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SECTION I

INTRODUCTION

A problem of continuing and widespread interest in electro—
magnetic theory iIs that of wire configurations under certain speci-
fic conditions. The transient and harmonic analyses of thin-wire
structures have been the subject of investigations for a number of
vears. An early treatment of thin wires was given by Oseen [1] who
applied the method of retarded potentials to straight thin wires and
calculated the induced current on a wire by a transient incident
wave. Hallen [2] used a slightly different form and derived a pure
integral equation for the induced current on a thin wire and used it
to derive analytical expression for the natural frequencies and
current distributions of the natural modes. Since then many investi- .
gations have studied various thin-wire problems.

In recent times Tesche [3] analyzed the thin wire scatterer
from the singularity expansion point of view. Wilton and Umashanker
[4] conducted a parametric study of an L shaped wire using the sing-
ularity expansion method (SEM). The EMP® interaction with a thin
wire above a ground plane using SEM was investigated numerically by
Shumpert [5]. However, in more recent Eimes Crow, et al. [6] have
conducted an in depth stu&y of the crossed wire structure using SEM.

Even though many of these papers are helpful in the determina-
tion of induced currents and charge densities on thin wire config-

urations, most of them utilize very complex and elaborate numerical

o .
The electromagnetic pulse generated by a nuclear denotation is
generally referred to as the EMP,




techniques. Being motivated by some techniques used earlier, the
present investigation utilizes primarily analytical techniques for
the treatment of wire configurations in the proximity of a lossy
ground.

The second‘chapter of this report presents the time harmonic
analysis and considers the plane wave illumination of a single wire
over a perfect ground. The approach used follows Taylor, et al. [7]
for the current distribution induced on a transmission line by a
nonuniform field. Subsequently the plane wave illumination of
crossed wire configuration over perfect ground is considered. The
single wire and crossed wire configurations are then considered to
be in the proximity of a lossy ground plane. The third chapter in-
cludes transient analysis with brief description of SEM. It presents
the technique for determining the natural modes and frequencies for
perfect ground, as well as lossy ground considerations utilizing SEM.
Numerical results obtained for both single wire and crossed wire con-
figuration are presented in Chapter IV. Chapter V contains the con-
clusions and comments.

The accurate determination of the natural frequencies and
natural current modes on a mathematically tractable configuration
(e.g., the crossed wire configuration) is an early step in the study
of electromagnetic field interaction with an aircraft that will pro-
ceed to more complex cénfigurations. This and other topics are

considered in some detail in this report.



SECTION II

TIME HARMONIC ANALYSIS

2.1 Plane Wave Illumination of the Single Wire

Over Perfect Ground

Some time ago, Bates and Hawley [8] presented a simple first—
order tréatment of the scattering of plane waves from an infinitely
thin wire above a ground plane. 1In that paper the effects due to a
lossy ground plane are neglected but they were later considered by
Leonard Schlessinger [9]. In more recent times Crow, et al. [6] and
[10], have also conducted similar studies Ffor thin wires of finite
length above a perfect ground plane applying purely numerical tech-
niques.

The present investigation considers ({utilizing simple analyti-
cal techniques) plane wave illumination of a single wire above a
ground plane. Initially, the perfect ground case is presented,
later the lossy ground plane case is discussed. In both cases
transmission line theory is used, which requires the wire height to
be much less than the wave length and the wire length.

In this section we obtain the expression for a single wire over
perfect ground illuminated by a plane wave. The general formulation
for the current distribution along the thin cylinder (or wire) due
to normal plane wave incidence has been obtained by Taylor, et al.
[7] for a two wire transmission line with arbitrary termination
impedances. For the problem considered here the single wire with

its electromagnetic images forms a two wire transmission line with




open ends, as shown in Figure 2.1. 1In Figure 2.2, the transmission

line currents at the ends are zero (i.e., Io = Iz = 0 because Z0

and Z2 are infinite). Hence the expression becomes

zZ

. e R P _ .
I(z,jw) = Zc SIn (kD) [sin k(=z-2) j K(u) sin ku du

o
2
+ sin(kz) J K(u) sin k(u-2) dul (2.1)
z
where
K@ = [E-(h,2) - E-(-h,2)] = 3 4 E_ sin(h)
k2 = Yz |,

Y is the shunt admittance per unit length and Z the series impe-

dance per unit length.

2.2 Plane Wave Illumination of a Crossed Wire Configuration

Over a Perfect Ground

Several investigators have considered the plane wave illumi-
nation of wire configurations over perfect ground and in free space.
Shumpert [5] has also analyzed thick wire configurations. Crow, et.
al. [11], formulated the problem using Pocklington type integro-
differential equations and studied it by means of the SEM. Numeri-
cal techniques were used to determine the natural frequencies and
associated current modes. Analysis of crossed wires in a plane wave
field was done by King [12]; however, recently Crow, et al. [5]
utilized SEM techniques for perpendicular crossed wires over a per-
fectly conducting ground plane. In order to avoid the complicated

numerical techniques, an attempt was made to obtain the natural .
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Figure 2.2: Terminated two-wire transmission line excited

by a plane wave with normal incidence.




frequencies and associated current modes utilizing transmission
line theory in conjunction with electromagnetic superposition.
Consider the wire configuration oriented as shown in Figure
2.3. Initially the current distributions are obtained considering
excitation along the Ra, Rf or zw elements separately. Then the
net current distribution is obtained by the summation of the fore-

going results via superposition.

Case A. Consider the excitation along the Qa element only.
With reference to Figures 2.3 and 2.4 the current on the za element
ig obtained by treating the configuration shown in Figure 2.3.

There are basically two junction conditions that apply to this
configuration. (1) The Kirchhoff's current law must be satisfied
at the crossed wire junction and (2) junction voltages of the wires

are all equal. Hence 2, is infinite corresponding to the open end

= -+ (2.2)

and where Zw and Zf are the impedances seen looking into the

transmission line formed by the Rw and Qf element with their

images, from the junction, Zi is the equivalent impedance formed

. considering Zw and Zf impedances in parallel. Accordingly

Zm = —j ch cot(klw) (2.3)
where

ch = 120 2n(2h/aw) (2.4)
and

Zf = -j ZCf cot(klf) (2.5)

11
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Figure 2.3: Crossed wires oriented parallel to a ground
plane with the Qa element excited by a plane
wave field.
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Figure 2.4: Circuit diagram representing the configuration
shown in Figure 2.3, where Z, corresponds to the
junction impedence formed by £, and Ly elements.

[ d

Z_ 1s infinite corresponding to the open end of
the Qa element.
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where

ZCf = 120 2n(2h/af) (2.6)

Z and Z are the characteristic impedance of & and ¢
cw cf 7 ) £
transmission lines respectively and correspond to the free space

conditions.

According. to Taylor, et al. [7], the current distribution

induced on the line is

sin k(z—la)

(g aw) = pr Sinkz oo, _ 3
Ia(z’Jm) I2 sink & 1 sin k 2 Z sin k&
a a ca a

z
. {;bnk (z—ia)J K(u) « sinku -« du
- o

2
+ sinkz J K(u) *.sin k(u—za) « du (2.7)
z

Applying the free end conditions described earlier

Ié = 0 since 22 is infinite

-]

K{) - sin k(u—la)'du (2.8)
Z coskf +37. sin k&
ca a 1 a

Integrating and simplifying

RK(z) = j 4 EO sinkh (2.9)

Prime (') indicates the quantities when only the Za element is
excited. :

13



Using (2.8) and (2.9) in (2.7) vields

sink(z- Q,a) 4EO sinkh
' . = _T!
Ia(z’Jw) B Il‘ sin k2 T Xz sinkd
a ca a

. [sin.k(z—la) + sin k Ra - sink z] (2.10)
where
4E sinkh (COSk)'Q'a)_}'
IJ'. = ok "7 cos k& +3Z sink 2 (2.11)
ca a ! a
and

2 tan k& tan k¢
w £

L I
Z1 3 7 + 7 (2.12)
cw cf

In order to obtain the current distribution on the other wire ele-

ments the junction voltage is used, i.e.,

1 t

1
t ' = =77 1 = -Tx
Va(O,Jw) = Ia(O,Jw)Zl Il zZ, (2.13)

Now considering the Zf element with its image an open ended

transmission line the current distribution is

sin k(2f~z')

sink ¢

I;(z',jw) - I;(O,jw) (2.14)

£
- . . . . *
where a positive If current is directed away from the junction.
The junction voltage then is

‘ 3 — t Y
Vf(O,jw) =+ If(O,Jw)Zf (2.15)

noting that

1 1 .
Ve (0,3w) v_(0,3w) -

*The z coordinate axis coincides with the z axis bur is directed
in the opposite direction.

14
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Using (2.13) and (2.15) yields

Z; 4E_sin kh (cosk o )-1
0 a

t . -
1g€0,3uw) =7 X 7 coski + 327 sink ¥ (2.16)
f ca a 1 a

Correspondingly for the Q’w elements it can be shown that

. . sink(ﬁlw—y)
Iw(y,Jw) = I, (0,3w) ——;E;rzjjzz”"
where
. —Z1 4Eosin1§h (cos k za) -1
I,(0,30) = — K 7 coski +] Z sink 2 (2.17)
W ca a 1 a

with a positive current directed away from the junction.

Case B. Applying the same solution technique as utilized for

Case A and considering the excitation along the & element only,

f

the current on Qf is (for this case the incident field is direct-

1
ed in the -~z direction requiring a corresponding sign change)

I"(z' o - _I” sink (z' - ﬁbf) 4EO sink h
£ > 1 sin k Q,f k Zcffsin k,%f
1
. [sin k(z' =2;) + sink 2.- sin kz"l (2.18)
where
s I”(O’jw) - 4Eosi11k h (cos k 2?) :1 . (2.19)
1 £ k Zcfcos k2f+ i Z1 51nk£f

=1
2 tank zw tan k &
Zn = _j + a
Z Z
Ccw ca

15



Due to the different coordinate axes being in opposite directions
for Ra and lf elements, there is sign difference between (2.18)
and (2.19) and their corresponding equations, (2.10) and (2.11).

The current induced on Ra element is

" " sinlc(za-z)
I (z,ju) = I, (0,]w) S K1 (2.20)
where
13}
" Z1 4Eosink h (cos k S&f -1 ,
T (0,ju) = + T (2.21)
a Za k Zcfcosk’bf+jz1 s:.nsz
and the current induced on Rw element is
N sink (S&w—y)
. _ 1 .
L,(v:30) = I,00,3w) SRk 1 . (2.22)
where
1t .
I"(b o) = Z1 4E051n k h (coslng)ml (2.23)
3 L] 13} .
w Zw k Zcfcosk,2f+3 Zl sink f

Case C. Once the current distribution over different elements
is obtained due to excitation along Qa and zf elements the
total currents can be easily determined utilizing superposition
theorem. It should be noted that the current distribution due to
the plane wave excitation along the -Qw elements can be inferred
from the foregoing by using symmetry. To obtain the total currents

for the entire Structure, results for Case A are added to the

corresponding results for Case B to yield,

16




sin k ( Slw—z)

L (z,jw) = I,€0,3w) sin k1 . (2.24)
where
-kla ka
3 4EO sin kh [—Z ftan{——z—] + Za tan [ 5 ]
I (0,jw) = (2.25)
w K[z ¥ 22, + 22 7]
Similarly for the Slf element
sin k(l&f - z')
\ 0 — .
If(z st) = If(O,Jw) sin K ’Q/f
4 EO sin kh
[, 5 T _ . - + 1
- % Zcfsink 'Q”f [sin k(z Zf) + sin k%f sink z' ]
(2.26)
where ) (
kﬁlf kza
-14E sin kh [(Zw+ 2Z ) tan [—2—} -}-Zwtan [——2——]]
1.(0,30) = ° 2 ‘

ki(Z a+ Zf) Zw+ ZZaZf] (2.27)

Lastly for the JLa element

sin k(%a—z)
Ia(Z,jw) = Ia(O,jw) B T a—

sin k &
a
4 Eosin k h
t TSI [sin k(z-Q,a) +sin kla—s:m kz] (2.28)
ca a
where

- k2 ke =

' _ i AEO sin k h (Zw+2 Zf)tan{T}+Zwtan{ 5 } l

Ia(oajw) = = ) i

%[z +2.)2 +272 Z_]
a £ w a £ (2.29)

Note that the junction currents given by (2.25), (2.27) and

(2.29) satisfy Kirchhoff's current law at the crossed wire junctiomn.

17



2.3 Current Source Excitation of Crossed Wires Over a

Perfect Ground Plane

To obtain all the natural current modes and frequencies it is
convenient to consider the crossed wire structure to be driven from
a current source as shown in Figures 2.5 and 2.6. Then applying
transmission line theory, the current and voltage along the Qw

element are

Ve = VeI 4y 3 (2.30)
. 1 -ik; ik
I (y,30) = 5= [Vie 7 - ved ¥ (2.31)
cw
where the following end conditions must be satisfied:
. _ 1 -jk2 ke o (2.32)
Iw(ﬁw,Jw) = [Vle w-V,e w} = IO
cw
and !
. -1
) : 1 1 1
—_— = -7 = Z ———— = e e e e e . (2.33)
Iw(O,Jw) T cw Vl--V2 Za Zf Zw

On performing mathematical manipulation, (2.32) and (2.33) yield

V. o= 1 L Zcm(zcw_ZT) Io (2.34)
1 37 Z + 2 Sink & .
w T ) w
2 (Z +2Z) I
_ 4.l cwcw T )
V, =113 7 + 2z Sink 2 (2.35)
I T 0
Using (2.34) and (2.35) in (2.31) yields
. - -iky Jkyy _ ~-3ky __jky
Iw(y,Jw) IO[ch(e + e ) ZT(e e )] (2.36)

18




Figure 2.5: Current source excitation of the crossed wire
configuration over a perfect ground.

X
A
IO ZT
Yy -~ — —0 —J
= y =0 s
Y Qw //
/7
’
/
/

Figure 2.6: Transmission line equivalent circuit for the
configuration shown in Figure 2.5.
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where

I
I -3 S (2.37)
o 2 (Zw + ZT) sin k,ﬁw
Therefore
ch cos k v + ] ZT sink vy
Im(y’Jw) =3 (z +2.) sink & Io (2.38)
w T oy
or

7 . .
cw CO8 ky+ j ZT sin k y

L0:30) = 77 Gs ke T . sink 2. To (2.39)
i cw w T w

where

Za Zf Zw
Iy = 777 ¥7 7 +27 2 (2.40)
fw a a f

and is the parallel combination of all elements except the one that
is excited. The current on the Qw element that is not excited

and on the za and Qf elements may be obtained by the use of

Kirchhoff's current law at the junction,
_ . = . t . .
Iw(O,jm) Ia(O,Jm) + Im(O,Jw) + If(O,Jm) (2.41)
and the junction voltage conditiomns,
. = T . - . = _T! .
v, (053w) Ia(O,Jw)Za 1.€0,30)2; 1,032 (2.42)

Hence the current on the Qw element that is not driven is

I!(0,3w) = -Iw(O,jw) . (2.43)

p———
-
+
N
+
="

20




The currents on other elements of the wire configuration can be

obtained similarly. They are¥®

. .
sin k(zw v")

1 1 : - ] .
L,',3w) = I/(0,juw) STk L (2.44)
. . sin k(2 -
NCRUDREE NN D it wiad (2.45)
sink 2 :
a
: - !
If(z',jw) = If(O,jw) sin k('Q'f z') (2.46)
- sin k 2
£
where from (2.43) and (2.39)
ZT ch Io
1 . = .
1,0.30) = + 3 755 Sinkl . (2.47)
ww T w
Correspondingly for the za and zf elements,
ZT ch Io
1,00:3) = *3 77575 Sm i 2 (2.48)
a’ w T w
ZT ch Io
1e(0,30) = + 3 777y sink? (2.49)
f w T w

When the Qa element is excited by a current source, the

current on za, Qf and Zw elements can be derived in a similar

manner and are presented as follows

#Note that the y' axis coincides with the y axis except that it
is directed in the opposite direction

21



Z coskz+ i Z gink z
ca 1

Ia(z,jw) = ¢ (z,+ Z{) sin k Ka Io (2.50)
sin k(ﬂw— v")
] A B3 = 1 L3
I jw) 1,(0,30) stn k I (2.51)
sin k(zw - v)
Iw(y,Jw) = Iw(O,Jm) =SEwE (2.52)
sin k(Qf - z")
[ - —_ -
I(z"5w) = I.(0,3w) ——(7 O (2.53)
where
z; 7 1
I(0,3w) = +] 0 (2.54)
w z2'(z_+2,) sin k 2
W a a
1
Z, 2, %,
I,0,3w) = +3 ; (2.55)
' 7z (Z +Z.) sin k &
w a 1 a
zi Z., 1,
1.(0,3w) = +3 (2.56)

' 3
Zf(Za + Zl) sin k Qa

and Z; has been defined previously.

Similarly when the zf element is excited the currents on £ a’

2 and 2 elements are
£ w

Z . cos kz'"+j Zg sin k z'

L o s cf
l-f(z »3w) = =3 (Z.+ 2Z") sin k % Io (2.57)
f 1 £
sin k(,@m -v")
1 \] . —_ T 3
L G'hiw) = 11(0,]0) sin K 1 (2.58)
. @




sin k(zu)—y)

Ly(y,dw = T,(0,3,) SIn kL (2.59)
sin k(%a -~ z)
I, (z,30) = I (0,jw) —‘ém;— (2.60)
where
Z! Zcf ‘ Io
. . ] 2.61
10,30 =+ = ; (2.61)
Zm(Zf + Zl) sin k Zf
VALY A . I
1
I (0,5u) = +j L (2.62)
Zw(zf + Zl) sin k Qf
1"
Z1 Z s I
I,(0,j0) = +] e (2.63)

Za(zf + Zl) sin k Qf

A2

and Zl' has been defined previously.

2,4 Lossy Ground Plane Considerations

The propagation constant encountered in the earlier sections is
a real quantity for the perfect ground case only. However, under
lossy ground conditions the propagation constant becomes complex.
Although only a few investigators have considered the treatment of
wires over a lossy ground plane, there has been remarkable progress.
Schlessinger [9] derived a self contained expression for the propa-
gation constant following Sunde [13] and Wait [14].

Sunde [13] derived the propagation constant for insulated
aerial conductors, accounting the finite conductivity of the earth

which gives rise to an increase in the longitudinal impedance and to

23



resistance losses in the earth. He derived this expression as a
special case of wire of infinite length above the surface of the
earth.

According to Sunde the series distributed inductance can be

approximated "with satisfactory accuracy for engineering purposes"

as -
2(1 + v h)
L =f90p ——— 8 (2.64)
2m Y a
g
where
= v + 3 2,65
Vg Jwu (og Jweg) ( )

with Gg and Eg the ground conductivity and permittivity, re-
spectively. The shunt distributed capacitance is approximated by
2me - :
o
c = — (2.66)
an( 2y
a
According to the foregoing the product of the distributed series

impedance and shunt admittance is

(Gw)2e n I+Y gt
Zy = s || E i zn[@—J (2.67)
En(—h) th '
a
Since the propagation constant k = -j¥YZ , then
1
- 1 14+v h 2
k = ~j ’YO 1+ -‘,':2?]- . &n "'——'—g—Y H (2.68)
Rn[~£- g

Y e
where Yo jw uoeo

All the foregoing expressions for the current induced on the

24




wire configufations over a ground plane became valid for the lossy
ground when the propagation constant of (2.68) is used in the

transmission line current and voltage expressions.

25




SECTION ITI

TRANSIENT ANALYSIS

3.1 Singularity Expansion Method

The SEM technique was recently introduced by Baum [15] as a
technique for efficiently characterizing a conducting bodies'
response to either transient or steady state electromagnetic illum~
ination. An arbitrarily shaped conducting object is completely
characterized by its complex natural frequencies together with its
associated natural current mode distributions. The method may be
viewed as an extension of ordinary circuit theory methods to distrib-~
uted parameter systems. Many of the recent EMP interaction investi-
gations and studies have utilized the SEM techmnique. Because of its
advantages the SEM technique is applied to the wire configurations
that are considered in the foregoing.

Initially a 3 x 1 vector is formed whose elements are the

current distributions on the crossed wires, i.e.,

\i
3 If(z »S)

f(?,s) = Ia(z,s)

Iw(y,s)

where s = jw and is the complex frequency, the tilde (~) denotes
the Laplace transform.
Then utilizing singularity expansion ftechnique, the solution

for the wire currents may be expressed as
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I(t,s) = E_ ] i@ . (3.1)

> >
n, is the coupling coefficient and ia(r) is the ath natural mode
and where the natural frequencies s, are those nontrivial complex

frequencies obtained by the complex values of s that yield

I;l(z',s) =0 (3.2)
oY

;' (z,8) = 0 (3.3)
‘oY .

i-l(y,s) - 0 (3.4)

w

> >
The vector ia(r) represents the normalized current distribution
for the ath natural frequency or the ath natural current mode. It

is defined as

=3 ~
o >

I(r,s) . (3.5)

T _ iim
i, =

where c; 1is a constant adjusted so that the maximum value of any

element of ia(r) is equal to 1.

Accordingly then the couplihg coefficient n, is defined such

that

> > _ RAdm o x> >
N, lu(r) = s TF I(r,s) (3.6)

However, it should be noted that the natural frequencies (or simple

> >
pole singularities) of 1I(r,s) occur in complex conjugate pairs since
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the current must be purely real in the time domain. If only the

frequencies of the third quadrant of the complex s~plane are con-

sidered then the time domain solution for impulse excitation is

o«

G0 = 25 21 Re [Eu eSat E’a(?)j. (3.7)

o=

3.2 Natural Frequencies and Associated Natural Current

.Modes for a Perfect Ground
Plane wave illumination of the single wire over perfect ground
has been formulated in section 2.1, In this section we obtain the
natural frequencies for this configuration and compare the results
with those obtained by other investigators utilizing different
approaches,

From equation (2.1)

4 E sink h
o

Hedw) =gy smw

[sin k(z -2) + sin k & - sin k z] (3.8)

in which all parameters have been defined earlier. Note that the

current I(z,jw) diverges at natural frequencies for which

sinkf = 0 (3.9)
or when ' ;
ko= 25 (3.10)
n=1, 2, 3, ... where & is the wire length.
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For the perfect ground case and free space conditions above the

ground the propagation constant is purely real

k = -3/YZ = w/iC (3.11)

where the characteristic impedance of the transmission line formed

by the single wire and its image is

- 4L
ZC = G (3.12)
Thus
1 -
w = — _—,Q,— (3.13)
Ve

relates the natural frequencies that are observed to be independent
of the height above the ground. These natural frequencies being
purely real differ from the complex ones found by Tesche [3] for
the wires in free space, (a different physical configuration), but
are similar to the ones determined by Umashanker, Shumpert and Wil-
ton [16] for wires over a perfect ground plane.

The crossed wire configuration is more difficult to analyze in
that there are two independent conditions for which the induced
currents diverge and one requires a numerical search for the natural
frequencies. Both divergence conditions occur for the current
source excitation (section 2.3) but only one condition arises when
plane wave excitation is considered (section 2.2).

In the first attempt to obtain the frequencies for which the

currents in (2.42), (2.50), (2.51) and (2.52) may diverge, it is
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noted that both (2.42) and (2.50) diverge as Zw+ 0 since

ZT Zw+0 Zw
and
cw Io 1
1 . . =
Im(O’Jw) z,>0 J T sinkt 2 (3.14)
w oW
where
cos k Qw
Zm = -] ch sin k zw

Accordingly the natural frequencies are the frequencies for which
Zw = 0 . Hence they satisfy

- m
ke, = (2u-1) 3 =1,2,3, ...

Or in the complex s~plane the natural frequencies are

. T
s, = j(2a -1) Zzw

However, it should be noted that Ia and If remain finite at the
foregoing natural frequencies.

A second condition for which the crossed wire currents diverge

is

The frequencies for which the foregoing is satisfied can be obtained

by a numerical search routine programmed for the digital computer.
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The natural current modes are then determined for the associ-
ated natural frequencies as follows; e.g., considering the first
natural frequency kllw = 2,568, By trial and error it is found

that Ia is larger than I_ and Iw at k =%k, . For this

f 1

frequency Io is then adjusted so that

sin kl(la - z)

T (z,30,) STo &, & (3.15)
a
sin kl(ﬁf - z")
LI -
If(z ,le) = 0.1506 in kl zf (3.16)
sin kl(lw - y")
! = -— : t = -—
le(y,w) le(y sw) 0.4291 ok | L (3.19)

Plots of the first six natural modes for crossed wires over a ground

plane are shown in Figures 4.1 through Figure 4.6. Analytic results

are also presented in Appendix A.

3.3 Natural Frequencies for a Lossy Ground Plane

The natural frequencies for wires over a lossy ground plane are
obtained by using Chapter II and the divergence condition (3.10).
Hence the natural frequencies for a single wire are obtained by

finding the frequencies for which the following is satisfied

L

' I+vy h
- i : - an
-3y, 1+ [Zh} . in T h =7
n g

This expression must be solved numerically to obtain the natural

frequency for each integer o . Results are presented in Chapter IV.
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SECTION IV

NUMERICAL RESULTS

The numerical technique used to obtain the natural freqﬁencies
for single wire and crossed wires, essentially utilizes search rou-
tines which scan the area of interest in the complex s-plane. Thus,
the natural frequencies which satisfy the expression in question are
determined. The computef program utilized for the same is refer-
enced by Crow, et al. [6]. It uses a subroutine which is based on
the Cauchy integral formula and determines the zeros of the analyt-
ical function TF(z) for the induced current expressions. On ob-
taining the results, R expresses the ratio of the function F(z)
to the average magnitude of F(z) evaluated at points along-a se-
lected search contour. It should be noted that an accurate zero
of the function would be represented by values of R < 0.1

Tables 4.1 and 4.2 show the natural frequencies for athinwire
above a ground plane with typical conductivities and dielectric con-
stants for concrete with a =0.5m, h=1.0m and 2 =10.0m
(for Table 4.1) and a =2.0m, h = 4.0m and & = 40.0m for
- Table 4.2 respectively. 1In Tables 4.3 and 4.4 are presented natural
frequencies for the thin wire above a ground plane for different
heights with conductivity Og = 0.0076 and eé = dielectric gon—
stant = 25.0 for .a =0.5m and £ = 10.0 m. Table 4.3 is valid

for n = 1.0 and Table 4.4 is wvalid for the n= 2.0 case. The

natural frequencies for the crossed wire structure over a perfect ground
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%
TABLE 4.1 NATURAL FREQUENCIES FOR THIN WIRE ABOVE LOSSY GROUND
(a=0.5m, h=1.0m, 2= 10.0m, o = 1 mode)

a = Radius of the wire = 0.5m
h = Height of the wire above the ground = 1.0m
¢ = Length of the wire = 10.0m
o/ Ratio (%) Conuetividy  Comstamt ('™
Real Imaginary Y 8
-0.05102414 0.27835674 0.1001 x 1075 0.0076 mho/m 25.0
-0.04831029 0.27238492 0.2563 x 10-6 0.009 mho/m 20.0
TABLE 4.2* NATURAL FREQUENCIES FOR THIN WIRE ABOVE LOSSY GROUND
(a=2.0m, h= 4.0m, & = 40.0m, o = 1 mode
a = Radius of the wire = 2.0m
h = Height of the wire above the ground = 4.0m
% = Length of the wire = 40.0m
(Sa/c) Ratio (R) Ground (Og) Dielectric
Real Imaginary atio Conductivity Constant (eé)
-0.00877793 0.07124597 0.4858 x 10-6 0.0066 mho/m 35.0
-0.00778715 0.07052281 0.1143 x 10-° 0.0076 mho/m 25.0
—-0.00692798 0.07059135 0.1270 x 10‘5 0.009 mho/m 20.0

*With reference to Figure 2.1
magnitude of F(Z)
average magnitude

e =g | € where Eé is called the dielectric constant, ratio (R) =



TABLE 4.3* NATURAL FREQUENCIES FOR THIN WIRE AT
DIFFERENT HEIGHTS ABOVE I1.0SSY GROUND
PLANE (o = 1 mode)

a = radius of the wire = 0.5m, 2 = length of the wire = 10.0m

Og = ground conductivity = 0.0076 mho/m, Eg' = dielectric
constant = 25.0
(eg = eé so)
Height (h) (s,/¢)

abov?m§round Ratio (R) Real Imagingry
1.0 0.1001 x 1073 ~0.05102414 0.27835674

1.5 0.2331 x 107° -0,03077844 0.29960148

2.0 0.5121 x 10~ -0.02093694 0.30609920

2.5 0.6837 x 1076 -0.01550837 0.30892346

3.0 0.1127 x 10-° -0.01215137 0.31041838

3.5 0.1656 x 107° -0.00990076 0.31131393

4.0 0.3717 x 10-3 -0.00830301  0.31190006

4.5 0.3627 x 10-° -0.00711283 0.31230273

5.0 0.2166 x 10° -0.0061997 0.31259685

5.5 0.3973 x 1076 -0.0054785 0.31281843

6.0 0.4237 x 10-° -0.0048962 0.31299033

6.5 0.8557 x 1077 -0.0044173 0.31312691

7.0 0.2168 x 107° -0.00401720 0.31323763

7.5 0.6561 x 10~° -0.00367852 0.31332891

8.0 0.6561 x 1076 -0.00338850 0.31340527

8.5 0.2344 x 1076 -0.00313765- - 0.31346994

9.0 0.6883 x 107° -0.00291877 0.31352531

9.5 0.6669 x 1076 -0.00272628 0.31357319
10.0 0.4135 x 1077 = -0.00255806 0.31361494

% With reference to Figure 2.1.

34




TABLE 4.4 WNATURAL FREQUENCIES FOR THIN WIRE AT

DIFFERENT HEIGHTS ABOVE LOSSY GROUND

PLANE (o = 2 mode)
a = radius of the wire = 0.5m, £ = length of the wire = 10.0m
Gg = ground conductivity = 0,0076 mho/m, sé = dielectric
constant = 25.0
(ag = eé g)
Height (h) (Su/c)
abov?mfround Ratio (R) Real Imaginary
1.2 0.1045 x 107 ~0.049947285 0.61470751
1.5 0.1923 x 107° -0.03549272 0.62016536
2.0 0.1050 % 1073 -0.02321064 0.6238932
2.5 0.1050 x 107 -0,01697165 0.6254712
3.0 0.9174 x 107° -0.01307539 0.6262959
3.5 0.3516 x 10-6 -0.01057798 0.6267861
4.0 0.2020 x 107 -0.00882479 0.6271039
4.5 0.5290 x 10-5 -0.00753400 0.6273233
5.0 0.2724 x 1077 -0.0065484 0.6274822
5.5 0.1744 x 107° ~0,00577389 0.6276017
6.0 0.1720 x 1076 -0.00515098 0.6276942
6.5 0.3420 x 107 -0.00464030 0.6277676
7.0 0.1746 x 1075 -0.00421481 0.6278270
7.5 0.3388 x 107° -0.00385542 0.6278759
8.0 0.1723 x 107° ~-0.00354826 0.6279168
8.5 0.5032 x 10~° -0.00328301 0.6279514
9.0 0.3131 x 10~/ -0.00305189 0.6279810
9.5 0.1687 x 107° -0.00284889 0.6280066
10.0 0.1742 x 10-° ~0,00266932 0.6280289

#With reference to Figure 2.1
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plane are shown in Table 4.5 for za +2,=100L, Rf/Ra = 0,5

£
and a = 0.05L (where L is a scale factor). The natural current .
modes for these frequencies (first through the sixth) are shown in

Figure 4.1 through Figure 4.6. A comparison of these modes with the

numerically obtained modes of Crow, et al. [6] exhibits very close

agreement. Lastly, the natural frequencies as obtained by Crow,

et al. [6] for the crossed wire configuration accounting the radia-

tion losses (with the same dimensions as considered for results in

Table 4.5) is shown in Table 4.6 for the purpose of comparison. It

should be pointed out that radiation losses could be incorporated

into the presented analysis using the‘procedure suggested by Marin

[17]. This is reserved for future sﬁudy.

Coupling coefficient calculations are presented in Appenix A

which completes the SEM analysis for the crossed wires over a lossy

ground plane,
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TABLE 4.5° NATURAL FREQUENCIES FOR CROSSED WIRE
CONFIGURATION OVER A GROUND PLANE FOR
£a+ zf =L, Qa/lf = 1.9412 (using current

source excitation).

o .S /Le
o

2.5680
3.1416
4.0157
6.2834
7.9421
j 9.4248
310.9614
312.5665
i14 6468
§15.7080

e Ce e e L6

O 0o~ oy Ut B W N

=
[

7%With reference to Figures 2.3 and 2.5

TABLE 4.6 NATURAL FREQUENCIES FOR CROSSED WIRES (as
obtained by Crow, et al.) FOR £a+ Zf =1,

za/zf =2, h/L =0,1, a/L = 0.05.

a SaL/c

1 -0.0202 i 2.4525
2 -0.0426 i 2.7604
3 ~0.0470 i 3.9166
4 ~0.1775 i 5.9389
5 -0.3015 3 7.7876
6 -0.3289 i 8.3861
7 -0.5359 310.7325
8 -0.8424 §12.0186
9 ~0.7667 §14.1852
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Figure 4.1:

Natural current mode for a crossed wire
structure over a ground plane, transmission
line formulation results for L = ZQﬂ = 2a4-Qf,

Qa/ﬁf = 1,9412 (arrows indicate directions
assumed for positive current).
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o= 2
SvL
o _ }
< j 3.1416 \ /
————— ———

28

Figure 4.2: Natural current mode for a crossed wire
structure over a ground plane, trans-
mission line formulation results for
L o= 28, =%, + %, 2,/0; = 1.9412 (arrows
indicate directions assumed for positive
current).
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j 4.0157

Fi

09

ure 4.3: Natural current mode for a crossed wire
structure over a ground plane, trans-
mission line formulation results for
L =28, =2, + ¢, Qa/Qf = 1,9412 (arrows
indicate directions assumed for positive
current).
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= 56.28344
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Figure 4.4: MNatural current mode for a crossed wire
structure over a ground plane, trans-
mission line formulation results for
Lo=2%= 12, + %, 8,/%s = 1.9412 (arrows:
indicate directions assumed for positive
current).



a = 5
s, L
& = 57,9421
&
,
g

Figure 4.5: ©Natural current mode for a crossed wire
structure over a ground plane, trans-
mission line formulation results for
L = ZRw = L, + %5, Qa/Qf = 1.9412 (arrows
indicate directions assumed for positive
current).
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1

3 9.4248

A

Figure 4.6: Natural current mode for a crossed wire
structure over a ground plane, trans-
mission line formulation results for
L= 28, =2 + %, L,/%¢ = 1.9412 (arrows
indicate directions assumed for positive

- current).
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SECTION V

CONCLUSION AND COMMENTS

The study of wire configurations in the proximity of lossy
ground is useful in the EMP simulation studies of aircraft [18].

As compared to other more elaborate, complex and purely numerical
techniques utilized for this interaction problem. the theoretical-
numerical approach presented here is much simpler. Besides, the
step-by-step approach enables the reader to obtain a clear under-
standing of the interaction problem.

In case of a single wire over a perfectly conducting ground
plane, the natural frequencies, as shown in section 3.2, are inde-
pendent of the height above the ground. It should also be noted
that in this case the imaginary parts of the natural frequencies
are close to those of the wire in free space. For the single wire
above lossvy ground plane the natural frequencies for different
ground parameters are tabulated in Chapter IV, Tables 4.1 and 4.2
reveal that for a typical set of parameters such as radius of wire,
height of the wire above a ground plane, and length of the wire,
with the change in ground conductivity and dielectric constant,
there is not much change in the resonating natural frequencies
(zeros). But Tables 4.3 and 4.4 indicate that the real part of the
zeros becomes more negative with the decrement of the height of the
single wire above a ground plane. The agreement of this observa-
tion with the results obtained by other investigators verifies the

presented analysis of thin wire configuratiomns.
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It should also be noted that the crossed wire configuration
illuminated by a plane wave does not excite all the natural modes,
However, the crossed wire configuration excited from either end by
a current source excitation does excite all the natural modes. The
determined natural frequenciés and the associated natural current
modes thus obtained are in good agreement with those obtained by
Crow, et al. [6] (as shown in Tables 4.5 and 4.6, and Figures 4.1

through 4.6).
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APPENDIX A

NATURAL. MODES AND COUPLING COEFFICIENTS

The analytical expressions for the natural current modes for

the associated first six natural frequencies as listed in Table 4.5

have been presented here:
For the n = 1 mode, w®w; = 2.5680 c¢/L, L = ZZM .

sin kl (Qa - z)

Ia(z,le) = 1.0 —— kl Qa where kj

sin kl(ﬁf - z")
-0.15057

il

If(zxjwp

sin k1 ﬂf
sin kl(lw - v'}
. - -
Iw(y ,le) = -0.42907 <in kl T
For the n = 2 mode, ®w, = 3.,1416 c/L
Ia(z,jwz) = 0 where k2

If(Z,,j(ﬂ2) = 0

s .
sin kz(lw v')

t L
L& ’sz) e sin k,82
< W
For the n = 3 mode, w, = 4,0157 c/L
sin ks(za - z)
I (z,j = -0.1114
a(Z,st) 0.111 ik 1L where k3
3 “a
sin k3(2f -z")
t . -
Le(z's juy) 1.0 sin k. £
3 7f
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'
L,'3w)

= -0.44606

For the n = 4 mode, w,

Ia(z,qu)

If(Z',jw4)

1 .
Iy’ dwy)

U

1.0

sin k3(2w - v)

sin k3 L
= $.2835 ¢/L

sin ku(ﬁa - z)

sin kL+ Ra
. _ t
sin kq(ﬁf z')
_Oo 998 . /Q/
sin kq £
. sin k, (& - v")
iy
-0.001 -

sin k4 Qw

For the n = 5 mode, . = 7.9421 c/L

Ia(z,jws)
If(zﬂj wg)
Iw(y',jw 5)
Lastly for the
Ia<z’jw6)
1.(z", jug)

I (v
W

n

sin kS(Qa - z)

1.0 sin k_ %
5 a
sin k (2f - z)
+0.275 )
sin kg %
sin k. (2 - v")
-0.635 -

sin kS Qw

= 6 mode, w6 = 9,4248 ¢/L

1.0

. - 1 .
sin ka(zw v

sin k6 Qw
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where

where

k = 2
T
w

5

K o= —
5 [
L
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The coupling coefficients for the first six natural modes are

obtained as follows:

For n = 1 mode

kza kg
n, 3 ) ] —than 5 + Za tan ——
-0.42907 |—| =2%im J(k-k,) .
kky K[z, (2, +2;) +22_ 2]
k
Then at k =k + 50 ° where kl = 2.568/L. , one obtains
711\
——1 = (.0033
c
For n = 2 mode
k& kﬁf
3 —Zf tan —Eé + Z_ tan =
1.0 {n_z_J = Rim j(k“kz) z
k~k ’ :
c 2 k[Zm(Za + Zf) + 2 Za Zf]
k2
Then at k = k_ + == , where k = 3,1416/L, one obtains
» 2 100 2
3
n ,
{—ZJ = 0.0 |
c ;
; |
For n = 3 mode l
N kza kg %
n -Z. tan —— + Z tan -—— !
~0.44606 {§J= 2im § (k-k.) £ 2 a 2 :
k-rk .
3 k[Z (2, +2g) + 2 2, 2]
k

3
Then at k = k3 + 00 * where k3 = 4,0157/L , one obtains

N3
= = (,00296

50




For n = 4 mode

( (kg ke,
n, -Z_ tan |———| + Z tan |——
0,001 |—| = 2m (k- k,) — z 2 -
c Kk K[z (2 +2.) + 22, %]

k
106 * where k = 6.284/L , one obtains

TN
3
e
WS S
14

0.0048

k& rsz
L —Zf tan _ié + Za tant-jf-
-0.635 {f_s_] = ili ik - k) ;
.+
c 5 k[2, (2, + 2g) + 22, Z]
kS
Then at k = kb + 100 ° where k5 = 7.9421/L , one obtains
n
_5
[CJ = 0,00079
For n = 6 mode
( Al ( 3
k&a kif
n6 . . —Zf tanl;75~ + Za tan 5
1.0 {T} = f;lz 3k~ kg) :
e
6 kl{z (Za + Zf) + ZZa Zf'}
i

Then at k = k. + 00 ° where k. = 9.4248/L , one obtains

=3
ola
LN
3

0.0 .
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