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Abstract

The Numerical Flectromagnetics Code (NEC-(1,2)A) is a computer code for
analyzing the electromagnetic response of an arbitrary structure consisting
of wires and surfaces in free space or over a ground plane. The analysis
is accomplished by the numerical solution of integral equations for -induced
currents. The excitation may be an incident plane wave or a voltage source
on a wire while the output may include current and charge density, electric
or magnetic field in the vicinity of the structure, and radiated fields.

Hence, the code may be used for antenna analysis, EMP, or scattering studies.

Volume I of the document includes the equations on which the code is
based and a discussion of the approximations and numerical methods used in
the numerical solution. Some comparisons to demonstrate the range of accuracy
of approximations are also included. Details of the coding and a User's

Guide are to be provided as Volumes II and III.




Preface

The Numerical Electromagnetics Code (NEC(1,2)A) has been developed
at the Lawrence Livermore Laboratory, Livermore, California, under the
sponsorship of the Naval Ocean Systems Center and the Alr Force Weapons
Laboratory. It is an advanced version of the Antenna Modeling Program
(AMP) developed in the early 1979's by MBAssociates for the Naval
Research Laboratory, Naval Ship Engineering Center, U.S. Army ECOM/
Communications Systems, U.S. Army Strategic Communications Command, and
Rome Air Development Center under Office of Naval Research Contract
NO0Q1l4-71~C-0187. The present version of NEC is the result of efforts by
G. J. Burke and A. J. Poggio of Lawrence Livermore Laboratory.

The documentation for NEC consists of three volumes:

Volume I: NEC(1,2)A Program Description - Theory, Interaction Note 363,

Volume II: NEC(1,2)A Program Description — Code., Interaction Application
Memo 31, July 1977

Volume III: NEC(1,2)A User's Guide, Interaction Application Memo 32,
July 1977
The documentation has been prepared by using the AMP documents as
foundations and by modifying those as needed. In some cases this led to
minor changes in the original documents while in many cases major modifi-
cations were required.

Over the years many individuals have been contributors to AMP and

NEC(1,2)A and are acknowledged here as follows:

R. W. Adams E. K. Miller
G. J. Burke J. B. Morton
F. J. Deadrick G. M. Pjerrou
K. K. Hazard A. J. Poggio
D. L. Knepp E. S. Selden

The support for the development of NEC(1,2)A at the Lawrence Livermore




MIPR-NOO95376MP and the Air Force Weapons Laboratory under Project Order 76-090.
Cognizant individuals under who this project was carried out include:

J. Rockway, J. Logan, J. P. Castillo and MSgt. H. Goodwin.
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Section 1
Introduction

The Numerical Electromagnetics Code (WEC-(1,2)A)* is a user-oriented computer
code for the analysis of the electromagnetic response of antennas and other
metal structures. It is built around the numerical solution of integral
equations for the currents induced on the structure by sources or incident
fields. This approach avoids many of the simplifying assumptions required by
other solution methods and provides a highly accurate and versatile tool for
electromagnetic analysis.

The code combines an integral equation for smooth surfaces with one
specialized to wires to provide for convenient and accurate modeling of a wide
range of structures. A model may include nonradiating networks and transmission
lines connecting parts of the structure, perfect or imperfect conductors, and
lumped-element loading. A structure may also be modeled over a ground plane
that may be either a perfect or imperfect conductor.

The excitation may be either voltage sources on the structure or an
incident plane wave of linear or elliptic polarization. The output may include

induced currents and charges, near electric or magnetic fields, and radiated

fields. Hence, the program is suited to either antenna analysis or scattering
and EMP studies.

The integral-equation approach is best suited to structures with dimen-
sions up to several wavelengths. Although there is no theoretical size limit,
the numerical solution requires a matrix equation of increasing order as the
structure size is increased relative to wavelength. Hence, modeling very
large structures may require more computer time and file storage than is
practical on a particular machine. In such cases standard high-frequency
approximations such as geometrical or physical optics, or geometric theory of
diffraction may be more suitable than the integral equation approach used in .
NEC.

The code NEC is the latest in a series of electromagnetics codes, each
of which has built upon the previous one. The first in the series was the
code BRACT.which was developed at MBAssociates in San Ramon, Califormia,
under the funding of the Air Force Space and Missiles Systems Organization
(refs. 1 and 2). BRACT was specialized to scattering by arbitrary thin-wire

configurations.

#NEC~(1,2)A will be abbreviated to NEC elsewhere in this report.




The code AMP followed BRACT and was developed at MBAssociates with
funding from the Naval Research Laboratory, Naval Ship Engineering Center,
U.S. Army ECOM/Communications Systems, U.S. Army Strategic Communications
Command, and Rome Air Development Center under Office of Naval Research
Contract N00014-71-C-0187. AMP uses the same numerical solution method as
BRACT with the addition of the capability of modeling a structure over a
ground plane and an option to use file storage to greatly increase the maximum
structure size that may be modeled. The program input and output were
extensively revised for AMP so that the code could be used with a minimum of
learning and computer programming experience. AMP includes extensive
documentation to aid in understanding, using, and modifying the code (refs.
3, 4 and 5).

A modeling option specialized to surfaces was added to the wire model-
ing capabilities of AMP in the AMP2 code (ref. 6). A simplified approximation
for large interaction distances was also included in AMP2 to reduce running
time for large structures.

The code NEC added to AMP2 a more accurate current expansion along
wires and at multiple wire junctions, and an option in the wire modeling
technique for greater accuracy on thick wires. A new model for a voltage
source was added and several other modifications made for increased accuracy
and efficiency.

Part I of this document describes the equations and numerical methods
used in NEC, Part III: NEC User's Guide (ref, 7) contains instructions
for using the code, including preparation of input and interpretation of
output. Part IL: NEC Program Description — Code (ref. 8) describes the
coding in detail, The user encountering the code for the first time should
begin with the User's Guide and try modeling some simple antennas. Part TII
will be of interest mainly to someone attempting to modify the code,

Reading part I will be useful to the new user of NEC however, since an
understanding of the theory and solution method will assist in the proper

application of the code.




Section II
Integral Equation Formulation

The NEC program uses both an electric~field integral equation (EFIE)
and a magnetic-field integral equation (MFIE) to model the electromagnetic
response of general structures. Each equation has advantages for particular
structure types. The EFIE is well suited for thin-wire structures of small
or vanishing conductor volume while the MFIE, which fails for the thin-wire
case, 1s more attractive for voluminous structures, especially those having
large smooth surfaces. The EFIE can also be used to model surfaces and is
preferred for thin structures where there is little separation between a
front and back surface. Although the EFIE is specialized to thin wires in
this program, it has been used to represent surfaces by wire grids with
reasonable success for far-field quantities but with variable accuracy for
surface fields. For a structure containing both wires and surfaces the EFIE
and MFIE are coupled. This combination of the EFIE and MFIE was proposed
and used by Albertsen, Hansen, and Jensen at the Technical University of
Denmark (ref. 9) although the details of their numerical solution differ from

those in NEC. A rigorous derivation of the EFIE and MFIE used in NEC is given

by Poggio and Miller (ref. 10). The equations and their derivation are

outlined in the following sections.

1. THE ELECTRIC FIELD INTEGRAL EQUATION (EFIE)

The form of the EFIE used in NEC follows from an integral representation

-
for the electric field of a volume current distribution J,

@ =20 /3@') - B, T av', (1)
4Tk
A
where
TE, TH = T+ WeE, T,
g(r, T') = exp(-3k|T - T')D/|T - T,
k=wue .,
o 0
n = Vho/eo




and the time convention is exp(jwt). I is the identity dyad (%% + $% + 22).
When the current distribution is limited to the surface of a perfectly

conducting body, equation (1) becomes

> > -1 > > = > >
B =2 [ 3 @) - TE, T a, 2
S
- -
with JS the surface current density. The observation point r is restricted

- >
to be off the surface S so that r # r'.

-5
If r approaches S as a limit, equation (2) becomes

- -4 — . .
B =L £ 3 @) - BE T a, (3)
4Tk g §
> >
whcre the principal value integral,jﬁ, is indicated since g(r, r') is now
unbounded.
An integral equation for the current induced on S by an incident field

EI can be obtained from equation (3) and the boundary condition for ? £ S,
A(r) x [E%?) + EI(}‘)} = 0, (4)

~T . . j ) . T > > . N
where fi(r) is the unit normal vector of the surface at r and E° is the field
- -
due to the induced current Js. Substituting equation (3) for E° yields the

integral equation,

NVt s _ :J_n A

-n(r) X E7(r) = " n(r) x
f FSG') . T + Va2, T') da'. ' (5)
S

The vector integral in equation (5) can be reduced to a scalar integral
equation when the conducting surface S is that of a cylindrical thin wire,
thereby making the solution much easier. The assumptions applied for a thin

wire, known as the thin-wire approximation, are as follows:

a. Transverse currents can be neglected relative to axial currents

on the wire.
b. The circumferential variation in the axial current can be neglected.
c. The current can be represented by a filament on the wire axis.

9




d. The boundary condition on the electric field need be enforced in

the axial direction only. .

These widely used approximations are valid as long as the wire radius is
much less than the wavelength and much less than the wire length. An
alternate kernel for the EFIE, based on an extended thin-wire approximation
in which condition ¢ is relaxed, is also included in NEC for wires having too
large a radius for the thin-wire approximation (ref. 11).

From assumptions a, b and ¢, the surface current }s(;) on a wire of

radius a can be replaced by a filamentary current I where

> > s
I(s)§ = 2ﬁaJs(r),
1 . r} _>‘
s = distance parameter along the wire axis at r, and
A . -
s = unit vector tangent to the wire axis at r.

Equation (5) then becomes

@) x BE D) = %} AE) x

f I(S')<k2§' - V‘a‘z—') g(¥, T1) ds', (6)
L

where the integration is over the length of the wire. Enforcing the boundary

condition in the axial direction reduces Eq. (6) to the scalar equation,

6 - B - f I(s')(k2§ S L
L

82

ggggr) g(;, ;') ds'. (7 v

Since *' is now the point at s' on the wire axis while T is a point at s on
the wire surface {? - ?‘I.i a and the integrand is bounded.

The accuracy of the thin-wire approximation for a segment of radius a and
length A depends on ka and A/a. Studies have shown that the thin-wire
approximation leads to errors of less than 1% for A/a greater than 8 (Ref. 11).

Furthermore, in the numerical solution of the EFIE, the wire is divided into

segments less than about 0.1A in length to obtain an adequate representation

10




of current distribution thus restricting ka to less than about 0.08. The
extended thin-wire approximation (ref. 11) is applicable to shorter and thicker
segments, resulting in errors less than 1% for A/a greater than 2. 1In the
extended thin-wire approximation, the current is assumed to be uniformly
distributed around the wire circumference rather than concentrated in a
filament on the axis. The field integral then involves an integration
around the wire circumference. This integral is approximated by the first
two terms in a series expansion in az, neglecting terms of order a4. Thus,
only the integration along the wire remains as with the thin-wire approximation.
The numerical solution used in NEC employs straight wire segments and a
current that is the sum of constant, sin(ks), and cos(ks) components. The
integrals along the wire can then be evaluated in closed form except for the
integral for the field component parallel to a segment due to the constant
current component. The field evaluation is thus greatly simplified for -
either the thin-wire or extended thin-wire kernel. The field expressions for

both kernels are covered in the Appendix.

2. THE MAGNETIC FIELD INTEGRAL EQUATION (MFIE)

The MFIE is derived from the 1ntegral representatlon for the magnetic

field of a surface current distribution J s’

;L_~/‘+ >, . > '
I Js(r ) x V' g(r, ') dA', (8)

S

5 (%)

>
where the differentiation is with respect to the integration variable r'
= R . =1
If the current JS is induced by an extermnal incident field H™, then the total
magnetic field inside the perfectly conducting surface must be zero. Hence,

-
for r just inside the surface S,
>T > >g
H (r) + 5°(¢) = 0, (9)

where ﬁl is Ehe incident field with the structure removed, and ﬁs is the

scattered field given by equation (8). The integial equation for js may be
-

obtained by letting r approach the surface point ry from inside the surface

| along the normal ﬁ(¥o>’ The surface component of equation (9) with equation

(8) substituted for ﬁs is then

11




s +T > S 1 , J[ > >
- - L 1im '
n(ro) x H (ro) n(ro) X o i L Js(r ) X
r -+ ro

V' og(r, ') dA',

where ﬁ(;o) is the outward directed normal vector at ¥o' The limit can be
evaluated by using a result of potential theory (ref. 12) to yield the

integral equation -

~ =>I ~ 1 > =
—n(ro) x H (ro) =-3 Js(ro) +
L fﬁ(?) < |F @Y x v g, T aar. (10)
b S o 5 o’

For solution in NEC, this vector integral equation is resolved into two

scalar equations along the orthogonal surface vectors El and 32 where

tl(ro) X tz(ro) = n(ro).
- - - - > - PR A N
By using the identity u * (v X w) = (u X v) * w and noting that £, X = -t
and EZ X 4 = fl, the scalar equations can be written,
~ > >T - _ ;.A -> . > > _
t2(ro) H (ro) = > tl(ro) Js(ro)
_];_ s . T 1k 2 L
i ]2 £, ) [Js(r ) XV g(ro, r )J da'; (11)
o~ - >L - _ l ~ - . > = . -
—tl(ro) H (ro) = 7 tz(ro) Js(ro) -+
1 ]L > I e ¢ >, '
o . tl(ro) [Js(r )y XV g(ro, r') | dA'. (12)

These two components suffice since there is no normal component of equation

(10).

3. THE EFIE-MFIE HYBRID EQUATION -

Program NEC uses the EFIE for thin wires and the MFIE for surfaces. For

_).
a structure consisting of both wires and surfaces, r in equation (7) is

12




restricted to the wires, with the iﬁtegral for Es(¥>, extending over the
complete structure. The thin-wire form of the integral in equation (7) is
used over wires while the more general form of equation (5) must be used

on surfaces. Likewise, ;O is restricted to surfaces in equations (11) and
(12), with the integrals for HS(?) extending over the complete structure. On
wires the integral is simplified by the thin-wire approximation. The

_).
resulting coupled integral equations are, for r on wire surfaces,

. 2
o . 2Ly 2 23N / 24 o oar _ 0 T 1
§ » E(r) = s 5 I(s )<F 3 s SenaT g(r,r') ds

-0 f 3S<?) . [kzg -y %]g&?') dA', (13)

-> - — . .
and for r on surfaces excluding wires

Ez(?> RN = - j—ﬂﬁz(}*) . {I(S')<§' x 7! g@,?')) ds'

1 ~ = > e -
-3 tl(r) Js(r)

=1 5,0 - [ESG}') x v'g@’,?‘)} dA", (14)
S
1

and .

>T -

-el@) C T = 4—lﬁél<?) . { I(s')(s' x v'g(¥,?')> ds'
- % €2<¥) . ESG) +

leé & @ - [Es(?ﬁ X V'g(?,?')] dA'. (15)
1

The symbol fL represents integration over wires while fsl represents
integration over surfaces excluding wires. The numerical method used to

solve equations (13), (14) and (15) is described in section III.
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4. THE EFFECT OF A GROUND PLANE

A ground plane can change the electromagnetic response of a structure _
in three ways: (1) by modifying the current distribution through near-field
interaction; (2) by changing the field illuminating the structure; and (3) by
changing the reradiated field. Effects (2) and (3) are easily analyzed by
plane-wave reflection as a direct ray and a ground-reflected ray. The
reradiated field is not a plane wave when it reflects from the ground plane,
but, as can be seen from reciprocity, plane-wave reflection formulas give
the correct far-zone radiated field. Analysis of the near-field interaction
‘effect is, however, more difficult than the other two effects. A rigorous
solution for the near field was developed by Sommerfeld (ref. 13) but is
cumbersome and lengthy, even for computer evaluation. The method used in
NEC is an approximation based on the Fresnel plane-wave reflection coefficients
(refs. 14 and 15). Although this approximation is inaccurate for structures
very near to the ground, it provides a time-savings in NEC of up to two
orders of magnitude, making possible the analysis of large structures that
would be impractical with Sommerfeld's formulas. The range of validity of

this reflection coefficient approximation is demonstrated in section V by

comparison with results obtained with the Sommerfeld formulas.

Integral equations for the current on a conducting body over a ground
plane can be developed in the same way as equations (13), (14), and (15) by
replacing the free-space Green's functions by Green's functions for an
infinite ground plane. The Green's functions for a ground plane, giving
electric and magnetic fields at a point ; due to an arbitrarily oriented
infinitesimal current element at r' in the presence of a ground plane, were
developed by Sommerfeld (reft 13). TFor a vertically oriented, current element .
of strength Id{ in free space above a half-space z < 0 having permi:tivity €

1

and conductivity 0., Sommerfeld's formula for the Hertz potential, HV, is ;

l’

> > jwuo

Hv(r) = I(?')dﬁ(gd + g - gs) zZ, (16)

where

8q = exp(-jkR) /R,

14




g, = exp(-jkR')/R’,

% u
_ '
g_ = 2[ 3 ("e wiztz) B A gy,

+
8 A €g HTHg M
- N N A
r = xX + yy + zz,
> A A N
' =x'"R+y'$+2'Z,

1/2

2 1/2
R' = [p"" + (z+z") s
uz - AZ _ k2’
2 _ .2 2
2 _ 2
km=uw uoeo,
€ jo
2 _ 2 1 _ 1 2
kp = €gk T e <l we)k’
o) 1

and JO is the Bessel function of order 0. The electric and magnetic fields

of the vertical current element are then
- -~ - & >
Ev(r) = %k HV (r) + V¥ Hv(r),

.2
Ik g @,
e v

It

B ()

The fields of a horizontal current element are given by similar expressions
which, for brevity, are omitted here but can be found in reference 13. The
horizontal current produces components of the Hertz potential both parallel
to the current element and in the z direction, and involves both JO and its
derivative. The Green's function for an arbitrarily oriented current is a
combination of the expressions for the vertical and horizontal components.

In general, however, the integral over A for HV and similar integrals for a

15



horizontal current can not be evaluated in closed form but require numerical

quadrature. Hence, integral equations derived from these expressions involve

a double integration over A and over the conducting surface. Numerical
evaluation of _these integrals can be very time consuming. In view of these
difficulties, approximations of Sommerfeld's formulas that are easily evaluated
and maintain reasonable accuracy are desirable.

One approximation for the Sommerfeld integrals employs asymptotic
expansions that are valid over various ranges of the parameter values. This
particular method makes use of the method of stationary phase and double
saddle-point integration. Use of this approach produces closed-form expres-
sions for the fields of an elementary source. Such expressions are useful over .
various ranges of observation-point location relative to the source.

A comprehensive survey of this general methodology is given by Banos
(ref. 16), and the numerical accuracy of these approximations is examined by
Siegel (ref. 17). Siegel's work is especially useful in that he is able to
establish ranges of observation distance for which the various expressions
are valid, but, unfortunately it also shows that gaps generally exist over
which the approximations do not provide acceptable accuracy: This is true in

particular for observation points located close to the source. Hence, the

approximation is not suitable for use in integral equations, which require
close proximity of observation and source points,

Other more physically based approximatione have also been investigated.
The reader is referred to the work by Feynberg (ref. 18), where a surface
integration over the interface induced sources is discussed, with many other
aspects of the problem, and the conference proceedings edited by Wait (ref.
19). The latter provides a number of interesting treatments, including one
based on the compensation theorem (ref: 20) and a comparison of several
formulations for antenna impedance (ref. 21).

The approximation used in NEC is primarily physically based. It is
noted that in Sommerfeld's formula for Hv, the term &4 is the direct contribu-
tion of the source and g is the contribution of the image of the source in a
perfectly conducting ground plane. The term 8 represents the effect of an
imperfectly conducting ground. For a perfectly conducting ground (Gi+w),

g, 8oes to zero while for free space (El =€, Gl = 0), g, can be evaluated

in closed form and exactly cancels 8- The same observations also hold for

16



the horizontal current element. Hence, for a perfectly conducting ground,
Sommerfeld's formulas reduce to the simple image principle.

A Green's function for a perfectly conducting ground is then the sum of
the free-space Green's function of the source current element and the
negative of the free-space Green's function of the mirror image of the source
in the ground plane; the negative sign resulting from the change in the sign
of charge on the image. If Ek?,?') is.the free-space Green's dyad for the
electric field at ; due to a source current at ;', with G defined in equation
(1), the electric field Green's dyad, when the plane defined by z = 0 is
perfectly conducting, is

Gpg(r,r') = G(r,r") + G (r,r"), (17)

where

, T_+z"), . o (18)

T =%+ 59 - 83 . ' ' (1Y)

Ir is a dyad that.pfoduces a reflection in the z = 0 plane when used in a dot
product. The electric field due to current JS on a conducting surface S

above a perfect ground is then

> > = > -
E r) = J (') « G r,r') dA' .
D JED T EED

S
Likewise for the magnetic field, with free-space Green's dyad,
'(r,r') =1 % V'g(r,r') s (20)

the Green's dyad over a perfect ground is

=. - = s _c =
e (HED =T@EI) + TLGET ) (21)
T e =-T -« TGEIEY , (22)
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and

> > C > > = 3 >
H r) = ][ J (x) « T r,r') dA' .
MORNRACERMCED

These modified Green's functions and their specialized forms for thin wires

are easily incorporated into the integral equations (13), (14), and (15). 1In
practice the integrals in these equations are simply extended over the structure
image with only a doubling of the integration time.

The advantage of extending the ray-optics approach to the finitely
conducting half-space is immediately evident. If a specularly reflected ray
can be used in this case as well to account for the entire ground-reflected
contribution (gi and & terms) to the field, then it may be possible to
circumvent the numerical difficulties of the Sommerfeld integral. Two problems
arise in accomplishing this: one is the determination of the appropriate
reflection coefficient for the half-space, and the other is specifying the
specular ray contribution itself. These problems both occur because the
fields involved are nonplane-waves and the observation point can, in general,

lie in the near~field of the source where the higher order terms may be of

importance,

Some insight may be gained by viewing the infterface as a surface
distribution of induced sources, as discussed by Feynberg (ref. 18). The
ground-reflected contribution to the total field produced by a given infini-
tesimal source is then obtained from a surface integration over these induced
sources. Practically speaking, this surface integration can be truncated to
include a region of only limited extent. When the principle of stationary
phase is applied, this truncated region (or essential region as denoted by
Feynberg) can be shown to be generally elliptical and centered in some sense
about the specular-reflection point. If the area of this essential regilon is '
allowed in the limit to shrink to zero centered on the specular point, only
the specular ray itself will be obtained. Thus, a ray-optics approach based
on a specular ray essentially amounts to collapsing the entire interface-
induced-source distribution to a single point from which the ground-reflected
field at a particular observation point to a given infinitesimal source
appears to originate. This is equivalent to the use of an image source to

account for the reflected field.
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The finite ground conductivity consequently enters only as a modification
of the image fields. For a plane-wave incident on a ground plane, the
reflected field is related to the incident field by reflection coefficients
derived by Fresnel (ref. 22), which are simple functions of the ground
parameters and the angle of incidence of .the wave. Studies have shown that
the specular approximation and Fresnel reflection coefficients can be used for
the near-field interaction over ground with good accuracy except between
points very close to the ground (refs. 14 and 15). With this approximation,
which is used in NEC, an imperfect ground is included in the integral equations
with no more difficulty than is caused by a perfectly conducting ground,
basically, a doubling of the integration region.

The Fresnel reflection coefficients are different for a wave polarized
with electric field in or normal to the plane of incidence, which is the plane
containing the normal to the ground and the vector in the direction of
propagation of the incident wave. The two cases are illustrated in figure 1,
where the wave with E in the plane of incidence is termed vertically polarized
and with E normal to the plane of incidence as horizontally polarized. The

Fresnel reflection coefficient for vertically polarized waves is

cos O - ZR /& - Z§ sin2 G}
RV= - / N R " (23)
2 .2
cos O + ZR 1 - ZR sin” ©
where
cos .= -k « z ,
-1/2
Z = i_ 'ﬁ‘_
R € J we
o} o

The reflected fields are then

Bp = - RV<TR' Ev) g
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Figure 1. Plane-Wave Reflection at an Interface.
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For horizontally polarized waves, the reflection coefficient is

- \Z_ cos © - /{7— 22 sin2 S}

RH _ R ‘/ i—gf > - o (24)
ZR cos O + v1 - ZR sin® @
and
->h =h

ER = - RH ET,

>h _ = +h>

HR = RH<IR H .

An arbitrarily polarized incident plane wave must be resolved into horizontal

and vertical components to determine the reflected field. Thus, if p is the

unit vector normal to the plane of incidence, the reflected field due to an
- - - -

incident field E is

E
R

It
P
jeal2
H
.
Iy
A
>
+
"
&
=
I
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=Y
s
-
o>
p—
o>
| S——|

(25)
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=8
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where EI is the incident field reflected in a perfectly conducting ground, or
the field due to the image of the source. Use of the image field in equation
(25) accounts for the changes in sign and vector direction of the incident

field that were shown explicitly for the vertically and horizontally polarized

cases. For the magnetic field,

- > > A A

He = RA + (R, - ROE -+ 9B, (26)
with ﬁI the field of the image of the source. - -

Applying the Fresnel reflection qoefficients to the near fields, the

- -
electric field at r due to the image of a current element at r' can be written

= > >, %= >
GR(r,r ) RVGI(r,r ) +

(R - RV>[EI<¥,¥'> - ﬁ}ﬁ : 27)
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where

S
8 =9p/lp| ,
-'[_;:(?_?')X%’

andzI is the Green's function for the image of the source in a perfeét ground
as defined in equation (18). For magnetic field, the Green's dyad for the

modified image is

(R, - Ry) [T‘I( ,r') . i:‘]ﬁ . (28)

The Green's functions for electric and magnetic fields over an imperfectly

conducting ground, resulting from the reflection coefficient approximation are

then
Eg(?,"r*') = G(r, T + G (7,1 , o (29)
T @) =TED) + TG, (30)

and the electric and magnetic fields above an imperfect ground are

- > > = > >
Eg(r) = ~4 Js(r')° Gg(r,r') dA' ,
> - = > >
H (r) = J (') « T (r,r')y dA' .
,® = [ 3@ T E

S

Use of the Green's function's Eé and ?; results in a straightforward
extension of the EFIE and MFIE for structures over an imperfect ground. Yet,
as will be demonstrated in section V by comparison with results of the
Sommerfeld formulas, it provides surprisingly good results over grounds with
widely varying electrical parameters. Since the method is based on a surface
reflection coefficient at the specular point, it is readily adapted to a
horizéntally stratified half-space and to a half-space with slowly varying

properties’ along the interface.

It has also been suggested that the reflection coefficient approximation '

can be used to approximate the effect of a radial-wire ground screen under
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an antenna by using an approximate surface impedance for the ground screen
(ref. 23). The ground-screen wires could be modeled explicitly in the NEC
code. This would also be approximate, however, since the wires would have to
be displaced slightly above the ground surface, in which case the reflection
coefficient approximation breaks down. Explicit modeling would also greatly
increase the number of unknowns in the solution. Wait (ref. 24) approximated
the surface impedance of the radial-wire ground screen on an imperfectly
conducting ground as the parallel combination of the surface impedance, Cl’ of

the ground plane

. 1/2
Ju W
Cq S\ =7~ ’
1 Ol + Jelw

and an approximate surface impedance Zg of the ground screen

Ju_wp
= 0 P
2,0 = — 272(NC0> :

which is the impedance of a parallel wire grid having the wire spacing that
the radial wires have at a distance p from the center. N is the number of
radial wires in the screen, and CO is the radius of the wires. The surface
impedance of the ground screen on an imperfect ground is then
Z
o

C =—_g;__.
e ., + Z
1 g

From the definition of surface impedance,
Etangential - Ce Htangential

at the surface and using the fact that E and H in the incident wave are
related by 1 the free-space impedance, reflection coefficients can easily be

derived. They are

n - Ce cos @
= s
RH n + Ce cos O

23



and

n cos © - ;e
RV n cos @ + Ce

This is the form the Fresnel reflection coefficients take when the index of
refraction is large compared to unity, as verified when IZRIZ << 1 in the
coefficients previously presented. This condition is satisfied in most
realistic problems; furthermore, the surface-impedance boundary condition is a
valid approximation only when the refractive index of the ground is large
compared to unity. Therefore, the surface impedance derived by Wait has been
used in conjunction with the reflection coefficient method previously
discussed to provide an approximate model of a radial-wire ground screen in
NEC. As a result of the reflection coefficient method, only the properties of
the ground directly under a vertical antenna will affect its current distribu~
tion. At the origin of the radial-wire ground screen, the impedance is zero
(Zg is not allowed to be negative) so the impedance and current distribution
of a vertical antenna at the origin will be the same as over a perfect
conductor. The far fields, however, will demonstrate the effect.of the screen
as the specular point moves away from the origin. For antennas other than the
vertical antenna, it should be pointed out that the inherent polarization
sensitivity of the screen (i.e., E parallel or perpendicular to the ground

wires) has not been considered in this approximation.

24




Section I1I
Numerical Solution

The integral equatioms (13), (14), and (15) are solved numerically in
NEC by a form of the method of moments. An excellent general introduction to
the method of moments can be found in R. F. Harrington's book, Field
Computation by Moment Methods (ref. 25). A brief outline of the method
follows.

The method of moments applies to a general linear-operator equatiom,
Lf = e, (31)

where f is an unknown response, e is a known excitation, and L is a linear
operator (an integral operator in the present case). The unknown function £

may be expanded in a sum of basis functions, fj, as
N .
£="> o £, . (32)
3=1 J 3 :

A set of equations for the coefficients ¢, are then obtained by taking the

inner product of equation (31) with a set of weighting functions ‘Wi],
<w,, Lf> = <w,, e> ' (33)
i i .
Due to the linearity of L equation (32) substituted for f yields,
N
> a, <w,, LE,> = <w,, e> ,
=1 3 *+ J * i=1, ... N.

This equation can be written in matrix notation as

[G] [A]l = [E] , (34)
where
G,. = <w,, Lf.>9
1] 1 J. -
A = 0,
] J
E; = <wi, e> .




The solution is then

-1

[A] = [G] ™ [E] .

For the solution of equations (13), (14), and (15), the inner product is

defined as

<F, g> = f £(F)g()dA ,
S

where the integration is over the structure surface. Various choices are
possible for the weighting functions {Wi} and basis functions {fj}. When
W, = fi’ the procedure is known as Galerkin's method. 1In NEC the basis and

weight functions are different, LA being chosen as a set of delta functions

WEG) =8 -1,

with {;i} a set of points on the conducting surface. The result is a point
sampling of the integral equations known as the collocation method of solution.
Wires are divided into short straight segments with a sample point at the
center of each segment while surfaces are approximated by a set of flat patches
or facets with a sample point at the center of each patch.

The choice of basis functions is very important for an efficient and
accurate solution. In NEC the support of fi is restricted to a localized
subsection of the surface near ;i' This choice simplifies the evaluation of
the inner-product integral and ensures that the matrix G will be well condi-
tioned. For finite N, the sum of fj cannot exactly equal a general current
distribution so the functions fi should be chosen as close as possible to the
actual current distribution. Because of the nature of the integral-equation
kernels, the choice of basis function is much more critical on wires than on

surfaces. The functions used in NEC are explained in the following sections.

1. CURRENT EXPANSION ON WIRES

The current on each wire segment in NEC is represented by three terms —
a constant, a sine, and a cosine — with the sinusoidal terms having the free
space wavelength. This expansion has been shown to provide rapid solution
convergence (ref. 26 and 27) and has the added advantage that the fields of the

sinusoidal currents are easily evaluated in closed form. The amplitudes of
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these terms are related such that their sum satisfies physical conditions on
the local behavior of current and charge at the segment ends. This differs
from AMP where the current was extrapolated to the centers of the adjacent
segments, resulting in discontinuities in current and charge at the segment
ends. Matching at the segment ends improves the solution accuracy, especially
at the multiple-wire junctions of unequal length segments where AMP
extrapolated to an average length segment, often with inaccurate results.

The total current on segment number j in NEC has the form

Ij(s) = A.j + Bj sin k(s—sj) + Cj cos k(s—sj) s (35)

|s-s.| < A,/2,
i 3

where sj i1s the value of s at the center of segment j and Aj is the length of
segment j. Of the three unknown constants Aj,'Bj, and Cj’ two are eliminated
by local conditions on the current leaving one constant, related to the
current amplitude, to be determined by the matrix equation. The local
conditions are applied to the current and to the linear charge density, q,

which is related to the current by the equation of continuity

oL T
a_S—=—_— Jwq .

(36)
At a junction of two segments with uniform radius, the obvious

conditions are that the current--and charge are continuous at the junction.

At a junction of two or more segments with unequal radii, the continuity of

current is generalized to Kirchoff's current law that the sum of currents

into the junction is zero. The total charge in the vicinity of the junction

is assumed to distribute itself on individual wires according to the wire

radii, neglecting local coupling effects. T. T. Wu and R. W. P. King

(ref. 28) have derived a condition that the linear charge density on a wire

at a juncticn, and hence 31/9s, is determined by

31(s) oo | (37
3s s at junction 2n<§%) -y

where a = wire radius,

k = 2m/\ ,
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Y = 0.5772 (Euler's constant).

Q is related to the total charge in the vicinity of the junction and is
constant for all wires at the junction.

At a free wire end, the current may be assumed to go to zero. On a
wire of finite radius, however, the current can flow onto the end cap and
hence be nonzero at the wire end. In one study of this effect, a condition
relating the current at the wire end to the current derivative was derived

(ref. 29). TFor a wire of radius a, this condition is

o) _ -(s°nc) Jl(ka) 31 (s)
s at end k Jo(ka) os s at end

A

where JO and J. are Bessel functions of order 0 and 1. The unit vector nc is

1 .
normal to the end cap. Hence, 8§ * ﬁc is +1 if the reference direction, §, is
toward the end, and -1 is 8§ is away from the end.

Thus, for each segment two equations are obtained from the two ends:

J,(ka.,) 9L, (s)
I.(s, £ A,/2) —%Jl(k 15— (38)
J ) aj s s =g, A /2
] b
at free ends, and
+
3T, (s) Q. '
- e o
s =g, £ A,/2 an———) =Y
] 3 kaj

at junctions. Two additiomal unknowns Q; and Q; are associated with the
junctions but can be eliminated by Kirchoff's current equation at each
junction. The boundary-condition equations ﬁfovide the additional equation-
per—-segment to completely determine the current function of equation (35)
for every segment.

To apply these conditions, the current is expanded in a sum of basis
functions chosen so that they satisfy the local conditions on current and
charge in any linear combination. A typical set of basis functions and their
sum on a four segment wire are shown in figure 2. TFor a general segment i in

.t . . .
figure 3, the 1 b basis function has a peak on segment i and extends onto
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Figure 2. Current Basis
Functions and Sum on a
Four Segment Wire.

N Figure 3. Segments

., Covered by the 1 th
// /////// Basis Function.

every segment connected to i, going to zero with zero derivative at the outer

ends of the connected segments.

s .t . . . .
The general definition of the i h basis function is given below. For
the junction and end conditions described above, the following definitions

apply for the factors in the segment end conditions:

-1 .
o] = al - [zn (é—l) - v} , (40)

and

X, = Ji<kai)/Jo(kai)
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The condition of zero current at a free end may be obtained by setting X to

Zero.

. .E . . A
The portion of the i h basis function on segment 1 is then

o _ 0 o . _ o . -
fi(s) Ai + Bi sin k(s si) + Ci cos k(s si)
|s - s,| <A./2 .
i i

If N # 0 and N+ # 0, end conditions are

3 .0 - -
== £ (s) =a, Q, ,
9s 1 c=s. - A /2 i "i
i i
; fo(s) = af Q+
s s=s, +4A,/2 ot
i i
If N =0 and Nt # 0, end conditions are
o 1 9 .o
iy =84/ =y % 5g 550
=g, - A,/2
i
3 -0 _ o+ F
35 £1(8) =a;

s = s + Ai/2

If N # 0 and Nt = 0, end conditions are

3 .o

= £.(s) =a, Q, ,

9s 1. s =18, —A,/2
i i

-1 3 .0
£9(s, + A, /2) ==X, = £,(s) .
i1 i k “1i9s i s=s, n Ai/z

Over segments connected to end 1 of segment i, the ith basis function is
£.(s) = A, + B, sin k(s - s.) + C, cos k(s - s,
J( ) J J J) J ¢ J)

[s—sjl <Aj/2 j=1, ... , N
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End conditions are

fj(sj - Aj/z) =0, , (49)
E?" £.(s) =0, (50)
s 1 t s=3gs, -A./2
i 3
3 -~ ' o+ -
5;’ fj(s) )S ) = a, Q, . (51)

s. +A./2 3ot
J J

Over segments connected to end 2 of segment i, the ith basis function is
+ + .+ +
£.(s) = A, + B, sin k(s ~ s,) + C. cos k(s - s.) 52
| J ] ( J> 3 ( J (52)

+
s - s, <A,/2 j = v:e 5 N
J] J ’

End conditions are

= £1(e) o =aldl, (53)
J s =18, - A,/2 J
3 ki
f+(s; +A./2) =0 | (54)
N J ?
3 _+ _
3 fj(s) =0, (55)

s =15, +A,/2
J J

Equations (41), (48), and (52), defining the complete basis function,
- - +
involve 3(N + N+ + 1) unknown constants. Of these, 3(N + N ) + 2 unknowns
are eliminated by the end conditions in terms of Q; and Q: which can then be

determined from the two Kirchoff's current equations:

N

- _ £0
jzﬁ fj(sj + Aj/z) = fi(si - 4,/2) , and (56)
+
§f+( - A, /2) = £(s, + A,/2) (57)
= R R D A L
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The complete basis function is then defined in terms of one unknown

. o . . . .
constant. In this case Ai was set to -1 since the function amplitude is ‘

arbitrary, being determined by the boundary condition equations. The final

result 1s given below:

a, .
AL = J 1 (58)

- _ i i
Bj 2 cos k Aj/Z ’ (59)

+ ,
- " (60)
€y = 2 sin K 372

-+

Ty
A, = — , (61)
3 sin k,Aj

a, Q+
+_ %Y
Bj 2 cos k Aj/z ? (62)

a, Q.

+ _ i i
Cj 2 sin k Ajlz : (63)

For N # 0 and N' # 0,

O
A, =-1, (64)
o o + o+ sin k Ai/Z
By T (ai 4 *ay Qi)m—q ! (63)
cos k A,/2
o _ - - _ t 4t 1
C; = (ai Q -~ 2y Qi) sin k &, ° (66)
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For N

For N # 0 and

af(l - cos k A,) - Pf sin k A,
i i i i

= — (67)
- — - - H]
(P, Pf + a, éf) sin k A, + <P, af - PT a,‘>cos k A,
i1 i i i i1 i1 i
a,(cos k A, - 1) = P, sin k A,
_ i i i i (68)
<Pj P? + a. aT) sin k A, + (PT af - Pf a. )cos k A,
i i i i i i i i i i
N # 0,
) sin k Ai/2 7 . a+ Q+ cos k Ai/Z - Xi sin k Ai/2
cos k A, - X, sin k A, i i cos k A, = X, sin k A, ?
i i i i i i
(70)
) coskAi/Z +a+ Q+ sinkAi/Z— Xi cos.kAi/Z
cos k A, - X, sin k A, i ~i cos k A-X, sin k A,
i i i i i i
(71)
cos k Ai -1-X; sin k Ai
= — - (72)
(af + X, PT) sin k A, + (af X, - ?T} cos k A,
i i1 i i7i i i
+
N =0,
=-1, (73)
- gin k. A,/2 cos k A,/2 - X, sin k A,/2
_ i + a2 Qo i i
cos k A, = X, sin k A, i i cos k A, = X, sin k A, ?
i i i i i .
(74)
cos k Ai/2 _ _sink Ai/Z + X, cos k Ai/2
T cos k A, - X, sin k A, %1 Qi cos k A, - X, sin k A, ?
i i i i i
(75)
1 - cos k Ai + Xi sin k Ai
= : (76)
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For all cases,

N
T =S ar , a7

P

+ )
+ g coskAj-l

i a, , (78)

3=1 sin k Aj 3,

where the sum for P; is over segments connected to end 1 of segment i, and

+ -+
the sum for Pi is over segments connected to end 2. If N =N = 0, the

complete basis function is

cos k(s - si)

i cos k A./2 - X, sin A, /2 ~ 1. A (79)
i a1 i

When a segment end is connected to a ground plane or to a surface

modeled with the MFIE, the end condition on both the total current and the

last basis function is

]
— I.(s) =0,
9s 7] s=s, T A,/2

J J

replacing the zero current condition at a free end. This condition does

not require a separate treatment, however, but is obtained by computing the
last basis function as if the last segment is connected to its image segment
on the other side of the surface.

It should be noted that in AMP, the basis function fi has unit value at
the center of segment i and zero value at the centers of connected segments
although it does extend onto the connected segments. As a result, the
amplitude of fi is the total current at the center of segment i. This is not
true in NEC so the current at the center of segment i must be computed by

summing the contributions of all basis functions extending onto segment i.

2. CURRENT EXPANSION ON SURFACES

The surface current is expanded in a set of pulse functions except in
the region of a wire connection, as will be described later. The pulse

function expansion for Np patches is
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N
P N . > (80)

J @ Z_ Wy By + 0, 8, V@),

j=1

where

A — A +
tlj = tl(rj) R
o~ — o~ >
t2j = tz(rj) R
¥, = position of the center of patch number j ,

J
> >
Vj(r) = 1 for r on patch j and 0 otherwise.

The constants Jlj and sz, representing average surface-current density
over the patch, are determined by the solution of the linear system of
equations derived from the integral equations. The integrals for fields,
due to the pulse basis functions, are evaluated numerically in a single step
so that for integration, the pulses could be reduced to delta functions at
the patch centers. That this simple approximation of the current yields good

accuracy is one of the advantages. of the MFIE for surfaces.

A more realistic representation of the surface current is needed,
however, in the region where a wire connects to the surface. The treatment
used in NEC, affecting the four coplanar patches about the connection point,
is quite similar to that used by Albertsen et al. (ref. 9). 1In the region
of the wire connection, the surface current contains a singular component
due to the current flowing from the wire onto the surface. The total surface
current should satisfy the condition,

v .
s

o)
)

(X9Y) = JO(X,Y) + Ioa(XsY) ’

where the local coordinates x and y are defined in figure 4, VS denotes
surface divergence, Jo(x,y) is a continuous function in the region ABCD,
and Io'is the current at the base of the wire flowing onto the surface. " One

expansion which meets this requirement is

4
- - - S >
I Gay) = I EGy) + jgl gy (o) (G, = I £, (81)
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where

+ _ Ay + ey
™~ f(X:Y) = XX2 2 s
2m(x” + y7)
-> ->
J, = J (X.,V.
4 S( ; yJ) ,
£, =% ) d
. = X, . , 4an
j 377

(xj,yj) = (x,y) at the center of patch

j. The interpolation functions gj(x,y)

are chosen such that: gj(x,y) is

differentiable on ABCD; g.{(x%.,y.) =
4 J 1 1

Figure 4', Detail o? the §,.5 and L g.(x,y) = 1. The specific
Connection of a Wire to ; 1 =1 3
a Surface. functionsiused in NEC are as follows:

1 1

g. (x,y) = — (d+x) (d+y) g,(x,y) = —% (d-x) (d+y)
1 2 2 2
4d 4d
1 1

g.(x,y) = —% (d-x) (d-y) g, (x,y) = —= (dtx) (d-y)
3 4d2 4" 4d2

Equation (81) is used when computing the electric field at the center
of the connected wire segment due to the surface current on the four sur-
rounding patches. In computing the field on any other segments or on any
patches, the pulse-function form is used for all patches including those at
the connection point. This saves integration time and is sufficiently

accurate for the greater source to observation-point separations involved.

3. THE MATRIX EQUATION FOR CURRENT

For a structure having Ns wire segments and Np patches, the order of
the matrix in equation (34) is N = Ns + 2Np. In NEC the wire segment
equations occur first in the linear system so that, in terms of submatrices,

the equation has the form
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C D 1 H
— - L p_ L p_

with equations derived from equation (14) in odd numbered rows in the lower
set and equation (15) in even rows. IW is then the column vector of segment
lj’ sz’
j=l,...,Np). The elements of EW are the left-hand side of equation (13)

basis function amplitudes, and Ip is the patch—-current amplitudes (J

evaluated at segmentucentefs, while Hp contains, alternately, the left-hand
gides of equations (14) and (15) evaluated at patch centers.

A matrix element Aij in submatrix A represents the electric field at
the center of segment i due to the jth segment basis function, centered on
segment j. A matrix element Dij in submatrix D represents a tangential
magnetic field component at patch k due to a surface-current pulse on patch

% where

o
I

Int [(i—l)/Z} + 1,

o
Il

Int [(j-l)/zJ + 1.,

and Int[] indicates truncation. The source pulse is in the direction El when

j is odd, and direction £, when j is even. When k = £ the contribution of

2
the surface integral is zero since the vector product is zero on the flat
patch surface, although a ground image may produce a contribution. However,
for k = &, there is a contribution of * 1/2 from the coefficient of ES(¥) in
equation (14) or (15). Matrix elements in submatrices B and C represent
electric fields due to surface-current pulses and magnetic fields due to

segment basis functions, respectively. These present no special problems

since the source and observation points are always separated.

4, SOLUTION OF THE MATRIX EQUATION

The matrix equation,

(61 [1] = [E] , (82)




is solved in NEC by the Gauss-Doolittle technique (ref. 30) which is a
variant of the well-known Gauss elimination method. The basic step in the
Gauss-Doolittle method is factorization of the matrix G into the product of

an upper triangular matrix U and a lower triamngle matrix L where
G = [L] [U]
The matrix equation is then
[ty fu] [1] = [E], (83)

from which the solution, I, is computed in two steps as

(L1 [F] = [E] , (84)

and

(u] [1] [F] . (85)

Equation (84) is first solved for F by forward substitution, and equation (85)
is then solved for I by backward substitution.

The major computational effort is factoring G into L and U. This takes
approximately 1/3 N3 multiplication steps for a matrix of order N compared
to N3 for inversion of G by the Gauss-Jordan method. Solution of equations
(84) and (85), making use of the triangular properties of L and U, takes
approximately as many multiplications as would be required for multiplication
of G—lrby the column vector E. The factored matrices L and U are saved in
NEC since the solution for induced current may be repeated for a number of
different excitations. This, then, requires only the repeated solution of
equations (84) and (85).

Computation of the elements of the matrix G and solution of the matrix
equation are the two most time-consuming steps in computing the response of
a structure, often accounting for over 90% of the computation time. This
may be reduced substantially by making use of symmetries of the structure,
either symmetry about a plane, or symmetry under rotatiomn.

In rotational symmetry, a structure having M sectors is unchanged when
rotdted by any multiple of 360/M degrees. If the equations for all segments
and patches in the first sector are numbered first and followed by successive
sectors in the same order, the matrix equation can be expanded in submatrices
in the form

38




A1 M A Ay Byeo| | I3 | T Eq (86)

A A A AM Al IM EM

b -l b— - — -~

If there are NC equations in each sector, Ei and Ii are NC element column
vectors of the excitations and currents in sector i. Ai is a submatrix of
order NC containing the interaction fields in sector 1 due to currents in
sector i. Due to symmetry, this is the same as the fields in sector k due
to currents in sector i + k, resulting in the repetition pattern shown. An
immediate result is that only matrix elements in the first row of submatrices
need be computed, reducing the time to fill the matrix by a factor of 1/M.
The time to solve the matrix equation can also be reduced by expanding

the excitation subvectors in a discrete Fourier series as

M
E. = > 5. E i=l,...,M , (87)
i k=1 ik "k
1 M 2
B, =% 2 Sy B 1tL..oM, (88)
k=1
where
S, = exp [j2m(i-1) (k-1) /M ] , . (89)

j=/:z, and % indicates the conjugate of the complex number. Examining a

component in the expansion,

E = . ) (90)
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it is seen that the excitation differs from sector to sector only by a
uniform phase shift. This excitation of a rotationally symmetric structure
results in a solution having the same form as the excitation, i.e.,

Slk Ik

Sor Tk

I = . . (91)

Sk T

— —

It can be shown that this relation between solution and excitation holds for
any matrix having the form of that in equation (86). Substituting these
components of E and I into equation (86) yields the following matrix equation

of order NC relating Ik to Ek:

Sy Ay + Sy A, e F Sy AM] [Ik] = s, [Ek} ) (92)

The solution for the total excitation is then obtained by an inverse

transformation,

M
I, = > 8. I i=l, ..., M . (93)
=

The solution procedure, then, is first to compute the M submatrices Ai and

Fourier—-transform these to obtain

M
A, = ;gl Sip A i=1, ..., M. (94)

The matrices Ai’ of order Nc’ are then each factored into upper and lower
triangular matrices by the Gauss-Doolittle method. TFor each excitation
vector, the transformed subvectors are then computed by equation (88) and

the transformed current subvectors are obtained by solving the M equations,

(4,1 17,1 = (5,1 . (95)

The total solution is then given by equation (93).
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The same procedure can be used for structures that have planes of
symmetry. The Fourier transform is then replaced by even and odd excitations
about each symmetry plane. All equations remain the same with the exception
that the matrix S with elements Sij’ given by equation (89), is replaced by
the following matrices:

For one plane of symmetry,

For two orthogonal planes of symmetry,

1 1 1 1
I R e
1 1 -1 -1
1 -1 -1 1

and for three orthogonal symmetry planes,

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 -1

1 1 -1 -1 1 1 -1 -1
so |1 -1 -1 1 -1 -1 1

101 1 -1 -1 =1 -1

1 -1 1 -1 -1 1 -1

1 1 -1 -1 -1 -1

1 -1 -1 1 -1 1 1 -1

For either rotational or plane symmetry, the procedure requires factoring

of M matrices of order NC rather than one matrix of order MNC. Each excitation
then requires the solution of the M matrix equations. Since the time for
factoring is approximately proportional to the cube of the matrix order and

the time for solution is proportional to the square of the order, the

symmetry results in a reduction of factor time by M_2 and in solution time

by M-l. The time to compute the transforms is generally small compared to

the time for matrix operations since it is proportional to a lower power of

Nc' Symmetry also reduces the number of locations required for matrix
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'storage by M_l since only the first row of submatrices need be stored. The

transformed matrices, Ai, can replace the matrices Ai as they are computed.

If part of a complete structure is symmetric but the remainder is not,
advantage can still be taken of the symmetry by partitioning the matrix into

symmetric and unsymmetric sections. For a matrix partitioned into submatrices

as

the solution can be computed as

~
]

-1
-1 -1
9 [D - CA B] [Ez - CA El} s

where multiplication of a matrix inverse by a column vector on the right can
be replaced by the Gauss-Doolittle solution procedure. Then, if A represents

the interaction of the symmetric section, the symmetric factoring and

solution procedures can be used for products involving A_l. This solution
for partial symmetry is not in the standard NEC deck although the solution

for complete symmetry, either rotational or plane, is implemented.
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Section IV
Modeling of Antennas

Previous sections have dealt with the problem of determining the
current induced on a structure by an arbitrary excitation. We now consider
some specific problems in modeling antennas and scatterers, including models
for a voltage source on a wire, lumped and distributed loads, nonradiating
networks, and transmission lines., Calculations of some observable quantities

are also covered including input impedance, radiated £field, and antenna gain.

1. SOURCE MODELING

The approach used in EC is applicable to a number of electromagnetic
analysis problems. For receiving antennas and EMP studies, the excitation is
the field of an incident plane wave and the desired response is the induced
current at one or more points on the structure. In scattering analysis the
excitation is still an incident plane wave, but the desired response is the
field radiated by the induced currents. In the case of a wire transmitting
antenna, however, the excitation is generally a voltage source on the wire.
The antenna source problem has received a considerable amount of attention
in the literature. A rather thorough exposition on the appropriate source
configuration for the linear dipole antenna has been given by King (ref. 31).
The delta-function source, which s.ay be visualized as an infinitesimally thin,
circumferential belt of axially directed electric field [or, alternatively,
as a frill of magnetic current at the antenna feed point (ref. 32)], is
convenient mathematically, but of somewhat questionable physical realizability.
Since the excitation can be specified only at discrete points in NEC, a
delta-function source is not feasible.

A useful source model, however, is an electric field specified at-a
single match point.  For a voltage source of strength V on segment i, the
element in the excitation vector corresponding to the applied electric field

at the center of segment i is set to
-V
Ei - Ai s (96)

where Ai is the length of segment i. The direction of Ei is toward the
positive end of the voltage source so that it pushes charge in the same

direction as the source. The field at other match points is set to zero.
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The actual effective voltage 1s the line integral of the applied field along

the wire. This cannot be determined beforehand since the field is known

only at segment centers, but can be determined after the scolution for current

by integrating the scattered field produced by the current. For equal length

segments in the vicinity of the source this field, which must be the negative

of the applied field at every point on the wire, is nearly constant over

segment 1 and drops sharply at the segment ends. This results in an actual

voltage of approximately AiEi as assumed in equation (96). When the source

segment and adjacent segments are not of equal length, however, the actual .

voltage, obtained by integrating the scattered field, may differ from the

intended wvalue. ’
Ideally, this source model applies a voltage V between the ends of the

source segment. Hence, the antenna input admittance could be computed as the

current at the segment ends or, in an unsymmetric case, the average of the

current at the two ends, divided by the applied voltage. 1In practice the

segment is sufficiently short so that the current variation over its length

is small and the current at the center can be used rather than the ends.

When segment lengths in the source region are unequal, the computed input

admittance may be inaccurate due to the discrepancy between the actual and
assumed voltages. Use of the actual voltage, obtained by integrating the
near field, will generally give an accurate admittance although it will
require additional effort for computation.

An alternate source model that is less sensitive to the equality of
segment lengths in the source region is based on a discontinuilty in the
derivative of current. This source model is similar to one used by Andreasen
and Harris (ref. 33), and its use in a program similar to NEC was reported
by Adams, Poggio, and Miller (ref. 34). For this model, the source region is
viewed as a biconical transmission line with feed point at the source location,
as illustrated in figure 5. The voltage between a point at s and the symmetric
point on the other side of the line is then related to the derivative of the

current by the transmission line equation,

_ .o 0I(ks)
V(s) = - JZO 3 (ks) s (97)
where Zo is the characteristic impedance of the transmission line. The
characteristic impedance of a biconical transmission line of half-angle O is .
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Figure 5. Biconical
Transmission Line
Model of Source

Regiom.
Z =120 n (cot 9—) ,
o 2
or for small angles, -
2
Z = 120 in (—) . (98)
0 S]

For a source on a wire, however, the proper choice for § in figure 5,
defining the angle O,is unclear. Adams et al. (ref. 34) used an average
value of ZO obtained by averaging equation (98) for § ranging from zero to d

as
d
‘ A =!'-f 120 n <§>d6
avg d 5 a
= 120 [2n<gé> - l] s
a

where d is set equal to the distance from the source location at the segment

end to the match point at the segment center. The voltage across the line is -

then

- . 24\ _ 09I (ks)
V(s) = - 3 120 [2n<a_> lJ Sks)
Allowing for a current unsymmetric about the source, the voltage Vo of a

source at s is related to a discontinuity in current derivative as

9T (ks)

lim V==
Y d(ks)

_ 91 (ks)
3 (ks)

s =8 *T-¢ s =8 =€

o}

. 0 . (99)
60 [zn(ﬁ> - j
a
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This discontinuity in current derivative is introduced into NEC by modifying

the current expansion on the wire. The normal expansion for Ns wire segments ‘
is -
N
S -
I(s) = 2 o, £.(s) ,
i=1 J ]

where the basis functions, fj’ are defined in section III-1 such that I(s)
has continuous value and derivative along wires, and satisfies Kirchoff's law
and a condition on charge density at junctioms.

For a current-slope-discontinuity source at the first end of segment £,

the current expansion is modified to

N

s %
I(s) = ;zl 3 fj(s) + By £,(5) (100)

x . . . .
where f2 is a basis function for segment %, as defined in section III-1, but
computed as if the first end of segment % were a free end and the segment
radius were zero. Hence, fz goes to zero with nonzero derivative at the

source location.

If f; on segment £ is

% KR
fz(s) = Ag + Bz sin k(s - sz) + Ci cos k(s - sg)

|s - sgl < AQ/Z R

then

3
a(ks)

*

L

fz(s)l . = B¥ cos(kd,/2) + Cj sin(kd,/2)

L
sy = A2/2

Since the sum of the normal basis functions has continuous value and
derivative at s = sy = AQ/Z, the current in equation (100) has a discontinuity

in derivative of

It

3
= Flksy L(8)

3
lim Jsr— I(s)
9 (ks) a 3
s=s, - AQ/Z + ¢ Fs=s, - AQ/Z - e

€>0

BQ {Bz cos(kAz/Z) + Cz sin(kAz/Z)}.
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Hence, from equation (99), a source voltage of VO requires a value of B,Q in

the current expansion of

—jVO A

_ L %
Bg =25 Qn-gg -1 BQ cos(kAQ/Z) +
-1 ' (101)
Cy sin(kAz/Z)

The linear system for the current expansion constants, obtained by
substituting equation (100) for f in equation (33), is
N
S *
< > = < > - < >, 102
jzl Obj W, ij Wi, € 82 W fz 7 ) (102)

In matrix notation, corresponding to equation (34),

[G] [A] = [E] + B, [F], (103)

where Fi is the excitation for segment or patch equation number i due to the
field of fz, and Ei_is the excitation for segment or patch equation number i
from other sources (if there are any). The interactioﬁ ﬁatrix G is independenti
of this source as it is of other sources. The solution for the expansion

coefficients is then

[a] = 16711 | [E] + 8, [F]| ,

where A supplies the coefficients uj in equation (100) to determine the
current. This method is easily extended to several sources. The modified
basis function fz appears to introduce an asymmetry into the current, but
this 1s not the case since the other basis function amplitudes are free to
adjust accordingly.

The current-slope-discontinuity source results in an effective applied
field that is much more localized in the source region than that of the
constant—-field source defined by equation (96). The difference is shown in

near-field plots for the two source models in figure 6, taken from Adams
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et al. (ref. 34). The near fields
107 L LA A B are for a half wavelength dipole
B T antenna with Q = 15 [ = 2Wn(L/a),

102 L — L = length, a = radius] and with 10
SOURCE REGION

segments on half of the antenna
covered by the plots. The constant-
field source is seen to result in a
nearly rectangular field distribution
in the source region while the field
- . of the slope-discontinuity source

Lo leor b biaa g approaches a delta function. The

107 T I L L L B B B L integrals of these two source-field
= " distributions yield approximately the

same voltages, however,

TANGENTIAL FIELD (V/m)

SOURCE REGION\\\ With the slope-discontinuity-
source model, the input admittance is
the ratio of the current at the
segment end, where the source is
located, to the source voltage.

Adams et al. also present results

showing the effect on admittance of

cead v bl
0 0.1 0.2 0.3 0.4 0.5 varying the sourcersegment length

END z/L CENTER relative to the lengths of adjacent

segments, showing that the slope-

Figure 6., Field Plots for a

Linear Dipole, Q=15. discontinuity source is much less

sensitive to segment length than is

the constant-field source. The two
segments on opposite sides of the source must have equal lengths and radii,
however. For very short, segment lengths, the slope-discontinuity model may
break down although, as with the constant—field source, the correct admittance

“can be obtained by integrating the mnear field to obtain the source voltage.

2. NONRADIATING NETWORKS

Antennas often include transmission lines, Iumped circuit networks, or
a combination of both connecting between different parts or elements. When
the currents on transmission lines or at network ports are balanced, the

.resulting fields cancel and can often be neglected, greatly simplifying the
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modeling problem. The solution procedure used in NEC is to compute a
driving-point-interaction matrix from the complete segment-interaction matrix.
The driving-point matrix relates the voltages and currents at network connec-—
tion points as required by the electromagnetic interactions. The driving-
point-interaction equations are then solved together with the network or
transmission line equations to obtain the induced currents and voltages. In
this way the larger segment-interaction matrix is not changed by addition or
modification of networks or transmission lines.

The solution described below assumes an electromagnetic interaction

matrix equation of the form,

[¢] [1] =~ [E] , (104)

where Ei is the exciting electric field on wire segment i and Ii is the
current at the center of segment i. In NEC the interaction equétion has the

form,
[G] [A] = - [E] ,

. , ,th . . .
where Ai is the amplitude of the i basis function fi in the current

expansion,

N

=]
I(s) = A £0(8)
i=1

The same solution technique can be used, however, by computing I from A
whenever I is needed. This must be done in computing the elements of the
inverse of G, GE?, which below represent the current on segment i due to a
unit field on segment j.

A model consisting of Ns segments will be assumed WiFh a general M-port

network connected to segments 1 through M. The network is described by the

admittance equations,

(105)

IR
[
<7

i
H
L
}..I
i
}—l
=

=1 ij ] i - : -

where Vi and IE are the voltage and current at port i, with reference

directions as shown in figure 7.
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t The connection of a network

I1
+, W —— port to a segment is illustrated in
Vl figure 8. The segment is broken, and
° IE the port is connected so that
To == t
v, M-PORT L=t (106)
L NETHORK
. It where Ii is the segment current.
* M Figure 9 shows a voltage source of
VM'+' strength Vi connected across the
" network port at segment i. In this
case,
Figure 7. Vo%tage‘and Current v g
Reference Directions at Net- I: =1° -1, . (107)

work Ports.

In either case, the port voltage may be related to the applied field on the

segment by the constant-field voltage source model of equation (96).

We will assume that segments 1 through M, are connected to network

1

ports without voltage sources, and segments M. + 1 through M are connected to

1
network ports with voltage sources. The remaining segments have no network

/ /
f / /)
/ //I
J
I, t
1 Ij
+ Y11 Yij +
it
SEGMENT 1 ﬁ v, 1 v, ? SEGMENT 3
Y.. Y.,
ji bR,
/ /
/ /
~  / / W,
/

Figure 8. Network Connection to Segments.
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i 13
/ /
/ //
- / / ~/
/
Figure 9.

Network Port and Voltage Source Connected to a Segment.

connections but may have voltage sources. In addition all of the segments

may be excited by an incident field represented by Ei on segment 1. The

total field on segment i is then

v,
+ EI

_ 4
B, =% *tE
1

where Vi is a gap voltage, due either to a network port or voltage source, and
Ai is the segment length.

Equation (104) may be solved for current as

N
I.=- S ¢lte i=1, ..., N_, (108)
=1 3 s - j

where G;? is the (i,j)th element of the inverse of matrix G. Before

evaluating equation (108), however, the unknown port voltages, V., for

i= l,...,Ml must be determined. Hence, equation (108) is written with all

known quantities on the right-hand side as

M

1 s , , ,
> T E +1I,=38  di=l, ..., M, , (109)
j=1 ij 3 i i 1 ! o

51




where

E]?=%j—9
35
and
Ml Ns
B,=- 5 e~ Y dleE
i s 13 3o, +1 i3 73

Similarly, the network equations (105) are written using equation (106) as

M

1.,

> Y,.E +1I,=0c, i=1, ..., M. , (110)
. ii ] i i 1
j=1

where

1

L, =AY ,

ij 3 1]

)

c., = - Y,, V,

* j=Mper

The current is then eliminated between equations (109) and (110) to yield

M
1 -1 ' P
> (6. -Y..)E =38, -cC, i=1, ..., M, . (111,
. ij 1] 3 i i 1
j=1
The solution procedure is then to solve equation (111) for E? for j = l,...,Ml.

Then, with the complete excitation vector determined, use equation (108) to
determine Ii for 1 = l,...,NS. Finally, the remaining network equations with

equation (107) are used to compute the generator currents as

M
2= 3 T,V I 1=, L M (112)
=1

The currents I? determine the input admittances seen by the sources.

In NEC the general M-port network used here is restricted to multiple .

two-port networks, each connecting a pair of segments.
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3. TRANSMISSION LINE MODELING

Transmission lines interconnecting parts of an antenna may be modeled
either explicitly by including the transmission line wires in the thin-wire
model, or implicitly by the method described in the preceding section for
nonradiating networks. For an implicit model, the short~circuit-admittance

parameters of the transmission line viewed as a two-port network are

Y

11 = Fgp = 73 Y, cotlkh)

Y190 = ¥o1

3 YO csc (k) ,

where YO is the characteristic admittance of the line, k is the wave number
(2m/X), and £ is the length of the line. If a separate admittance element

is connected across the end of a transmission line, its admittance is added to
the self-admittance of that network port.

The implicit model is limited, however, in that it neglects interaction
between the transmission line and the antenna and its environment., This
approximation is justified if the currents in the line are balanced, i.e., in
a log periodic dipole antenna, and in gener.. if the transmission line lies
in an electric symmetry plane. The balance can be upset, however, if the 7
transmission line is connected to an unbalanced load or by unsymmetric
interactions. If the unbalance is significant, the transmission line can be
modeled explicitly by including the wires in the thin wire model. The
explicit model is completely general, and yields accurate results since the
sine, cosine, and constant current expansion in NEC is a good representation
of the sinusoidal transmission line currents. The accuracy is demonstrated
in figure 10 for transmission lines terminated in short circuit, open circuit,
and matched loads. -

The explicit transmission line model is, of course, less efficient in
computer time and storage because of the additional segments required. 1In
cases where the physical line presence does have a significant effect on the
results, the effect may be modeled by explicitly modeling a single conductor
of the line while using the implicit model to represent the balanced current

component.
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SHORT CIRCUIT

i 1 I
OPEN CIRCUIT

CURRENT AMPLITUDE (mA/V)
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I
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MATCHED LOAD = 300 ohms
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a/» = 0.0022
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1 — Analytic Solution —
® NEC (Current at Segment Centers)
0 l I | [ I
} 2.0 1.5 1.0 0.5 1
GENERATOR LLOAD

DISTANCE FROM LOAD IN WAVELENGTHS

Figure 10. Current Distribution on a Two-Wire Transmission
Line from NEC Compared with the Ideal Transmission Line
Solution.
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4, LUMPED OR DISTRIBUTED LOADING

Thus far, we have assumed that all structures to be modeled are perfect
electric conductors. The EFIE is easily extended to imperfect conductors by

modifying the boundary condition from equation (4) to
8@ % [B°® + B D | - 2, e < 3,®)

- -
where Zs(r) is the surface impedance at r on the conducting surface. For a

wire, the boundary condition is
~ >g > >T -
5 lES(r) + BN = z () 1(s) ,

.
with r and 8 the position vector and tangent vector at s on the wire and

ZW(S) the impedance per-unit-length at s. The matrix equation can then be

written,
Ny Z,
G,,da, =-E, +5+—1, i=1, ..., N_, (113)
j=1 i3 73 i Ai i s
where i
aj = amplitude of basis function j,
Ei = the incident field on segment i,
I, = current at-the center of segment i, i
Zi = total impedance of segment i,
Ai = length of segment i.

The impedance term can be viewed as a constant field model of a voltage source,
as described in section IV-1, where the voltage is proportional to current.
It is assumed that the current is essentially constant, with value Ii’ over
the length of the segment, which is a reasonable assumption for the electri-
cally short segments used in the integral equation solution.

The impedance term can be combined with the matrix by expressing Ii in

terms of the uj as
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. ,
s i, i

= > u.(A.+c.),
5 3\ 3

i i - .
where Aj and Cj are the coefficients of the constant and cosine terms,
regpectively, in the section of basis function j extending onto segment i.
If basis function j does not extend onto segment i, then Aj and CJ are zero.

The matrix equation modified by loading is then

NS
' . B -
;zl Gyy 05 = = Ey i=1, ..., N_, (114)
where
6. =qa, . - 4 <Ai + ci) (115)
ij ij Ai_ i} il 7

For a lumped circuit element, Zi is computed from the circuit equations. For
a distributed impedance, Zi represents the impedance of a length Ai of wire,

which in the case of a round wire of finite conductivity is given by

- 384 Wit Ber(q) + j Bei(q)
i ay 270 Ber'(q) + j Bei'(q)

where

a, = wire radius,
g = wire conductivity,

Ber, Bel = Kelvin functions.

This expression takes account of the limited penetration of the field into an

imperfect conductor.

5., RADIATED FIELD CALCULATION

The radiated field of an antenna or revadiated field of a scatterer can
be computed from the induced current by using a simplified form of equation
(1) valid far from the current distribution. The far-field approximation,

valid when the distance from the current distribution to the observation
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point is large compared to both the wavelength and the dimensions of the
current distribution, treats the distance [? - ?'f as constant within the
integral except in the phase term, exp(—jkl? - ?'}). For a structure
consisting of a wire portion with contour L and current distribution %(s),

> >
and a surface portion S with current Js(r), the far-zone field is

> 4kn exp(—jkro)
E(ro) T 4w T
[e]
{fL [(fc . f<s>> k - 1(s) Jexp<ji'€-??>ds (116)

+ Jg [(ﬁ'js(;>>ﬁ—38(?)] exp(j§-¥)dA s

Pay

where ¥o is the position of the observation point k = ;o/|¥ol’ k = 27/X, and
k = kk. The first integral can be evaluated in closed form over each straight
wire segment for the constant, sine, and cosine components of the basis
functions, and reduces to a summation over the wire segments. With the
surface current on each patch represented by a delta function at the patch
center, the second integral becomes a summation over the patches.

The radiation pattern of an antenna can be computed by exciting the
antenna with a voltage source and using equation (116) to compute the radiated
field for a set of directions in space. Alternatively, since the transmitting
and receiving patterns are required by reciprocity to be the same, the pattern
can be determined by exciting the antenna with plane-waves incident from the
same directions and compgting the currents at the source point. The solution
procedure in NEC does not guarantee reciprocity, however, since the different
expansion and weighting functions may produce asymmetry in the matrix. Large
differences between the receiving and transmitting patterns or a significant
lack of reciprocity in bistatic scattering are indications of inaccuracy in
the solution, possibly from too coarse a segmentation of the wires or surfaces.

The power gain of an antenna in the direction specified by the

spherical coordinates (0,¢) is defined as

= 4y 260:0)
GP(O’(b) = 47 P ’

in
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35). For example, the z component of electric field due to a vertical current

element is

where

—ijl 2

vo_ o 2 .,
EZ inId&/2x jcos” Y' e /Rl + Rv cos” P

~jkR -jkR
e 2/R2 + (l—RV)(l—u2 + u4 cos2 UF e 2/R2

-jkR
+ u. /ﬁ— ¢ sin Y 2 e 2/ij;

TIKR, 2 2
+ e le l/ijl + l/(ijl) (1-3 sin” Y")

~JkR, 2 2
+ e /R2 (l/ijZ + 1/(ij2) ) (1-3 sin” V) ¢ ,

= 1-j /Ea'e_m erfc(j ﬁ;) >

erfe( ) = error function,

w = 4pl/(l—RV)2

—ijzuz(l—u2 cos2 Y/ 2,

Py =

R = (sin ¥ -u V1-u W) /(sin ¥ + u V1-u R
u = k/kz,

k = free-space wave number,

kz = wave number in lower medium,

sin ¥ = (z + a)/Rz,

sin ¥' = (z - a)/Rl,

a height of current element above ground,

z height of observer above ground,

Rl = distance from current element to observer,

R2 = distance from image of current element to observer.

58




where P(0,¢) is the power radiated per unit solid angle in the direction
(8,¢), and Pin is the total power accepted by the antenna from the source.

Pin is computed from the voltage and current at the source as

_ 1 .
P, =75 Re(VI¥) ,

and

R(0.6) = T R

->
E is obtained from equation (116) with ;O'in the direction (8,d), and r, = R.
Directive gain is similarly defined as

6, (@,0) = 4n BB -

b
rad

where Prad is the total power radiated by the antenna,
P =P, =P
rad in loss ’
and Ploss’is the total ohmic loss in the antenna.

6. GROUND-WAVE FIELD

The radiated field of an antenna over ground is modified by the ground
interaction, as discussed in section II-4., When the range from the antenna
to the observer, R, approaches infinity, the Sommerfeld formulation for the
field reduces exactly to a direct field determined by equation (116) and a
field from the image modified by the Fresnel reflection coefficient. In some
cases, however, when the observer is at a finite distance from the antenna,
the field components proportiomnal to l/R2 may be significant. While the 1/R
terms are generally much larger than the l/R2 terms at practical observation
distances from an antenna, the 1/R terms vanish at grazing angles over an
imperfect ground plane leaving only the l/R2 terms, dominated by a term known
as the ground wave. The ground wave is, of course, included in Sommerfeld's
expressions. However, it is more easily evaluated from closed~form
approximations.

A set of approximate expressions for the field of differential current

elements of vertical or horizontal orientation were derived by Norton (ref.
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Expressions for the other field components of a vertical or horizontal current
element are given in Norton's paper. The field of an arbitrarily oriented
current element can be obtained from these expressions by decomposing the
current element into horizontal and vertical components and applying
appropriate coordinate transformations. The approximations involved in these
expressions are valid for R greater than a few wavelengths and to second order
in u2. The second condition is satisfied for practical ground media. When
the ground wave is included, the field has radial as well as transverse

components.
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Section V
Validating Results

Some results are presented in this section to demonstrate the range of
validity of the NEC code. The results include antennas over a ground plane,
showing the range of validity of.the reflection-coefficient approximation,
and a solid cylinder with wires attached. For simple wire antennas, the code
has been' thoroughly tested and found to be highly accurate. Some situations
have been found to result in reduced accuracy, however. These include large,
abrupt changes in wire radius and structures very small relative to the
wavelength. Methods of modeling such antennas are discussed in other reports
(refs. 36, 37 and 38), which include comparisons with measured data taken at

the Naval Ocean Systems Center.

1. ANTENNAS OVER GROUND

Tn most cases data obtainable by independent analytical techniques are
not sufficiently accurate to serve as a useful check on NEC. For an antenna
over ground, however, the Sommerfeld integral formulas provide a good check
of the reflection~coefficient approximation since Sommerfeld's formulas are
valid for any ground parameters and interaction distance. Both methods use
the same integral-equation-solution technique, which is highly accurate for
the simple structures considered here.

Figure 11 illustrates the input resistance of a vertical half-wave
dipole as a function of height over a lossy ground. The comparison with the
Sommerfeld integral results points out that significant discrepancies occur
only when the dipole is very close to the ground and that even when the tip is
touching, an error of less than 10% is encountered. The input resistance of
a 0.1)\ horizontal dipole above a dielectric half-space is shown as a function
of height above ground in figure 12. Comparison with the scant, independent
data indicates close agreement. A comparison with experimental data for a
purely dielectric ground is shown in figure 13. The plot pertains to the
input resistance of a horizontal half-wave dipole as a function of its height
above ground. Since the antenna radiation pattern is also of great interest,
we include in figure 14 the radiation patterns of a monopole over a dielectric
ground. The results are compared to those presented by Wait (ref. 24)
wherein a current distribution on the monopole was assumed. For comparison,

a Sommerfeld integral calculation is also provided. The NEC data have been
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normalized to Wait's data and the same normalization factor applied to the
Sommerfeld data. The input resistance and radiation patterns of an array
of two vertical dipoles, one driven and one parasitic, at various heights
above ground are compared in figure 15. The input resistance versus dipole
separation is shown in figure 16.

These results indicate that the reflection~coefficient approximation
can provide usefully accurate results for a wide range of cases involving
antennas over ground. There are cases, however, for which the approximation
breaks down. Although figure 11 indicates reasonable accuracy for a vertical
dipole antenna when the tip touches the ground, large errors may occur for a
vertical monopole antenna on an imperfect ground. A practical monopole
antenna, however, is usually fed against a ground screen or some other ground-
ing device. Hence, rather than feeding the monopole against the imperfect
ground, a more realistic model in NEC might employ a radial-wire ground

screen or perfectly conducting ground in the vicinity of the monopole. This
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avoids the inaccuracy in feeding against an imperfect ground. The reflection-
coefficient approximation is also inaccurate for interactions between wires
close to the ground where the reflecting ray has grazing incidence on the

imperfect ground, a case which occurs in the Beverage antenna.

2. CYLINDER WITH ATTACHED WIRES

To demonstrate the validity of NEC for modeling combined wire and surface
structures, three comparisons of computed and experimental radiated-field
patterns are presented in figures 17, 18, and 19. The experimental data are
from a set of measurements taken at the University of Denmark by Albertsen

et al. (ref. 9) of spacecraft-like models. Albertsen et al. compared these
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measurements with results of their own computer program after which the
treatment of the connection of a wire to a surface in NEC is patterned.

In each case the structure is a 22-cm-high cylinder with a 20-cm diam.
Two wires are attached in various locations on the cylinder as illustrated
in the upper right hand corners of figures 17, 18, and 19. These illustrations

also show, by a small test dipole, the plane of the radiation pattern and
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Figure 17. Experimental/Numerical Radiation Pattern of Cylinder
with Attached Wires.,

the position of zero degrees in observation angle. The division of the
cylinder into patches 1s the same in each case except for the subdivision at
the points where the wires connect. - The segmentation of the cylinder for the
wire connection of figure 17 is shown in figure 20. The shape drawn for each
patch is only for the purpose of illustration since the program only uses the
patch center-point and area. In each.case, wire a is driven against the
cylinder by a voltage source at its base while wire b is connected directly

to the cylinder.
The agreement of the computations with the measurement is about the same

as was obtained by Albertsen et al. The worst agreement is for the case of .

figure 18. This agreement is slightly worse than was obtained with the

68

Y B




1.2

.
.

I 0o O
O 0

3 cm §4 SEGMENTS)
8 cm (4 SEGMENTS) \ /8/ |
8 cm \\ a

RELATIVE FIELD STRENGTH

— Measured (Ref. 9)
O NEC

| 4 | :
90 180 270 360

OBSERVATION ANGLE

O

'Figure 18. Experimental/Numerical Radiation Pattern of Cylinder
with Attached Wires.

earlier program AMP2 despite several refinements in NEC. The agreement is
also worse than that obtained by Albertsen et al. This appears to be a
particularly unstable pattern, however, since when the number of segments on
each wire is increased from 4 to 5, the agreement with measurement becomes
worse with either NEC or AMP2., No special ¢onsideration has been given to
the edges of the cylinder although increased patch density near the edges
might improve the results. Generally, the agreement is good, however, and
was obtained with considerably less computation time than would be required

with a wire-grid model of the cylinder.
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Figure 20.

Segmentation of Cylinder for Wires Connected to End and Side.
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Appendix

FIELD EQUATIONS FOR THE KERNEL .0OF THE
ELECTRIC FIELD INTEGRAL EQUATION

In the NEC code, an arbitrary wire structure 1s represented by a set of

straight wire segments. Each has a current of-the form

Ii(s) = Ai + Bi sin k(s - Si) + Ci cos k(s - Si) (A1)

IS - Si! < Ai/Z ’

where k = w#ﬂg; and Ai is the segment length. The solution requires the
evaluation of the electric field at each segment due to this current. Three
approximations of the integral equation kernel are used: a thin-wire form
for most cases, an extended thin-wire form for thick wires, and a simplified
thin wire form for large interaction distances. In each case the evaluation
of the field is greatly simplified by the use of formulas for the fields of
the constant and sinusoidal current components.

For the thin-wire kernel, the source current is approximated by a
filament on the segment axis while the observation point is on the surface of
the observation segment. The fields are evaluated with the source segment on
the axis of a local cylindrical-coordinate system as illustrated in figure Al.

Then with

[}
I

exp(—jkro)/rO , , (A2)

2] 1/2

[a]
Il

[pz +(z - 2" , (43)

the p and z components of the electric field at P due to a sinusoidal current

filament of arbitrary phase,

I = sin(kz' - @o) , 2, < z' < 2

1 (A4)

2 >

are
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z Figure Al. Current-

~ Filament Geometry
P P p for the Thin-Wire
Kernel.
Z ro
2
N ,
Z s ;
y
X
£ —in 8G0
E (psz) = I {(z'-2z) I—+1GC
p 2k2Ap 9z o
(AS)
z
- (z'-2) G oL .
o 3z' . ?
1
z
£ o, 5y = D [G oI _ . 3%] ’ (46)
’ = [ 1 .
z Zkzk o dz dz 2

1

For a current that is constant over the length of the segment with strength

I, the fields are

2
£, I jn [BGO} (A7)
E (p,Z) =T N s
o} A 2k2 3P .
1
Z
£ I in oG, ? 2 %
E (0,2) = - 3% (|58t f G_ dz'( . (A8)
2k z z
1 1
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These field expressions are exact for the specified currents. The integral
over z' of GO is evaluated numerically in NEC.
Substituting sine and cosine currents and evaluating the derivatives

yields the following equations for the fields. For

B sin kz'
I=1, (cos kz') i (49)

£ _Io in cos kz'
Ep(p,z) =< A Go k(z-z") ( )

— 1 '
A 2k2p sin kz
(A10)
z
2 1 sin kz' 2
_ ot . =
+ 1 {z-2') (l+jkro) 5 cos kz' s
r zZ
o] 1
£ Io in cos kz'
B (Pa2) =37 773 6\ K <—sin kz?)
2k '
(A1)
1 {sin kz' “2
-— 3 —_ ! —_—
(l+3kro)(z z') 2 <cos kz')
r 4
o 1
For a constant current of strength Io’
zZ
£ IO,. ’ G 2
B (p,z) = - =20 arjur ) -2 , (412)
o] A 2 o 2
2k ro
- zl
Z
. T ¢ 1 2
E (p,z) = - -2 J (I+ikr ) (z~-z") 2
z A 2 o 2
2k rO 2
1
(A13)
Z
+18 [P e ez
o]
21

Despite the seemingly crude approximation, the thin-wire kernel does

accurately represent the effect of wire radius for wires that are sufficiently
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thin. The accuracy range was studied by Poggio and Adams (ref. 11) where an
extended thin-wire kernel was developed for wires that are too thick for the
thin-wire approximation.

The derivation of the extended thin-wire kernel starts with the current

on the surface of the source segment with surface density,
J(z') = I(z")/(2ma) ,

where a is the radius of the source segment. The geometry for evaluation

of the fields is shown in figure A2. A current filament of strength Id$/(2m)

is integrated over ¢ with

o' = [p2 + a2 - 2ap cos ¢]l/2 . (A1L)

r =02+ (221212, (A15)

Thus, the z component of the field of the current tube is

27

t _ 1 £, 4 '
EZ<Q,z = o ~£ Ez(o »z)do . (Al6)

Z Figure A2, Current
Geometry for the
Extended Thin-Wire
Kernel..
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For the p component of field, the change in the direction of B' must be

considered. The field in the direction 0 is

2T

B (p,2) = o fo EC(p'.2) (0614 (417)

where

y P~ acos & _ 9p

—

pep o' 30

The integrals over ¢ in equations (Al6) and (Al7) cannot be evaluated in
closed form. Poggic and Adams, however, have evaluated them as a series in
powers of a2 (ref. 11). The first term in the series gives the thin-wire
kernel. TFor the extended thin-wire kernel, the second term involving a2 is
retained with terms of order a4 neglected. As with the thin-wire kernel,
the field observation point is on the segment surface. Hence, when
evaluating the field on the source segment, p = a.

The field equations with the extended thin-wire approximation are given

below. For a sinusoidal current of equation (A4),

_in aez
= L ~ T ]
Ep(p,Z) 1 (-1 5. + 16,

ZkZAp
€A18)
z
2
(e or
(2 Z)GZ azv} ’
21
z
" - 26 2
E (p,z) = il ¢ ~v - I = s (A19)
z 2k2k 1 9z oz
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For a constant current of strength IO,

L n [ael} 29
E (p,Z) =5 N~ s <A20)
P A 2k2 ap z;
6.1 %2
T4
B, (0:2) = - 525 la—l]
2k zy
(a21)
A ; (ka)z -[ZZ G dz' - (ka)2 [BGO ]22
4 o 4 oz’ z '
21 1

The term Gl is the series approximation of

2T

t 1 ) N
Gy = or /O G do , (A22)

where
G = exp (~jkr)/r.

Neglecting terms of order aa,

2 J2.2 ) 5
G. =G J1 - —a—z (1+jkr ) + 0 -[3(l+jkro) -k ro} , (A23)

L ° 2t 41:4
) )
3G 2
1 _ (z=z") . __a . .22
Ol 5 GO (l+3kro) ) [3(l+jkro) k ro}
r 2¢
) )
(A24)
22T
-abf [jk3r3 + 6k2r? - 15(1+jkr )] i
4 ol o o
br
)
30




oG oG . 2
1_ o . ~at . 22
55 - 5 (l+3kro) 2 [3(l+3kro) k rO]
T T
0 8]
(A25)
2 2 ,
220 533 ¢ ek%e? - 15 (ke )
by o) o o}
o
The term G2 is the series approximation of
2T
_ -
¢l = E‘%f p-acos ¢ 2205 86 ap . (A26)
T Jy o
To order az,
Go a2'2 2 2
G, = L+ 2 [3(l+jkro) -k ro} , (A27)
4r
o]
(2 (I+jkr ) - 2% [,,3.3 L 2,2 15 (1+ikr )
dz' r2 JXE, 4 4 J o o JEL,
p o rO
(A28)
Equation (A20) makes use of the relation
A A e 3¢ 3p' 3G
(p.p'> apv = ap! ag = —a_p ’ (Azg)
while equation (A21) follows from
2 2 2
Gl=[1-ﬁ%>_-.a4__a_2]veo. O
oz'

When the observation point is within the wire (p<a), a series expansion in

p rather than a is used for GO and G For G, this simply involves inter—

2° 1
changing p and a in equations (A23) and (A24). Then for p £ a, with

2 2]1/2
r, = |a + (z-z") R (A31)
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Ga = exp(—jkra)/ra s (A32)

the expressions for G., G, and their derivatives are

1* 72
2 42,2 -
6, =6, 31 - —9—2 (1Hjke ) + 2 [3(l+jkra) -k ra] , (A33)
2r 4r
a a
3G 2
1 (z-2'") . p . 2.2
5l 2 Ga (l+Jkra) -~ 3(l+3k1a) -k r .
r 2r
a a
(A34) ,
azgz 3.3 2.2
- jk7r” + 6k r” - 15(1+ijkr ) .
by a a ) a
3G 2
ﬁ = - % G, { (+jkr ) - —""5 [3(1+jkra) - kzri} , (A35)
T 2r
a a
G, = - ——9—2 G, (+ikr)) , (A36)
2r
3G , '
32'2 - _ Lz 24)9 G, [3(l+jkra) - kzri] . (A37)
' 2r
a

Special treatment of bends in wires is required when the extende§ thin
wire kernel is used. The problem stems from the cancellation of terms
evaluated at zq and z, in the field equations when segments are part of a
continuous wire. The current expansion in NEC results in a current having a s
continuous value and derivative along a wire without junctions. This ensures
that for two adjacent segments on a straight wire, the contributions to the

z component of electric field at z, of the first segment exactly cancel the

2
contributions from z0» representing the same point, for the second segment.
For a straight wire of several segments, the only contributions to Ez with

either the thin-wire or extended thin-wire kernel come from the two wire ends

and the integral of GO along the wire. TFor the p component of field or
either component at a bend, while there is not complete cancellation, there .

may be partial cancellation of large end contributions.
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The cancellation of end terms makes necessary a consistent treatment of
the current on both sides of a bend for accurate evaluation of the field.
This is easily accomplished with the thin-wire kernel since the current
filament on the wire axis is physically continuous around a bend. However,
the current tube assumed for the extended thin-wire kernel cannot be continuous
around its complete circumference at a bend. This was found to reduce the
solution accuracy when the extended thin-wire kernel was used for bent wires.

To avoid this problem in NEC, the thin-wire form of the end terms in
equations (A5) through (A8) are always used at a.bend or change in radius. The
extended thin-wire kernel is used only at segment ends where two parallel
segments join, or at free ends. The switch from extended thin-wire form to the
thin-wire form is made from one end of a segment to the other rather than
between segments where the cancellation of terms is critical.

When segments are separated by a large distance, the interaction may
be computed with sufficient accuracy by treating the segment'current as an
infinitesimal current element at thersegment center. In spherical coordinates,

with the segment at the origin along the © = 0 axis, the electric field is

Er(r,O) an exp(—jkr)(l - ?%) cos O ,
2Tr

E.(r,0) = M0 exp (-jkr) |1+jkr - 4L) sin @ .
© 4Trr2 kr

The dipole moment M for a constant current I on a segment of length Ai is

=
1l

LA, .
i

For a current I cos[k(s - si)] with [s - siI < Ai/2 ,

=
1

2L .
. 51n(kAi/2) ,

while for a current I sin[k(s - si)],
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Use of this approximation saves a significant amount of time din
evaluating the interaction matrix elements for large structures. The minimum
interaction distance at-which it is used is selected by the user in NEC. A
default distance of one wavelength is set, however. '

For each of the three methods of computing the field at a segment due
to the current on another segment, the field is evaluated on the surface of
the observation segment. Rather than choosing a fixed point on the segment
surface, the field is evaluated at the cylindrical coordinates p', z with
the source segment at the origin. If the center point on the axis of the

observation segment is at P, z, then

o { 9 2}1/2
p = P + aO )

where a is the radius of the observation segment. Also, the component of

Ep tangent to the observation segment is computed as

> FAS A A
Eb + 5 = (p‘s)-%T Ep .

Inclusion of the factor p/p', which is the cosine of the angle between P and

0', is necessary for accurate results at bends in thick wires.
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