with m = 1, we obtain after a simple

integration
2 .0) = o e @+ 0P e ) (8.12)
where
£ 0 = a2z @ -2t o
2 2
- 1 3
£, =3 {E%o + ;;3] 2% 2 (a,0)

Unlike z. in (8.10), we note that z

o depends not only on its own initial

1

2 2 -
value on 7, but also on the initial values of zg and (3 zo/3¢ ) on L.

Following the same procedure, z , etc., may be determined in

’), 23,

succession. However, this is not necessary as there exists a better way
where all {zm} are determined recursively.

Guided by the solutions of z, in (8.10) and z, in (8.12), it is

0 1

conjectured that the general form of z is

m
zm(p,a) =9 ") ¢ £ (&) m=0,1,2, ... . (8.13)
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Inserting (8.13) into (8.6) and carrying out the integration, we obtain

r

m 2
- = 1 - 1.2 9
z(o,¢)=pl/2 \al/zz(a,¢)- ) —a@m-9"+—| f
m ; m 2n 2 2
; n=1 30
\
) 3
m
1 -n|, 1,2, 9 |
+ Logpe (0= T fg naaf
n=1 3¢ J

A comparison of (8.13) and (8.14) gives immediately

1/2
£gp(®) = a zo(a,¢)
- at? >—Ifa‘“f<¢> m> 1
fop®) = 2 z (a0 nm ) >
n=1
1 1 2 32'7 .
fnm(¢) = 5 {Zn -3+ ;;E fn—l,m—l(¢) , m# 0and m>1

(8.14)

(8.15a)

(8.15b)

(8.15¢)

It is a simple matter to check that the known results in (8.10) and (8.12)

are special cases of (8.15).

In summary, in terms of the known initial values of {zm} on ¢, the

asymptotic field solution radiated from a line source at O (Figure 2-9) is

given by

I ~19

u(p,b) ~ ei¥P g71/2 7 <ik>'m(
m=0 n

=

-
. 0 fnm(¢ﬂ , k>

where {fnm} are given by (8.15). Alternatively, u can be written as

(8.3) with the first three amplitudes given by

o—l/Z £

-1/2

-3/2 1 .
zl(p,¢) =p fol + 0

1 1l
s foo * 7 foo)
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-1/2 1

- _3/2 l 1
zz(o,¢) =9 90 T 0 (8 fOl + 5 fOl)
‘5/2 i 9 é 1" =R AN1)
toe s 36 foo T2 foo * foo’ (8.17¢)

where the primes on fnm indicate the derivative with respect to 3. As

may be seen from (8.15a) and (8.15b), {f m} depends on the initial values

0
on Z, and therefore are arbitrary functions of ».

Next, let us consider a special case of the solution in (8.16). 1In a
problem which involves no characteristic dimension (i.e., whose geometrical
configuration is defined by angles only), k and » must appear in the
solution only in the combination of kg [Problem 2-13]. Inserting an

1/2

additional factor k on the right-hand-side of (8.16), the requirement
that k and o appear as kp is satisfied if

fnm(¢) =0 |, for n # m . (8.18)

In this case, the recurrence formula (8.15c¢c) becomes

1 [P 1 2 Z2 )
) =2 |@-2L 3
fmm(a) 2m | o 2) + 3®2| fm—l,m—l (8.19
2 2 7 - 2 27
1 r 1 3 1 1 3 i
== |m -3 + | [(m -1-5 + | £
2 - i —2 m—-2
m 2 3®2J 2(m 1) 8 2 SQ%J m=2,m-2
2 2
1 LS 1 3
= I, [@-3 +—|f . (8.19)
2m ! n=1 L 2 3$2 00

Hence, in problems containing no characteristic dimension, the asymptotic

expansion of a cylindrical wave emanating from O (Figure 2-10) is given bv
m | 2

1 . -
= (iko) " I (@ - 3
1 n=1 -

L2
& -

+ 3‘2]:}t00(;) s k - = (8.20)
39

1. - et (ko) THE (1 +
\

It~ 8

mr
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where fOO is an arbitrary function of ¢, and may be identified with the

initial value of zy on L according to (8.15a). For this special case in

(8.20), we note that only the initial value of 2> not those of higher

order {zm}, is needed in the determination of u away from L. If we choose
fOO to be
2 1/2 1. 1
foo(cb) = (-ﬂ-) exp[~-i(v + E) Ft+i vo ] (8.21)

then u in (8.20) becomes

1/2 - 2
ulp,8) - <;ﬁ—p 1+ ] & Qi)™ 1 [ -3 - vzﬂ
= ‘ J

. exp ilke + vé - (v + %) I, ke (8.22)

which coincides exactly with the known asymptotic expansion of

Hil)(kp) exp 1ivé.



2-2.

PROBLEMS

Consider the asymptotic solution of an electromagnetic diffraction

problem given in (2.5), and denote its partial sum by

E@ = T T2 @, k.
EM =()
Show that
@ + 1M B, = o™ (1a)
v E@) = oM (1b)

for any positive integer M. Alternatively, (1) may serve as a definition
of the asymptotic solution of Maxwell's equations. The error in using

> 3 > > -

EM to approximate the exact solution E asymptotically satisfies the

following relations:
@ + @ - E) = o™

>

v E-EY o~ o™

=S
Next, consider the asymptotic expansion of the exact solution E given
. . . -M
in (1.2). Let the partial sum up to and including k term be

denoted by Eﬁ(?). Then, in contrast to (1), show that

- -M-1
y 0(k ) (2)

> >
In an isotropic inhomogeneous medium, with u = u(r) and € = (r),
show that the source-free wave equations for the electric and magnetic

fields are
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> 2 2
PE Ak - (Tin ) x (VxB) + 7@ - 7 2me)

]
(@)

(3a)

2,2

> 2
H+nk

1]

72 E+ (7 ne) x (7 x B) + 7(H - 7 20 u) =0 (3b)

1/2

> _ 1/2 o
where n(r) = (sp/souo) , ko= w(uoso) and (uo,eo) are the permeability

and permittivity of free space. As k > =, let us write the leading term

in an asymptotic solution of the fields as
BT - ay(T) expliks(D)] (4a)

H(T) - KO<?) exp[iks ()] (4b)

By substituting (4a) into (3a), show the eikonal equation in an isotropic

inhomogeneous medium:

(7)% = n° (5)
and the transport equation for gO:
e 7 |Xus|+ 2@, - vian) Vs+2(7s - T) e =0 6)
ey " s (eo nn S (Vs V) ey = . (
By substituting (4b) into (3b), show the transport equation for KO:
B 7 L s|+ 2. - v inn) Vs +2(Vs - 7) B, =0 (7)
ehy, = Vs 0 7 4n n) Vs s 0 .

Study the solution of the eikonal equation in (5) by carrying out the

following steps. Corresponding to (3.9), show that the equation that
—’; > . . 3 ) .

governs the ray r = r(c) in an isotropic inhomogeneous medium is

>

dr

" do

d
n —

2
o
do 2

=V (3)

where U is the arc length parameter of a ray. Corresponding to (3.12),

show that the propagation of the phase function along a given ray
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is described by the relation

n do )]
0

s(;) = s(?O) +

— - ,
where r and r. are on the same ray, and the integration is to be carried

0
> -1
out along that ray. (Hint: let dr/dc =n "7s.)

The solutions of (6) and (7) are quite involved. They were first

obtained by R. K. Luneburgz in 1944 (R. XK. Luneburg, Mathematical Theorvy

of Optics. University of California Press, Berkeley, Calif., 1964.

M. Kline and I. W. Kav, Electromagnetic Theory and Geometrical Optics.

Interscience Publishers, New York, 1963). We summarize the main results
below: (i) Along a given ray, the propagation of the field magnitudes is

ziven by

(V2 RV

“ Nt =1la (~ N ‘O U(O)

eo( ) {eokvo), ) U(GQ) (10a)
~ h > [ /9

| N §) 1/2 E(gﬂl,_

5h0<d)| = lhOkOO) BTG ETEBS' (10b)

where the magnitude of a complex vector a is defined to be

e

Bl - <

al = + a * a

Results in (10) should be compared with those in (5.9). Yote that in an
inhomogeneous medium, the Jacobian j(c) can no longer be expressed in
terms of curvatures of the wavefront in a simple manner. (ii) In
general, the electric vector EO(?) of a linearly vpolarized wave rotates

R 5 - - . ) ) . . .y
along a ray. The amount of rotation in the right-hand sense with respect
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2-5.

2-6.

to the tangent of the ray in the normal plane (a plane transverse to

the tangent) is determined by the relation

>
r

Q(F) = Q(?O) - L T do
%o

> -
where r and ro are points on the same ray, T is the torsion of the ray,

.
and @ is the angle of e, measured from the normal of the ray. For the

0
special case in which the ray is a planar curve (Tt £ 0), the angle

>
@(r) is a constant along that ray. (This of course does not necessarily

-5
mean that e points to a constant direction in space. The latter state-

ment 1s generally true only when the ray is a straight line.)

Show that (3.23) is true even if (ﬁl,iz) makes an angle i with .the

=T = =
R* Q R is a diagonal matrix and satisfies

principal directions. Hint:
(3.23), where R is a rotation matrix given in (3.18a). Furthermore,

from (3.18a) show that

1

2 . 2 ,
Rl cos Y + R2 sin™ Y 2(Rl - RZ) sin 2y
= -1
[Q(c = 0)] ~ =
2 2
%(Rl - RZ) sin 2y Rl sin~ ¢ + R2 cos™ ¥

—.

This is useful for the computation in (3.23).

Consider a linear ordinary differential equation of first order

L ta@ y = b

Show that its solution is given by
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N

y(x) = e_A(X) ( c - J b(x) eA(X) dx

U
where
A(x) = j a(x) dx , ¢ = an arbitrary constant.
Hint: Consider first the special case b(x) = 0 and show that its
solution is
y(x) = ce—A(X)

Next, consider the general case b(x) # 0. Let

v(x) = u(x) e A

Determine u(x). See, e.g., R. Courant, Differential and Integral

Calculus, Vol. II. London: Blackie and Son, 1936, pp. 429-~430.

Show that the Jacobian of the transformation from rectangular coordinates

,0 = 03)

(x = x vy = x z = x3) to ray coordinates (8 = g,,a = ©

1’ -2 1 2

can be written as

X 3x

30 cof 30
v

(&)
i
[aR
®
cr
al »
< e
H o~

v=1
where cof (Exi/§dv) is the cofactor of the ith row and the vth column

of the determinant.

Hint: Since a determinant vanishes if two rows are identical, we have
3 32 IX,
i cotf ~ = 38
= 3c Elo; 19
v=1] v v
where §,, 1is the Kronecker symbol: 4., = 1 if 1 = k and 4., = 0 if
ik ik ik
i # k.
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2-8.

Making use of the results in Problem 2-6 and the transport equation
in (5.1), first establish the relation

.1/2
d |.1/2 > _ _ ] 2~
do J ®mf 2 v n-1

and, next, by integration along a ray, show that the solution of the

transport equation is given by

. 1/2 1/2
> - J(OO) > ( ) (1/2) 9 'l (O’) vz—)' ( 1) d 1
em(o) T i(9) ®n 0O 5 j (o) en-1'9 g ?
0
m=0,1,2,..
Hint: Note the following manipulation:
2 N N
4i 35 3 xi 0%, 5 Sxi oxk le
do A z 30,30 cof S0 ] z X 50, £Ye] cof 20
3 4i,v 377y v i,v,k %k 3 v v
- 3 3Xi ar L - L2
=il 3x. | 30 J ac s = 3Vs
i i 3
de_ o /2
d . 1/2 > _ .1/2 mo, mdi| _ i’ .- -2
dO(J e ) = 3o 75 45| C 2 [2(7s + 7) e te 7s]
= - jiz_ ‘72—)'
2 ®n-1

The: above derivation was first given in D. S. Ahluwalia, R. M. Lewis
and J. Boersma, 'Uniform asvmptotic theory of diffraction bv a plane

screen,' STAM J. Appl. Math., 16, pp. 783-807, 1968.
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2-9.

The zeroth-order transport equation in (5.1) reads

2(7s -+ V) ZO + vstO =0 . (11)

-> . . .
Since e., in general, is a complex vector, let us define its magnitude

0

and "direction' by

> > A
ey = ieoleo (12)
h \Z \= ER Eq lex conjugate of E and
where |e, ey " ey € comp conjugate 0’
~ O
ey = eo/!eoi = a complex vector.
Show that the magnitude of gO satisfies the relation
- 2
v o (|eo| 7s) =0 (13)

and by integrating it over a volume formed by a pencil and two segments

of wavefronts show that

da(oo)

2 07
)| da(c)

2@ % = 2, (1)

%* .
Hint: Multiplying (11) by gO and adding to the resulting equation its

complex conjugate, we obtain

‘2 2 > .2 >
\ e

(7s = 7) =7 (Je 2Vs) =0

ol
When integrating (13) over the volume, we note that there is no

contribution from the side surface because Vs is tangent to ravs

everywhere.
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[\

-10. Substituting (12) into (11) shows that

-4 - 2
(Vs V) e, = i5 e 0

0
-
which implies the direction of e, is a constant along a ray. When

this result is combined with (14), we have the complete solution of

the zeroth-order transport equation in (5.11).

2-11. Starting with (5.10), show the relation given in (6.7).

. .od > > ) 1/2 - 3i' (o) __l_ 2>
Hine: 3o e (o) = SICIVARRCION . 375 "5 Ve, (9
2(3(a) ]
=32 - /2 -j3'@ L1],4d72 2 >
= em(cO)[J(oO)] ' 373 +3 2 P em(c) + v sem(c)
2[j (o) ]
or
> . 1/2 j'(a) 2>
em(cO)[J(cO)] 377 = v sem(o)

[§(a)]

2-12. From (2.8) and (6.3), show that

2>
e

(6) = 7%s(7 + 2 ) +2(7s » D(T - 2 )
m-1 m—-1

s « ¥
S m-1

Hint: With (m - 1) replacing m in (2.8), we have

> 2 >
2(9s <« 7) e + Vv se_ = -V

m-1
The gradient of (6.3) gives
(e

>
¢« 7) s + (9s + V) e
m~-1 m

The difference of the above two equations gives
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v x (gm ) - Vs x (V x e ) =V xVxe

-
_1¥ Vs) + Vs(V « e

m-1 m—-1

Taking the divergence of it yields the desired relation.

2-13. Show that in a problem with no characteristic dimension, the wave
number k and the space variables (xX,y,z) appear only in the combination
(kx,ky,kz) in the field solution.

Hint: In a problem with no characteristic dimension, the geometrical
configuration can be defined by angles (8,¢). Consequently, it

remains the same if the scale of (x,y,z) is changed such that

Correspondingly, the source-free Maxwell equations in the free space

-1

k =7 x E(x,y,z) in ﬁ(x,y,z)

k—l v x ﬁ(x,y,z)

. ~1
-in E(x,y,z)

where n = (u/a)l/z, become

in ﬁ(x',}" ,Z')

1]

7' x E(x',y',z')

"in E(X',Y',Z')

1]

7' x ﬁ(x',y',z')

Thus, when the new scale is used, k no longer appears in the Maxwell

equations, nor in a description of the boundary conditions.
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Chapter 3. GEOMETRICAL OPTICS THEORY
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Reflection from a Surface of Revolution

Reflection from a Sphere

Reflection from an Arbitrary Reflector
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3.1. Introduction

The basic problem studied in this part of the book is the diffraction
of electromagnetic waves by a perfectly conducting, infinitely thin screen L.
We assume the screen to be a portion of a curved surface, which is sufficiently
smooth to make all of our mathematical manipulations meaningful. For a given
incident field El, the total field Et is to be determined everywhere. The
total field is defined as a sum of the incident field E* and the scattered
field E:

BN =B +E@ . (1.1)

The incident field may be regarded as the field produced by the source in

the absence of screen I. We assume that it can be represented, at high

frequencies, by an asymptotic series:

Ei(+ iksi(;) ° .,y =m >1 >
r) ~ e z (ik) em(r) . k +o (1.2)

m=0

Since the incident field can exist independently, the series in (1.2) must
satisfy the Maxwell's equations, and therefore all the conditions summarized
in Section 2.7. A field which can be asymptotically represented by (1.2) is
called a ray field. Generally speaking, all the ray techniques are applicable
only when the incident fields are ray fields. Otherwise, an arbitrary
incident field, if possible, should be decomposed into a superposition of ray
fields, and the ray techniques be applied to each ray-field constituent. Some
examples of the latter case are given in Chapter 5.

For a given screen and an incident ray field in (1.2), our problem at

. . =t .
hand is to determine E~. Except for the few special cases, e.g., the
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Sommerfeld half-plane problem studied in Chapter 1, Et cannot be found
exactly. Since the frequency is high, we settle for a (formally) asymptotic
solution of Et. According to the ascending degrees of sophistication, this
step can be carried out according to any one of the following theories:

(i Geometrical optics theory (GO)

(ii) Keller's geometrical theory of diffraction (GTD)

(iii) Uniform asymptotic theory (UAT), or other uniform theories.
In this chapter we will start out with the simplest one: GO. In fact, the
results obtained here are necessary for the development of the more elaborate

theories listed in (ii) and (iii) above.
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3.2 Incident and Reflected Fields

Referrring to Figure 3-1, let us consider a point source at ;0, which
in the absence of screen I radiates a field Ei given in (1.2). The problem
is to determine the total field Et produced by the same source when L is
present. According to the (classical) geometrical optics theory, the incident
field is blocked by I and casts a shadow behind it. An observation point ;,
whether it is in the shadow or lit regions of the incident field, can be
readily determined by the following test. Drawing a straight line from the
source ;O to the observation point ¥, i.e., a ray, then ; is in the shadow

.
region if the line intercepts I; otherwise, r is in the lit region. To state

this fact mathematically, let us introduce a shadow indicator of the incident

field sl(;) such that

=y

+1 , if is in the shadow region of the incident field

(T = (2.1)

"y

-1 y if is in the lit region of the incident field

Then, in the presence of I, the incident field El in (1.2) is modified to

become

8(- e7) EX(D) (2.2)

where 9(x) is the unit step function

+1

8(x) = . (2.3)
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(a) incident field % -
Figure 3-1. Illuminated and shadow ragions of

the incident (reflected) field
from a point source.
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(b) rerlectaed Ziald

Figure 3-1. Illuminated and shadow regions of
the incident (reflected) field
from a point sourde.
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A

In Figure 3-la, we give a picturesque description of this fact by launching
several typical rays from the sourceat4;0 and terminating the rays only when
? is encountered. Note that there is no incident ray that reaches the shadow
region, indicating the fact that the asymptotic field is zero there. The
surface formed by the extension of the straight lines, drawing from ;O to

a point on the edge of the screen, separates the shadow and the lit regions

of the incident field. This surface is called the incident shadow boundary,

denoted by sgt.
In addition to the incident field, the classical geometrical optics

theory also predicts the existence of a reflected field ET such that

B5D) - 9= B + 9= H FD , ko . (2.4)

The two terms on the right-hand side of (2.4) are also known as the geometrical

optics field. When El is given in (1.2), Er can be represented by a similar

asymptotic expansion, namely,

>r > iksr(;) c .. -m *r >
E(r) ~ e ] (k) T e (r) , ke . (2.5)

m=0

The shadow indicator of the reflected wave er in (2.4) is defined exactly

the same as ei in (2.1) except that the "incident field" in (2.1) should be

replaced by "reflected field.'" The reflected field Er in (2.5), as it stands,

is mathematically defined for all ; (in the 1lit as well as in the shadow

regions of the reflected field), despite the fact that only Er in its lit

region (where ef = ~1) is physically meaningful and contributes to Et in
/accordance with (2.4). The precise definition of EX in its shadow region

is of no concern at this moment. The subject is discussed further in

Chapter 5.
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There exist two conditions that are to be enforced for the determination
of B in its lit region. First, the usual boundary condition on the perfectly
conducting screen I requires that the tangential components of the total
electric field be zero:

Nx BT +2)=0 , ZTon: (2.6)

PN

*
where N is the outward normal of £. The second condition is that the total
field satisfy Gauss' law:

7. @ +H =0 , (2.7)

for all T in the common lit region of Ei and E'. It has been established in
Section 2.6 that the satisfaction of Gauss' law at one point on a ray implies
its satisfaction at all other points on the same ray. Because of this property,
it is only necessary to enforce (2.7) for points on screen I, as they are
common points on incident and reflected rays. Thus, (2.7) may be replaced by

V.-G +E)=0 , rongzI . (2.8)

The two conditions in (2.6) and (2.8) are enforced for the fields in (1.2) and
(2.5) for the solution of the reflected field.

Consider the reflection from a typical point O on screen I (point of
reflection). There are three quantities involved: the incident pencil, the

reflected pencil, and the screen f. We describe each of them below.

(1) Incident pencil (Figure 3-2): The rectangular pencil coordinates

i_ i . L S
= x3) describe the position in the incident pencil. z~ coincides

( i i z
X19X29
with the axial ray which passes through O, and zb is measured positively in

the direction of wave propagation from O. According to (7.6) in Section 2.7,

* L >1
"Outward" normal means the normal pointing toward the source of E™.
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paraxial ray

axial ray

A

Wavefront

-----2'=-R,

Coiai)

. . ; . ~i -1 L
Incident pencil. In this sketch, {xl,x7j are principal
{ 2

N
directions, and{Rl,R J are positive.

I -
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.o i ) LT S R C
the phase function s (r) at an arbitrary point r = (Xl’XZ’Z ) in the incident

pencil is given by

g &
S@H=st000 2| L TEh [ raed’ L e
ey *2

where O[(xl)B] means terms of order (x]l')u (x;)v with uw + v = 3. The curvature
matrix al(zl) in (2.9) is as usual determined by the principal radii (Ri,R;) of

the incident pencil and the angle ¢ between (Qi,ﬁé) and the principal

i : . ~io~q
directions of the wavefront. Throughout this chapter, we always choose (Xl,xz)

in the principal directions (P = 0) unless it is explicitly stated otherwise.

Then, a(zl) has the simple form

———

5hth = (2.10)

as given in (7.7) and (7.9) in Section 2.7. Next, consider the vector com-
. g > . o .
ponents of the amplitude vectors 1em} at r in the incident pencil. For later
applications, it is convenient to resolve the amplitude vectors into longitudi-
nal and transverse components with respect to each individual ray (axial or
. . . . . ~1 -1 -1
paraxial), rather than into components in the directions of (Xl’XZ’Z ). For

this purpose, we introduce three local orthonormal base vectors at a point

> i i1
r = (xj,xz,z )
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1
et ot 2 orahy (2.11a)
1 1 i i
R, + z
1
i
iAo~ T2 i\ 2
or = x> - zh ——— + 0[ (M) ] (2.11b)
2 2 i i
R, + 2z
2
A I
pst ot a it e —2 it oreh (2.11¢)
1 i i 2 i i
Rl+z R2+z

2, (X;)Z or (Xixé) have been neglected.

Note that in (2.11) terms of order (xi)
Within this approximation, Vsi in (2.1lc), which was calculated from (2.9) and
(2.10), is in the direction of the paraxial ray passing through ;; (81,8;) are
two orthogonal directions transverse to Vsi, and &i(o;) is also orthogonal to
the principal direction %;(%i). For the special case when ? is on the axial

ray (xi = O,x; = 0), the local base vectors (8i,&;,v51) coincide with the

pencil base vectors (%i,ié,il). At any point in the pencil, we represent
+i
{em} by
e (T) =oje  +0ye ) +Use ., m=0,1,2,... . (2.12)

Thus,

(iei)=rv r t

e 1% ransverse components ,
and

e;3 = longitudinal component

of g; with respect to the direction of wave propagation. Substituting (2.11)

into (2.12), we have
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>i > i i Xi i i i Xé i
= _ + + —
em(r) Xl eml + i i em3 . XZ emZ i i em3
R + 2 R, + 2z
1 2
{
e A
i i 1 i 2 i 12
Yot T g 1% T 3, 1w | FOLE . (20
Rl + z R2 + z

. . >1 .
This is the representation of e 1in terms of the rectangular pencil base

~1 A1 Ad , > . .
vectors <Xl’X2’z ) at a point r in a pencil.

et " "

(ii) Reflected pencil: After replacing the superscript "i" by 'r,

the same formulas and conventions for the incident pencil are used for the

reflected pencil.

(iii) Screen I(Figure 3-3): At point of reflection 0 where the axial ray

0f the incident pencil meets I, let us introduce three orthonormal base vectors

[%i,%g,;z = %g} . Here 22 coincides with the outward normal of I at Q;

[x%,x%] lie in the tangent plane and are in the principal directions of I
at 0. Then, in the neighborhood of 0, L can be approximated by a quadratic

surface:

1

|+ o[<xz>3] (2.14)

3}
.
ol
(e B

I
Nt H™

=7 . .
where the curvature matrix Q of I is given by

L 0
z
R
=Z l
Q- = (2.13)
0 1
RZ
2
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z . A . [ LL Jo=2 o - - - - surzzace
- - . ;
Lzure 3"_5 {e’-‘ach an oam 2 nootn nauc 18
y 3' r =3
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The sign of Ri or Rg is positive (negative) if the normal section of I bends

toward (away from) 22. For example, when I is a sphere of radius a, z

points away from the center, and Ri = RS = -3,

At an arbitrary point T = (x%,x%,zz) on I and in the neighborhood of

0, we define three local orthonormal base vectors:

r
N " X
of = i+ 2t Ly oorh? (2.16a)
r
R
1
r
R S £.2
6% = x5+ 28 2 4 orH)?] (2.16b)
2 = X z
R
2
XZ XZ
ve=ot et E o240 poredh? (2.16¢)
17T % 3
Rl R2

] lie in the tangent plane, and N = 62 is the outward normal

AL ~T ~z]

Note that {&i,&
~7 o . . . N
,GZ,NJ coincide with [xl,xz,z )

| e B AT g |

of Z. At O, {&

In summary, to describe a position in space, we have introduced six
coordinate systems. Three of them are rectangular coordinates with a common
origin at O (the point of reflection on I), namely,

(i) Incident pencil coordinates with base vectors (%i,i;,éi = i;)

- . . . AT AT AT AT
(ii) Reflected pencil coordinates with base vectors (xl,xz,z = x3).

(iii) Screen coordinates with base vectors [§§,§§,22= %g

-
At an arbitrary point r on I, three additional coordinates are introduced,

namely,
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. . ~1 1~ ~1
(iv) 1Incident ray coordinates with base vectors (01,07,0 = 03).
, , AT ~T ~T _ ~T
(v) Reflected ray coordinates with base vectors (01,02,0 = 03).

. . . ~T ~L % ~Z
(vi) Local screen coordinates with base vectors {01,67,0 =0 |.

, T

i, r . . i
Note that z measures the arc length along an axial ray, while o measures

that along an arbitrary ray. Since any ray can be regarded as the axial ray

,T , T

. . . i i .
in a certain pencil, the roles of z and ¢ are interchangeable, as
described in connection with (3.13) in Section 2.3.

With the descriptions of the incident pencil, reflected pencil, and

. . >r <
screen . above, we are ready to determine the reflected field E  in (2.3) for
. L - i . . . :
a given incident field E” in (1.2). As discussed in the previous chapter, to
. >r A
determine E on a reflected ray it is necessary to know:
) . =,.r .
(i) the curvature matrix Q(z ) at a reference point on the same ray,
and
Y v . . . = F—_).r -
(ii) the initial values ot‘em(r)} , m=0,1,2,..., at a reference
point on the same rav.
. . P - - -2 - .
The continuation of Q <follows from (7.9), and that of {em} from (7.15) in
Section 2.7 . The reference point in the present problem is taken to be the

N . . . . - =T ST, .
point of reflection O. The initial values of Q and {emJ at O are determined

from the conditions in (2.6) and (2.8) in the next two sections.
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3.3. Phase Matching

1o

v .=rr7\

In this section, we determine the curvature matrix Q (z ). When (1.2)
and (2.5) are used in (2.6) or (2.8), it is clear that the boundary con-
ditions can be satisfied only if the phases of the incident and reflected
fields are matched over Z, i.e.,

i - r - > .
s (r) = s (r) s r on L . (3.1)
PN
We will carry out the matching in (3.1) at a general point r in the neignbor-
) , ‘ . , . - T oo oT
nood of the point of rerlection U. The coordinates of r are (x],x,,z7).
Alternatively, it can be described by a position vector drawn from O:
T _ 2Lz ~L D ~TT 1.
r €7¥] + X% + z7z (3.2)
These coordinates, of course, satisfy (2.14), which describes screen
) [ 0 o)
_ . X X
L |1‘
- ! | _— l -
D 1 ! =L | .3 .
zm = 5 . P+ ol(x™ 7] . (3.3)
EAN | |
O oo
D S b
b2 vT2
i - . , L .
To calculate s~ at r from (2.9), it is necessarv to know the corresponding
‘s i i i . - . IERRPNG TR N .
coordinates.xy,x,,2 ) of r expressed in tarms of (xj,xq,z). Thev can be
) readilv found from the relations
N i - ~i ~7 T M) ~CE 1
= . = (- ~ . - 2 /
X r X (xlxl + Azxz + z z7) < , n=1,2 (3.4a)
i - i P N i .,
2T = ¢« z = (xlxl + +z7z7) -z (3,409
G. A. Deschamps, '"'Rav techniques in electromasgnetics,” Proc. IEEE, wol. 50,
np. 1022-1035, 1972,
—
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Let us introduce the notations
i A1 ~Z
p = x_ - X R m,n = 1,2,3 (3.5)
. ~iocdi L . . c
where, we emphasize, (Xl’XZ) are the principal directions of the incident

pencil, and (ii,ig) are the principal directions of screen I at O. Then,

(3.4) can be written as

i z
X x{
=1 T
- 7 £ ol (7] (3.62)
xi z
L2 *2
AN
. ~a ~ s A5 1 1 ] = [ z 3
Z:L = {xi(zl . xi) + }«:g(zl . \(;)J +§ p§3 ‘ . . QZ - + O[(XL) ]
JL & =y
(3.6b)
where the 2 x 2 matrix P~ is defined by
i i
( Pll Pl2
=4 |
Pt = } (3.7)
i i
L PZl P22 )

Substituting (3.6) into (2.9), we obtain the phase function of the incident

=
pencil evaluated at a typical r on I, namely,

i, i Loi ot PR SEEPS
s (r) = s (0) + {xl(z xl) + xz(z x2)J
Z DR
“
+%§ ﬁ! ((EI)T 3tz = 0) §l+p§3 6LJ; ﬂ"+o[(xz)3]
R X,
Lo ¢ (3.8)

* ~1 ~1 A7 ~
Remember x3 =z~ and Xy = z
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In exactly the same manner, the phase function of the reflected pencil can

->
be evaluated at r, and the result is

sr(;) = sr(O) + [xi(ér . ;i) + xf(ér . %g)]

1 ( Xi ? =r. T =r, r =r r = [ Xi 1 7.3
+ 5 e [(P)T 0 (2 = 0) P+ P33 Q7] ; + 0l (x)7]
2 R t
=
=
X, X
t 2 L 2 J
(3.9)
) r L
where p are defined bv
™0
r AT -z .
D = 3% . x , m,no = 1,2,3 (3.10)
mn m a
“roNY . . . . - p . o
and (Xl’x“) are the principal directions of the rerflected pencil. A slight
Do . - . ~roor ;
difficulty may arise here. Except for simple problems, <Xl’x°) mav not ve
known at this moment and, consequently, we mav not be able to calculate “p
in (3.10). This dirfficulty can be readily overcome, as will be explained later.

. i r - . . . .
Now, with s and s evaluated at r and given respectivelv in (3.8 and

(3.9), we can match them in accordance with (3.1). Note that as a function

of (xi,x;). r reprasents a general point on I in tne neighborhood of J. The

condition in (3.1) requires that the phase functions be matched for all wvalues

- oz _ . i , r ; - .
of (x1,xq). In otner words, 3 and 5 must be eaqual Zor each order of
(xi,x;) Matching che linear terms of (xi,x;) in (3.8) and (3.9), we obtain
~1 N N AT
TR T zoroxg , n = 1,2 (3.11s)

e . . . -1 T -
whicnh states that the projections of 2z~ and z on the tangent blane of I at

O must bhe equal. This is the well-known Snell's law of reflection. The

r1,
93]
=]
®
[
-
]
-
453
£
65)
~
(4]

consequenca2s o©
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2Tt 2zt e 2h gt (3.11b)
I S (3.12)
Matching the quadratic terms of (3.8) and (3.9) vields
EHT et =0 B+ p; = GHT T -0 BT+ 3 5* (3.13a)
In an abbreviated form, (3.13a) is written as
EHT e =0 B+ by 05 = (i xs (3.13b)

where i — r} means that all terms on the left of the equal sign are repeated

1 1" r AR

and that the superscript "i'" is changed to ''r. From (3.13), the curvature

. =r ) . ) . . ) . =T
matrix O at point of reflection O can be solved. The continuation of Q to

-

other points on the reflected ray is governed bv (7.9) in Section 2.7. Several

discussions about the relation in (3.13) are given below.

. . - , . e “1,r,. “i,r,”

(i) In (3.3), (3.7) and (3.10), we nave specified that (xl’ TTLxyT )
are principal directions. This specifiication, however, is not necessary. As
can be easily seen from its derivation, the final resuit (3.13) is valid for

Y T f - ;.]’.,r,: :i’r’: o5 )~ -~ s 1
arbitrary directions (xl s Xn ) which are mutually rthosonal and are
“i,r,: s 3 T r

transverse toc z , respeccivelw.

. _ , T ~r . . .. ) . - .

(ii) If (Xl’x°) are the principal directions otf the reflectad pencil,

=r ; A 1A ) . ) ; .- . I
\ 2 LTon J e L i a LT ., i il oL Ly 1T cCL Loe S
3 calculated from ( 13) is diagonal, i.e in che form of (7.7) in Section

In some problems, however, the principal directions of the rerflected pencil

- .

. . - T . . _
cannot be readilv recoznized berfore ¢ 1is found. Then, for the surpose ot

. =r . . . . s ; , P
calculating Q°, two arhitrarv orthogonal directivons (x,,x;) can be used in (3.10).
L

b org

A zood choice of the two arbitrarv directions is
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i ~i
,xz) from the surface I at

1

where (%{,%E) are obtained by "reflecting" (x
0,and are no longer of unit length. With such a choice, (%i,%g,ér) form a

left-hand system (which is perfectly acceptable), and

51 LT . (3.15)

Making use of (3.15) and (3.13) is simplified to become

i - _.r
P33 P33

-1.T 1

=i i _ i, =i =5 =i, -
= 0) + 2p,, ((BH™H " (D)

QT (z" = 0) = Q'(z (3.16)

Generally, Qr calculated from (3.16) is not diagonal. The principal curvature
and directions of the reflected pencil nevertheless can be readily calculated
from the general ar by using (13.29) in Appendix A.

. , ~i,r,Z ~i,r,Z
(iii) In Section 3.4 (next section), (x’ ’7,x > ’7) are always taken as

principal directions unless they are specified otherwise.
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3.4. Amplitude Matching

.
In this section we determine the amplitude vectors {e;} of the reflected
* . .
field . At point of reflection O, the boundary condition in (2.6) is equiv-

alent to

+
(]
~
]
It
(@]
=]
]
=
[N
~~
>~
=
~

Substituting (1.2) and (2.5) into (4.1) and (2.8), we obtain two sets of

. . >r
equations for determining {em} at 0, namely,

LT a2 (4.2a)
m m
. i . r
.y e ® L@ E oL (4.2b)
m L m=1 m X m~1
3z dz
m=20,1,2, ..., and ? at O.

In deriving (4.2b) we have made use of (4.2a). We emphasize that (4.2) is
valid only at O, not in the neighboring points of O [cf. Problem 3-1].
Since 0 is a typical point on screen L, the solution of (4.2) is sufficient
to give us the desired initial values of {g;} over Z.

Let us study (4.2) in some detail. Since gilr = 0, the zeroth-order

solution of the amplitude vector at O can be easily found from (4.2), namely,

e =0 (4.3a)

i i ] o1
P13 Poy 01

(4.3b)

i i
P12 P2z ) | %02

where we have made use of the fact that

S. W. Lee, "Electromagnetic reflection from a conducting surface: geometri-
cal optics solution," IEEE Trans. Antennas Propagat., Vol. AP-23, pp. 184-
191, 1975.
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ST ar o) = Rl Tl e ab Tl e sl (4.3)
a fact derived from (2.13) with xi’r = X;’r = zi’r = 0. It can be readily
shown that (4.3) remains valid when (%i’r,ié’r) are not principal directions.
The solution of gg determined from (4.3) is a transverse wave, the same as
gé. The solution in (4.3) may be expressed in a different form, namely,
P I I (4.3d)

>i,r . . AP
where eo’ are evaluated at the reflection point O. Once the initial value

of EO at 0 is known, it may be continued by using (7.12) in Section 2.7,

namely,

>r, r gg(zr =0
eo(z ) = (4.4)

1+ (zr/Ri) S+ (zr/R;)

where z' = o' is the arclength measured from O along a reflected ray. The
square roots in (4.4) must be calculated by following the convention
specified in (7.11) in Section 2.7.

The higher-order solutions of {g;} are more complex. The two derivative
quantities in (4.2b) have to be calculated first. From (2.9), (2.10), and

(3.5) it follows that

3Sl,r? 3 3x it -
| - s L L :
NGR L TS (4-3)
3z n=1 o2z aX
.
r at O
From (2.13), we have
>i,r! 2 ~i,r i,r
~ ~1,TC: o 2 e y L
v e ! = ) - e
m—l; =1 sl T m—1 q
- q
r at O ,
. 1,
| 1 1 \\ i,r ”3‘ < —i
= - +— e’ + =9 (4.6)
gl Rl,ri m-1,3 ;l . 1,r
L1 2 ? q
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r i i i / \ —} r i i \ \ h
P13 Pafu 11,1 i Pa3 P31Po1 11 10 i i
P S i 21 oi P31P11 | =TT 2 1A P31P21
! ! Vo T2 ( *1 ™2 c1 T2y !
L

i i i [ \ | i1 / \ |
o P3Pu 1011 i CP3Par 11,1 i I
i o1 2 110 i Pafie i 2 i i ParPa |
& 1 [ ] . ™2 S o
; +
R / ~ s ! id , \ L %02
B Rie TR WS BN VS S | PuPar 11,1t i |
f i 7 .1 i P32Pnn | i 7171 PP
! 1 RS | ) Y i
i |
Lo id | \ i i , \ ‘
(P13 PP 11, a1 Ji i P23 P3oPe2 101 J;} oi ot L

T i 2 .1 i f32F12 T T i 2 i il ¥32522)
L35 hy 2] Ry, ) L3, R, 8 R g

If (4.5) is substituted into (4.2), the latter becomes

i i i ) i 0
P11 P21 P31 €m,1
i i i } i ~ ..
plz P22 p32 em,Z + 0 = ( l) 11 r} N
i i i i i i i 7 gl
P13P133 Pr3P33 P33P 33 €m,3 -1
m=1,2,3, ... (4.7)

where V - g;:i was given in (4.6). This is the desired equation from which

. =T . -~i -»i,r
one can solve for the value of em at 0, in terms of e em 1’ and the
~i,r

derivatives of em—l at 0. TFor a given incident field El in (1.2), E; and

. . . -r . : .
its derivatives are known. €1 18 found from the previcus calculation.

The only less explicit parts in (4.7) are the derivatives of g;—l of the

reflected field that appear in V - g;—l' For m = 1, the derivatives of

-

eg at O can be solved from the following equations:
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- ~N/LiN
i .. L , }ide !
i i i i i i i 1y 01 i
P1iPrr PuaPar ParPir ParPari i
| 1
i i id 1 1 1% |
P11P12 PurPaz ParPia PaiPao l INEE
| KT
! bs (<1) {1 ~ 1} (4.8)
% ! ael !
fid i i i i i i3] 701
P1oP11 PiaPa1 PpoPi1 Po2Paiy N
| |
| i
, 3
i1 i i i1 i 1 ]|°%02 ‘
P12P12 P12Pa2  PoaPi2 p22"22‘J N

i, r . , .
where all the values of eoé and their derivatives are those at O. ©Note that

(4.8) represents four linear equations for four unknowns

r r . T r
Je de e 3

e
L A - (4.9)
le le 3x2 8x2

The derivation of (4.8) is given in Problem 3-1.
To calculate the higher-order g; beyond m = 1 requires the knowledge of

. . -r o .
the derivatives of e General explicit formulas for calculating the

-1
+r

derivatives of em—l are too cumbersome to be included here. It is often

simpler to derive them for each individual problem. Furthermore, in
practical calculations, one seldom takes more than two terms in the rerlected
field in (2.3), therefore, (4.8) suffices in those situations.

Let us summarize the steps in determining the reflected field in (2.3)
for a given incident field in (1.2) and a reflecting surface I described in

(2.14) and (2.15).

~1
)

-z . p
, 0 ], with {:l,:

-
y

= ]
[RS IS

(1) Determine the orthonormal base vectors [C
the principal directions of Z. Then using Snell's law in (3.11), locate rhe

point of reflection Q for a given observation point.
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Ie
) ) ) ) ) AT AT
(ii) Arbitrarily assuming two orthogonal transverse directions {¥1’§2}

in the reflected pencil, calculate 6r(zr = 0) from (3.13). In the case that

ar so obtained is diagonal, [Xi’§§1 are in the principal directions of the
<)

- . . . =r .
reflected wavefront. Otherwise, one has to diagonalize Q  and determine

il,QEE by using (13.29) in Appendix A.
L J/

principal directions
(1ii) The initial value of s' at O is determined from (3.1), and its
continuation is governed by (7.6) in Section 2.7.

>
(iv) The initial values of {e at O are determined in succession. For

r
g
m = 0, gg can be solved from (4.3). TFor m > O, g; can be solved from (4.7).

In the latter calculation, (4.8) is useful in the determination of the

r
0°

. . - r. . . - .
(v) The continuation of e’ along a ray is governed by (7.15) in

>
derivatives of e

Section 2.7.
.Corresponding to the electric fields given in (1.2) and (2.3), the

magnetic fields are

i,r,> iksl’r(;) p m-i,r,~
H 7 () . (ik) T Rl (r) , k- = (4.10)
- m
m=0

. T ) R

=i,r Je i dr ~i,r -i,r
h’ o= = |Vs P et 17 e | (4.11)

m YU L N m-1!

. - —i,r . , L . .

In the calculation of 7 x en:l in (4.11), it is important that the expression

. , - -i,r
in (2.13) be used for e’

1 For the first two orders, the amplitude vectors

of the incident and reflected fields at O determined from (4.11) are found

to be

o
<
~
i~
u—
o
~
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- . 1 ( |
>1 > [Al i 1 i (l l\ ~i| 1 1 i 1 1
= _ - —_ _ - + + - _— -

by /u Xl T2 0T T 1 X0 Y301 T 1

’ R R R R

| 1 T2 1 2

, .7
,|3el Sel
RS Sl § L (4.13)

tretry

As usual, (4.12) and (4.13) remain valid when superscript "'i"'s are changed

" "t

to "'r'"'s. The derivatives of gg of the reflected field have been already

found from the solutions of (4.8).

The surface current density at O is related to the magnetic field

through the familiar equation:

o1 [ oo \
- iks™ -~Z e! >r 1 =i T -2,
= in- + + — ! + P+ 4.14
JS e z7 X Hno ho TR [hl hl; 0k ™) (4 )
L ]
Because of the fact that
é: < (Hl + Er} = 72: X gi (4.15)
Lo 0) - o )
(4.14) can be rewritten as
> iks® 2D =i, 1 (=i o1 ~2. ]
J =e 2" x |2h] + = Ry + Ry o+ 0K ). (4.16)
S L 0 1K { 1 l) J

The first term in (4.16) is often known as the phvsical-optics current.

. > . . . = ‘_bi’r‘
Note that since JS depends only on the initial values of {hm > (and
- ~i,r, . . . . )
therefore tem ;) on L, its computation is simpler than those of fields at

points away from Z.
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3.5. Summary

ot
(1) We are interested in the scattering of a given incident field E' by
a perfectly conducting screen & (Figure 3-3). According to the (classical)

. . . >t . . >
geometrical optics theory, the total field E  at an observation point r is

. C
E(f) = 8(- ) E(r) + 5(=¢") E(5) . (5.1)
Here 5(x) is the unit step function. The incident field El is assumed to be
a ray field, which is asymptotically given by
>i > iksT @) T . . -m i .
E(r) v e I Gl Te (), k= . (5.2)
m=0

The shadow indicator el(?) of the incident field is defined by

+1 s if ? is in the shadow region of the incident field,
T (D) = L (5.3
-
-1 , if r is in the lit region of the incident field
The lit and shadow regions of the incident field are separated by the incident

i r r
shadow boundary SBl. In exactly the same manner, Er, sr, and SB  of the

reflected field are defined.

(2) The solution given in (5.1), known as the geometrical optics field
E”, is only approximately valid for high frequency. It does not include the
contribution from diffraction. Furthermore, in the discussion of this chapter,
possible multiple reflections between different portions of I are ignored,

as they can be accounted for separately.

(3) Snell's law of reflection (Figure 3-3). Consider an incident rav

) 3 ) . i ; . f - - )
propagating in the direction 2z~ and meeting ¢ at 0O (point of reflection).
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The direction 2T of the reflected ray can be determined from the relation

)

L YC L L (5.4)

N>
it

~Z

where z~ is the outward normal of £ at O.

(4) Incident and reflected pencils. The incident pencil is characterized

. . . - . ~1 L . . A1 A :
by its direction of propagation z7, the principal directions (xl,xz) of its

wavefronts, and the principal radii of curvature (Ri,R;) at 0. TIts phase

B ) . > i1 i, . .
function at a point r = (Xl’XZ’Z ) is given by
(i (1]
R
~_l‘ .« . . . - ! ‘ =.: ‘ .
sT(T) = sl(xi = x; =z =0) + 2" +<% } ; . Ql(zl) } | + Of(Xl)B]
=
[‘2} 1\2} (5.3)

where the curvature matrix al(zl) was defined in (7.7) and (7.9) of Section 2.7.

: >i ) . .
The amplitude vector e can be resolved into three components:

-1+ _aidi-id ii -
e (r) = g,e + g.e + Us’ e 5.6
m< ) 1 ml 2 m2 m3 ( )

, i1 i . . o ) .
where (0),9,,7s") are defined in (2.11). Thus, with respect to the direction

i

of propagation of esach ray (axial or paraxial), (eml

i
,em2) are the transverse
components, and e;3 the longitudinal component. The same formula and con-

vention hold for the reflected pencil.

- . . ) .o AL ~L ,
(5) Screen T. At O, the principal directions of Z are (Xl’x7) and its

o~

outward normal is z The principal radii of I, denoted by (RE,R;), are

positive (negative) if the respective normal section bends toward (away Irom)

Y

Z
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(6) Curvature matrix of reflected field. The initial wvalue of the

.. =r_ T R .
curvature matrix Q (z~ = 0) at O can be calculated from the matrix equation:

EH' TG =0 B e, &2 EDT T =0 Foapl, & (5.7)
where
i,r i,r )
P11 P12
=i,r
P o= (5.8)
i,r i,r
21 22
\ J
i,r _ ~i,r ~Z _
P = % X s m,n = 1,2,3 . (5.9)

The three equations in (5.7) through (5.9) remain valid even if (ii,r’;;,r)

are not principal directions but two arbitrary orthogonal directions. In the
later case, Sr determined from (5.7) is not diagonal. Its principal curvatures
and directions can be found by using (13.29) in Appendix A. Once ar(zr = 0)

is found from (5.7), its continuation to other points on the reflected (axial)
ray follows from (7.9) in Section 2.7. For a clever choice of (%{,%;),

the matrix equation in (5.7) may be simplified to become (3.16).

(7) Phase of reflected field. Along a reflected axial rav, the phase

of the reflected field isr . .
s7(0,0,2") = s7(0,0,0) + z© (5.10a)

where (xr = 0, x; = 0, 25 = 0) is the reflection point O (Figure 3-3). Since

1

any ray can be considered as an axial ray, (5.10a) may be rewritten as
sT(c") =sT (" = 0) + 0" (5.10b)

r
where g 1is the arclength of the reflected ray measured from its reflection

point.
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(8) Zeroth-order solution of reflected field. At reflection point O,

the initial values of the zeroth-order amplitude vectors are given by

>r _ >i ~Z >i, I

ey = ¢, + 2(z eo) 2z (5.11a)

Pro_ i Lo, iy oL

h0 = +h0 2(z ho) z (5.11b)
where gi,r, h-T and 22 are all evaluated at O (Figure 3-3). Along a reflected

0 0
ray passing through O, the zeroth-order reflected field is given by

r gr(or = 0)
BTy = otk 0 + oYy (5.12)

\/l + (or/Ri) V/l+ (or/Rg)

where sr is given in (5.10b) and gg(or = Q) in (5.11). The two radii of

curvature (Rr,RE) can be calculated from ar determined from (5.7). An
expression similar to (5.12) holds for ﬁr(or). The zeroth-order solution is

locally a plane wave, namely,

vst . Zg(or) =0 (5.13a)
ht(oh) =/§ vs®T x ef(ot) . (5.13b)
0 u 0

(9) Higher-order solution of reflected field. At reflection point O,

-
the initial value of a higher-order amplitude vector e with m = 1,2,..., can

be solved from (4.6). In such a determination, the knowledge of V - e at 0

m-1

is needed. For the case m = 1, this knowledge can be obtained from (4.5) and

(4.7). For cases with m > 1, no simple explicit formulas have been deduced.

N

r . . .
Once the initial values of {em; at 0 are known, their continuation to other

points on the reflected ray follows from (7.15) in Section 2.7.
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3.6. Reflection From a Two-Dimensional Parabolic Cylinder

For application of formulas developed in this chapter, we begin by con-
sidering a simple two-dimensional problem: reflection of a normally incident
%
plane wave by a parabolic cylinder. Referring to Figure 3~4, the incident
field is given by
BN = zeTHR (6.1)
At a typical point (p = QO,¢) on the surface I of the parabolic cylinder,

the following relation holds:

-7 < $ < 7 (6.2)

N o

2
I: oo(¢) = g sec”

where a 1s the focal length of the parabolic cylinder. Since there is no

. . . =T . . .
variation along z, the reflected field E° will also be polarized in the
z-direction, and we have equivalently a scalar problem. As a consequence of
this, the amplitude matching becomes very simple, and in fact none of the
formulas presented in Section 3.4 is needed.

First, we have to expand the incident field in an asvmptotic series as

in (5.2). A comparison of (6.1) and (5.2) vields immediately, at an

—-
observation point r with cvlindrical coordinates (3,3),

i ~i . ~i .
s7(0,0) ==x o, eglo,0) =z, e (0,8) =0, m=1,2,... (6.3
Let us express the reflected field in a similar asymptotic series

-r > iksr(;) -m >t >
E (r) ~ e (ik) - em(r) , x - oo (6.4)

i (~18

0

m

Matching the boundary condition of the tangential electric field on I gives

"7, B. Keller, R. M. Lewis, and B. D. Seckler, "Asvmptotic solution of some
difiraction problems," Comm. Pure Appl. Math. 9, 207-265, 1956.
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Figure 3-4. Reflaction of a normallyv incident plane wave from a parabolic
cvlinder.
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sr(oo,¢) = si(oo,¢) = -p, cos o (6.5a)
eplege®) = 2(- 1) : (6.5b)
Z;mo,cp) =0 , m=1,2, (6.5¢)

We emphasize that (6.5) gives only the initial waves of the reflected field
on £. They have to be continued in order to obtain the reflected field at an
arbitrary observation point (p,¢) away from .

As shown in Problem 3-3, the reflected field is a cylindrical wave with
"phase center'" at the focal line of the cylinder (x = 0,y = 0). This is a

well-known property of a parabolic cylinder. Written explicity, we have

=0 (6.6)

Q (" =0) = , (6.7)

0 0
The arclength cr along a reflected ray is measured from the point (po,¢) on I.
The continuation of the phase along a reflected ray is governed by (5.10).

For the present problem we obtain
r
s (ps9) = -py cos & + (o - pg) =p - 22 (6.8)

where we have made use of (6.5a).
As a last step, consider the continuation of the amplitude vectors fE; .
The appropriate formula for this purpose is (7.15) in Section 2.7. We have

for the present problem

G =0 -0 , c. =0 (6.9a)
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) _dec Q°@H _Po (6.9b)
i) det Q(0) P

Then (7.15) in Section 2.7 becomes

e;(oub) = e;(oo,q’a) [—OJ - % J

ARV R
- {?} vl (01,8 do' . (6.10)
o

We have to calculate (6.10) consecutively in m. Starting with m = 0, we: have,

with the help of (6.5b),

) 1/2 1/2
- 0 - 2
gg(p,¢) =z(- 1) { 7;'} =z(-1) ['g sec %—J .(6.11)
>r
For m = 1, the Laplacian of ey is given by
Ve (0,0) = 2 ii{c>—a~J+—l— i\.(_l)[o_oJl/Z
0 p 2p 3p O2 8¢2 J o}
. 2 2
= 2772 [% + 2 ol
3¢
) \1/2 9
= 3 [— %J (%J 0 sec3 % . (6.12)

Substitute (6.5¢c) and (6.12) into (6.10) and perform the integration. The

result is found to be

3/2
+ {— % }[ % sec2 % ] 1 . (6.13)

Jl/Z
J

Ir - Li|Llla .22
el(o,¢) =z |7 [o sec” 3

Guided by the solutions in (6.11) for m = 0 and in (6.13) for m = 1, we can
determine the higher-order amplitude vectors recursively instead of

. >r . . . _
successively, as done below. Assume that e can be written in the form
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R . (6.14)

m
-r ~ ~-m
em(p,¢) = za Zo dnm [ S sec 3

Here, {dnm} are undetermined constants except for the first one

dOO = -1 (6.15)
This ipital value was obtained by a comparison of (6.14) and (6.11) Frow
the expression in (6.14), we can calculate the Laplacian of Zm-l
1 n+(5/2“[ 2 2 ] I+l
2 A - e e .t ;
P ) =2 ™D T g [ pr3) v ip et
a=0 T | - 37 |
~1 n+(5/2) 2n+3
_ o= (mtl) m a ’
- N ST A [C 2 (6.16)
n=0
Substitute (6.3c) and (6.16) into (6.10) and perform the integration. This
operation gives the result
(-1 I 1/2
~r ~ - A 1 1 [ la 2 ¢
e (p,3) = 2a S —an+ =] d T sec %
m J < 2 Z n,m1]l2 2
=0 J L J
m-1 \ 5 a+(3/2)
+ 3 [i (a+=)4d ‘{é sec” :w . (6.17)
= |2 | 2y To,m1l]lp 2
n=0 7| J \ J
Replacing n by n - 1 for the index of summations in (6.17), we obtain
( LU 1] ) 2 b 2
(o a) = za ™ {1V 2oL : 2)
em(O,Q) za Lq:l ‘Ll EJ dn-l,m—lJ( sec :j
Lo, . \ 5 n+{1/2)
+ ‘% fn - = d 1 _TJ‘% sec” ;} (6.18)
S T Y A )
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A comparison of (6.18) with (6.14) yields immediately the following recursive

formulas for {d }:
nm
n,m = 0,1,2,... (6.19a)

m
d. =- 7 d , m=1,2,... . (6.19b)

With the initial value in (6.15), the recursive formulas enable us to determine

all {dnm}. The first few of them are

[a
i
I
~i

=1
dy; =5

01l 11

_ 1 - L
do2 =8 » 42 T o Y92 =716

Summarizing the results in (6.8) and (6.14), we obtain the final solution for

the reflected field in (6.4), namely,

29

sec
2

N . _ ® _ m ( n+(1/2)
25 (0.0) Jik(p-2a) T (ika)™ a_ { J
m=0 n=0

O [

The first two orders of (6.20) read

(

Er(p,¢) = —V/g_sec % eik(p—Za) [l + Z%; {l - ? sec2 %} + O(k-z) J
(6.21)

An exact solution for the problem treated in this section was obtained by

H. Lamb in 1906 by using parabolic cylinder coordinates.* Problem 3-4 shows

that when the exact solution is expanded asymptotically in k, it yvields

precisely (6.20). Thus, our ray method has recovered the exact asymptotic

NH. Lamb, "On Sommerfeld's diffraction problem and on reflection by a
parabolic mirror,'" Proc. London Math. Soc., Series 2, 4, 190-203, 1906.
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solution. The dominant terms of the asymptotic solution in (6.21) were
compared numerically with the exact solution by Keller et al. (op. cit).

The two results agree very well for ka > 2.
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3.7. Reflection from a Surface of Revolution

The parabolic cylinder problem considered in the previous section is
relatively simple because it is equivalently a scalar problem. For a more
general problem, the amplitude matching on the reflecting surface becomes
complex. The formulas developed in Section 3.4 can be used to carry out
the amplitude matching in a systematic fashion for the fields of the first
two orders. This is illustrated by an example below. In this example, two

conditons are assumed:

(i) The rﬁflecting surface I is a surface of revolution about the

z-axis (Figure 3~5), and is described by the equation
I: z = £(p) (7.1)
where (p,¢,z) are the usual cylindrical coordinates.

(ii) The incident field is a plane wave propagating in the axial
direction.of I:
BT = xe’? (7.2)
The problem is to determine the reflected field everywhere and the surface
current on L. In the following manipulations we give sufficient details to
demonstrate that the procedure given in Section 3.4, despite its cumbersome

appearance, is rather systematic and straightforward.

Calculation of {%n} and {pmn}: A comparison of (7.2) with (5.2) leads

immediately to

s'=z , 5= x Z; =0 form=1,2,... . (7.3)

We choose the base vectors of the incident pencil coordinate as
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on of an incidenc plane wave along the axial direction
ich is a surface of revolution.
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==z X, = vy o, zo =2z . (7.4)

Consider a point of reflection O on I, described by

(psd,2y = £(p)]
Note that through the variation of (p,%), O may represent any point on L.

The principal directions and the outward normal of £ at 0 are found to be

[Problem 3-5]:

T - ~ . “ 3
xi = -g [ X cos ¢ + v sin ¢ + zf<l) J (7.5a)
AT N R R
Xy = x(- sin ¢) + y cos ¢ = ¢ (7.5b)
; at 0O
S g‘l { 1) s s + §f(l) sin ¢ - z J (7.5¢)
where f(n)(p) means the nth derivative of f(p), and
( V2
g(p) =\/; + { f(l>(Q)J . (7.5d)

Application of Snell's law determines 2" of the reflected pencil. We choose

%E = ;i- The base vectors of the reflected pencil are
2
cro_ 3 =2 S < oe(l)
X = =—— (x cos % + v sin %) -~ z > (7.6a)
c 3
~r - . ~ ~Z
X, = x( = sin %) +y cos ¢ = x, (7.60)
AT 2f(l) ~ ~ - g2 2
z = 5— (xcos ¢ +ysin $) +z>—5— . (7.6¢)
g e
As verified later, Sr calculated in using (7.6) is diagonal. Hence, xi and xg

above are indeed principal directions of the reflected wavefront.
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i,r .
Next calculate {pmé } according to

L = —-g ~ cos o] Log
P11 & Py

i = -sin ¢ i
P12 P22

i =1_(1) | i
p13 g £ cos 9 pz3

ro _ -1 ro_
P11 7 8 Pr1

r - T
P1p =0 Pro

r _ o—l (1) r
Pjg=8 f Prj

Calculation of 3?:

(5.9) and the results are

-g ~ sin ¢ P;l = —8—lf(l)
= cos ¢ p%z =0
- g—lf(l) sin & p§3 - _g-l
-0 p;l - _g—lf(l)
=1 pgz =0
=0 p§3 =g

(7.7)

(7.8)

The radii of curvature of the incident pencil are

(7.9

Ri = R; + =, while those of I are found to be [Problem 3-5]
3
RE = -8 gf-__88
1 (2) 2 (1)
f £
From (5.7) we can calculate ar(gr = (), which turns out to be diagonal and

yields

The continuation of Sr(sr) follows

+>r
Solution of e.: From (5.1lla),

0

reflected electrical field can be £

>r T _
el = x

(7.9) in Section 2.7.

(7.10)

(7.11)

the initial value of the zeroth-order
ound with the result
AT ‘ N S
C) = Xy cos 3 + X, sin 3
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The continuation of go(zr) along a reflected axial ray follows from (5.12),

namely,

- O,xg = O,zr) = L f%r cos ¢ + ig sin ¢ J

|71
/1 + (zr/ri) \/1 + (zr/Rg)
(7.12)

Thus, the zeroth-order solution of the reflected field is

r r

) T
_ elk[f(p)+2 ] 2 (Xl = O’XZ = O,zr)

e . 1+ O(k_l)} . (7.13)

We emphasize that [p,9,f(p)] are the cylindrical coordinates of the point of
: ) . . > . r ; ,
reflection O, while observation point r is at a distance z away from O in the

direction of Er defined in (7.6c).

Initial value of gi: As a first step, we use (4.7) to calculate the

derivatives of gé at 0. The results are

Ser [ W 3er
2
L e S S (7.14a)
cos 9 LT 2 | D\r Rr ‘ sin ¢ 3Xr
¥ ! 2 | 1
el 2 3er
1 02 _ 2(g” ~ 1) - (=) 01 (7.14b)
cos b 3<F 2 sin 4 . r )
2 59 7%y
Then the initial value of gi at 0 is found after solving (4.6):
zr, T _ T _ . r _ . ir AT
el(xl X, z 0) e + z el (7.15a)
S 5
z ) el (7.15b)
£
where )
2 0 (D) ‘
(1 1 - £ 2
ey = :( ) e13 = 20 { 5 f( )| cos % . (7.15¢)
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>
Note from (7.15b) that the tangential components of ei on L are zero as

C e T . ) ; .
expected. With the initial value of e; at O given in (7.15), the continuation

1
of Ei to an arbitrary point on the same ray is governed by (7.15) in Section
. . c s 2r
2.7. 1In the evaluation of the integral, it is necessary to know V e, at
every point between O and the observation point along the ray. It is possible
*
to derive general explicit formulas for it, but they are very cumbersome.

We leave this step to each individual problem. An illustrating example is

given in the next section.

Initial value of Eg and %z: From (4.11) and (4.12), we can calculate

the first two orders of the reflected magnetic field at 0. The results are

Hg(zr =0) = /% (-xi sin & + xg cos ¢] (7.16)
>r, T _ /e [ ~r AY ~T
hl(z = Q) = . L thll + X2h12 + z hl3 ] (7.17)
where
2w
1 - 7T T3 | stme
g 08
(1)
h12 = f(z) - fp cos ¢
\
L SE,' 1 f(l)f(z) o
13 71072 T 7 sin 9
L gp g

*

An explicit formula for gr at points away from £ was given in C. E. Schensted,
"Electromagnetic and acouStical scattering by a semi-infinite body of
revolution," J. Appl. Phys. 26, 306-308, 1955. However, it is believed

that that formula is not completely correct as it gives an erroneous

solution for reflection from a sphere (Section 3.8, and Problem 3-6).
Schensted's formula does yielgrthe correct solution of‘ég in (7.12) and

the correct initial value of ey in (7.15).
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Solution of surface current: The surface current density at O can be

calculated from (4.153). It is convenient to express the surface current in

terms of two principal directions of ¥ at Q. The result 1is

>

_ X ~L -2
JS = (lel + x2J2) + 0(k ™) (7.18)

where

o
|

1 . (D
- _ [= iks i f _ (2) -2
1 /u 2 cos ¢ e 1+ | o f | + 0(k ;}
)
i ; (1)
. _flg2 . iks i (2) £ -2
JZ = .2 sin ¢ e 1+ Sk f -—B—— + 0(k {}

Reflection from a paraboloid: As an application, let the reflecting

surface £ in (7.1) be a paraboloid of revolution, namely,
2
Z: z = f(p) =p /2a , (7.19)
where (a/2) is the focal length. The derivatives of f are found to be

(1) (2)

= B - * o = [ |2 2
£ R A [( + 1] . (7.20)

At a point of reflection O with cylindrical coordinates [p,¢,zo = f(p)], the

base vectors of the reflected pencil are calculated from (7.6), namely,

~ 2 - ~ - ~
;i = iﬁléli———l (x cos ¢ + v sin ¢) - z ——giglél—— (7.21a)
(¢c/a)” + 1 (p/a)” + 1
§§ = x(~ sin ¢) + § cos ¢ (7.21b)
t o 2(0/a) . G/ -1
z = —————*"— (X cos $+ ¥V sin ¢) + z ————= (7.21¢c)

(D/a)2 + 1 (o/a)2 +1
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The radii of curvature of the reflected pencil at O calculated from (7.10)

are found to be

The solution of e. on the axial ray of the reflected pencil is found from

0

(7.12) with the result

2 2
e r___ r _ ry _ p + a
eo(xl 0,x 0,z7) 5 5

T
o + a + 2az

(&i cos ¢ + ig sin ¢) (7.22)

r . . . . C
where z  1is the distance between the observation point and 0. The initial

>r .
value of e at 0 is given (7.15) or

- r
e (x; =0,x, =0,z =0) =0 . (7.23)

To determine gl at points away from 0, we may make use of (7.22) and (7.23)

above in (7.15) of Section 2.7. After some tedious calculations, it is found
that

e, (x] = 0,x, =0 =0 7.24
el(xl = 0,x, = 0,z") = . (7.24)

>
Since ey is identically zero everywhere in space, it follows from (7.15) in

Section 2.7 that

[R®]
(W)
~—r

e =0 , m=23,... . (7.

In summary, when a paraboloid in (7.19) is illuminated by a normally incident
plane wave in (7.2), the reflected field at an observation point e is found

to be

a
1 2
c- 4+ a” + 2az
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where (o,¢,zo) are the cylindrical coordinates of the reflection point O on the
paraboloid (Figure 3-5), and zr is the distance between ; and 0. Since (7.26)
satisfies the wave equation, the Gauss' law, the boundary conditién, and the
radiation condition, we recognize that (7.26) is not only an asymptotic
solution, but alsc an exact solution. This remarkable fact was first estabiished
by C. E. Schensted in 1955 (op. cit.). The surface current on the paraboloid

may be calculated from (7.18) and (7.5). The result is

, Lo, 2 Y 1/2 ) )
T, ) = /% 2ell\<p /2a) ( \% + 1] [((p + 2 %) cos ¢ - ¢ sin 9]
L

(7.27)
This current is recognized as the physical optics current, given by the first

term of (4.0). It is also the exact current on the paraboloid.
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3.8. Reflection from a Sphere

Let us consider an explicit example which makes use of the results
derived in Section 3.7. The incident field is a plane wave given in (7.2),
and the surface I is a perfectly conducting sphere with a radius a (Figure 3-6).
For a point of reflection O on £ with cylindrical coordinates (p,¢,zo) and

spherical coordinates (ro,e,¢), we have

i ozy = £(p) = - 2t = p®=acoss . (8.1)

We are only interested in the determination of the reflected field from the
illuminated half of the sphere. ‘- Hence, z <0and m < 8 < w/2 as indicated
in (8.1) (the square root takes a non-negative value). The diffracted field
due to creeping-wave contribution is not considered here. From (7.5), the
rectangular base vectors (ﬁi,ig,éz) are found to coincide with (§,$,§) at

point 0. From (7.6), we have

%i = (- cos 28)(x cos ¢ + § sin ¢) + z sin 28 (8.2a)
AT _ 2 , » 2L

X, = x(~ sin ¢) + y cos ¢ = X, (8.2b)
2¥ = -sin 28(; cos ¢ + § sin ¢) - z cos 28 (8.2¢)

where, we emphasize, (9,$) are coordinates of O and are not those of the
. . . . . r .
observation point. At an observation point A at a distance z from O in the

direction of ;r’ the zeroth-order solution gO is determined from (7.12), namely,

1/2 1-1/2
> . r _ ro_ r, _ T -2 r (=2 cos §
eO(XI - O’XZ =0,27) = 1+ [a cos ¢J 1+2 { a JJ
. (QI cos ¢ + ;; sin ¢) (8.3)
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Reflaccion from i spdners 57 an iacident Diane wave.
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where the square roots always take positive real values. The initial value

of gl at 0 is found from (7.15) with the result

. 4 R
gr(xr - Xr - Zr = 0) = sin 8 cos ¢ (- Xr + cos exr) - (8.4)
171 2 1 2
a cos 6

>r
To determine the value of e

1 at observation point A, it is necessary to evaluate

(7.15) in Section 2.7. Let us now concentrate on a special case when A is on
the negative z-axis (Figure 3-6).

. . 2>r . r
A crucial step is to calculate V e, as a function of z along ray OA.

0
Since %i = —%,;; = §’2r = —2, we have
{ 2
VZ T _-r 32 + 82 + 2 &F . 75y
0 X1 r2 r2 2 | %0 " F
9% Ix dz
1 2 J
- -
r at A r at A
R 2 2 2 1.
= (- % 82+ >+ BZJ{ES-(—%)]}
3% 3y oz ‘; at A
(8.5)
We now calculate terms on the right-hand side of (8.3). Consider gg at another
observation point B, which is close to A and has coordinates
B: x=A->0 s y =0 R z = -(r - a) . (8.6)
The reflected ray passing B is ray DB. The point D on I has coordinates
(r =a,%9 =7~ 38,0 =0). Simple geometrical consideration leads to
S = 52— [1 + 0(8)] (8.7)
2r - a )
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a 1 3
2+—————2(r_a)J+O(A)

at B can be calculated with 2t = DB, 8 =7 - &,

DB = (r - a cos 8)/cos 28 = (r - a){:l + 52
(8.8)

-

Then, according to (8.3), eg

and ¢ = 0. The result is

(= %) - o5@) === | 142228 2. 50,3 ) ) (8.9)
0 2r - a
(2r - a) J
From the Taylor expansion, it is known that
2 2
~ >r ~ ->r 3 - >r A 3 ~ -r W3
(= x) » eq(B) = (- x) + ey(a) +Aa—x—(-x en) +T~x2 (= x + ey) +0(a7)
[o
(8.10)
A comparison of (8.9) and (8.10) gives immediately
52 2a(5a - 8r)
~7(_x.eg) = 2123 - Z , (8.11)
3% N (2r - a)
1r at A
In a similar manner, it can be shown that
32 ‘ 6 8
(- % er)‘ =a(a——r2 . (8.12)
,\VZ 0 \_» (2r - )-4
g 't at A - a
From (8.3) it follows that
2 : 2 3
3 N L _ 1 _ a
g Cox eo).ﬁ T e ry -3 (8.13)
3z 1T ar A z ‘ 22 W (Zr a
I ,l + =
L a |
Substitution of (8.11) through (3.13) into (8.3) gives
Doy | ~ 8 -
7 eg~ RS- 1C . ) rZ . (8.14)
| (2r - a)
r at A
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7ith the help of (8.14) and (8.4), the integral in (7.15) in Section 2.7

>r
can be explicitly evaluated to yield the value of el at A, namely,

—> . 2 -
ei = (= %) —LE———élg . (8.15)
(2r - a)
? at A

When this result is combined with the zeroth-order solution in (8.3), we

obtain the reflected field on the negative z-axis:

+ 0k 1

a eik(r-—2a) { 1 - i 2(x - a)2
(2r - a) J

>r ~
E(me=m=(x 2r - a i ka

(8.16)

This result is identical to the first two terms of the asymptotic expansion

of the exact solution obtained by Weston.

From (7.17), we can calculate the surface current on the sphere. At a

typical point O on the sphere, (xi,%é) coincide with (é,&). Hence, (Jl,JZ)

become in the present case (JG’J¢)' Their values are
= ikacos® ( i sin2 3 -2 1
J. = /= (-2 cos ) e 1 + ——— + 0(k 7) ! (8.17a)
3 I 3 }
2 ka cos” 9§
J
. { L ein? 3 5 )
J_=/= (2 cos 2 sin %) et¥C0s8 | TSI 94 o7 1 . (8.17v)
? a L 2ka cos” 8 J

Again, these results are identical to the first two terms of the asymptotic

-~

expansion of the exact current solution.

V. H. Weston, 'Near zone back scattering from large spheres,' Appl. Sci. Res.
B9, 1Q07-116, 1961. See also p. 410 of Bowman et al. cited below.

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and
Acoustic Scattering by Simple Shapes. North-Holland Publishing Companvy,
Amsterdam, Netherlands, 1969, p. 408. ©Note that the z-axis in this reference
is the negative z-axis here.




3.9. Reflection from an Arbitrary Reflector

Consider an arbitrary (concave or convex) reflector I, which is perfectly

conducting and described by the equation (Figure 3-7)

T oz = f(x,v) (9.1)

for (x,vy) in a domain D. For a given incident field El from a point source
located at Pl = (xl,yl,zl), the problem is to determine the dominant reflected

. >r 0 . . .
field E of order k at an arbitrarv observation point P7 = (x

Reflection point: For a given P

and P,, a reflection point O mav exist

1
on the reflector I, with its coordinates denoted by (x,y,z = f(x,v)). The
vectors
d; = x(x = x)) + v(y = v) + z[f(x,y) - 2, ] (9.2a)
d, = x(x7 -x) Fyly, - v) +zlz, - £(x,v)] (9.2b)
are the connecting vectors between Pl and O, and O and P,, respectively. =&

condition on the reflecticen point is that the distance (d1 + d7) must be

stationarv, i.e.,

3 3
= (dl + dz) =0 , 3?-(dl + d2) 0 (9.3)
which is explicitly given bv
1, 3f 1. . 3
— {(x - 2 + (LG - — 1+ —ix - x 3 - P =
dl (x Kl) [f(x,vy) zl] vl d2 (x \2) + [f(x,v) 22] vl 0
1 . - i af 1 - ‘ . 3.
EI y = v+ IEGLY) - 7] 3y + E:'(y - v,) T LE(Ry) -2, T 0
(9.422a)
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P source

Figure 3-7. A reflector Z with adge I is illuminated by the :~cident fiald
from a r.int source at P..
1
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A root (x,v,z = f) of the two nonlinear equations in (9.4a) gives the location

of a reflection point. For a given P, and P there can be none, one, or

1 2°
more than one reflection point. It can be shown that (9.4a) is equivalent
to the satisfaction of the Snell's law.
The system of equations (9.4%a) can be alsc satisfied if O is on the line

connecting P. and P,. Such a spurious root may be eliminated by an additional

1
conditon
- : - - - ) (o - -
(x %y x2}2 (y 1 v y2‘2 z g z 2, 2 /
v v B A T S e R L > 0 (9.4b)
L ‘1 2 B NS 2 1 2

Zeroth-order reflected field: 1If only the dominant term of order k  1is

retained, the reflected field is given in (53.12), or

£, - 0 e - By + 2(EN(0)

o
P

] (9.5a)

85 r) - (oF) e %2 (+ T (0) - 2187 (0) + 8] N (9.5b)

. . , . - D ; >1 =i
which is given in terms of the incident field (E",H”) at O, the normal N

of the reflector at 0, and a divergence factor DF. We choose N pointing toward

the source. Explicitly, N is given by
N=aA(f x+f v - 2z2) (9.6)
X b
2 _2 -1/2 . - -
where A = +(f< + ry + 1) and the subscript x of tx’ for example, means

partial derivative with respect to x. The divergence factor in (9.5) is

1 1

DF = —= = (9.7)
\//1 + (dZ/Rl) /1 + (dZ/RZ)

where the square roots take positive real, positive imaginary, or zero values

; . L . . . C o r r
{(so that DF is positive real, negative imaginarv or infinite). (Rl, RZ) are
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the radii of principal curvature of the reflected wavefront passing through O.

Their computation is given next.

Curvatures of Reflected Wavefront. We use the formulas given in

Section 3.3 for calculating (Ri,Rg). The three orthonormal base vectors of

the incident pencil are chosen to be

A ~i A -
%i ) Y ¥ X3 ) x(z - zl) - z(x - xl) o
1 |~ i 2 2.1/2
ly x x3‘ [(z =27 + (x - x)7]
ikt
S 3 1
B ®
X3 X Xl
o x(x - xl) + y(y - yl) + z(z - zl)
zo = (9.

[(x - xl)2 + (y - yl)2 + (z - 21)211/2

where (x,y,z) are the coordinates of the reflection point 0. Those of the

reflected pencil are chosen according to (3.14), namely,

o S S ~i TS

X1 x) 2(xl N) N (9

~r o _ 21 2% SR

X5 %, 2(x2 N) N (9.

r X(x2 - x) + y(y2 - y) + 2(22 - z) s
- 2 2 2.1/2 !

[(x, =" + (v, =y) + (2, =~ 2)7]
Note that (9.9) chosen above is a left-hand system, i.e., i; X i; = Er,

~r ~T . , .

and (xi,xz) are not unit vectors. This choice, of course, does not affect
, , r _Tr

the final solutions of(Rl,Rz). The three orthonormal base vectors of sub-

reflector £ at O are chosen to be

176

.8a)

.8b)

8¢c)

.9a)
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x 1+ z2f
X

~z
X, = 3 (9
1 (1 + f~)1/2
X
- y 1+ 2f
<s = (9
%5
21+ £H/2
y
2Ly (9
From (9.8) and (9.10) the elements
i ~1 ~ 5
Pon = %p ° X , m,n = 1,2,3 (9.
can be calculated with the results
pl i (z - Zl> - tx(x - xl) o
1S Y ) 2 2170
[‘+‘x] (¢ = x)7 + (z = z)7]
, i - £ (x - xl) 5
12 2.1/2 2 2,1/2 '
- (1 + ry] [(x - Xl) + (z - zl> ]l/
I ~ (x—xl)(y—yl) - fx(y-yl)(z—zl)
2 2172 2 2 2 22 7 7172
[l+tx} . {(x—&l) (y—yl) + Kz—zl) + (x—xl) 17+ (y—yl) (z—zl) :
) ) (9.
i (z—zl) + (x—xl) - fv(y—yl)(z—zl)
P2 T A2 2 2, 2 22 > 112
Ll.ty] {(x-xl) (y-yl) [(Z‘-Zl) + (x~xl> 17+ (y-yl) (z=z )7
(3
Lo L dfx-x) + £ (v =y - (2 - (9
P33 d; x0T * Y ALRS] .

The first four elements in (9.12a) through (9.12d) form

matrix of the incident pencil is

=T

Because of the particular choice in (9.9), we have P =

177

x 2 matrix

U

The curvature

.10a)

.10b)

.10c)

11)

.12a)

12b)



3t = . (9.13)

The curvature matrix of reflector £ at O can be calculated from (13.28) in

Appendix A, namely,

Az(eG - fF) s Az(fE - eF)
3% = (9.14)
2 2
A“(£G - gF) , A“(gE - £F)
where
E=1+ f2 , F=ff , G=1+ f2
X Xy y
e = -Af , f = -Af , g ==Af
XX Xy yy

. . =T . .
The desired curvature matrix Q at reflection point O can be calculated from

the matrix equation in (3.16) or
T =32l tEHY T EEH T (9.15)

Let us denote the four elements of ar by

Q" = . (9.16)

Then the desired radii of curvature of the reflected wavefront at O are

given by

11 2,/ 2
2

(9.17)

1
r
&y
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Both Ri and R; are real. Their signs have the following meaning: if Ri is
positive (negative), the corresponding normal section of the reflected
wavefront is divergent (convergent). The same convention applies to R;.

A final remark about the calculation of the reflected field: for a
given Pl and P2, there may be more than one reflection point on Z. Then,
the total reflected field is the superposition of the contributions from
each reflection point. If there is no reflection point on I, the reflected
field is zero.

Several numerical examples are given below. The reflector T is of
finite size with its boundary T lying on the surface of an elliptical cone,

As shown in Figure 3-8, the axis of the cone lies in the y-z plane and its

parameters are

(x = 0,y = 0,z = -p) = coordinates of cone tip
%3 = {nclination angle of the cone axis measured from the z-axis
(61,52) = half-cone angles in the x-z, and v-z planes.

In other words, I is the intersection of the surface in (9.1) and the above
elliptical cone. The source located at Pl (Figure 3-7) 1is assumed to be a

linearly polarized (in the y-direction) horn with a simple radiation pattern:

~1 120+ ikr - -
E " (x,v,z — e [v_(3) sin » 2 + 3) ¢ 5] (9.18¢
( LAY ) <r/\) L E\ ) VH( ) cos ? i (9 18a)
where ) = 27/% = wavelength, and (r,3,») are the spherical coordinates with
origin at the source point (xl,yl,zl) such that
/ 2 , > 2
= /(v = R - - 9 13K)
ro=y (x Xl> - (y ;l) + (z Zl) (9.18b)
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B = cos_l[(z - zp/r] , 9= tan_l[(y - yl)/(x - Xl)] ) (9.18c)
The E- and H-plane patterns of El are assumed to be

1 volt/m , if |8] < 51°
v_(8) = v (8) = (9.18d)
0 , if |8] > 51°

which is uniform in a conical sector.

1

(i) Symmetrical hyperboloid reflector. In the first example, the

reflector is a part of a hyperboloid of revolution:

( 2 . 2)1/2
Surface &: = = f (x,y) = =15 + 6.54 1 + 22X | (9.19)
A 0 i oy 2
| (lB.JA)J
|
The source point Pl is located at one focus of the hyperboloid (xl = 0,
yl =0, zl = -30X). The boundary of the reflector lies on a cone with its
tip at Pl and parameters (Figure 3-8)
= 3 a = 9 = 2“. o 9 = . .2
) 304 s 3 ) 7.6 , 3 0 (9.20)

—

y £, , )
The pattern of the total field £, in the H-plane [where observation point

. 3 . . 3 Ay T g ) )
P2 is at x, = (107 sin )%, v, = 0, z, = =(107 cos )i] is given in
Figure 3-9. Two sets of curves are ziven: the dashed ones are based on
the present geometrical optics theorv (GO) calculated from (9.3), while the

solid ones are based on the uniform asvmptotic theoryv (UAT) to be discussed

in Chapter 3. TFor the time being, let us concentrate on the dashed curves

(GO solutions). Several comments are in order: (a) Since the incident field
=1, . . ) . . .

E” is identically zero in the range of 2 shown in the figure, the total

. =t ) . - - =r — } .

field E~ consists of the rerlected tfield E  onlv. (b) The pattera is

symmetrical with respect to T = 0. (c) The line © = 64° lies on the shadow
. Zr - ) 2 S _ . .
boundary of E°. For I beyond this angle, E is identicallv zero. (d) The
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igure 3-9a. H-plane pattern of the svmmetrical hvperbolic reflector
described in (9.19) and (9.20), illuminated bv 3 point

source located on its focus P,.

1
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Figure 3-9b. The pnase of Ev whose magnitude is displaved in Figure 3-9a.
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P
phase of E' is a constant over a spherical surface centered at the origin
which is the other focus of the hyperboloid in (9.19). (e) When the UAT

>t . >
is applied to this problem, the total field E~ consists of E° and the
diffracted field Ed from the rim of the reflector. We note from the solid
curves that ﬁd is relatively small, and contributes to the ripples of Et

(ii) Offset hyperboloid reflector. Consider the hyperbolic surface A

in (9.19), which is carved out by a cone (Figure 3-8) with parameters

p=30A , 8, =8,=27.6° , 38,=20° . (9.21)

A 3-D sketch of the reflector surface is shown in Figure 3-10. The scurce

point Pl is located at

X, = 2A , v < 4 , z, = -30x . (9.22)

The problem has no symmetry. We present the total field EE and EZ in the

H-plane in Figure 3-11 [where the observation point P, is at X, = (lO2 sin Q)A,
2
Y, = 4r, z, = -(10" cos 2)A)], and those in the E-plane in Figure 3-12 [where
2
the observation point P7 is at X, = 27, vy = (107 sin )2, z, = -(lO2 cos )A].

. . - . =t
Again, let us concentrate on the GO solution for the total field E (dashed

curves). In the H-plane, the total electric field is essentially in the

. . - - . . - . o _t
y-direction. In the E-plane, it consists of two main components: Ey and E

-
[ . N
The components Ex are verv small in both planes.

(1iii) Perturbed rerlector. The Surface A described in (9.19) is

perturbed to become

,f
!
-

Surface B: %—= fo(x,y) xp!

{(K/\) 2]
1 10 J

The reflector is the portiom of the Surface B carved out by the cone

described in (9.21), as shown in Figure 3-~13. For the same source location
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Figure 3-10.

Source (2,4,-30)
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An offset hyperbolic reflector, whose boundary lies on a cone,
is described by (9.19) and (9.21).
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ura 3~11. H-plane pattern of the reflector in Figure 3-10 illuminactad
by a source described in (9.22) and (9.18).

186



— — GO

}< 1Y Total field

(V/m)

E-FIELD

187



Source (2,4,-30)

/N
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Figure 3-13. A perturbed version of the hyperbolic reflector shown in
Figure 3-10.
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in (9.22), the E-plane patterns of the reflector are plotted in Figure 3-14,
which should be compared with Figure 3-12, its counterpart from the un-

- | . [ R
perturbed reflector. We note that, in the present case, ;Ev§ is weaker,

and the reflected shadow beoundary extended further in the negative

direction.

190



PROBLEMS

In the calculation of the initial value of the first-order amplitude
>r - ’ . .

vector el(r) at 0 on screen I, it is necessary to know the derivatives

of gg(;) at 0. The latter quantities can be solved from the linear

equations in (4.8). Now derive (4.8).

Hint: For m = 0, a more general version of (4.2a), valid not only at

0 but also in its neighborhood, reads

;1 . 82 = -of . SZ , n=1,2 , and T on < . (1)
0 n 0 n

where the amplitude vectors, according to (2.12), are

>i,r _~i,r i,r

o4 T
0 T 9 °©o1

+ 0 ro (2)

~i i,
2 %02

Substitution of (2) into (1) gives

2 , . 2 n
) [31 . OZJ el = - 7 {Or . of| ef , n=1,2 ,andronz . (3)
n OGm =1 m n

When (3) is enforced at Q, we recover, of course, (4.3b). 1In the
following equations, however, (3) is enforced at a general point on Z
in the neighborhood of 0. This general point is described by a
position vector T drawing from O:

~i,r i,r

,r i,r

- ~1 i ~i,r i,r
= ’ ’ P
ro= X)X + SO + z z (4a)
_ALT LD LT )
= x %] + XX, + 22 (4b)
where
2 21
NS
z =% } ; +l = [ , (4c)
R RZ
! 2|
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i i,r & i,r I £ Tyv2}
= > + H 17 = .
X Po1 ¥1 +p 2 Xy + O[ l} } OUXZI i,om 1,2,3 (4d)

Note that for mymn = 1,2 ,

selst selsT 3
. . e
1 r(+) r(¥ =0) + xl,r Qm £ xior __Qg_ + gior Qm
1 i,r 2 i,r i,r
X 3X 9z
1 2 Z=0
=0 r=0 o
(5)
aei,r
Om _ 1] 1) > _
L i,r ) ( i,r * i,r| eOm(r =0 (6)
3 N \Rl RZ ’
r=0 /
i, r X
1 > o ocxor i, m i,r . 7n 4,r 1 T123 252
(F) « (D =» Lot Pan * L Fm3 +0 ixlr i T HX ) } (7)
m n

where (5) is the Taylor expansion, (6) is derived from (7.12) in
Section 2.7, and (7) from (2.11) and (2.16). With the help of (5)

through (7), the left-hand side of (3) becomes

% [Al > A > i = ( % i i E % z § p;3 i
o (r) » o (r)] e, (r) = § P + X §  —=
=1 L™ n ] Om m=1 mn Omj =1 9 =1 nq R; Om
1 1 ,
pmgp3n i 111 1y i i i
- - e - = ‘_T + —| p,.P
gt Om 2 gt RlJ 3g"mn Om
m tl 2}
i i
i i anm i i anm I
+ PP — I
g mn o 1 2q°mn 3t |
1 2 )
- r q
e [ 212}
ol oy s meme @
L J L J
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3-3.

. i N ‘
where the arguments of egm and aegm/axq are (r = 0); Gnq =1 if n = q;

and dnq = (0 if n # q. Except for a minus sign, the left-hand side of

(3) is also given by (8) after replacing the superscript "i''s by
"r'"'s. Since [xi,xg] are arbitrary, we equate their respective

coefficients in (3): the zeroth-order coefficients give (4.3b) which

is already known; and. the first-order coefficients give the following

rglations:
2 i i i ) i
Pm3 i PngP3n 4 1 (1 1) 1 i i i i “Com
z anq r “om ~ i Som " 2 |1 +'_I P3qPmn®0m * P14°mn i
m=1 R R R R 9 1 Ix
n m 1 2 1
i 1 aeSm
+ P2qPmn _ 1 =(-1) {i»>r} , n,q=1,2 (9)
ax2

which are the desired equations in (4.7).
Verify that the electric field given in (1.2) and the magnetic field

in (4.9), (4.11), and (4.12) satisfy the second Maxwell's equation

v xH-= —//E (ik) E
1
0 -1
for the orders of k~ and k .
Consider a line source radiating in the presence of a perfectly

conducting parabolic cylinder I described by (Figure 3-15).

(8) = a sec? % , -7 < ¢ <

Show that
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Figure 3-15. Radiation from a line source in the presence of a parabolic
cylinder.
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-

B -1 2a sin /(1 + cos 3)
tan {(b + a) - [2a cos /(1 + cos )]

]
|
|

;

{

Also study the special case when the line source is at an infinite

distance away (b -~ ») from I, and the incident field becomes a plare

wave.

Hint: First calculate quantities of Z by the formulas given in

Appendix A:

- 2 ‘ 2 2 .,
r(y,z) = (1,y,2z) a sec % cos 5, a sec” 5 sin 5, z
- ) 3 3 3 ‘
£ = {-asin 3 sec” 7, a sec 3 O]
r_ = (0,0,1)
z
I(' -
i / 2 i
7 _l_2all + cos » *+ sin” > 2a sin 3 f
";; T 3 s v s 2
L kl + cos :) (1 + cos )~
/ v
I =Y =t =0
zz sz z
z” = x cos 5+ v sin 5 , which shows 2, = 5
3 -
R‘ = __L COSi ’1\-' - »
1 2a 2™

Next, calculate the quantities appearing in (3.7) for the determin
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=
-

- - i) i
P11 cos (al 2] 0 Py

r _ 9 r .
Pyp = ©os (al * 2) » Pyp = 1
pi’r = pi’r =0 pi = _pr = =C0S8 ((1 + ) = =COs fa + 9’} ’
12 21 » P33 33 17 % %172

. 2 271/2
RY = ¢ = [(a sin ¢ secz-%} + la cos ¢ sec2 % - a- b) !

J

Substitution of the above in (5.7) gives ar(or = 0). For the special

case b - =, we have c > =, ay -~ 0, and

F=a secz‘% = po(ﬁ)

2s]
]

cos ¢ + § sin ¢ = o

N
[}
i

which means that the reflected field is a cylindrical wave with 'phase
center” at (x =0, y = 0).

The problem of reflection of a normally incident plane wave from a
parabolic cylinder studied in Section 3.6 (Figure 3-4) was exactly

solved by H. Lamb in 1906 using parabolic cylinder coordinates. (See

Pp. 467-468 in D. S. Jones, The Theory of Electromagnetism. Macmillan,

New York, 1964.) For an incident field given in (6.1), the exact

solution of the reflected field reads

F(¥2kp cos %)]
F(vY2ka) |

ikpcosé

E(0,0) = 2 (-1) e

where the Fresnel integral F(x) is defined in Section 1-3. Using the
asymptotic expansion of F(x) given in (3.5) in Section 1-3, show that
the asymptotic expansion of the exact EX above agrees with (6.20),

the solution obtained by a ray method.
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Consider a surface of revolution about the z-axis (Figure 3-5)
described by the equation
I oz = f(p)
. . . . AL A ~Z
Show that its principal directions xl,x2 and outward normal z are
given in (7.5), and that its principal radii of curvature [Ri,Ré] are

given in (7.9).

Hint: Start with a parametric equation of I

£(0,9) = [p cos ¢, o sin ¢, £(o)]
An explicit formula for calculating the reflected field E" of the
first two orders for the problem specified in (7.1) and (7.2) (Figure
3-5) was given in Equation (8) in C. Schensted, ''Electromagnetic and

acoustic scattering by a semi-infinite body of revolution,'" J. Appl.

Phys. 26, 306-308, 1955. Applying that formula to calculate E" in the

backward direction for a sphere defined in (8.1) (Figure 3-6) shows
that the result is given by

E'(r,8 = m) - (o) =2 Gik(r-2a)
2r - a

Sch

i "1

2
_ i 9(r - a) 1 a -2 l
L -1 L *8 Ot - a)J 00k )

(2r - a)2

This result should be compared with (8.16), which is also the exact

asymptotic solution. They do not agree in the term of O(k_l).

Therefore, it appears that Equation (8) given by Schensted is not

completely correct.

A~ .

Hint: The notations {5,¢,S,EO,E1} used by Schensted are identical to

AT AT AT T , ., . >r, | )
-X,,X.,2 ,e., (= n ou ation.
{ X]:%5,2 ,eq (-i/27m) el} i r notat
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