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ABSTRACT

In this report we utilize first~order degenerate perturbation
theory to determine the changes in the eigenfunctions, eigen-
values and the corresponding singularity expansion method
parameters due to surface perturbations of a metallic sphere.
The main motivational factor for this study is the desire to
provide a basis for determining errors in the SEM parameters
due to uncertainties in the geometric configuration of a
sphere-like metallic body and for judiciously extrapolating
the results to more complicated structures.
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SECTION I
INTRODUCTION

The objective for this study is to utilize the only known
analytical solution for electromagnetic scattering from a finite
metallic body, i.e., the sphere, obtained via the Eigenmode
Expansion Method (EEM) or equivalently the Singularity Expan-
sion Method (SEM), to arrive at a solution for a metallic body
slightly deviating from the sphere. The main motivational fac-
tor is the desire to provide a basis for estimating the errors
in the SEM parameters of a sphere-like metallic body for a
given degree of uncertainty in its geometrical configuration and
for judiciously extrapolating the results to more complicated
structures.

The objective is realized by tackling the problem via a
perturbation method and, in particular, first-order degenerate
perturbation theory, due to the degeneracy of the sphere eigen-
functions of the Magnetic Field Integral Equation (MFIE) operator.
The first-order corrections to the eigenvalues and eigenfunctions
are calculated in terms of the known unperturbed parameters of
the sphere problem. These corrections involve integrals that,
in general, cannot be evaluated analytically except perhaps for
specific geometrical configurations. Application of perturbation
theory is not as straightforward as it may appear because of the
following two reasons: 1) The unperturbed eigenfunctions (ref. 1,
form a complete set for smooth vector fields that are tangential
to the sphere, whereas the perturbed eigenfunctions are tan-
gential to the perturbed sphere but not to the unperturbed sphere.
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Solution of Electromagnetic Interaction Problems, Inter-
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We dvercame’this difficulty by showing that a perturbed eigen-
function can be obtained, to any desired order, by applying a
suitable "inverse" projection operator to the tangential-to-the-
sphere component of this eigenfunction which, in turn, can be
calculated via perturbation theory. (2) The Magnetic Field
Integral operator is not self-adjoint and, consequently, one
must solve for both its regular and adjoint eigenfunctions.
Instead of evaluating the adjoint to the sphere and perturbation
operators, we appealed to the results cbtained in reference 3 which
show that the adjoint operator need not be evaluated because the
adjoint eigenfunctions can be explicitly expressed in terms of
the regular eigenfunctions.

Once the perturbed eigenvalues and eigenfunctions are known,
one can evaluate the shift in the pole locations {(or natural fre-
guencies), the natural modes and the coupling coefficients to
obtain the SEM solution. We assumed that the appropriate coupling
coefficients are class 1, i.e., the guestion of whether
an additional entire function is present is not dealt with in
this report. However, our formalism allows us to evaluate the
perturbed eigenfunctions and eigenvalues, and, consequently, oOne
may apply the procedure ocutlined in Section VII of reference 3 to

probe the question of the presence or absence of the entire func-

tion when the coupling coefficients are class 1. (See Section V
for more details.) A future effort may be directed toward this
matter.

The final gocal of the perturbation study is to estimate how
uncertainties in the geometric configuration of a metallic
structure affect its SEM parameters. For a complex structure
such a task is formidable if not impossible. The present
"peiturbed sphere" problem offers an understanding of how the

3. Sancer, M. I., A, D. Varvatsis and S$. Siegel, Pseudosymmetric
Eigenmode Expansion for the Magnetic Field Integral Equation

and SEM Consequences, Interaction Note 355, Air Force Weapons Labora-
tory, October 1978,




various natural modes and frequencies are affected by specific
deviations from the sphere geometry and also provides a basis
for a statistical correlation between the deviations in the
geometric configuration and in the SEM parameters. Such cor-
relations may be applicable to more complex structures. As

an initial effort, this report investigated only the pertur-
bational effects necessary to the statistical correlation
characterization. This characterization needs to be pursued
in the next phase of the statistical EMP investigation.

Section II presents the derivation of the perturbation opera-
tor and explains how the set of the unperturbed sphere eigen-
functions can still be used to evaluate the perturbed eigenfunctions
that are not tangential to the sphere. Section III applies first-
order degenerate perturbation theory to calculate the shift in
the eigenvalues and eigenfunctions and explicitly shows that the
set of the perturbed eigenfunctions suffices to determine the
response of the perturbed sphere to an incident field, i.e., no
adjoint eigenfunctions are necessary. Section IV is concerned
with the determination of the appropriate SEM parameters and
discusses the meaning of an SEM perturbation solution in the
time domain. Section V discusses the findings in this report and
offers suggestions for future research. Finally two appendices
give computational details to supplement the derivation of the
main results. Appendix A provides the algebraic steps that led
to the formula for the perturbation operator. Appendix B serves
a two-fold purpose. It shows how one can reshuffle singular
integrals to insure that the perturbation operator is nonsingu-
lar and also provides sufficient details to show how integrands
with removable singularities can be transformed to become suit-
able for numerical integration.



SECTION II

DERIVATION OF THE PERTURBATION OPERATOR

We start with the Magnetic Field Integral Egquation
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where J(r) is the surface current density induced on a perfectly
conducting body enclosed by the surface S, n is the unit out-

inc inc

ward normal to S, J = nxglnc, H is the incident magnetic

field and G = exp(-YR)/471R is the free space Green's function.
The rest of the quantities are y and R defined as follows:

Y_S
c

s: complex frequency, c: speed of light
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I

|IRl, R = r-r!

]

,r': radii vectors to points on S.

We will assume that the surface S can be described by the

parametric equation
= £,(8,9) [L+e£(8,9)] | (2)

where 50(6,¢) is the radius vector for the sphere S0 inscribed
in S, 6 and ¢ are the usual angular spherical coordinates,

f is a smooth function and ¢ a perturbation parameter.
Representation (2) guarantees that for each @ = (6,¢) there

is only one value for r.




We are interested in solving Eg. 1 by employing the
Singularity Expansion Method, and, consequently, we must
determine the natural modes, natural frequencies or pole
locations and coupling coefficients for the problem expressed
by Egq. 1 and 2. This will be accomplished by first solving
the eigenvalue problem for the MFIE operator L, i.e.,

LJ_ = A_J (3)
P PP '

with the aid of first-order perturbation theory. The unper-

turbed operator is the MFIE operator L, for the problem of

0

the inscribed sphere S The unperturbed eicdenfunctions

and eigenvalues are wegl known (ref. 2), and we will present
their explicit expressions in Section III. In applying
perturbation theory the perturbed eigenfunctions are

expanded in terms of the unperturbed ones that form a complete
set. In the present case this procedure cannot be employed

in a straightforward manner because the sphere eigenfunctions
form a complete set for the class of functions that are
tangential to the sphere, whereas the perturbed eigenfunctions
are tangential to S but in general have a nonvanishing

normal component with respect to the sphere. If we write

Ip () = T (®) + I (2) (4)
where
gpt(g) = - ny(r)x ny (£)xgp(_r_) = (;-nono)-gp(g)
Ton(2) = g (0ng(x) -3 (x)

and ﬁo is the outward unit normal to the sphere, then th(g) is,

by construction, tangential to S. and can be expanded in

0



terms of the unperturbed eigenfunctions, The normal .
component gpn is simply related to gpt; i.e., gp(g) can be

determined once gpt is known. To see how this comes about,

we dot Eg. 4 with n, the unit outward normal to S.

0 = ?1‘_J_p = B'th + ﬁ-gpn (5)
Next we write
n o= 30 + eg(l) + €2E(2) + oo
Ept = gég) + egéi) + szgéi) F e (6)
gpn = gég) + agéi) + ezgéi) + e
and noting that ﬁo-gpt = 0, Egs. 5 and 6 can be combined to
yield the following relationships:
38 =0
ﬁo,géi) - _(l)'iég) (?)
E(l) E(3.1) + ao.Jéi) _ _(l).EQZ)

Eg. 7 shows that once gpt has been determined to anyvgiven
order in ¢ the normal component gpn can also be evaluated

up to the next higher order. 1In what follows we will restrict
our attention to first-order perturbation and consequently

we can write




ot = eAgpt

- W (8)

1 B}
I = dor T MR dpe F M

Notice that Eg. 8 is correct in first order in ¢ only.

Before we go on to consider the perturbation solution,
we note that since the MFIE operator L is not self-adjoint, the
adjoint eigenfunctions g; are needed for the calculation of the
coupling coefficients in the SEM solution or the expansion
coefficients in the BEEM solution of Eqg. 1. (To be precise the
coupling coefficients involve the coupling vectors that are
obtained by evaluating the adjoint eigenfunctions at the pole
locations.) It was shown, however, in reference 3 that the adjoint

eigenfunctions gé are related to the eigenfunctions of L as
follows:

where ép is an eigenfunction of L with eigenvalue 1-)_; i.e.,

LI = (1-)2)7J
-p p’'=p

Naturally, the eigenvalue Ap corresponds to QD satisfying

LI = A J
- 'pp

Thus we can dispense with the adjoint eigenfunctions by

introducing a pseudosymmetric inner product

{g,gl = ¢+ (AXxY)ds (9)



and employing the following orthogonality relationships

where , (10a)
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Moreover if we group our eigenfunctions into two categories,

gp and gp.we also have that

Zpraf= 0 Zprs) =0 (100)

for any p and n.

If we now write

J =J . +JF = M3
Sp Spt  =pn  pt

then ipt is an eigenfunction of the same operator as J

pt
since
IMI . = A_MJ
—pt P —pt
IMT . = (l-A_)MJ
Jop = (1A NI,
oxr
M ilmg =g
—pt p—pt (1la)
..l ~ ~
M "IMJ . = (1-3_)J 11b
Toe = (=A )03, (11b)
and M1 = (I - An.)+f. Notice that M IMI . = J_. + 0(e2)
- = 00" =° —pt —pt :
10




In what follows we will employ Eg. 1l which is correct in

first order in e and cast M—lLM in the form

where LO is the MFIE sphere operator. In the process the

following relationships will be employed (see appendix A)

das = dSO + 2€deO

~ ~
n=n.+¢egn

VG = VG, + €A

R.R. | AR

1 55 2 700 =
Y+ 3SRAR,=I) + ¥ c=— G
<RO><OO> Ry | Rg 0

|
Il

G, = exp(-YRo)/4ﬂR0

_ ~ _A| ~ - N —/\'
R, = {no nol, R, (ng-ng) /R,

AR = £(8,0)0,(8,9) = £(8',9")n (8" ,0")
= —-gn.n «J = eAJ (12)
P

J

Notice that the radius of the sphere has been set equal to
unity. If Eg. 12 is employed, Eg. 11 can be rewritten as

11



(LgteR1d , = A T . (13a)
LyreR)d = (-3 (13b)
where
- 1 _ o '
Loloe = 5 o () A, (Q)X[VGoxg_pt(Q )] as,
Sy
pg_pt = -2/n0(9)x[\760xgpt(9')}f(ﬂ')ds
s
/ @) x vc; xAth(Q‘):IdSO
—/n (mx[am Q'yx t(sz')}d.
—[1 -5 (DA (Q):]° 2 @y [vc xJ (Q‘)]ds (14)
o ng n 0 ot 0
Sy

12



The reason the integration is over SO rather than 8§ is that
all the guantities in the integrands are evaluated at points

on SO' Notice that dSO = rOdQ = dQ = sinod6dé.

Before we proceed with the perturbation solution of Eg. 13,
we observe that the integrands in the last three of Eg. 14
have nonintegrable singularities. It is shown, however, in
Appendix B that these integrands can be expanded, rearranged
and grouped so that the resulting integrands have integrable
singularities. This should indeed be the case because both
L and L0 involve integrals with integrable singularities,
and consequently P should not be singular.

13



SECTION ITII *

THE PERTURBATION SOLUTION

In this section we determine the perturbed eigenfunction
and eigenvalues in terms of the unperturbed ones. The
unperturbed eigenfunctions are the vector spherical harmonics

Bnm' Qnm satisfying equatlons
- 5 (0)R
LOB-nm Kn —nm
(15)
- 4 (0)Q
LoQim = *n Qnm
where (ref. 2)
e T 1 T,
—nm 30 o} sinf 93¢ e n>1
(16)
<
o o 1 Y - Y . [m|<n
=nm sinb 93¢ o 3e 8
(0)R _ ; !
AT = [Yaln(va)] [Yakn(va)}
(17)
(0)Q _ . !
A [Yaln (Ya)] [Yakn (Ya)]
and a is the radius of the sphere (a=l in our case). Thus
the sphere eigenfunctions are degenerate; i.e., for each n
there are 2n+l R-eigenfunctions with eigenvalue A(O)R and
2n+l Q-eigenfunctions with eigenvalue AéO)Q. It has been
shown in reference 3 that
Rom = 9nm
~ - ¢ (18)
S = Bon

14




and consequently we should have AéO)R + AéO)Q = 1 which can
be verified by appealing to Eg. 17 and employing the
appropriate Wronskian. Then orthogonality relationships,

Eg. 10r can be translated into the following

{énm'—pl - {gnm’gpl! = Nimenpéml
{énm’—pl - Bnm’gpl} = Ngmgnpsml (19)
Bﬁvm’—pl =0 |9nin’Qp1] =0

From Eg. 16 we see that

n_ xR
=nm 0" -nm

10
i
3

Rom = "20*%nm

and conseguently

R— nA = . = .
Nom = 9nm <nOXEnm)dQ : 2nm g-nmdQ Rom 5nmdQ
Q _ . /A = - .
Nom Ram <n0XQnm>dQ B Ynm 9nmdQ
i.e.,
R _ .0 _.0
Nom = Nom = Npp (20)

15



The presence of the perturbation will usually resolve

the degeneracy. As e£+0 we should have gpt+ unperturbed
eigenfunction and the question arises as to which (among the
ones corresponding to index p) this is. To answer this

question, we write

R _ X RO
Tomt = Bam * EZZ::Z: [ nmpz—pl * dnmpﬁgpﬁJ (2la)
P2 !

Enmt =nm

o]

[}
10<

+

™
“[™]

+ QQ 0
nmpl—pz nmpz—pz {21b)
2

~R < r~RR 5RO

Tome = Bam * EZZ anmpﬁgpﬂ * nmpf&gpﬁ,] (21c)
P & -

500 _ g [-OR 500

Enmt - gnm * E:Z::E: .anmpz—pi * nmoigpz] . (21d)
P 4 -

where the eigenfunctions with the inverted hat correspond to

those special eigenfunctions and can be written as - -

v R

Rom —:Z: b mkBnk (222)
k

6 =9 2 o

Znm nmk=nk (22b)
k

16



v ~R
Bom —'2 : ®mkZnk 7 (22¢)

|o<z
gU‘
A

| o

ot

~

(224)

These expansion coefficients must now be determined. Let's

begin with QR satisfying

nmt’

+eR)IN = An I%nmt (23)

(L mt nmn

0

Inserting Eimt in Eq. 21 into Eg. 23 and writing

KR _ A(O)R + €}\(l)R (24)
nm n nm
we obtain
_ 5 (0O)R
LOan = kn Enm (25)

_ 3 (LIRY (0)R RQ
<R Ll ZZ hmotEor * ot 9] 29

17



Let us now form the pseudosymmetric inner product (defined } ‘
by Eg. 9) of gns with Eq. 26. If we take Eq. 10 and
Eg. 22a into account, we obtain

_ 3 (LIR R 0

ml nm nms ns (27)

lgns’PBn

If we combine Eg. 27 and 22a, we arrive at

R - ,(L)R . R 0
:E: Qns FRnx bnmk Anm bnms;an
k
or
R 0 R 0 . s (L)R/. R 0
2{: <Pnsk/Nnk><bnmank = e (PomsMns
- ; (28)
where
pR = {Q PR l (29)
nsk - {=ns’' =nk '
Thus to determine kéé) and the expansion coefficients
bimk' we must solve the eigenvalue problem, Eg. 28. If
there is no degeneracy, we will obtain 2n+1 eigenvalues
()R, (L)R ()R , R R
Anl , \n2 r ey A2n+l and 2n+1 eigenvectors bnl’ bn2’ ceos
R .
bn,2n+l' each hav1ng 2n+1 components. We now return to

Eg. 26 and form the pseudosymmetric inner products first of

Q. (rfn) and then of R ., With this equation. We obtain

RR  _ { 9rs’Pénm}
fhmrs (X(O)R_K(O)R)NO
s} r rs

(n#x) (30a)

18



R, PR,
af2 = - <A£O§ - EO?I>Ngs (30b)

If we now con51der JQ ot given by Egq. 21b, we can follow the

same procedure as for Qimt to obtain

o L0\ _ _,(L)9/Q 0
Z <nsk/Nnk> <bnmank> - Anm <bnmans>

. (31)
Prex = [BasrPon]
a%R _ {grs’Pénm}
nmes = <X(O)Q_A(O)R>NO
n rs
(32)
90 _ |Res POy §
nmrs < éO)Q X(O)Q)Nrs (rsn)

Thus Eg. 31 determines the eigenvalue corrections k(;)Q and
the expansion coefficients mek whereas Eg. 32 gives the
expansion coefficients in Eg. 21b. Finally, the same

*R = . .
procedure can be employed for Jnmt and Jnmt’ satisfying
Eg. 13b, to obtain

~R 0 ~R 0 \_ ()R 0
Z <Pnsk/ Nnk> <bnmank>_ A <bnmans>
k
*R

Pnsk * ans’Panl

19



3RR lQrs'Pan} (35a)
nmrs (A(O)Q-R(O)R)NO
n r rs
~RQ lR ,PR i
a - rs nm
nmrs = (A(O)Q—A(O)Q)NO (r#n) (35b)
n r rs
0 0 \/z0 0\ _ _, (L):g .0
:Z: <Pnsk/Nn%><%nman%) Mam ®rmsMns
k
(36)
~0 -
Pnsk - {Qns’PRnk]
~QR [T
a _ =rs nm
nmrs = (A(O)R-X(O)R)N (r#n) (37a)
n r rs
aQQ - _ IBrs’PQnm'
nmrs (0)R_, (0)Q\,,0
(An Ar )Nrs (37b)
. ; R _ o0
Comparing Egs. 29 and 36, we see that Pnsk = Pnsk and
consequently the corresponding eigenvalue problems are
identical. Thus
W 11Q - (1IR (38a)
nm nm
and if there is no degeneracy
=0 _ R
bnmk - cbnmk (38b)

where ¢ is a constant that can

be set equal to unity

20




without loss of generality; consequently

. O RN

R =
nm nm

Then it is a simple matter to show that

~QR  _ _RR
qhmrs G hmrs (39a)
~QQ _ RO
hmrs © Znmrs (39b)

Since it is shown in perturbation theory that the expansion
RR QQ
a

’ are not needed, we conclude that
nmns nmns

coefficients a

Tomt = Tnmt (40)
Similarly we obtain
1inm = 6nm
Tame = Jnme (41)

Notice that the result given by Eg. 38a in conjunction with
the assumption of nondegeneracy is sufficient to show the
validity of Egs. 40 and 41. Thus we start with

0 _ /(59 \30 _/_,oa__, o\zo
LJnm <i knT>Jnm = é ln eknm >Jnm

21



and then consider

R _ ,R .R _ (0)R (L)R\.R
Wom = AnmJnm'_ <%1 +€}‘nm )Jnm
='<l-k(0)Q+ex(l)R> <l A(O ek(l)Q>JR
n nm nm
Thus, if there 1s no degeneracy, Q = Jim and a similar proof
holds for Jim = ng, (Again we have set the multiplicative

constant equal to unity.)

We are now in a position to determine the perturbed
eigenfunctions of the original eigenvalue problems given
by Eg. 3 by invoking the second of Eg. 8 and Egq. 21; i.e.,

R _ R X _ ~ (1) .%
Iom = M—‘ant = Rom E<nO31 Bnm)
+ 9
2D Pomot By EZZ ampr 8oy (422)
pfn 2
Q _ .0 _x _ (1), x
Inm MEnmt = 8y "€ <n0Il 9nm)

+ ZZ pg Ry + ezz nmp!@lpi (42b)

pFn L

R _ 0 =Q _ R
L—:r--nm = dom’ Enm_ gnm (42¢)

where énm is given by Eg. 22a and the expansion coefficients

aRR aRQ
nmpl’ “nmpl
defined by Eg. 22b and the corresponding expansion coefficients

are determined by Eq. 30. Similarly énm is

22




aQR aQQ are given by Eqg. 32. The perturbed eigenvalues

nmpf’ “nmp?
are determined by
AR = A(O)R + ek(l)R
nm nm nm
Q = 4 (0)Q (Lo _ 4_, (0)R _ (L)R
* o Aam Y Ehgn o =1 Xnm X
— 1_3 R
=1 Anm (43)
and Kéi)R = —Xé;)Q are determined by solving the eigenvalue

problem Eqg. 28.

23



SECTION IV

SEM RESULTS

The gquantities of importance for the Singularity Expansion
Method are the pole locations, natural modes and coup-
ling coefficients. . The question of the additional entire
functiecn in the SEM expansion is not dealt with here.

1. POLE LOCATIONS

The pole locations ¥y are the zeros of the following

nmn'
equation

o gt = 0 (44)

where Anm are the eigenvalues. (We have dropped the

superscripts R and Q for simplicity.) In first order

- 3 (0) (1)
‘am T Ay 7 A nm (45)
1l
Yamn' Y£2% * €Y£m;' (46)
wh (0)
ere vy, are the zeros of

A(0)<Y(oz> .

n nn

Combining Egs. 44, 45 and 46 we obtain

kéO)(Y(ol) 4 ey (D) )+ Ek(l)<Y(O) . €Y(l).) - 0

nn nmn' nm nn' nmn

24




Expanding and retaining only first order terms, we arrive

at the following eguation

(0)
(0) [ (0) (1) |darn | (1)( (o>>=
)\n <)nn|> + E:Ynmnl{ d.Y_} Y=‘Y(O)'? €>\nm 'Ynnv 0

nn'
or
- (L)R -
SR ‘am (V) o) (47a)
nmn' (0)R/. _ R
d;\n /O‘Y_ Y—.\{I;?LZ(’I'
[, (1)Q ]
e ‘o (1) (47b)
nmn' (0)Q __(0)R
| dAn /dY- Y‘Ynn|
R (0O)R ()R
Yomn! Yan' €Y nmn ! (47¢)
Q (0)Q (1Yo
Yomn' = Ynan' T Yhmn! (474)
Notice that Ar(u%l)R(Y) = - %I%)Q ) and <de§O)R/dY> =

(0)YR
nn'

(y

—<dA£O)Q/dv%i.e., Xéi)R(Yb/<dkéo)R/dy> = kéé)Q(y%/<dAéo)Q/dy>
4
T

put YR 1 (10 (0)Q

since
T Y Y nn'

Y

nmn' nmn'

2. NATURAL MODES

The natural modes are the perturbed eigenfunctions (deter-
mined in Section III) evaluated at the appropriate pole
locations; i.e.,

= T
_v_nmn.(_r_) J (E,Ynmn.

&
5

25



Notice that for the sphere the eigenfunctions are independent

of the complex variable Yy and consequently they coincide with

the natural modes. Recalling that v = Y(OZ + eY(l), and
v (0) (1) nmn nn nmn
I (Y 2} = {ﬂm(@)+€Jnm (Y,9Q) we understand that the natural
modes are evaluated as follows:
- 3(0) (0) 2
Ynmn' E-nm (@) + eEéﬁ%Ynn”Q + 0(e”) (48)
R _ R (O)R) Q ., _ 0 (0)0)
nmn' (£ = gmn(—r—’Ynn‘ v Epmnt B = I (E'Ynn‘ (49)
R __ . 0 . _ .
inm and Enm are given by Egs. 42a and 42b respectively where

the expansion coefficients given by Egs. 30 and 32 have been

(0)R (9)Q

evaluated at v .1 and Yo respectively.

3. COUPLING COEFFICIENTS

We will examine coupling coefficients of class 1 since

these are the ones appropriate for the sphere problem. By
definition (ref. 2)

(v =Y)ct 3 1£inc
(y) = e nmn 0 {—nm el l _ (50)

Nnm{dxnm/dY] Y=Ynmn'

where again we have dropped the superscripts R and Q for
simplicity. The index p signifies polarization direction
for the incident field, tO is the time at which the incident
wave front first hits the body and

N ={5 ,J }
nm -nm —nm

26




Notice that

k& 377 = g enx3I"C as
—nm’=p =nm = "=p
S _
T = T .A d
Lom’ Tnm Tnm" Xdpm 5
S

i.e., the pseudosymmetric inner products have as their domain
inc
J

is
o i

of integration the original surface S. Since
tangential to S, we can write
inc _ . -.inc

JiC = Mg
-p —pt

and it is easy to show that

~ inc} _ e .o, -inc 2
|2 | - ot P*¥dpe 48 + 0(e)

~ _ ~ ~ 2
-{Qnm’gnm} i)lﬂ Tome " P¥dppeds * 0
S

If we express Enmt'Jnmt' Yomn'’

the appropriate unperturbed quantities, we can write the

dxnm/dy, n and dS in terms of

coupling coefficients as

(y) = nt0 (1) yy (51)

n (vy)y + ennmn.p

nmn'p

27



where the correction term can be obtained after some rather

laborious algebraic manipulations. Notice that in doing so ‘
e (0)
gnmt and inmt are evaluated at Ynn rather than Ynmn' and
94 m _d [, Ex(l)]
dy Y=Ynmn' dY| ' n nm Y=Ynmn'
af® @ a0,
= + € + ¢ Y
dy dy 2 nmn'| ___ (0
L dy Y=Yun!
dA(O) dx(l) d2>\(0) X(l)
|l teay - Tt 107 (0)
Y Y =
| ay [dkn /dY] Y=Ypon!

(52)

Notice that both terms on the right—-hand side of Eq. 51 contain
exp(—ycto) as a multiplicative factor to ensure that the exci- ‘

tation begins as soon as the wavefront hits the perturbed sphere.
(0)

nmn'p
the sphere problem in that it contains exp(-tho) rather than

exp(-théO)), where téo)

Thus n (v} differs from the coupling coefficient for

is the time at which the wavefront hits
the unperturbed sphere. Also recall that exp(—thO) contains
the only vy dependence of the coupling coefficient.

4. SEM SOLUTION 77
Neglecting the possible additional entire function, the exact
SEM solution to a delta function excitation can be written,

in a simplified notation, as
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= 1
Jlr,y) = Z ng (1) 7= (2) (53)
If the coupling coefficient is class 1, then

n, (1) = eMa™ %0 n_ (v )

and the Laplace inversion of Eg. 53 gives

Y.t

Tlr,t) = ult-tg)D n, (v )y, (r)e’a (54)
a

o

If the MFIE operator is a function of a parameter e (as in
the perturbed sphere problem), we will assume that the fol-

lowing perturbation expansions are true:

Ya = Yéo) 4 Eyél) + €2Y52) P (55a)
Ny = ﬂéo) + enél) + szn;2) + .. (55b)
vy = 2l® e 2B (55¢)
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Using Eg. 55a and 55b, Eg. 54 can be rewritten as

J(r,t) = u{t= t ) 2: n(o) r)eY t + szz: (l)v(o)(r)e o
YL o -
e 0 P imee® 4 0(e?) (56)
o

Egq. (56) is just a rewriting of Eg. 54 under the assumption
of Eg. 55. We can now choose £ such that all the terms of
order e® and higher in Eg. 55b, 55c, and 56 can be neglected
and Eg. 56 gives

1¢4

(£,6) = ute-t ) | o0l %) 4 e300 P g
+-E:2: netly (O)( ) fe¥a® (57)
o

Finally, we neglect all terms higher than order ¢ in Egq. 55a

by imposing (if we have to) an additional restriction on .
Thus the final first order SEM solution is

J(r,t) = u(t-to)[ Znéo)i(o) (r) + ¢ _‘no(‘o)\)(l) (x)
& _

a
D DENSIIRES
o

(YéO)+ EYél))t

e (58)
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Notice that this is not the only first-order solution since

we can always expand exp(ey;l)t) and neglect terms higher than
order e. This way, however, we must impose a restriction on
the maximum time t for which such an approximation is wvalid.
Naturally, we do not have to impose such a restriction if our

first-order solution is the one given by Eg. 58.
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SECTION V

SUMMARY AND DISCUSSION

The main results of this report are as follows: (1lYPerturbation

theory can be applied even though the unperturbed sphere eigen~
functions form a complete set for functions tangential to the
sphere, and the perturbed eigenfunctions are not tangential to
the sphere. The saving feature is the relationship between
normal and tangential components with respect to the surface of
sphere of the perturbed eigenfunctions expressed by Eg. 7 and 8.
(2) By employing first-order perturbation theory, we have

shown that the perturbed eigenfunctions can be categorized in
the same manner as the unperturbed sphere eigenfunctions Bnm'
Snm/
sists of four integrals, three of which are singular. It is

i.e., Eg. 42c and 43. (3) The perturbation operator con-

shown, however, in Appendix B, that their integrands can be
regrouped into three new integrands that have removable singu-
larities; i.e., the singularities cancel out and the pertur-
bation operator is nonsingular as it should be. (4) The cor-
rections to the eigenvalues and the eigenfunctions involve
integrals whose integrands contain removable singularities, and
Appendix B shows how these singularities can be treated to

render the integrals suitable for numerical integration. (5) Once
the corrections to the eigenvalues and eigenfunctions are cal-~
culated, the perturbed pole locations and natural modes can simply
be evaluated with the aid of Eg. 47 and 49. ©Notice that, in first
order, the corresponding expressions are evaluated at the unper-
turbed pole locations. (6) The coupling coefficients are assumed
to be class 1 and are given by Eqg. 50. Guidelines are presented
for casting them into the form given by Egqg. 51, but the final
formula for the correction is not given because the guestion of
the absence or presence of the entire function in the SEM expan-
sion is not examined here.
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Several aspects of the problem solved here have not been
addressed. (1) Convergence of the series representing the cor-
rection to the unperturbed eigenfunctions (Eg. 21) has not been
considered. (2) Second order corrections have not been evalu-
ated, and no error bounds are given for our perturbation treat-
ment. (3) The resulting perturbed eigenfunctions have not
been tested for biorthogonality relationships, i.e., whether
they satisfy Eg. 10 to second order. (4) No attempt has been
made to answer the guestion of the existence of the entire func-
tion in the SEM expansion 1f class 1 coupling coefficients are
employed. (5) Nc specific example has been worked out. (6) The
second objective of this work and a motivating factor for the
perturbation solution, i.e,, providing a basis for estimating
erxrors in the SEM parameters of a metallic sphere-like object
due to uncertainties in its geometrical configuration, has not

been explored.

Finally, we present ideas for future research based on the
present treatment. (1) Write down an EEM expansion for the cur-
rent density induced on a metallic sphere-like body illuminated by
a plane wave based on the knowledge of the perturbed eigenfunctions
and eigenvalues. The next step is to attempt to transform the EEM
expansion into an eguivalent SEM expansion following the guide-
lines given in Section VII of reference 3 and thus test if class 1
coupling coefficients are correct; i.e., if no additional entire
function is reguired. (2) Work out specific examples to deter-
mine how various perturbations to the surface of the sphere
affect the first few natural modes and frequencies. This can
provide intuition that may be applicable to more complex struc-
tures. (3) Assuming that the perturbation to the surface of
the sphere is a random variable with its first few moments known,
explore the possibility of expressing the average values and
standard deviations of the natural modes and frequencies in terms

of these moments. The relationships to be employed are Eqg. 47
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for the natural freguencies and Eg. 49 for the natural modes.
Notice that these expressions are evaluated at the unperturbed
pole locations, and, consequently, the randomized variables are
the corrections to the eigenvalues and expansion coefficients.
These depend on the perturbation operator which in turn depends

on the deviation from the surface of the sphere.
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APPENDIX A

In this appendix we derive Eqg. 12.

a. By definition the differential solid angle 4dQ is

given by
n,.d8 0, nds ds,
aq = 5 = 5 and d = —w— = dS0
r r rs
0
i.e,
2 A ~
ds = r dg(nowg
= <l+€f) n -(ﬁo+€§,(l))dg
~ ) <1))
(l )(l+en0 n dSO
= (l+2€f)
since as we will show ﬁo'ﬁ(l)=0(62)
b. The unit outward normal 1s defined as
~ or or. ar 3r
n = 35 X 5?5 FY] X —375 (A-1)
Define
35 8£
B=5‘§XT¢=EO+EA§_ T(A..Z)
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where from r

i
8>
o
[_.l
+
™
Fh

a1 a1
=0, _0 =
By T3 X o Ry = ‘EOI
o 38, . a(nof) ) 8(n0f> . ofi,
- a6 8¢ 36 3¢
From Egs. (A-1) and (A;Z) we see that
Lo B Dotetn  ngteln
o] ~ Tm,eln] in'a,
_ : ?O 1+e n2
: 0
= Eg -+ e A_E - EO.An
3 -0
0 0 n,
- AE 9
= no + s(rlg-no O)-no + 0(e7) (A-3)

We have

35 = e —— = sinfe
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Similarly,

w,rw
w

R

= L R +e|{ AR~-3 =9 AR
R3 —0 - R
0 4]

and

e T e O-evaR)

Combining the previous equation with Eg. (A-5), we obtain

R
= = [vel) =_ .~YR
4mVG = <Y+R) > e
R
R ] 1 -vw
= - l? [R +e<gR—2 =0 AR) 1-evAR | e 0
0 - R
R O -
0 |
R [ 1 -vr
- % [R +g <A -3 =0 AR) l-cvAR ] e 0
0 e R
R, 0 I :

or
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ng = |—31nen0[ = sind
(A-4)
_ , ~ _ R E A _ §£ ~
An = ZSlnSnOf sxneae eq 3 e¢
Combining Egs. (A-3) and (A-4), we obtain
A - ﬁ ~ 1 _8__f_ ~ = i (l)
n o= 1n 8(88 © * Sint 36 e¢> =n0p T en
Notice that fA*A = 1 + 0(e?) since ﬁo-gu) = 0(c?)
c. We have
-YR R
B~ = o [(vel)T o-YR -
4TVG = VS = (y.R)Rz e (a-5)
and
— e = & - A - _ oo 1ot
R=x-r' =n, - n} + a[nof(e,m ALE(816")
= BO + e4R
R = |§.[ = IEO + EABJ = RO + 850°A5/R0
= RO + €lAR
R R, + €AR
= = 2y = (ryreiR) (1-2:55 R
R <RO+€AR) RO

R
- 1 -5 =0
= =5 50+€<A52R AR>
Ry
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APPENDIX B

In this appendix we show that the perturbation term given

by Eg.
comprising PJ

=1

14 is nonsingular.

pt

If we examine the four integrals
we observe that:

The first integral apart from £(Q'), which is a smooth

function, has the form of the MFIE operator and

consequently its integrand has an integrable singularity.

The integrand of the second integral can be written

as

0

+ (ﬁo(ﬂ)-VGO)ﬁO(Q')g(l)(Q')'gpt(Q')

The second term contains the smooth function

i, an

@)+ 3., (@) and A (@) Ve

A 0 which has an inte-

grable singularity. However, the first term of B con-~

tains VGO which has a non-integrable singularity at Q' =

and the smooth term ﬁo(ﬂ)- ﬁo(ﬂ‘)E(l)(Q')'th)Q') which in
as @'+Q. Thus B is non~integrable. .

general does not wvanish

If we expand the integrand of the third integral, we obtain
] ] - . ] ¥
(R}A(R,0") + n (@) -4k, 8 )gpt(ﬂ )

¢ = _nO(Q)'gpt

where

- _J;_ A A _

The highest singularity
integrable, but as Q'+
zero fast enough to make

However, the second term

e
RO 4ng

R.R AR -YR
>+Y2_oo = 0
in A is AB/RS, which is non-
the term nO(Q)'Qp(Q') goes to
the first term in C integrable.

is nen-integrable.
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d. The integrand of the fourth integral has the form

D = - [1-Ay ()0 ()] -[n(l)(ﬂ)~J (Q')VG

-~ —pt 0

- M ayve g

0-p
Both terms are noun-integrable as o-+0'.

Let us now add the singular integrands and regroup them
as follows:

= | -n ‘n (9 (1) (qry. ,
B+ C+D=|-ng(Q)n, (& )[g Q1) I, (Q )}VGO

"\

PO & § IOUUNSRI RER
+ LLno(m A(2,0') = n't (@) VGoJth‘Q )

as 050 [I-n, @)ng (@) +76+76, and ny @) ng @[ @)z, @)
(1)

-n (Q)°gpt(Q') goes to zero fast enough to offset the non-
integrable singularity of VG

(B-1)

0 Thus the first term has an
integrable singularity. The second term is integrable as we

mentioned earlier. The third term also has an integrable

singularity, but the reason is not so obvious.
terms are

The important

ﬁo(g).4ii3 e YRy _ E(l)(Q).Z§§§ e YRo
0 0
= | Ay () 4R - _(l)(Q)°§6}e .
4ﬂRO
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Let's expand f(e',¢')ﬁo(e',¢') and ﬁo(e',¢') about 6 ,¢ :

_ A _ ~ 'a—- ~ .
AR = £(8,4)n(8,9) {f(e,cp)now,qb) + 5y (Eng) 8¢

a/\
3 ln 2.0 _ 0 ..~ of
57 (£n,) 8640 (8 )} = [(-5—-f+ o a¢>5¢

0 A
+ | — 0
< 3¢ ¢>68+ (6 )}

6'-6, 66 = ¢'-¢.

+

where &8

!3>

R, = ﬁo(e,¢) - ﬁo(e',¢') = n,(6,¢)

~ ~

. o0, an,,
- [n0(6,¢) t gy 0% 55 56+0 (6°)

‘A ~

d -9

_ _ _0 _0 2
= 59 5¢ + 55 86+ 0(87)

Recalling that

we obtain

ng(Q)+AR = £= 8¢ + £z 88 + 0(8%)

]

(1) qyer. = (3£ 2 + 1 3% 5 Vifcinos soss 2
n () 50 = <ae eq + ing 50 e¢> <51nee¢6¢+e656+0(6 )>

3f ., _ 8f
36

56 + 0(8%)

|

!
O
S
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}-+
o

°7

ny (@ iR - 0t (@) r, = 0(6%)

and the third term in Eg. (B-1) is integrable.

From the point of view of numerical evaluation of the

matrix element Jéo),PJéo)

; the regrouped integrands as they
stand in Eg. (B-1) are useless because they diverge as Q'-+Q.
We will illustrate how they can be cast into a numerically

suitable form by supplying the details for the first term in

Eg. (B-1). Thus the term of interest is

-— A .« v (l) "o, (0) '
I(R) = Ny (R) =0y (Q )[_rg (2" gp (Q )] VG,
So
(1) (0), 1 _a ~ \ B
+in (Q)-gp (Q )}[; nO(Q)nO(Q)]-vGO an (B-2)

and the matrix elements involve integrals of the form

~

S Jéo)-noxl(ﬂ)dﬂ. Consider the integral

0
Y B IRNUU NN BN CE IR () B
21(9) = nO(Q) nO(Q )[g CYAD! Qp (5 )J
5o
R
P 4TR
0
1\8 YRy
i.e., retain the highest singularity in VGO = -<7+§—> 5 €
only. 0 4nRo

a3



Again we expand in a Taylor series about 0

B, = [-So(m-ﬁomw{g‘” (@).30) (Q‘)] + [g(“ m)-g;(” (9')”30
/. an I
_ [“no <no+ -52 80+ =0 ae+o<az)>
(1) (1)
<n(l)+ o 56+ o 6¢+0(62)>
n 56 59

51 an
~ _ A 0 0 2
[no <no+ 5% So+ 55 $04+0 (8 ))]

[ (1) (1)
= -0 <ag_ Sé+ oz 5§68 ) +0(s%)
| "o 59 56 8

3 ~ . A
on on
0 0 2
_-(N} 86 + = se>+o<5 )}
(1) a2 | (1)\ 42
_ <J<0>. 3_2_>?1Q(5¢,2 ; [<J<0>.,35‘- )a_ng
~p LAY > o8 /3¢

(1) ~ : (1)
; ( )&]wme) +<z<°>.an—ﬁ) 0 o6y 240(6%)
36 P 36 30

~p 3¢

Recalling that
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we find

(1) a 2 a
S O F SN TAS- SUS B o SN S T S
90 083¢ 8 8 9¢ sin6‘3¢2 o) sin® 3¢ 39

3f ~ of ~ 1 82f ~
= = 13650 %o * 37 cosfey * Sig ve2 56
1 of . ~ ~
+ Sind 50 <—51neno+cosﬁee>]
(1) 2
m _[ 2% o, af %% _cose pe . . 1 ar -
36 36 6 9 08 sin26 2 ¢ sin6 38%¢ ¢
L1 8f %
sin6 9¢ 96
Thus

= ]300 (gine BE af
gl = [Jpe <§1n8 5559 + cosb 3¢>

| EE— )
>
©-
o
-
[N

po 356 2

2
+ J(O) <sin8cose 2f + a——->
¢

2 1.
S AT J(g) e IR e B | TP
PY 38 P sin“e ]

_ (0) . 3" f (0) _ cosb 9f 3
[Jpe sinb ggi + Jp¢ < : +

)]

'...l

3

@

Q

-

Q

Dy N

@fth

©-
\/,
i

o>
©-

P sinf 3¢

(0) of cosH 3f

2 ~
+ glo <?ose LE §—£>]ee (868¢) + 0(53)

po P Sin® 5¢2
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We can also obtain

)1/2

R. = 2(l-sinfsinf'cos (¢-¢')~-cosbcosh'

1/2
[(68)2+sin26(6¢)2+0(63)

]

. 3 . | .
Ignoring the 0 (8 ) terms in the numerator and denominator

and denoting the remaining integral by I,', we obtain

2 T

2 2
: Fy(R) (80) “+F, (2) (68) “+F, (R) (869)

I, @) = sin6de'd¢’

3/2
4ﬂ[(66)2+sin28(5¢)2]

where the numerator is identical to B, and F,, F,, and F, are
defined in an obvious manner. Notice that dQ' = sin8'déde’ ;
i.e., we have replaced sinf' by sin6® because we are ignoring
0(63) terms. Writing &¢=u, &§6=v for simplicity, we £find

21=¢ =0
, El(ﬂ)u2+gz(ﬂ)v2+§3(ﬂ)uv
21(9) = : ) sinfdvdu
2 .2 2
) 4ntvT+sin 6 u
-6 -8

All three integrals with respect to u, v are elementary

and can be performed explicitly. We will not give the
answer here, but we should note that E'(Q) is singular at
6=0 and so is I(R) that has the same behavior as I&(Q).
However, when we calculate the matrix elements that have
the form J Qg’(ﬁoxl(ﬂ)dﬂz we obtain an extra sin® from d4Q

o
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P

and one can show that the integrand consists of terms that
are either zero or finite as 6-+0. Thus 6=0 can be omitted as

an integration point when calculating S gor- ﬁoxl(ﬂ) aq.

9

The behavior of the rest of the integrals having as inte-

grands the first two terms in Eg. (B-1l) is similar. We are finally

in a position to rewrite Eg. (B-2) in a form suitable for

numerical integration:

8
2D
"
)
I
o
o
0
a1
o
e
r—
}=]
'_J
o)
.
aCq

Pt(ﬂ'ﬂ VGO

(1) . ' - n .
+ lg () -3, (@ )]{I nO(Q)nO(Q)} vco}

F, () (6'=9) 2+E, (2) (6'-0) 2+, (@) (6'=9) (8~8) sin®

sinb' ae’
2]3/2
)

41 Le'—8)2+sin36(¢'—¢

]
+ 1, ()
As 0»0 the integrand in the first integral goes as 0(60), and

consequently we can ignore the point Q'=( in the numerical

integration.
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