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Abstract

In this note the biconical antenna is treated as a repre-
sentative scattering system. It is shown that at its input
terminals the biconical antenna can be modeled by a transmission
line terminated in a cannonical LC ladder network. The real and
imaginary parts of the input impedance of the biconical antenna
serve as useful test functions for studying the approximation of
complex functions of frequency by rational functions. An effect-
ive algorithm for this purpose was implemented and evaluated. It
is also shown that over a limited domain in the complex frequency
plane the poles and zeros of the system function can be recovered
via the rational approximation.
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1. ;pyrpduction

In developing equivalent circuits for radiating systems we have
divided the problem into two basic parts: th development of a rational
function approximation technique and the development of lumped network
synthesis procedures appropriate to the systém in que;tion. Of course,
the first part must serve as a basis for the second. Typically the
rational function will represent 'in analytic form the transfer admittance
of a system obtained by experimentally measuring the amplitude and phase
of the surface current as a function of frequency at some point on the
scattering object with reference to the incident electric field at some
reference plane. 1In the general case all Qe can séy about the transfer
function is that its poles must all lie in the closed left half-plane.
The zeros may lie in either half-plane. Among the parameters in the
problem are the polarization and aspect of the incident field, the loca-
tion and orientation of the current prche on the object and, of course,
the shape of the scattering body. An important question which remains
to be answered is the nature of the dependence of the poles and zeros
of the transfer function on these parameters.

In order to explore the above question, much of our initial effort
has been devoted to the development and testing of a numerical approxi-
mation technique for rational functions. This technique and its appli-
cation in several representative approximation problems is described in
Section 3. As a preliminary exercise, a network modelling problem lead-
ing to a cannonical ladder configuration was also investigated and com-
pleted. This work is presented in the next section. Both of the above
studies were centered around the biconical antenna. One reason for this
approach is that the input impedance of the biconical antenna exhibits
many of the frequency response characteristics of more general scattering

structures, and is, therefore, a useful vehicle for test purposes.

2. A Network Model for the Biconical Antenna

The biconical antenna offers an interesting example on which to test
network modeling techniques because an approximate closed-form expression
for the input impedance is available. Tai[l] has shown that the input
impedance at the center of the biconical antenna can be represented by a
section of uniform line terminated in a frequency-dependent admittance

Yt(BZ). This equivalent circuit is illustrated in Figure 1, where
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‘ K denotes the characteristic impedance of the line. The following
expression was obtained by Tai for Y

t:
Zo 2iB2 -2iB%
Yt = 5 {2L(28%)+e [L(2BR)-L(4RL)+&n 2]+e [L*(2R2)-2n 2],
4K
(1)
where
X 1-cost X sint
L(x) = [ =595t gt + i [ 212t g¢
t t
o o}
and the asterisk denotes the complex conjugate. The real and imaginary

parts of Yt(Bl) are plotted in Figure [2] for the case where the angle

of the cone, 60 = .01 radians.

The objective of the work described in this section is to construct

a lumped network model for the load admittance Y, of the equivalent cir-

t
cuit shown in Figure 1. Because Yt represents a positive real driving
point admittance, it is possible in principle to synthesize a network
model from the real part of Yt alone. From (1), the asymptotic behavior

of the real part of Yt(Bl) at low frequencies is given by

‘l’ lim 7

BL>0 Rel¥, (BL)] = —> (B)* ,
61K
where Z0 is the characteristic impedance of free space. This suggests
that we look for a network having an input admittance Yn(jw) such that
w4
Re[Yn(jw)] = 5 ' (2)
P(w™)
where P(wz) is a polynomial of the form
2, _ 2 An
P(w”) = Py + pzw + ... + Pyp® .

It will now be shown that Yn(s) can always be realized as an LC ladder
terminated in a resistance if P(mz) > 0, all w.

Suppose a lossless network is excited as shown in Figure([3] and
assume that the scattering coefficient S

2
s

S21(8) = gy - (3)

21(s) has the form

where B(s) is a polynomial of degree 2n having all its roots in the LHP.

Then if A(s) is another polynomial of degree 2n, Sll(s) will have the

‘ form
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- A(s)
81108 = §(sy -

The unitary condition,
Sll(s)sll(_s) + 821(5)521(—8) = l'

implies that

B(s)B(-s) - A(s)A(~-s) = s4. ' (4)

This is the only condition on A(s). The input admittance can be expressed
by

Y (s) = L Sll(S) = W(s)
n 1 + Sll(s) U(s) '

where U(s) = A(s) + B(s) and W(s) = B(s) - A(s). Equation (4) leads to

the relation,
4

U(s)W(-s) + U(~s)W(s) = 2s ’ (5)

between U(s) and W(s). Using this result
. - 1 W(jw) W({-3w)
Re[Yn(Jm)] ) (U(jw) + U(—jw))
4
= w <
U(Jw)U(~-Jw)

Thus, the polynomial P(wz) can be identified with the product .

P(w?) = UGGw)U(-ju).
Finally, it can be shown that the transmission function given in (3) can
be realized by a ladder network of the form shown in Figure {4]. The
number of independent energy storage elements, 2n, corresponds to the
number of poles of 821(5) and the two zeros of transmission required
at s = 0 are provided by Cl and Ll' It should be noted that this real-
ization of SZl(s) is not unique. .

The numerical aspect of the modeling problem involves the determin-
ation of the coefficients of P(wz) by curve-fitting the function w4/P(w2)
to the "data" represented by Re[Yt(%&)]. This can most readily be done

by forming the objective function

NFREQ u)i4 5 2
F = izl Wl joz T Pl (6)
Re[Yt( C-)
where the Wi are arbitrary weighting coefficients. In the results that

follow Wi = 1, all i, and the normalization 2%=c was employed. The optimum
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frequency range over which the data function was sampled is a function of

n and was determined empirically. ‘
Of course the advantage of employing a least~squares objective

function as defined in (6) is that the minimization of F with respect to

the p;. i=0, 2, ... , 4n, leads to a system of linear equations for the

unknown coefficients. The algorithm is easily implemented and the solu-

tion for the coefficients presents no difficulty as long as the corres-

ponding matrix remains well-conditioned. Chebyshev polynomial methods

or near minimax approximations such as Lawson's algorithm [2], can be

used to avoid the ill-conditioning that frequently occurs for large

values of n, although we did not find this to be necessary. Once the

polynomial P(wz) is known U(s) can be recovered from

p(-s?) = U(s)U(-s)
by factorization if P(wz) > 0, all w. Thus, U(s) contains the LHP roots of P(—sz).

Suppose U(s) has the form

= _ 2n
U(s) = do + dls + + d2ns .
Then W(s) will have the form
- 2 o 2n-1
W(s) = cys + c,s7 + + C, 45 .

The latter polynomial can be determined uniquely from U(s) by imposing
the condition given in (5). For instance, in the case of n=3, the

equations for the c¢. take the form,

i
[ 0 0 d.  -d.] ey ] 70 ]
d6 —d5 d4 —d3 c2 0
—d5 d4 -d3 d2 -dl C, = 0
—d3 d2 —dl do Cy 1
Ld d0 0 0 | _CS_ LO4
The synthesis procedure is completed by expanding Yn(s) = W(s)/U(s) in

a continued fraction and identifying the coefficients with the elements
of the ladder network. Thus, for the network of Figure 4, the expansion

takes the form,
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Figures 5 and 6 illustrate some typical results obtained by the
modeling technique described above. In each case 60 = .01 radians. The
element values for the approximating network are calculated assuming
¢=Im. It can be seen that the least-squares fit in the real part of the
admittance is quite satisfactory and that the band over which the
approximation is valid increases, as expected, with the order of the
network. It can be seen from Figures 7 and 8 that the approximation in
the real and imaginary parts of Z e the input impedance of the antenna,
is not as good as that obtained for Yt. This can be explained by noting
that the error in approximating Im[Yt] is not controlled in the present
procedure and, therefore, it contributes to the observed error in Zin
when transferred through the transmission line. To avoid this effect,
it would be necessary to control both the real and imaginary parts of
Yn' This could be accomplished by using the ladder element values obtained
here as initial values in a computer-aided design procedure. In this
event a nonlinear function minimization algorithm would be required.

In conclusion, it has been shown that the biconical antenna can be
effectivelv modeled by a transmission line terminated in an LC ladder
network with a resistive load. It has been shown that the modeling
problem can be reduced to a straightforward numerical approximation pro-

cedure followed by a direct synthesis algorithm.

3. Approximation by Rational Functions
3.1 Theory

It is often the case that one would like to express the transfer
function of a linear system as the ratio of two polynomials. This form
is preferred as it lends itself to linear transform methods of solution.
Of the techniques that have been developed to fit experimental data by
such rational functions [3]-[4], the one by Levy is the most notable
[5]1-[6] and forms the basis of the rational approximation method examined

in this report.

11
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A function of the form

H(5w) = a, + al(jm) + ... + an(jm): _ ggjg;
b, + by (Jw) + ... + b_(jw) J
is chosen to approximate (in the least-squares sense) a given complex
set of data Fi = FRi + jF+i’ i=1l, ... , N, where H(jw) represents, for

example, the transfer function of a lumped network and F. the steady-
state data associated, for example, with the current at some point on a
scattering object. The a; and bi coefficients are found by minimizing

N 2 N 2
E=7J |F; - H(jwi) |© =] [eiI .
i=1 i=1

The problem with this formulation is two-fold: E is a nonlinear function
of the unknown coefficients and the low frequency data is not weighted
sufficiently. As a result, wide swings in the input data will cause
large approximating errors at low freguencies. These problems may be

remedied by defining a new error,

k,.
* J
%= i—{ 2 ®i
D (Jw)
where the superscript k refers to the iteration number. If, after each

7

iteration, one refines the error estimate in this way and minimizes again,

a much better approximation is obtained. Sanathanan and Koerner [7]

k - Dk—l

have shown that D = after a sufficient number of linear iterations.

With this change, the object function now becomes

. . . . . . 2
ox - ? [Dp (Gw,) + JDI(wi)][Egiqwi) + JFI(wi)]—[NR(]Wi)+JNI(wi)]
b k-1,.
i=1 D (3w;) I
N 2
= i£1 [Dp + 3D{1IFL + FF.1 = [N + 3N;T[° W,
where Wik = 1 5 is a weight function, and the subscripts R and I indi-
k-1
D

cate the rcal and imaginary parts of the terms. The minimization of E*
at each iteration is now a linear problem. To this end E* is partially
differentiated with respect to each of the polynomial coefficients and

equated to zero. This yields the following matrix equation:

16



i s s I Tal [s,]
Ao O “Aa 0 VRIS B T3 4 - a9 0
0 kz 0 —X4 0 - —52 T3 S4 —T5 - al Tl
A2 0 —A4 0 A6 .o T3 S4 —T5 86 ... : S2
0 A4 0 -A6 0o .. —S4 T5 SG —T7 “ee T3
Tl —82 —T3 S4 T5 . U2 0 —U4 0 e bO 0
- - - .. b U
52 T3 S4 T5 SG 0 U4 0 U6 1 2
- - - - . 0
T3 S4 T5 S6 T7 U4 0] U6 0 :
- - - .. . 8]
S4 T5 S6 T7 S5 . 0 U6 0 U8 4
L : : : 1L 1 -
where -
CR
A= ) w, W
1 k=1 k kL
]
S, = ) w, R W
i k=1 k "k kL
)
T, = 1
1 k=lwk Ikka
n .
i 2 2
U. = ) w, (Rf + I0)W
i k=1 k k kK’ kL
Rk and Ik arc the real and imaginary parts of the transfer function at
experimental points, and L is the iteration number. The coefficients
bl’ b2, ... cvaluated at the L-1 iteration are used to refine the
weighting function WL for the next iteration.

A FORTRAN program has been written implementing the above complex-
curve fitting algorithm.
3.2 Applications

The aforementioned method was applied to the data generated by

the terminating admittance function Y, of the biconical-antenna model

as given by Tai [l]. The data is shosn in Figure 2. A rational func-
tion with eighth order numerator and ninth-order denominator was chosen
to fit this data over a range of normalized frequency 0 < R£ < 15. This
choice of transfer function was based upon the results of tests using

the same program to fit the input impedance of an ideal transmission-line

17
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terminated in a resistance. The results of the Yt approximation are
shown in Figure 9 and Figure 10.

Another test was performed on data describing the input impedance
of the biconical antenna as shown in Figure 1ll. This_ example was
approximated by a ninth-order numerator and tenth-order denominator.
The results are presented in Figure 12 and Figure 13. It is seen by
comparing these results with Figure 11 that the approximated imaginary
part of Z:n fails to fit the data near B2=0. This is due to a pole at
zero which the data contained that the rational approximating function
could not accomodate due to its chosen structure...This could have been
corrected by changing the data and reinserting the pole later, a tech-
nique described by Levy [5].

The poles and zeros of the approximating function were extracted
by standard techniques and compared with those found by Tai and Cho via
a grid search. These results were later confirmed by Giri, Baum
and Tai [8] using an application of Cauchy's residue theorem. The
resulting pole and zero locations are shown in Figure 14. The poles
and zeros reflect the closeness of the fit over the approximating

range.

3.3 Conclusion

The rational function approximation method employed here has the
advantage of being able to produce an analytic representation of data
that is amenable to linear transform methods of solution. Furthermore,
the implementation of the method is straightforward and computationally
efficient. For the accuracy achieved here, the typical run took 2 CPU
seconds (Amdahl 470) and cost $.50.

As a final remark, a more nearly mini-max approximation could be
obtained by incorporating Lawson's algorithm [2] in the iterative pro-
cedure but our investigations to date do not indicate that this will be

necessary.
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