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ABSTRACT

This report summarizes the results of our effort under the program
"Statistical Modeling of BMP Interaction,' an effort carried out in
a time span from October 1977 to December 1978. In what follows,
Section I describes the technical motivations and approaches, and
Section II presents technical status summaries for the tasks.
Appendix A provides the derivation of a few key formulas for the task
on random mutual coupling for which the main results are elaborated
in the text.
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SECTION I

[ N

TECHNICAL BACKGROUND, MOTIVATION, AND APPROACHES

1. BACKGROUND

The background against which a statistical method in EMP
interaction analysis is pursued is the simple inadequacy of
the traditional deterministic method. The deterministic
method calls for the modeling and solution of the interaction
problem as an electromagnetic (EM} boundary value problem
(or an equivalent circuit version). The inadequacy lies in
that the solution so obtained does not always agree well with
the EMP coupling occurring in a real system and that an uncer-
tainty measure for applying the predicted deterministic results
is lacking. 1In fact, even for some EMP tests with purpose-
fully~simplified and tightly-controlled configuration the
agreement between thevmeasurement and the prediction is poor
enough to strongly exhibit that inadequacy [Ref 1], let alone

for a complicated real system.

The causes for such an inadegquacy are: (A) the necessary
simplification in the modeling to maintain mathematical trac-
tability and conform with resource constraints; (B) the uncer-
tainties and variations in the values of the parameters used
in the model; and most importantly (C) the complexity of the
real system in its multiple coupling paths and mutual inter-
actions among different parts to EMP--a phenomenon which prac-

tically defies deterministic modeling.

2. MOTIVATION

In searching for new approaches and teéhnologies to com-
pensate the above-mentioned inadequacies, there at least
three reasons that motivate and favor the selection of and

investigation into a statistical one. First, from the view




of analysis, the applicational errors and uncertainties due

to modeling simplifications and parameter estimates which

were not treatable in a purely deterministic approach are
naturally amenable to a statistical one. Example cases are
when the compounded uncertainties in successive submodelings
render the overall deterministic result meaningless and when
the uncontrolled probabilistic nature of the EMP stress itself
and the detailed operational state of the system become the

prevailing factors in determining the system's performance.

Second, from the view of synthesis, the EMP prediction-
data comparison and the subsegquent modifications and cali-
brations of the prediction capability are always imperfect.
Such processes are invariably based upon a finite number of
computations of finite modeling complexities and a finite
number of data under simulated less-than-full testing con-
ditions. Both the reconciliation between prediction and data
and the further use of prediction for untested cases neces-
sarily encompass inferences of a statistical nature. That
nature becomes more pronounced and more accurately subject
to a statistical guantification when the interaction becomes
more complex and disorderly. But this is the situation we
usually face in the EMP interaction problem.

Third, for the many cases of systems with functional
redundancies it is the probabilistic distribution and its
various averages of the component responses to the EMP on
which the system performance depends. For such cases, the
much less information-loaded distribution of responses is
needed rather than the individual responses themselves.

Thus, a statistical description can by-pass the insurmountable
difficulty in obtaining details and still provide very useful
information.



‘In short, a statistical approach sguarely recognizes and
seeks to deal with the realistic uncertainties and complexi-
ties of the EMP system interaction problem from the very
start. This approach is diagonally opposite to the conven-
tional deterministic analysis and, judging from the maturity
and difficulties of the iatter, is clearly needed. The present
exploratory investigation intends to and should be but a
beginning effort in this new and promising area of EMP-system

interaction technology.
3. APPROACHES

Consistent with the nature of this effort, significant
attention was directed toward asking the "right gquestions.”
As such, the guestion regarding what types of systems and
what kinds of EMP interaction guantities are amenable to a
statistical approach must be considered at the outset before
any particular approaches can be selected and pursued. In
this regard, at least three guidelines were reached and used:

A. The system has to "degrade gradually" in its
"relevant performance."

B. There must be a "large number" of components
or elements involved in the physical responses
which contribute and control those performances.

C. There must be a prevailing "randomness" in the
EMP coupling mechanism for those responses.

With these guidelines in mind, we set out to pursue three
types of approaches. They are (a) the aggregate of random
interécting dipoles as a crude model for the many complicated
EMP-interacting wires/struts in an aircraft or communication
center; (b) the effect of uncertain perturbations in the
generic shapes of conductor geometry on the SEM (singularity
expansion method) and EEM (eigenfunction expansion method)
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characterization of system EMP responses: and (c) the statis-
tical POE (point of entry) formalism to quantify uncertainties
in and distributions of the internal interaction paths. These
approaches were investigated separately in this effort and

were successful to different extents. Their technical status

is summarized in what follows.



SECTION I¥

TECHNICAL STATUS SUMMARY OF TASKS

1. STATISTICAL INTERACTION OF DIPOLE ELEMENTS (SOW TASKS
4.2 AND 4.3)

a. Concept and Objective

To the uncontrolled EMP signal, the many wires, loops,

and conducting struts in a real system such as an aircraft or
communication center, indeed exhibit a high degree of disorder
and complexity. The induced currents and voltages on these
individual internal structures may be so sensitive and vary

so much, depending on the details of the incident EM fields
and the system's in-operation states, that only statistical
descriptions of these fesponses and their various averages are
the practically meaningful quantities we can gain a firm gtasp
and make use of in coping with the EMP threat to the system.

On the other hand, dipoles are the simplest elements one
can use to facilitate and build up EM interaction. Although
the individual structures are not exactly dipoles, they as a
whole do resemble somewhat an aggregate of such, especially
for the relatively low frequency content ({ several mega-
Hertz) of a typical EMP. Our concept is to model the compli-
cated structures as an aggregate of random dipdles and to
obtain the resulting statistical distribution of the coupling
responses on these dipoles. The input randomizations to the
model are provided via those of the dipole sizes and shapes,
orientations, impedance loadings, and spatial distribution
(see Figure 1l). The so-obtained statistical distribution of
the responses and its various averages will be compared with
"corresponding" data from real systems to gain understanding

of and insight to the complex-system coupling problem. The
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result will then be used to make further predictions and

direct more definitive approaches.

The present task is devoted to the effects of mutual
coupling among the random dipoles. 1In a previous effort of
ours [Ref 2], which did reveal interesting and encouraging
results, such effects were only accounted for at an "assumed-
parameter" level. Neither the validity nor the physical con-
stituency of the parameters was investigated. The objective
of this task is to obtain the conditions and generalization

of the dipole mutual interaction effect.
b. Technical Results
(i) The General Model

The inquiry into the induced currents' distribution and
their averages on the collection of dipoles is a special case
of representing microscopic average phenomena in terms of
macroscopic ones. The formalism of representing such for
the interacting dipoles is, of course, known [Ref 3}. Although
that formalism contains no information other than defining con-
cepts, it is briefly presently here to exhibit the nature of
the specific model that followed.

Consider electric dipoles, for example, we have first

' o M
.= >, |B. . 1
By = %o 2i (57 + 24") @
where p; = microscopic electric dipole moment
v
, for ith dipole element (Coulomb-meter)

Eio, EiM = respectively the incident and mutual
Y] A%}

coupled electric field (volt/meter)
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P = microscopic dipole polarizability

Y]
v tensor

Second, if all interactions are linear, we have

Bl =), - B,
L N n
where A = electric mutual interaction coeffi-
oy
o

cient tensor (dimensionless)

Third, within the linearity and considering only the induced
dipole moments (i.e., no permanent dipole moments), Ri is
independent of field strengths. Fourth, the linkage“between
microscopic to macroscopic description is facilitated via

azZpi
Y
P=¢ X -E°= < 3+— > =<n>< p.
N o e A d3x m1>
where ‘ 5 = average macroscopic polarization
(Coulomb/meterz)
ﬁe = average macroscopic electric suscep-
v tability tensor (dimensionless)
E, = macroscopic electric field without
mutual interaction (volt/meter)
<> = denoting macroscopic average
<> = average number of dipoles per unit

volume (metern3

)
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Fifth, as a result of the above and denoting U = unit dYadic,

we have ‘

X = . 1
Ne <> <%. <§+:§)>

expressing the macroscopic susceptibility in terms of the

averages of its microscopic constituents.

Four remarks are in line here. One, the magnetic dipoles
can be formulated just similarly. Two, the induced current

Ii on the ith electric dipole is related to its moment 1]
Of

simply by

and the averages of the former can be easily related to those

of the latter. Three, the full quantity of :interest is the
distribution of the %i or %i for the collection of dipoles,
not merely their first moments (the average of %i or gi).
Four, the randomized dipole model presented in the following
is actually a special case of the above and is investigating

the properties of P, and X.
1 v

(ii) Statistical Dipole Mutual Coupling Model

The geometries of the small electric dipole and the small
maghetic dipoles are shown in Figures 2 and 3, respectively.
The induced currents probability densities [Ref 4} for a random

12
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aggregate of such small dipoles, without mutual coupling

effects, are given by the respective expressions:

o, T (1) = S TS <4y (6)
where
(wire) _—
: T s f Fo,!7r®) d0ds P0in, @in (9507 050)
2 2
sSX 1 . b ‘
Tnx -~ 113D
. deind¢in pw(w) dy ps(s) ds px(x) dx (7)
and
py (1O%P) (5) = & p(00P) ¢y ¢ 4y, (8)
where
1 .
p(10%) i1 < 4y = Po,p(8:0) A8A8 Py, (68, ,0, )
. N in, in
ir
r < 7
deind¢in P{P(W) dy pR(r)dr (9)

In Equations (6) to (9), the induced current has been normal-
ized and the probability densities in the integrands are where

the model randomization enters as inputs to the analysis.
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with respect to the shape of the induced currents' probability

distributions, the main results previously obtained were [Ref 5]
(A) the load impedance effects are negligible if

(wire) 10 in(%}
Z, << 2.3x10 X F 7 (10-a)
. MHz meter
Rn(gg)
(lOOP) t , 10-b
2 << 47xEyp, X Rpeter ¥ Tm(400) {10-b)
but tend to smooth and prolong the high value distribution
tail of currents and enhance the low value tail if condition
(10) does not hold; (B) the mutual coupling effects under
the simple parameter assumption can be handled via
=10 . am .|| (11)
where I(O) is the current r.v. (random variable) without -
mutual coupling and G is normally distributed,
G e N(1, MG), (12)

which broadens the resulting distribution via

2
)
. (13)
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and (C) the resulting currents statistical distributions
resemble somewhat but are not lognormal with the central
part of approximate slope V5 to A8 dB.

This present effort concentrates on the detail of the
mutual coupling effect and obtains the values, with their
full scale factors, of the induced currents' first two

moments.
[} . * 3 *
(1ii) Specific Results

Consider the aggregate of small electric dipoles. The
induced currents on the dipoles satisfy the egs. (see
Appendix A for details of Section 4.1) (see Fig. 4 for

notations):
2 A
= Twe | i L. o )
I, =3 7. * (%i * j%i Ei])
in Ei (14)
i
I.%. AN AN ANERTAY
i3 = ___J_lg_ . <j - ey eij'j (15)
1] 4veowrij

The "weak" mutual coupling case, under the condition of small

dipoles located not close to each other,

3
4

3 L.

1

<< 1 (16)

‘*See Appendix A for some derivations of formulas in Section
I1.1.
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leads to a first-order perturbation result for the mutual
coupling effect:

2
£i N AN 0
mTEW B . A
— A4 L] L ] + .z. L]
S U R il CERS. 2 A
n\g,
i
23/1\-(U—/éé\) 4
.3 2 7 ©i3%i4) * i
)
1613, In 3
17 -d-—
J
0 M 0
= = I + X.
= Ii + Il Il (1 Xl) (17)

Now, for this "weak" coupling case, at a given ith dipole
the mutual interaction terms in the summation of (17) are
indeed independent and the central limit theory dictates their
_ approach to a normal distribution. After careful and
lengthy calculations, the major results obtained are (see
Appendix A)

Xi——FN <OCI B 1l + /\l/\ 2> (18)
1+.<i E>

- E¢
1

where the parameters o and B expressed in terms of their
physical model constituencies are

70 U mg? - <> £n<7—>5<n>cl (19)
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2 _
B = —=—g . <126>, < L 5 L <B>
27.3%5 (Inq) c+
v
+ —
. (59- -) = <n>c, (20)
S S
where q= ﬁi/di (21a)
aw 3
Voo = 3 T (the upper & lower cutoff {21b)
= ~  wvolumes)
roy v min (X, Lsystem) (21c)
r._ v <t> (214)

In obtaining the above results, we used the following approx-

imations or assumptions:

(a) dipoles sizes << average interdipole distances and

wavelength;
(b) interdipole distances << wavelength; and

{(c) the dipoles are spatially randomly located with
a Poisson distribution of lower cutoff volume Vel
i.e., dipoles are located independent of each
other and are nonoverlapping with a minimum occu-
pied volume Ve and an average number density <n> .

It should be noted that more general results without
approximation (b) were obtained in Appendix A; approximation
(b} neglects the phase delays among dipoles at different
locations and thus gives an upper bound to the mutual coupling

effect.
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Consequently, the mutual coupling among dipoles has indeed,
at least for the "weak" coupling case, the effect of modifying
the statistical distribution of the currents on the collection
of dipoles as we had assumed previously. The modification

enhances, on the average, the induced currents as
<I> = <I7> (l+a) (22)

which follows Equations (17) to (19). Notice that the mutual
coupling contribued part o is proportional to the average
number of dipoles per unit volume. ' This is intuitively clear,
because with the phase delays between dipoles neglected and
with the dipole's lack of polarity (a dipole, of no permanent
dipole moment, flipping 180° is identical to itself) the
dipoles' coupling to the incident field is strengthened by
the scattering. In addition, the factor fn(v_,/v__) in ¢

is also intuitively clear, because with uniform Poisson
spatial density the number of dipoles in r»r+dr goes as

%rzdr, but the near zone interaction strength goes as mr—3.

The modification also has the effect of broadening the
statistical distribution of the induced currents; i.e., the

range over which those currents vary becomes wider:

° 3 o 2
var {1,} = var {1 } - [(l+oc)2 + 452] + 482<Ii> (23)

Viewed slightly differently, this broadening reads

2
1+ (%)g I ag? (24)
1+ (’E‘)P (14 ,
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where

1< L
oo 48% %2 _ g’ <8 01 (25)
2 - ¢ L 3 v
(1+o) 1 60 <m> <L7> Vc_ S&n(vc-%-)
c—

Applying Eguation (25) to plausible geometrical dimensions of
a typical systems, say, with g ~ 50, £ uniform in (o, zmax

vl metef;, Lsystem ~v10 meter, the factor in (25} is of

v3 x 10 ©, This small number means that there is very little

relative broadening as far as the dependence on <n> is con-

cerned. This indicates that when plotted on a lognormal
graphic paper the slope of the distribution, which is essen-
tially 2nil + (G/u)Z], should be insensitive to the detailed
parameters of the model.

(iv) Some Applications of the Technical Results

The weak coupling technical results bear out a previous
conjecture as to the trend and the insensitivity of the dis-
tribution. Further, since we now have the physical model
parameters for the Mo and Orr we can fit data to the
model and obtain the various average physical parameters
contained in o and B. Then we can use them to predict trend,

avefages of further coupling responses, and probabilistic
. bounds to their range of variation. One useful average, for
example, is

average absorbed ‘?gv Ii R€>V
energy per unit = = <n> - <R;>
volume of system v )
2
[ var{1,} + <Ii>] | (26)
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(v) TUnanswered Questions and Needed Pursuits

One of the most important questions which we have not
been able to address_withinrthis_effort is'the 6ther limit,
the "strong" mutual coupling case. Whether the general trend
and the (o/p) ratio of the distribution will be alteréd or
shifted significantly is not now understoocd. Thié has a
sirong bearing to a real sysfem since wire and strut compon-

ents in such are often rather closely coupled to each other.

The second crucial question is: since a real system suéh
as an aircraft is not literally made of a collection of random
dipoles even in the sense of EMP-interaction, how do we gener-
alize and hedge the dipole results to make them more appli-
cable to real complicated systems, more directly and further
guantitatively and conditionally? A third gquestion is to
experimentally verify that the theoretical investigation is
in the right direction and truly useful in practice. These
and other technical questions urgent to the development of
this random coupling aspect of the statistical EMP interaction
technology are beyond the scope of this effort but definitely
need to be pursued.

2. VARIATION OF EEM AND SEM PARAMTERS DUE TO GEOMETRICAL
PERTURBATION (SOW TASK 4.4)

a. Concept and Objective

While the Singularity Expansion Method (SEM) is a very
useful technique in characterizing, recognizing, and storing
a system's response to EMP, its physical foundation both in
terms of relation to the well-established Eigenfunction
Expansion Method (EEM) and sensitivity to the variations in
geometrical structures has not been clarified. The concept
of the statistical parameter investigation for SEM and EEM
is first to translate geometrical deviations (from canonical

shapes) to changes in those parameters; second, to obtain the

23



statistical variations of the latter in terms of the uncer-
tainties of the former; and third, to generalize the results
judiciously for more complex and noncanonical geometrical
shapes to estimate at least the probabilistic error bounds
of their relevant SEM and EEM parameters.

The objective of the present task is to realize the first
part of the concept mentioned above. The approach is to
utilize the only known analytical solution for the EM scat-
tering from a conducting body, a sphere, in both the SEM and
EEM formulations to obtain the perturbational effects due to
slight deviations from the spherical shape. The second and
third parts, their results necessarily built upon those of
the first part, of the concept in randomizing the perturba-
tions and obtaining the corresponding statistical distribu-
tion and estimating their bounds could not be and were not

pursued here. Those should be pursued in a succeeding effort.
b. Technical Results

The details of the technical results are included in
[Ref. "97. A brief summary is given in the following.

(i} The Model

Consider the magnetic field integral eguation on the
surface of a perfect conducting sphere

1 _ A . ,___inc
LJ = g(o)(i) J.no(g)x [VGxg(o)(£ ilds J (5) (27)

So

where So is the surface of the sphere with radius vector

r=r =Y 9, J . the surface current density,

N, om0 Tol! A(o) N a ) .

Jinc = nOlenc, in which n,GZ=r and Elnc = incident magnetic
N

Y]
field, and G = exp(~kR)/(4TR) being the free space Green's
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function (see page 6 of Ref. 9) . for other notations) in the

Laplace domain, s cy. Now, consider that the spherical

~surface SO was perturbed into S via

r=r (6,0 [1+¢ef (8,0) (28)
where ¢ is the small perturbation indicatbr with respect to
which we shall apply a first-order perturbation theory and

(68,¢) 1is an arbitrary function. Since we knew for the sphere

SO its EEM parameters: the eigenvalues, eigenfunctions, and
expansion coefficients, and its EEM parameters: the natural
frequencies, natural modes, and coupling coefficients, the

goal is to obtain their perturbed values for S as a result

of the geometrical perturbation sé——*s specified by Eg. (28).
These perturbed values are obtained via a first order pertur-

bation method and are valid only up to and including order
of e. v
(ii) Specific Results

After a very lengthy and somewhat subtle analysis, the
main first-order perturbational results for the EEM and SEM

parameters of the perturbed-sphere S are summarized here.

First, for S the perturbed magnetic eigenvalue problem becomes

(LO + ep) J (29)

ot T p Ipt

where P is the shifted surface integral operator evaluated
on S, (see page 12 of Ref. 9) gpt is the part of the per-
turbed eigenmode on S tangential to SO, and kp the perturbed
eigenvalue. Notice that being a first order perturbation
result, all gquantities in Eg. (29) are evéluated on the

unperturbed surface So'

25



Second, the perturbed eigenvalues are

()R

Aﬁm = x‘i)R + exfl) (30a)
R o= (@0 L (Do (30Db)
n nm

nm

Here, the subscript p is replaced by the double~index set nm,
withm = -n, -n + 1,...0, ...n-1, nand n = 1.2..... because
the EEM for so has two independent angular dependences, respec-
tively, for 8 and ¢. The unperturbed eigenvalues (see page

14 of Ref. 10) 19
SO has a degeneracy that makes its eigenvalues independent

have only one subscript because the EEM for

of m. The superscripts R and Q stand respectively for the
magnetic (TE) and the electric (TM) parts of the surface eigen-
currents ﬁnm and %nm on SO (see page 14 of Ref. 9). [Ref 6].
Further, the degeneracy is assumed to be removed by the per-
turbation; but this point was not gualified in general and

will be remarked upon later.

Third, the shifts in the eigenvalue, Eléi)R, and the
coefficients, bims’ are to be obtained from the new eigenvalue
problem:

R R = (L)R . R
% Pnsk bnmk n(n+l) Anm bnms (31a)
where
PR = 0 .| A xPR ds = {Q PR (31b)
nsk ~ NS ~hnk o - iwns, mnk} A
So
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Similarly, the e)'*)Q and coefficients b2
nm nms

the set of equations

are obtained from

T R Q = - (1)Q .0
k Pnsk bnmk n(n+l) Anm bnms (32a)
where
P2 _ iR , PO (32b)
nsk = *r\,ns’ r\,nk}

s | (LR _ _,(LQ
Notice that as a result of Egs. (31) and (32), Anm = Anm .

Fourth, the tangential (to SO)'part of the perturbed
eigenmodes of the surface currents are (p. 15, 16, Appendix B)

R Y RR RQ
r‘gnmt rl\j,‘nm € %% |:a R + anmp% %p!&] P

etc.

Here the %nm is a "natural" collection of degenerate modes
for a given n grouped by the perturbed operator (28),

R
= 34
an =2 bnmk 5nk’ (34)

and the perturbed eigenmodes obey the orthogonal condition

{%nm’ Rpg} = n(n+l) Snpsmz (35)

etc.

Further, the first order eigenmode shifts in (33) are
governed by the coefficients
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RR - {%rs, Pf%nm} (n % r) (36a)
nmrs (Aéo)R _ Aéo)R) n (n+1)
RQ ~{Rrs PR }

= Mot ST , (n % 1) (36b)

a =
nmrs (Aéo)R _ kéo)Q) n(n+1)

Fifth, the normal (to So) part of the perturbed eigen-

modes Jimt start with a first-order term in & and are given by
Y
_..(1y . IR (),
82 gnmt or 62 ﬁnm (37a)
where en(l) is the difference between the new (to S) and old
Y] - . : . ,

(to SO) normals:

en(l) =n-f {37b)

X ° ®

Sixth, for SEM the natural pole location to the perturbed
S becomes

(o)

nn'

l .
Yomnt = Yooh + ey, (38)

Here the Yéﬁ? is the unperturbed SEM natural pole: the root

of Aéo) <Yné?))5 0. Also, the shifted part is

o)
A (v)
(1) nm
£y v T - & ' (39)
nmn gy () |y = v (o)
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which applies to both the R and Q types of surface currents,
with that superscripts respectively inserted for all guanti-
ties of Eg. (39). This is an important and simple result.

The shifts in the SEM natural poles, in the first order, are
values of the bracketed quantity in Eq, (39) but are evaluated
at the unperturbed pole location.

Seventh, the perturbed natural modes are

| _ Y(o) (1) f (o)) 4
Xnmn' anm e gnm <Ynm') (40)

where the second term is from the Egs. (33) and (37a) evalu-
(o)

ated at unperturbed natural poles Yam -

Eighth, the SEM coupling coefficients are rather labor-
ious to calculate in general. But the ¢-function-plane-

incidence SEM response is found to be (p. 29, Appendix B)

v(o) 1 v(o)
(O) O ( O
J (r, v) =2 n . + €n . e
NN Q a v (0) __ (1) a _ (1)
Y=Yy €Y Y=Y
v(l)
+ enlo) . wa(o) (41)
Y=Yy,

Here, o is the shorthand notation of all the sub- and super-
scripts.

(iii) Unanswered Questions, Remarks, and
Areas to Pursue

Of coﬁrse, the usefulness of the perturbational results
' in a statistical EMP coupling approach should be judged by
further carrying the above results in EEM and SEM to the
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second and third parts of the concept outlined in Section
i1.2.a. However, even without that having been done here,

the perturbational analysis itself shows some interesting
results. First, from Egs. (30), (31), and (39), clearly

some natural poles and modes are more perturbed by, and there-
fore more sensitive to, a given type of perturbation than
others. This could be seen explicitly 1if one can express the
general perturubation response in terms of a &-function-
perturbation response. Therefore, obtaining such an expres-
sion should be an important step for the usefulnéss of the
pertﬁrbational procedure. Second, the dependence of degener-
acy removal on the nature of perturbation is not understood.
This has a significant bearing on the modes excitation and
should be obtained. Overall, we have laid the necessary
ground for gquantifying the statistical errors and uncertain-
ties in EEM and SEM, but that statistical quantification itself
has yvet to be obtained.

3. A STATISTICAL FORMALISM OF POE INTERACTION PATH
UNCERTAINTIES (SOW TASK 4.5)

a. Concept and Objective

The prediction of EMP responses at internal points in a
complicated system is often, and obviously, subject to large
uncertainties. The uncertainties come not merely from those
in the external exciting environment, but also from those in
many interwoven interaction paths along which the externally
coupled excitations at the POEs penetrate and propagate to
the response point and then couple there locally to generate
the response signal. O0Of course, the uncertainties in these
paths dominate the response errors for cases of well specified
environments. For general cases, they either are at least as
important as the environment uncertainties or remain still
the dominant type; as is strongly evidenced by the discrepan-
cies among predictions and experimental data for some EMP
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tests [Ref 7] whose environments and géometrical configur-

ations are designed and implemented under tight control.

The cause for those POE interaction path uncertainties
is clearly the difficulty, even within the linearity region,
in attributing which paths to which POEs are the true prin-
cipal contributors to the response. This difficulty cannot
be resolved by experimentally and/or theoretically refining
the prediction capability for selected and isolated inter-
action paths. The response may come from some unidentified
POES,* or result from the phase cancelling effect of some
identified ones. The practical and repeatedly confronted
problem is that a good deterministic prediction capability
(analytical formulas or numerical codes) for one configura-
tion and some particular response does not guarantee the
same guality when applied next. The concept of the present
approach is to statistically quantify the response variations
or uncertainties due to the uncertainties in the POE inter-
action paths such that usefully improved and bounded predic-

tions can be made for untested cases.

The objective of the task is to obtain the general trend
and "average" effects of such response uncertainties due to
identified and unidentified POEs via simple but realistic
analysis, compare and contrast the effects and extract and
use the information by building an indicative formalism of

parameters.

*In this report, the identified or unidentified POE represents
really the whole respective interaction paths from the POE to
the response point.
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b. Technical Results
(i} The Model

Within the linearity region, an EMP response Ri(w) at the

ith internal point can be written as the sum of an identified

and an unidentified part:

R, (w) = % T;A(w)E¥(w) +
1 j=1 1] J

u = ol u
(w)Ej(w) = Ri + Ri (42)

K
s 7Y
J:

1 1]
where Tij(w) is the transfer function that links the exter-—
nally coupled driving (to internal) field strength Ej(w) at
the jth POE to the ith

Here and in what follows we shall use the analysis-simplifying

internal point (see page 6 of Ref. 10).

but nonfundamental assumptions: all quantities being dealt
with are real scalars; POE drivers Ej(w) are independent of
each other; interaction paths are simple (not composite, see
page 10 of Ref. 10) algebraic, and independent of each other;
there are n identified known POEs and K unidentified "hidden"
POEs. With this simple model Eg. (42), we will treat the
Ti's, Ej's, and K as stochastic variables with parametrically
assigned properites and obtain the resulting characterization
of R(w). The types of properties to be parametrically assigned
will be selected based on our physical intuition and technical
experience and judgment; there is no mature technology to war-
rant a first-principle approach to this, although the efforts
under the preceding two task areas (Sec. II.l1 and Sec. II .2)
result in initial steps toward this direction.
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(1i) Identified POEs

In the case that all POEs are identified (K = o and
*

Rlil = o0 in (42)), the resulting response prediction is
R~<R> +o0'=7%¢t.e +\/§ (tzgz +e2s + 5202) (43)
- 0 T3 7373 - V%L \373 373 373 :

Here, tj :—:.<Tj> ' ej = <Ej> , and dj é'nd Oj are respecﬁivély
the s.d. (standard deviation or one-sigma uncertainty range)
of Tj and Ej. Firsf, the relative error or noise-to-signal-
ratio for the absolute value of the resulting response pre-
diction is ¢/<J R[> and bounded by

B < O (44)

<IR|> - <IR|>

where the upper bound is itself bounded by

) o < 2 ' ‘ (45)

< <
v <RrRZ> <IRI> <R>

-

-

For the simple but plausible case that all individual products

T§E§ have the same mean U, and s.d. error 0,, the bound (45)

reduces to

9o . 1 — < 9 < Ze (46)
olv/n V1 + <_Go ) <IRI> Lol T

HovD

*The index i is suppressed; see Reference 10 for details of
this and subsequent results.
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This important result suggests that the relative error of
the resulting amplitude goes down as n-l/2 to tolerable limit
even though individually each of the many similar and contri-
buting interaction paths may encompass sizeable relative
errors. A central limit case explicitly solved also offer

clear support to this suggestion (see page 20 of Ref. 10).

Second, if the responses at a fixed point for M similar
(in strength) but independent (in random orientations) EMP
exposures are made, then the response for another, M+lth,

EMP exposure can be inferred approximately as

| R+ | ~ <IxI> + \/lelz + <Y>

Here, <IX|> is the (sample) mean of the absolute value of

the predicted M responses, Uinthe (sample) s.d., and<<y>

the mean of the square errors Oy (uncertainty variance) in
those M predictions. The relative error in the inferred

result (47) either is constant or decreases as n_l/2

when
the number of similar contributing interaction paths of the
response increases. Further, we reached the general infer-
rence that the probability is very small that the relative
error ever grows with n (see page 16-18 of Reference 10). On the
other hand, if the M+1th response is predicted just as were

the other M responses, but not its error range, then we
conclude

g

| R(M+1)| ~ |predicted M+1 B response| + | =
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Here, only the error part is inferred. It naturally should
be and always is smaller than the error in the fully inferred
result (47) into which both exposure variation and path pre-
diction uncertainty enter.

Third, we expect that the above results for responses at
a fixed point under many "similar" EMP exposures hold equally
for responses at many "similar" points under one EMP response.'
Such an ergadic nature is probably a good approximation, but

was not proved.

Fourth, when amplitudes of responses are of primary inter-
est and since it is difficult to mathematically manipulaté
absolute values, we may square the data and examine everything
based on them. These data of pure positive numbers may be
more amenable to useful statistical analysis and interpreta-

tion. But such was not carried out here.
(iii) Unidentified POEs

The error contributed to a prediction by the lack of
inclusion of some unidentified POEs can be characterized via
the expression

RU=RM—RI‘_"'YU=YM;*_'0-(Y1'G) (49)
The idea is to "queeze out" information about R using known
information in the measured response RM and predicted response
RI. The latter information is obtained via methods such as
controlled data prediction comparison delineated in a previous

effort [Ref 8] and in the above subsection (ii).

FPirst, assuming that external excitations at those uniden-
tified POIs are similar to those of the identified ones (i.e.,

as being sampled from the same population of excitations) and
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assuming the same for the interaction paths, we obtain either
results (see page 24-27 of Ref. 10).

<K>/n

<[g¥>=c K A <|® > (50)

where the C is a constant of order unit and the ¢ is the

typical value of the max1mum of t divided by the similar
typical maximum of t and is less than one.

Second, if we assume that the fraction (out of total
number) of POEs unidentified on the average is p and their
actual number is Poisson-distributed with average (l-p)n/p,
then the unidentified "error Eg. (50) becomes either of

(1-
<[FH>=dle| e)/E (51)
) Vi-p)/p

Third, by pushing the results harder than rigorous mathe-
matics presently warrants, we arrive at a plausible and simple
unidentified POE-improvement formula

Y ¥ O (Y + 0) (1 + np}, n = sign ¥y (52)
which enables us to modify the EMP prediction, ¥y + 0, to

accommodate the expected effect due to unidentified POEs.
Here

=>
1+
o>

b9
s] &
S

<[r[> t(




measures the relative importance of the unidentified and the
identified responses and should be independent of the scale
of excitation in the linear response region. The 4 and &

are respectively the sample mean and same s.d. of Rz - Ri

for a succession of EMP exposure experiments of o = l...m.

As explained for (48), the response for each of these experi-

ments is both measured and predicted using known POE paths.
(iv) Unanswered Questions and Needed Pursuit

The first and most obvious guestion that needs to be
pursued is the effects of removal of those simple restric-
tive assumptions made in Section I1.3.a.(i): the real scalar
modeling and the non-composite and independent interacting
paths. Some of their effects may only be a straightforward
increase of algebraic complexity, and others may significantly
alter the general conclusion we reached without their removal.
The second but practically interesting question is the inclu-
sion and impact of nonlinearity effects from the point of view
of statistical uncertainties and guantification. At present,
this seems not so much as appropriate for analytical efforts

as for experimental ones: more data are needed.

The third area of concern is a more careful and rigorous
mathematical analysis to justify the many loose steps made
in our investigation. Such an effort will not only validate
our results upon a firm ground but also provide the conditions

under which those results can be applied to practical situations.

Fourth and finally, a most useful effort to be pursued
next is using the results already obtained to analyze and
interpret some existing EMP-system interaction data, e.g.,
the E-3A test data. This will provide a necessary check on
the correctness and usefulness of the direction of the present

theoretical effort. In addition, and more importantly, this
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will further reveal the practically relevant problems that

need be addressed intensively by a statistical approach to

EMP interaction.
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APPENDIX A
THE DERIVATION QOF SOME FORMULAS
IN MUTUAL RANDOM COUPLING

At the location of the i~th electric dipole Ds and under
v
the assumption k<<kr<<l, the near-zone electric field gen-

erated by the jth electric dipole p, is

E.. = 3 . PJ (A-l)

unit dyadic, éij = unit vectors pointing from posi-

where U
tion 1 to position j, and Yij the distance between them. Now,
the induced current on the i-th short wire dipole is

Vi nioad (A=2)

i
9.
. 0w .. E . 41n<§%)
~ 1TE 1 1 nd = g ieE. if 7 << 1
4 ln( Qi ) i L iL wWEol
1 (A-3)

But E, = Eoi + E,. and p = iI%/w, thus we have the system of
’\Jl Y ,\Jl] %) N
equations for the dipole currents

o

Ii - 2: A.. I, = qa, l.E 5 (A-4)

i#i 9 3 +



where

1] 4te wr.j

e
in
’,..I

Now, (A-~4) can be solved by interation. Under the condi-
tion of small dipoles sparcely distributed,

23
3 T << 1, (A=-6)
lér ln(—a—)
the first order solution is
2 “~ ~ A 4 3
A . U - « ¢ . e 2: Ea
: o TE W zi o) g :z: i (: eljelj) I* g j.on
i 4 L, ok 3 7. N
ln( l) j#1 16ér; ln(_l.)
az j#i ij T
1
(A=7)

This is (17) in the text.

To find the average of Ii' we have to aYerage over the
random distribution of dipole orientations j, the directions
éij for relative locations, the dipole lengths Qj’ the dipole
aspect ratio 2j/dj, and the distances rij in the random sum
for j#r. Although tedious, the averages are straightforward
to perform if one assumes the independencies of these random
distributions, except for the Tisn The average over T, . in=-
volves the spatial distribution of the locations of the di-
poles which enters in both the rij and the random sum 2: . A

J#r
simple way to account for such is, after averaging over all
other distributions, to re-~label the dipoles: the j~-th being the
j-th encountered when one expands a spherical volume centered

at the i-th dipole. For definiteness, we assume a simple




spatial Poissen distribution with a lower cut-off volume Voo

That is, the dipoles are distributed independently and uni-

formly in space starting with volume A and with an average

density <n>.

As a result, we have first

j,ei.,ﬁ‘

TWE 2
= o . :
<>, . vy Z 1n<2) (
RS R
d

where

3 [ <k2r.2.—l) Sin kr. .+kr.. Cos kr. ]
17 17 17 1

"i

- 2 <krij> ’ kT 5

> 1
(<<l

(A=9)

Then, dveraging over the positions as described in the preceed-

ing paragraph for the case krij<<l gives




This gives (19) and (22) in the text.

To find the variance of Ii’ we take averages on the random
distributions successively, but first on a fixed i and then
on 1. The computation is similarly to that for the Ii, except
that the product terms encompassing a double summation make
the calculation much more tedious. The result is (23) of the
text. Algebraic details of above as well as further investi-
gation into the effects of strong random mutual couplings shall
be documented and pursued separately under another effort.




