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THE CIRCUMFERENTIAL CURRENT DISTRIBUTION
ON AN INFINITE CIRCULAR CYLINDER ABOVE
A GROUND PLANE

I. INTRODUCTION

In the formulation of the problem of determining the
current distribution on finite cylindrical structures, it
is usually necessary to assume that the cylinder is thin
56 that the current density around the circumference of
the cylinder i1s uniform. When this is not the case, one
must solve a coupled set of integral equations as has
been done by Kao [1-3}. This method is impractical for
very long cylinders, however, as one is limited by the
storage capacity of the computer. Harrison [4] has shown
that at least the qualitative features of the circum-

ferential variation of the axial component of current on

a cylinder in free space may be obtained quite simply by
treating the infinite cylinder. He points out that for

the infinite cylinder with an incident electric field
polarized parallel to the axis of the cylinder, there
exists no mechanism for the excitation of circumferentially
directed currents, thus decoupling the set of integral
equations. Furthermore, since the cylinder is infinite,
the current distribution is the same at any cross-section
and the integral equation becomes one-dimensional.

Harrison shows that for circular cylinders in free space




it is not necessary to solve an integral equation at all,

but simply solve the boundary value problem using
cylindrical wavefunctions.

If the cylinder lies parallel to an infinite perfectly
conducting ground as in Figure la, one may employ image
theory and replace the ground by equivalent image currents
as shown in Figure 1b. Again, to attack the problem
rigorously is a formidable task for long cylinders. However,
if the cylinder is of infinite extent, then for the polari-
zation shown in Figure 1 (termed TM polarization) a rather
simple integral equation for the surface current density

JZ can be derived.
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In this report, the resulting integral equation is

solved for the current distribution with a plane wave
incident perpendicular to the cylinder axis. It is noted
that the problem could be treated alternatively as a
boundary value problem using cylindrical wavefunctions
similar to the methods used by Row [5] and Olaofe [6] in

the scattering by parallel cylinders. With either approach,
however, one must solve a linear system of equations, but
the integral equation approach has the advantage that it

is also applicable to cylinders of arbitrary cross-section.

! P
1
]
| %
]
1 R‘l
!
| P
!
|
1
}
]
B \ A
1 !
. P<p‘ a
I '
I G4
d-—-PH—d- o ==
! (@]
SYSTEM i c

OF IMAGE CURRENTS X
|
1
3

FIGURE. 2. GEOMETRY FOR THE TM SCATTERING OF an

INFINITE CYLIWNDER AND 1TS IMAGE TN A
CONDUCTING GROUND.




II. Formulation of the Integral Equation for the Current
Density

Referring to Figure 2, a general observation point P
in space is located in cylindrical coordinates by the vector
p = (p,$) with respect to the origin 0 located inside the
cylinder with boundary C. The cylinder lies parallel to
and a distance d above the ground as indicated in the figure.
By image theory, the axial current density JZ on the body
at point A located by E' = (p',¢') is the negative of the
current at the corresponding image point B which is found
by reflection in the ground plane. Thus, the scattered

electric field at point P may be written from the surface

curgent on the cylinder and its image as

. Ei - ?l J JZ(E')[HC(,Z) (kRy) - H(gz) (kR,)1ds" (1)
o

~
]

1 Yp© o+ p 2. Zpp' cos (¢-¢')

R2 = Vp© + p'2 + 2pp' cos(¢+¢p') + 4d (p cos ¢ + p' cos ¢') + 4d2

In equation (1), k is the free-space wavenumber, n = 1207
is the characteristic impedance of free space, and Héz) is
the Hankel function of zero order, second kind (ejwt time

dependence is assumed). The first term in brackets in



(1) is associated with the scattered field contribution

due to current on the cylinder whereas the second term
corresponds to the fields produced by the image.
Boundary conditions require that the sum of the
scattered field Ei and the incident field Ei‘sum to zero
on the surface C of the cylinder. Thus, letting point P
lie on C and applying boundary conditions results in the

integral equation,

P

zﬂl 5 GomPar) - BB R dast = EL(), b oon C
C

(2)
For a plane wave incident at an angle ¢1 as defined in

Figure 2, and including the reflection from the ground plane,

EL(p) = ejkpcos(¢-¢i) _ o Jkl2d cosol + p cos(¢+eD)] (3) ‘
Z

In order to solve equation (2), we first divide the contour
C into N segments and denote the arc length on C from the
point n = 1 by the variable s. End points of the segments
are denoted by arc lengths Spe 0 < 1, 2, ... , N. Borrowing
from the terminology of the method of moments [7], we then

expand the surface current in a set of basis functions

&
R
N~ 2

I T, (s) (4)




where

-1
n , for s < s <'s
S,7"Sn-1 n-1 : n
= -s
Tn(S) “n+1 for s_ < s < s
S+l Sn ’ n n+l
\ 0 , elsewhere

Equation (4) is a piecewise-linear approximation
to the surface current distribution. Substituting (4)
and (3) into (2) and requiring the resulting equation to
hold only at the end points of the segments results in the

linear system of equations,

N
21 Rmn In = gp, M = 1, 2, ... , N (5)
n:
where
Sn+1
= kn (2) _ (2) !
Rmn -7 Tn(s')[H0 (lem) H0 (kRZm)]ds (6)
Sn-1
- rl T
g, = E; (o) (7)

and the subscript m means that all unprimed coordinates are
to be evaluated at point m. Equation (5) constitutes a
matrix equation for determining the coefficients L. which

in turn give the current demnsity according to (4).



The evaluation of the matrix elements (6) is further
simplified by using a three-point approximation to the

integration in (6);

AC
. kn n-1 (2) _ 4(2)
fon © L (kRyp pog) - Ho W (KRyp )]
. ACn[hSZ) (kRyy ) - Héz) (kRyy, )]
AC
. _n+y o (2) - g2
—5 = Hp™ (kR ) - Hg™ (KRRyp )1 s min (8)

where the subscripts n+% and n-% refer to points S+l
2

and s which are located half way between point Sh

n-i
and points S+l and Sn-1° respectively. The second
subscript on R1 and R2 denotes that they are to be eval-
uated at the location corresponding to the second sub-

script in the primed coordinates. We also define

Sn+ty © Sn-i
AC =
n 2
Whenever m = n, len is zero and the corresponding term in

(8) becomes infinite. However, the singularity in the

Hankel function in (8) is integrable and a better approximation
must be made. To do this, one may assume that Tn(s') is
constant over the segment ACn in the integral (6) and use

the small argument expansion of the Hankel function. Then




the term involving le in (8) is replaced by [7]

sl

kn 2 (YkACn]]

=7 AC, [1 - j = log|— (9)

where vy = 1.781 ... is Euler's constant. Equations (8) and
(9) imply that the scatterer is modeled as a series of 2N
line sources with every other source constrained to carry

a current equal to the average of the adjacent line sources.
At the match points where the boundary conditions are
enforced, the line source at that location would give rise
to infinite fields, so that for that point, the current

must be '"spread out" resulting in the approximation (9).

ITII. Numerical Results

In Figures 3-6 the surface current distribution and
phase 1s given for a plane wave incident from an angle of
45° from the normal to the ground plane. In these cases,
the values of ka used are 1.0 and 0.1 and d/a, the ratio
of distance above the ground to the cylinder radius, is
varied between 1.5, 3.0, and 11.2., It is noted that the
variation of the incident field normal to the conducting
ground is that of a standing wave while along the ground
it is a traveling wave. Thus the illumination on the
cylinder is stronger on the side of the cylinder away from the

ground plane causing some of the asymmetry in the current dis-

tribution. However, at d/a = 11.2,the cylinder is at a peak in the
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standing wave and the current distribution would be

symmetric but for the coupling to the image. For small
distances from the ground plane, one may determine that
the forces on the charges flowing on the cylinder and its
image are such as to cause the current to flow stronger
on the side of the cylinder away from the ground plane.
The current distributions are normalized to the incident
H field at the center of the cylinder. This normalization
was chosen so as to make the amplitude of the current
appear less dependent on the position of the cylinder in
the standing wave fields.

In Figures 7-10, the angle of incidence is 80° from
the ground plane normal. For a given incident plane wave,

the illumination 1is now much weaker since the distance to

the null in the standing wave is much greater. The
normalization chosen tends to make this fact less apparent
in the figures, however. Again, radiilof ka = 1.0 and

ka = 0.1 have chosen and d/a is varied between 1.5, 2.5,
3.5, and 10.0. In Figures 11 and 12, ka = .046152 and

d/a = 2.0 with 80° incidence angle is shown. These para-
meters roughly correspond to the fuselage of a B-52 aircraft
sitting on a conducting ground pad at the lowest fuselage

resonance frequency.
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In Figures 13 and 14 are shown the distribution of the current
on the cylinder as a function of electrical dimension ka and fixed
radio of d/a. The'illuminated side has stronger currents induced and
is particularly true when the cylinder is close to the ground plane.
The induced current results shown in Figure 14 are split into the
symmetric and the antisymmetric parts [8] with respect to ¢ = 0
symnetry plane and are shown in Figure 15. The symmetric part of the

current is obviously predominant for electrically small cylinders.
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