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ABSTRACT

An Eigenmode expansion for the magnetic field integral:
equation (MFIE) is derived which eliminates the regquirement
that an adjoint solution be explicitly sought. Instead, an
orthogonality relation is derived which only involves the
eigenmodes of the original MFIE operator. To promote con-
fidence in the validity of the resulting expansion, two
analyses based on this expansion are presented which lead
to known results. First, the expansion is applied to the
problem of determining the surface current density induced ‘
on a perfectly conducting sphere by a plane wave and the known i
solution for this problem is duplicated by the expansion.
The second analysis shows that for a general perfectly con-
ducting body, the eigenmode expansion coefficient numerator
evaluated at the purely imaginary frequency corresponding to
an interior resonance is zero. This result is necessary in
order to relate the eigenmode expansion to SEM.

Viewing the SEM as a change of representation of the
elgenmode expansion intended to facilitate the inverse
Laplace transform of that expansion and taking advantage of
our detailed sphere calculations we obtained an important
SEM result. We found that MFIE class 2 coupling coefficients
give the wrong answer for the sphere. This result caused us
to examine class 2 coupling coefficients corresponding to
the electric field integro-differential equation (EFIDE).

We examined the symmetric eigenmode expansion corresponding
to that equation and found that EFIDE class 2 coupling
coefficients also give the wrong answer £or the sphere.

This detailed examination of the $phere solution led us to
postulate a set of SEM assumptions that -have potential appli-
cation to a general class of closed surfaces and at the same
time are consistent with the sphere solution. Finally, we
present numerical results that utilize our pseudosymmetric
expansion and illustrate the capability of determining SEM
quantities by patch zoning the MFIE.
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. SECTION I
INTRODUCTION AND SUMMARY

The original obje?tiverof this study was to determine
whether gquantities required by suggested singularity expansion
method (SEM) expansioné could be obtained through numerical pro-
cedures that include paﬁch zoning the magnetic field integral
equation (MFIE). We fo?nd that this could be accomplished at
the expense of very lengfhy computer runs. Furthermore, we
were motivated to study the underlying theory of SEM by the fact
that there was more thaﬁ one suggested SEM expansion.

The predominant effort to provide a theoretical basis
for SEM has been directed toward the problem of determining
the current density indﬁced on a pérfectly conducting closed
surface by an incident éléctromagnetic wave (i.e., the EMP
external interaction préblem). This problem is treated by
studying equations thatzresult,from taking the Laplace
transform of Maxwell's équations. This is the problem area
that we also address invouf study of SEM theory. The approach
we took was to study the relationship between eigenmode
expansion method (EEM) éolutions'and SEM expansibns.

We begin our efforﬁ by studying the EEM as applied to the
MFIE. The reason for this is that EEM and SEM can be
related and EEM does noE suffer from théWSémé uncertainty as
does SEM. This is the case since EEM has been studied as a
special case of the spectral theory of operators. This does
not imply that EEM should replace SEM, because the suggested
SEM expansions have cerﬁain advantages over EEM expansion.

The ability to relate EEM to SEM was facilitated by
recognizing that it was possible to use special properties
of the MFIE in order to bperationally simplify and interpret
the standard EEM expansion. Specifically, the standard EEM




expahsion requires that eigenmodes of both the MFIE operator
as well as its adjoint be determined since the MFIE operator
is not self adjoint. The special properties of the MFIE
operator allowy exactly the same EEM expansion to be obtained
as the described standard solution by utilizing only the
eigenmodes of the original MFIE operator. Because the MFIE
operator is not self adjoint and we are still able to obtain
an EEM expansion that requires only the eigenmodes of the
original MFIE oﬁerator, we term the expansion obtained, a
pseudosymmetric eigenmode expansion for the MFIE. The pro-
cedure for grouping and then utilizing these eigenmodes are,
however, considerably different from the procedure that would
be employed for a symmetric operator. The standard EEM
solution and the pseudosymmetric EEM solution are always
termwise identical if explicitly evaluated. 1In fact, the
eigenmodes used in both EEM expansions are theoretically
identical, independent of evaluation. It is the expansion
coefficients that are operationally different (i.e., different
representatidns of the same quantities). It is this difference
that allows the pseudosymmetric representation to more readily
vield a ¥Yesult that is necessary to relate EEM to SEM.

In order to discuss this resulé, we will describe the
three important classes of guantities that are required by
any of the suggested SEM expansions. They are the natural
frequencies, the natural modes, and the coupling coefficients.
The natural frequencies are the values of the complex
Laplace frequency, v, for which the eigenvalues of the MFIE
operator, Ai, is zero. The natural modes ére the EEM
eigenmodes evaluated at the natural frequencies. The
guestion of just what is a coupling coefficient is an open
question that will shortly be addressed in more detail. The

necessary SEM result is related to the fact that Ai has zeros
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corresponding to both ﬁhe interior, Yij’ and the exterior,
Y;., closed surface problem and *; always appears in the denom-

1]
inator of either form gf the EEM expansion coefficients. It is

essential for SEM purposes that the potential singularity in
the EEM expansion coefficient at Yij be eliminated from the
final expansion. The ﬁseudosymmetric representation of the
expansion coefficient 1s such that the numerator 1n that
representation is readlly shown to vanish at the Y 3 thus
permitting a cancellation of the unwanted 51ngular1ty and

this is the described necessary result. Marin and Latham

(ref. 1) in their SEM investigation also addressed the interior
resonance issue and obﬁained the same result.

We now address thé coupling coefficient issue according
to the principle that EEM expansions and SEM expansions should
be identical in the Lablace complex frequency domain. The
fact that we are eventuélly interested in the time domain
response corresponding to the inverse Laplace transforms,
provides no theoretical;justification for two different
complex freguency domaiﬁ solutions of the same induced
surface current density. There is essentially a one to one
correspondence between transform pairs (i.e., the real
function of time and its Laplace transform). The inverse
transform of a given Laﬁlace transform function can result
in time functions that dlffer only on a set of measure zero
in the time domain (e. g., to correspond to the uncertainty
of the function value at a jump discontinuity). Two .
different Laplace transform functions must necessarily result

in two different inverse Laplace transform time signals.

1. Marin, L. and R. W. Latham, Analytical Properties of the
Field Scattered by a éerfectly Conducting Finite Body,
Interaction Note 92, Air Force Weapons Laboratory, 1972.




This leads to two questions that must be addressed concerning
the relationship between the EEM expansion and suggested SEM
expansions.r Are they identical? 1If not, is the difference
significant? -

This effort is primarily directed toward the first
question. We address this guestion by obtaining explicit
EEM results and SEM results for the case where the closed
surface is a sphere. These explicit results for EEM are
obtained by using the peeudosymmetric expansion coefficient.
The SEM representations explicitly evaluated are those
employing class 1 and class 2 coupling coefficients. Obtain-
ing the EEM results was facilitated by employing the explicit
eigenmodes and eigenvalues for the sphere problem presented
by Marin (ref. 2). The benefits of the pseudosymmetric _
expansion coefficient representation begame epparent in this
sphere calculation as it allowed us to use only a limited
portion of the detailed sphere results obtained by Marin
(ref. 2). The resulting peeudosymmetrid EEM expansion was
in exact agreement with known sphere results. Specifically,
it duplicated the standard Mie solution and Baum's original
SEM results»(ref. 3). This duplication of results can only be
seen after egch representation is rearranged, but it is only
rearrangement that should be permitted in the theoretical com-
parison of solutions. The agreement of the pseudosymmetric
EEM solution accomplished two purposes. It promoted confidence
in the pseudosymmetric EEM theory. Secondly, it enabled a

2. Marin, L., Natural-Mode, Representation of Transient
Scattering from Rotationally Symmetric, Perfectly Conduct-
ing Bodies and Numerical Results for a Prolate Spheroid,

Interaction Note 119, Air Force Weapons Laboratory, 1972.
3. Baum, C. E., On the Singularity Expansion Method for the

Solution of Electromagnetic Interaction Problems, Interaction

Note 88, Air Force Weapons Laboratory, 1971.



direct evaluation of SEM class 1 and class 2 coupling co-
efficients (according to their pseudosymmetric description).
We found class 1 to yleld an exact rearrangement of the known
solution while class 2 led to an erroneous expansion. To
conclude that the class expansion is erroneous, we argue that
each sum, correspondiné to the SEM expansion employing either
class 1 or class 2 couéling coefficients, must necessarily
vield different results in the limit as more terms are added.
This can be concluded w1thout even examlnlng the limiting
process since each class of coupling coefficients leads to

a termwise different expan51on coefficient multlplylng the

exact same linearly independent function. (See end of section V.)

Having found that class 2 coupling coeff1c1ents based
on the MFIE gave theoretlcally incorrect results, we decided
to examine coupling coefflclents for the sphere problem based'
on the electric field integro-differential equation (EFIDE).
Again we found class 1 .to yield an exact rearrangement of the
known solution while class 2 led to an erroneous expansion.
Our investigation of the sphere problem allowed us to arrive
at a set of SEM assumptlons, to be further investigated,
that are applicable to a general class of closed surfaces
and are not in confllct with the known sphere solution.

At this point we dan conclude that SEM expansionsvbased
on class 2 coupling coefficients are not identical with EEM
expansions while SEM expansions employing class 1 coupling
coefficients are not iﬁ conflict with the general assumptiens
that we have identified. The questlon of whether the theo-
retical error caused by employing class 2 coupling coefflc1ents
is significant was not:spec1flcally addressed in this report.
In relation to this issue, it is known that the basic SEM
representation is of gquestionable value for high frequencies/
early times. This early time concern is further enhanced
because the time dependent behavior of each term, resulting

from the inverse Laplace transform of an SEM expansion




employing class 1 coupling coefficients, would exhibit a
prépagating turn on time faster than the speed of light.
Whether this deficiency is important is related to whether

" for these early times the total SEM expansion is of utility.

A possible rationale for using the theoretically wrong
class 2 coupling coefficients is that they do not result in
this termwise propagation speed problem. As a consequence
the corresponding SEM expansions Kave the potential to yield
better approximations for early time applications than theo-
retically'éorrect expansions. The works of Tesche (ref. 4)
and Marin (ref. 2) were not specifically directed azt this
issue; however, they provide some evidence that SEM expansions
utilizing class 2 coupiing coefficients potentially can yield
meaningful time domain sb}utions. Both references considered
time domain solutions for the total current induced on an
object, a thin wire in (ref. 4) and a prolate spheroid in
(ref. 2). In either case they compared the tlme domain
solutions obtained by an alternate procedure. to the solution
obtained by an SEM expansion employing class 2 coupling
coefficients and they obtained good agreément. At this point,
the use of class 2 coupling coefficients should be viewed
as an empirical approximation.

We view the status of SEM as providing suggested repre-
sentations having potential benefits to a variety of wave inter-
action applications as well as to electromagnetic pulse (EMP)
intéraction problems; however, there is at present, insufficient
knowledge to decide a priori how well any suggested SEM expan-

sion represents even external interaction quantities.

4. Tesche, F. M., On the Singularity Expansion Method as

Applied toiElectromagnetic Scattering from Thin Wires,

Interaction Note 102, Air Force Weapons Laboratory, 1972.



-G

A o

| SECTION II

PSEUDOSYMMETRIC EIGENMODE SOLUTION TO THE MAGNETIC
FIELD INTEGRAL EQUATION

In this section we derive an eigenfunction expansion solution
to the Magnetic Field Integral Equation (MFIE) by employing a
procedure that allows the determination of the expansion
coefficients without explicitiy calculating the eigenfunctions
of the adjoint operator. We call this solution the pseudo-
symmetric eigenmode expan%ion for the MFIE.

We start with the MFIE for the exterior problem

i

w} as' = g0 () (1)

B
Lo

I(x) - fﬁ(;_) x [vc;(g,g') x J(
S :

where J(r) is the induced 'surface current density on the perfectly

conducting surface S, ﬁ(gf is the outward unit normal of S,
gine _ 4« Hlnc, Ii:x.nc

the free space ‘Green's function,

is the incident magnetic field and G is

G(r,r') = ———— & VIEE

We rewrite equation (1) aé

inc : '(2)

with

Py

1]
NI
]
)
W

where I is the identity oﬁerator. The solution to egquation (2) is

given by

10




1=, a'ig-i | | @

where

ZI, = A, J, (5)
-1 i=1

»

. .. . , , inc
The expansion coefficients a; involve an inner product for J

and the eigenfunctions of the adjoint operator Qﬁ. As we
mentioned in the beginning of the section we need not determine
these eigenfunctions explicitly because we can employ the pseudo-
symmetric method which we will now outline. We begin by defining
operators M and Q through

ME =D ox £
(6)
Q = ML
where f is a surface‘vector. Noting that Mzg =h xn x £f=-f
leads to the following property
M? = -1 (7)

Next we operate on equation (5) with M and obtain the eigenvalue
equation ’

MPI, = A M,

iT=i
. v (8)
- in-
MZ = 5 M Q
-In conjunction with equation (8) we define the adjoint equation
+ _ 2T, T
(MZ) F, = MMFE, (9)

11
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where (MEUT} M obey the usual adjointness relationship

(£,a89) = aTf,q) | (10)

with an inner product defined as

: *
(a,b) = fg_ © b as

S

With the aid of equations:(S), (9), and (10) we can derive_the
relationship ‘ '

S
For generality we assume ﬁhat the eigenvalues are degenerate and
rewrite equation (1l1l) as '

; I

Ay o= Ay
( "

. ) (Eyp MT; ) = 0 (12)

where &, m signify degeneracy. Using this one can show that

A, = Al"
1 1
(13)

(EyprMIyn) = Nyp 845 Opm
where the biorthogonality relationship for i = j, 2 # m is
obtained via a Gram-Schmidt biorthogonalization procedure. We are
now in a position to derive an important result by noting that

1 T T 1

me)" = (Fu-o) 23w -0T=-Fu-of (14)

(see appendix A) and invoking the first of equations (13) to rewrite
equation (9) as :

12
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( *) *
T Mo Q)E = Ay ME

Fiy (15)

By first operating on equation (15) with M and then complex

conjugating the resulting equation, we obtain

I *
(7 * L>§iz =

where we havé ﬁsed equations (6)

rewritten as

v

*

Ay Eig (16)

and (7). Eguation (16) can be

LI = (1= 25)d5, (17)
~ _ *
Jig = Eig . (18)

where & = I/2 - L is the MFIE operator for the exterior problem.
~ *)
Thus J., ¥ F., 1s an eigenfunction of the MFIE operator with an

eigenvalue 1 - A, where A; corresponds to Jim®

second of equations (13)

(Eqp M4 0)

" i
\ .m\
S UG
= =

and we define this integral form

~

{jS’gim} E./éﬁz «n x J

We now return to equation (2) to
solution.

According to the

n % Eim das

n x iim ds = Niz aij Sﬂm (19)
as a pseudo innef product
Iim 98 = Nyg S35 Sam (20)

obtaln the eigenfunction expansion

13
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First, we expand gln in terms of the J.,

inc _
A "EZ Bip iy
; i £ 7

(21)

Taking the pseudo inner product of both sides of (21) and using

(20), we can determine the Biﬁ's as

_i % inc

{_J_izrg_lnc} =f—3-i£ . n X _J_lnc das
S

If we now expand J as ' ,
Q?E: 2: 25 iy
T 2

where
FI., = i, J

=if i =if

we can rewrite equation (2) as

14

(22)

(23)

(5)

4 v < a8 e i opmrroT——



and conclude that

250 = B/
Using equation (22) we obtain

~ inc}

ﬁ%ZZ{—i—i——-——QM (24)
) |

prL
Nig M4

as the pseudosymmetric eigenmode expansion solution to the MFIE

or equivalently to equation (2). The eigenmodes required by the
expansion are eigenmodes of the original operator & taken in '
pairs, one corresponding to the eigenvalue ki and the other cor-

responding to the eigenvalue l-ki.

15



SECTION III

CONSISTENCY OF ZERO RESIDUE AT INTERIOR‘RESONANCES AND THE
PSEUDOSYMMETRIC EIGENMODE SOLUTION

In this section we show that the set of eigenmodes for the
exterior problem is identical to the set of eigenmodes for the
interior problem, the eigenvalues A. of the exterior eigenvalue
problem have zeros at the LntehLOK resonances (in addition to the
exterior resonances) and that the coefficients {J K,Jlnc} in the
pseudosymmetric eigenmode solution given by equation (24) are
zero at these interior resonances. The last result is necessary
in order to relate the EEM to the SEM. Thus the eigenmode series
may be rearranged to be w;itten as a singularity expansion (which
is a special case of the Mittag-~Leffler theorem stated in section
VII, equation (103)) which Will not involve interior resonances since
the excitation coefficients {iiz,ginc} will be shown to be zero.

We start by.recallingiequations (5), (16), (18) and the
eigenvalue equation for the interior problem.

i

= 2— = 5
£3; = (2 L)gl Y394 (5)
£+L)S = AJ (25)
2 =i i=i
1T _ (I )I_II ¢
€3, = (2+Lg_l—xigl (%:2)
where the superscript "I" denotes "interior." To simplify the

notation we will not supply a superscript "E" to exterior quanti-

ties and also ignore degenéracy because our results do not depend

16
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on degeneracy. The eigenvalue Ki in equation (5) is agy eigen-
value of the exterior operator and either the J,'s or J,'s comprise
the entire set of eigenmodes of the exterior operator . Bearing
this in mind, a comparison of eguations (25) and (26) shows that
the interior and exterior eigenvalues comprise the same set and
that the interior and exterior eigenfunctions comprise the same
set.

We now proceed to show that the excitation coefficient evalu-
ated at the interior resonances is zero. The interior resonances

Aij are solutions to the equation

and the corresponding interior natural modes satisfy equation (26)
I

with Ai = 0 or equivalently equation (25) with Xi = 0.
I, I ~ I _ .
iy Firyg) =0 (27)

The solution to equation (27) can, using an appropriate normaliza-
tion, be given by

~ I - ~ I
= -n X H.(YI. r) res (28)
—1i'iyr= =

where we have simply made the distinction

and n is the outward normal to S. The equation satisfied by
Ei(yij,g), where r € V and V is the interior region bounded

by 8, is

17
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Mkl g4 (Y j'r)Zt <Y§j)2’§i(Y§j,£) =0, xrevV (29a)
;ﬁI "[v * Ei”ij@] =0, res. (29)

The excitation coefficient in equation (23) evaluated at Yi' is

~ .I i | ~ ~ i
(3, (vig) o 300500 éfgiwﬂ " nox 3% (yiL) ds

i3 | i3’ = ij
: ' 8
=f p:9 (y X Einc(yij)] as (30a)
S
= {Yij} (30b)

In order to show that {Yij} = 0 we employ the following identity

v '[Ei x (7 x Elnc) _ Elnc x (V x Eiﬂ

' ihc I .2 _inc

- ginc . [v x U ox H, + (vI.)2 H.} rev (31)
=i ij =i

Since the source for the incident electric field Einc lies out-

side V and H, satisfies eQuation (29a), it follows that an

integral of the righthand side of equation (31) over V yields

zero. The volume integra? of the lefthand side of equation (31)

can be converted to a surface integral using the divergence
theorem to obtain

an - {Ei x (v ginc) - gine (v Ei)] ds = 0

S
Substituting the Maxweli equation V x Elnc = - Yzoglnc into this
relationship, we obtain

é{Yij} =

18




SECTION IV

MFIE PSEUDOSYMMETRIC EIGENMODE SOLUTION TO THE SPHERE

In this section we apply the pseudosymmetric eigenmode solution
developed in Section II to obtain the induced surface current on
the surface of a perfectly conducting sphere illuminated by a
plane wave that corresponds to the Laplace transform of a delta
function plane wave pulse. The pseudosymmetric approach produces -
the Mie solution in the form given by equation (B-68) in reference 3.

We repeat here some of the equations in Section II needed
in this section.

The solution to the MFIE

23 = g'°° (2)
is
= inc
2= ZZ'{ii'z';_q_‘—(' )} Tig (23)
. ighity
i 2 '
where
Ly = iy (3)
£3i0= (L= 2dyy (17)
{JlR,ij} z filz T onox g, ds
S
= Niz sij Bzm (18)
~ inc, _ ~ .2 inc (33)
S

19



Notice that the second index signifies degeneracy. For a sphere

(ref. 3)
Bn,m,o(e’¢) n=1,2, ..., @
gi.@ = < n
i Qn’mfg(el¢)’ ,O = 0,e (oddfgven)
where
3Y. Y
- - n,m,s - 1l n,m,o a
Bn,m,o(e'¢) 106 ) f sin © 3¢ 6
L (34)
. 9Y oY
g (6,9) - 1l n,m,0 =~ n,m,0 =
nem o 5in 8 ~ %6 ¢ T T a5 %
The corresponding eigenvalues are giveh by (fef. 2)
AR = [ ai:( a) ’ ak_(va) )
L = frai (v vak (v .
(35)
Q _ _ . !
Ap = [Yaln(Yaq [Yakn(ya)}
i.e.,
_ .R
, ggn;:mfd_f_ *n Bnom,o
- (36)
i 79 =29 ¢
n =n,m,c

—“n,m,O' -

An interesting property for the sphere that will be used shortly

is

B X
9-n,m,a r

= —~c XQ

R
~n,m,o r =n,

20
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where ér = ﬂ. Next we observe that because of the

relationship

cin (@) [ee, @] - e @ [ @] = -

the following is true

Thus according to equations (17a) and (38)

ZR
) '—n,m,O

- 2R} R =9 ¥
(l Xn) Boomo = *n Bnym,o

s )

it

s ; Q)~ ~
gg—n,n,c (l kn -Q-n,n,c >\n gn,n,c

Wronskian

{ (38)

(39)

(40)

Comparing equations (39) and (40) to equations (36) we conclude 7

that

n
R = E c
"‘n,m,o Z ml,O'I gn,m',g'

m'=0 o'=0,e

. n
o} = 4 R
9"nIInIO' Z Z m',c' —n,m',G'

m'=0 o'=0,e

We next show that the only nonzero coefficients in equation (41)

are c and d
m,o m

equations (18)

;0"

~ ~ R
. X
fg—n,m,o (er Bn,m",o") as Nn,m,o 6m,m"

!
Z

~ . ~ Q
jrgn,m,c (er % 9-n,m",cs") ds n,m,c 6m,m"

21

This can be accomplished by first recalling

(42)



which with the aid of equations (37) become . ‘

l

~ R
_[Bn,m,c gn,m",c“ ds Nn‘,m,c CSm,m" ac,c"

S

f | | (43)
o} C R = -x® ' '

4 n,m,0 B _,m",U" das Nn,m,O 6m,m|| 60,,0.|r

Substituting equations (41) into equations (43) and employing the
orthogonality properties .

L] = - ds
./E%,m',c' I—{vn,m‘",c" das J/én,m',o' 9n,m",O"

S S
(44)
= Mn’mﬂclt am“,m' 60“,0'
given by eguations (B-19) in reference 3, we obtain
R
Cmn, g" Mn,m“,o" - Nn,m,o Gm,m" 60,0"
‘ ; (45)
a M| = % 5 5
m",U" n,m",G" n,m,o m'mn 0',0"
which prove that only Cn o and dm g @re nonzero. Thus we can replace
r L4
(41) by :
Bﬂ,m,o = dR Qn,mpﬁ
(46)
Qn,m,o = dQ Bn,m,o
where dR, dQ are arbitrary constants. '
Next we calculate NR ' NQ (which appear in expansion equation

n,m,o n,m,oc
(23)) by invoking equations (45) and (46)

22



= M B =
Nn,m,c: cm,o n,m,ag dR Mn,m,o
(47)
N® = ~-d = -d_ M
n,m,c m,s n,m,0 Q "n,m,o

In order to calculate the expansion coefficients in equation (23)
we first recall equation (33) and employ equation (46)

P incy _ [~ . 2 inc
{Bh,m,o’ 7 = _/é%qm,o (6, x I°7) a8
- . pinc
= degn n.o H as (48)
since
~ inc _ =~ ~ inc _ _,inc ~ o~ inc
e, X J =e. XxXe XH = -H +e.(e. * H)
and Q is a surface vector. Similarly,
. .—n,m,o
‘ inc, _ inc
{Qn,m,o’ I = dQ.fén,m,c = as (49)
The form of the incident magnetic field can be found by"using
equations (3-55) and (B-58) in reference 3
530> Z [» s
2yn'm',0',p =n',m',0’
n=l m'=0 o'=
- (1)
Al,n',m',o',p En',m',O" (50)

where p = 2,3 represents the two possible polarization directions
defined in reference 3 and

23



Mmoo = inlyr) gn'm,0(9,¢) \
(1) _ o, in(Yr)
En,m,c = n(n + 1) YT g-n,m,c(e’q)) > (51)

’

Br in(Yrﬂ
+ _-—_—_—Yr Qn,m,c(e'¢) /

P, m. g is the third vector spherical harmonic (the other two being
14 r .
Q and R; see equations (B-11), (B-12), and (B-13) in reference 3).

Employing the orthogonality properties among P, Q, and R
given by equations (B-18 and (B-19) in reference 3 and equations (50)

and (51), we can rewrite equations (48) and (49) as

I

{R giney =fd £iii£iiiil

-n,m,c’ Zp R Al,n,m,o,p Mn,m,c Ya

- " |  (52)
~ ine, _ . .
{Qn,m,o' gp }= -dq A2,n,m,0,p Mn,mlc i, (va)

where a is the radius of the sphere. We are now in a position to
: &

rewrite equation (23) in its final form by first recalling

equations (47) and (52)

© n : ' ’
J (6,9) = E E z Bl n,m,o,p 9R Mn,m,o[Yaln(Ya)] .
__.p 14 R _n,m'o

' n=1 m=0 g=e,0 Ya 3n dR Mn,m,0

2rnrmlglp dQ Mn,m,o ln(Ya) '
-n,m,co

22 (-
n

and using equation (35) to obtain

L
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Zp(0:0) =ZZ 2 {Al,n’m’c’p Bnym,q(8r9)

(va)? k_(va)

A
2,n,m,o0,p 0
.Ya [.Ya kn(.Ya)] =n,m,oC (e Id))

(33)

iEquation (53) is identical to equation (B-68) in reference 3.
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SECTION V
SEM COUPLING COEFFICIENTS FOR THE SPHERE VIA THE PSEUDOSYMMETRIC

EIGENMODE SOLUTION TO THE MFIE

1

We first examine Class 1 coupling coefficients with g
In appendix B we show that

corresponding to the TM modes R .
-n,m,o

this coupling coefficient has the form

~ inc
R _ {R s J }
nﬁ‘i’. mo.olY) = e (fa,n'~Y) et femes P I (54)
’ Ym,o,p . N [d). /d.Y]g
n,m,c n -
: Y Yn,n‘
where tO = -a/c. From thefprevious section we recall eéuatiohé
(52), (47) and (35) ' ' '
; vai (Ya)]
~ inc, _ [ n 1 =
{Bn,m,c’ -‘IP b= ‘l,n,m,0,p dr Mn,m,O Ya (53)
R _ 7 . * 7,,, =
Nn,m,o = dR Mn,m,c (independent of Y) (56)
AR = [yai (va)| [va x_(va) C(57)
n | n n
Recalling that for g = 1 modes [Ya kn(ya)]Y=YR = 0 we have
v n,n’
R _ . ' " 4
[ékn/dy}Y=YR o= {a[yaln(ya)] [Ya kn(Yaq
n,n
+ a[valn(va)] [Ya knwa)] }Y=Y§’n'
= a{[Yaln<Yaq b@.kn(yaq }Yzyi,n' (58)

B ,_.‘.,__,.._ -



e e i e g s e— - - e

In view of equations (55), (56), and (58), equation (54) gi&es

R
JR(L) () = e(Yn,n. Y)et Al,n,m,o’p/a
n,n',m,0,p !
Ya{ya kn(Ya)] . R
Y=Yn,n'
(59)
Following equation (B-76) in reference 3 in conjunction with
equation (B=74) we find
2 _ _=Ya
(vya)™ k_(va) = e ACl,n<Ya) (60)
Noting that
. 2 ' = '
{Bya) kn(yaj]} _R = {Ya kn(ya) + Ya[Ya kn(YaJ] } _.R
Y Yn,n‘ Y Yn,n'

= {Ya[Ya kn(Ya)] % R
Y=Y

n,n'

we can rewrite equation (60) as

1 l = "
7 2 ’ Ya !
lYa[Yakn(Ya)] $Y=Yn,n' [(Ya) kn(Ya)]Y=Yn’n' [e Cl'n(Yaq Y=Yn,n'
) 1
{e-Ya[cl,n(Ya)} - Y2 Cl,n(Ya)}
Y=Yn,n'
_ S 1 ,} 1
le-Ya[cl,n(yaq] S E (61)

27



Combining equations (59) and (61) we obtain

R
n

T']R(l) () =.e(Y :n'-Y)CtO Alrnrmlglp/a
n,n',m,o,p YR 1@ ’
€ ’ cl n(Ya)]
r =
Y Yn’nu
A
- 1,n,m,0,p/a e“thO (62)
»[Cl,n(ya)] _.R
Y—Yn,n'
since to = -a/c. .

Employing equation (B-82) in reference 3 in conjunction with
equation (B-98) we finally obtain 7 7 7

R(1)

= o-YCt 1
n,n',m,U,P(Y) - © © Clrnln'lmlclp c (63)
Recalling that vy = s/c wie understand that the coupling coefficient .

given by equation (63) is identical to the one that can be identi-

fied in equation (B-97) in reference 3 for g = 1.

Following the same procedure as above we obtain

Q -yct

nn,n.,mlolp(y) = e

1
© C2,n,n',m,0,p c ) (64)

Thus Class 1 coefficienﬁs give the correct result for the sphére,r

i.e., equation (B-97) in reference 3. For Class 2 the defining
relationship for g = 1 is ‘

, : o < _inc
R(2) : ' '{Bn m,o? J }

n _(y) = 2T, P (65)
n,n',m,o,p NR [éAR/dY]
: ’ Y=Y
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Taking into account the manipulations that led to equation (63)
we can rewrite eguation (65) as

4

{Yain(Ya)] /ya
C
lL,n,n"ym,0,p { {

vai (Ya)}'/va
n }Y=YR

R(2)
n,n',m,o,p

Q=
-
ot
0]

(v) =

n,n'
(66)

and similarly for g = 2

Q ,
n2(2) (v) = L & min'ag e S (67)
n,n',m,0,p c 2,n,n',m,0,p i (YQ a)
n''n,n'

Comparing these expressions with (63) and (64) we conclude that

Class 2 does not give the correct answer for the sphere. (See end

of this section.) Specifically let us consider g = 2, n = 1,
. Q _
1 — =
n' = 1 and set Yn,n' = Yl . We have
i (ya) = coshlva) _ sinh(ya) _ e’? 1 - )y e 72 (l + ;L)
1 ¥ Ya 2 2vya Ya 2ya Ya
(va)
(68)
To Laplace invert the form containing the Class 1 coupling
coefficient for n = 1, n' = 1, we write
(1) .1 g-1) &Y | _ . MmeErael e 4 as0 (69)
T = =cC —— = C, e
c 72 Y <Yy 2
7 = g = | - 1
where C, = c2,n,n',m,o,p with n 1, n 1. We also invert the

2
termn = 1, n' = 1 with the Class 2 coupling coefficient by

considering the expression
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o B (8 ) R ) ]

: e - + 1 + =] ————
¢ i (y,a 2va ya/ ¥ =¥y  2va Yal Y = ¥q
' (70)
Now we can write
( 1) 1 1 (aYl'l ay; - 1 Yl)
- = T - o
Y Y2 Y - Y; Yi Y Yy Y Y
(a 1 1 1 (ayl + 1 aYl + 1 Y
R R e -1
Y Y2 Y <Yy Yi Y Yl Y Y2
and equation (70) can be;rewritten as
C2 efla ch(t+a/c)
T(2) = R R BaYl - 1l)e + 1 + cht]u(t + a/c)
2yya ln(Yla)' .
YlC(t“a/C)
+ [(aYl + l)e -1 - cht]u(t - a/c)
ch(t+a/c¥
C2e : Yla
= s : [ayl - lle u(t + a/c) + (ayl + 1)
2yqa” 1 (yya)
ypa ( J
e u(t - a/ec) + (1 + cht)(u(t + a/c) - u(t - a/cO
- ' 71

For -a/c < t < a/c equation (71) is different from equation (69).
However, for t > a/c equation (71) can be reduced to

v,c(t+a/c)
e 1
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and Class 2 gives the correct answer only for t > a/c, i.e.,

after the wavefront has passed the sphere. Notice that the previéus
result is valid for a delta function incident plane wave. For an
incident wave with a different functional dependence say

£.(t = él-r/c) u(t - él-r/c) the response is split into the object

P
response and waveform response, i.e.,

— = - "l
I = prmu) n,(5) v, (£)(s - s) (72)
a

£f (s) - £ _(s)
- E : P p_ G
—\Jh]p - noL(s) —\-)-OL (1:_) S - sa

6]

(73)

From equation (72) we see that Class 2 will again give the correct
object response only for t > a/c. However, the waveform response
will be wrong for all times since from eqguation (73) we have to
convolve gt (na(s)/(s - sa)) with =t (fp(s) - fp(su)) and
Q"J'(na(s)ﬂs - sa» is correct for t > a/c only. &

We conclude this section by answering the following guestion.
What 1f, despite the fact that Class 1 and Class 2 coupling co-
efficients are different, the corresponding infinite sums produce
identical responses? The answer is that this is impossible. To
show this, we recall the orthogonality properties ©f the ga's
(Romo Qe 7 1-€-+ eguations (B-19) in reference 3 (which, inciden-
tally, show the linear independence of the Xu's as we mentioned in
the introduction) and notice that if the responses were identical

we would have

A
Z: nn,n',m,c,p =0
Y_Ynn 1
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where Ann,n'm,c,p is the difference between the Class 1 and

Class 2 coupling coefficients. 1In particular, for g = 1
(R no functions) and n = 1, we have n' = 0; i.e., there is only

one pole and it lies on the real axis. Thus An§ 0,m,0,p .
: R A
This is impossible as we have shown, and consequently the two

sums must be different.

32



SECTION VI

EIGENMODE SOLUTION TO THE ELECTRIC FIELD
INTERODIFFERENTIAL EQUATION

The Electric Field Integrodifferential Egquation (EFIDE) for
scattering from perfectly conducting bodies can be cast into the

following operator form (ref. 2)

_ -1 _inc
é .q._zo .E_:t (74)
where
Z+3=1 -+ ( + YA
;t =1 -nn
§=fG(_I_S_,£')Q(£') as'
S
l ] ] 1] ¥
¢=-7fG(£,£)\7 + J(x') as
S
and Etnc is the tangential (= ;t'g}nc) component of the incident
electric field. It can be shown that the following relationship
is true
]g-é-bds=f(;-g)-gds (75)
S S

Thus if we define a complex inner product

(£,9) = fi*' g ds

S
we have



In order to utilize equation (76) in the derivation of the eigenmode

solution to equation (74) we define the eigenvalue egquations ‘
g 94y = 53 Iy (77)
T, T _ T
2 0 diy T8 gy | (78)

and one can show that

L
cy T &
: (79)
fJ“’*-J s = N,. 6.. &
=i = =jm T Tig Tij Tom
S

Recalling equation (76) and the defining relationship

.f.

(a, ¢ E) = (é * _a_llz)

fiea

we understand that

zT = g*

We can now rewrite equation (78) as

;% + * +

Lt i T %y g
or
AR .
i.e.,
S (20)

34



Thus in view of equations (79)

to equation (74) is

where

As an example for equation

and (80) the eigenmode
* inc : ;
DI
Z N., C. —~ig
°© 1 if 1'
inc inc
B = J 3y, B as

From reference 2 we have

2ig

i.e., Z has the same eigenfunctions as the MFIE operator £.

R
-n,m,oc

\ —n_‘lml 9]

n = 1,2, «ee, ©®
m<n
g =

corresponding eigenvalues are (ref.2)

and from eguation (44)

510 B W

[Yain(Yaﬂ

[Ya kn(Ya)]

- [Yain (Ya)]l [Ya ko (Ya)]’

U2

+ R ds

R
—n,m,O' —n,m,G

+ Q das

inm,o —n,m,O'

35

o,e (odd, even)

solution

(82)

(81) we consider the case of a sphere.

(83)

The

- (84)

o



The incident electric field Elnc has the form (equation (B59) in

ref.2)

inc _ ' (1)
E - Z Z [Al,n,m,o,p A’in,m,c(Yl:-)

(1) - . '
* A2rn,m,0,p gn,m,o(YE)] (86)
where M<l) and N(l) are given by equation (51) and the A's
-n,m,0 - o-n,m,o0

by equation (B-58) in reference 3. By using the orthogonality
relationships given by equations (B-11l), (B-12), and (B-13) in
reference 3 in conjunction with equation (86) we find

-1, % inc, _ -1,.% inc
zo (—n,m,c’ E ) = Zo (Bn,m,q’ Et )
= ln(ya) Mn,m,o Al,n,m,ckp (87a)
-1 4% inc _ -1, % inc
Zs (Qn,m,o’ E X = 25 (gn,m,q’ Ex )
’
[Yain(Ya)]
= - M A
va n,m,¢ 2,n,m,0,p
{87b)

where Moo , are given by équation (85). Employing equations (87}

14 r
and (84) we can rewrite eguation (81) as
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@ n

- E : 2 : E : Al,n,m,c,p ln(Ya) Mn,m,c
2 —I’l,m,O’
n=1 m=1 0=0,e Mn,m,c[Yaln(Yaq [Ya kn(yaﬂ

[
I

Azln,mlgrp{{yain(ya)] /Ya} MnlmIU
) M ai_(vya) ’ a k_(ya) ' gn,m,o
n,m,o yar, ty ¥ n'Y J

© n

ZZ Z A:L,n,m,o,p R _ A2,n,m,G,P

2 n,m,o r =n,m,0
n=1l m=1l 0=0,e (va) kn(Ya) Ya[ya kn<Ya)} .

(88)

Equation (88) as expected, is identical to equation (53) obtained

via the pséudosymmetric eigenmode expansion for the Magnetic Field.
Integral Egquation.

We conclude this section by noting two important factors;
(a) if we examine the coupling coefficients for the sphere we
can follow a procedure similar to the one employed in section IV
and arrive at formulas that are identical to the ones in section IV,
i.e., draw the same conclusions and (b) the excitation coefficient
(QI, Zol Etnc) can be shown to vanish at the interior resonances by

employing a procedure similar to the one in section III of the
MFIE.
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"SECTION VII

A SET OF ASSUMPTIONS FOR THE GENERALIZATION OF THE SEM SPHERE
SOLUTION TO AN ARBITRARILY SHAPED CONDUCTING BODY

In this section we-cast the eigenmode solution (to either the
MFIE or EFIDE) for electromagnetic scattering from an arbitrarily
shaped perfectly conducting body into a form that represents a
generalization to the SEM sphere solution. Certain assumptions
are made along the way that are motivated by the known sphere
solution and the procedure leads to an SEM representation that
involves Class 1 coupling coefficients with no additional entire
function. If the same prdcédure is applied to the sphere, no
assumptions are necessary[ and one is inexorably led to the
SEM solution with Class 1 coupliﬁg coefficients with no entire
function to be added.

We begin with the eigenmode solution

~= b
: _ i
J(x,y) -Zr g3 (89a)
: 1
~ -inc R * -1
where bi = {Qi, J }/Ni for the MFIE (eq. 23) and bi = (Qi, Zo
g,tnc)/Ni for the EFIDE (eqg. 8l). The eigenvalues and eigen-

functions are determined by solving the appropriate eigenvalue
problems. It has been shdwn in reference 1 that for an incident
delta function plane wave bulse (in the time domain) J(x,y)

is a meromorphic function of Y, i.e., in any finite region of the
complex y-plane J(xr,vy) hasia finite number of pole singularities.

The pole locations correspond to the exterior and interior resonances
of the body and can be determined by setting Ai(y) = 0. Recall that
our incident wave in the time domain is a delta function plane wave
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pulse, i.e., the incident fields have no singularities in the
finite y-plane. In section III we showed that the excitation
ginc} is zero at the interior resonances Yij
and in section VI we mentioned that we can similarly prove that
(_‘:_r:_' Z'O'l E.'i.nC) i
assumptions necessary for our generalization; it is that J(x,v)

can be written as

coefficient {gi,

is also zero at Yi This leads us to one of the

s+ J(r,Y) = :E:.Li(g,Y) (89b)
i

where g is a unit surface vector and the Li(g,y) are meromorphic
functions of v. At this point, it is appropriate to relate equa-
tion (89b) to the Mittag-Leffler theorem (see refs. 5 and 6). This
theorem is used to derive a general representation for meromorphic
functions in terms of an infinite sum in which poles are explicitly
represented. After we obtain more explicit representations for the
L, (r,y), we will show that equation (89b) does not violate this
theorem. Because the excitation coefficients are zero at Yij' at
this point we assume that the Li(E’Y) are such that their only singu-
larities in the finite y-plane are poles located only at exterior
resonances. Notice that to each subscript i corresponds a set of

exterior resonances Yij'

Equation (89b) is exact for the sphere as we can see by invoking
equations (34), (35), and (52) for the MFIE and equations (83), (84),
and (87) for the EFIDE. Next we invoke a corollary to the Weiersfrass
theorem concerning the representation of an entire function which

states that "every function whiéh is meromorphic in the whole

5. Carrier, G., M. Krook and C. Pearson, Functions of a Complex
Variable, McGraw-Hill, New York, 1966.

6. Ahlfors, L., Complex Analysis, McGraw-Hill, New York, Second
Edition, 1966.
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finite plane is the gquotient of two entire functions" (see for
example, ref. 6). Thus

fi(EIY)

S o

Li(EIY) =

and the zeroes of gi(Y) Eorréspond to the poles of Li. Equation
(90) is also true for the sphere. We now assume that both £
and = have a finite number of zeroes for each i and consequently
being entire functions they must have the form (ref.6)

_ Fi(x,y)
fl<£lY) = e 1= Ql(E’Y)
- - (91)

g; (1) = %0 5 ()

where Fi, G. are entire functions and Qi, Pi polynomials. Guided

by the sphe;e solution wé assume that F, is a function of y only
and that the degree of Q is lower than the degree of P in order
to be able to obtain a partial fraction expansion of the desired
form. With the aid of egquations (91) we can rewrite equation

{(90) as

¢i<Y) Qi(ErY)

—_— (92)
Pi(Y)

Li(EIY) = e

where we have defined 9. = F; - Gy. Again equation (92) is exactly

i
true for the sphere. The explicit form for a sphere can be obtained
by invoking eguations (Ef74), (B-75), and {B-76). in reference 3. Thus
¢;(Y) = ya and by noting that 0, (x,v) = M;(y) (s - J.) where J, is

elither R or J i
Rn,m,o Qn,m,o we obtain
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n-1
Mi(Y) > (va)

th

Pi(y) + Polynomial of n degree

We will now assume that Pi(Y) has simple zeroes (true for the

sphere) and set
N(i) A, .
Bi o~ i) UEY e —31 (93
T, 5L TR TE B, T © LEEE
i i j=1 J
From equation (93) one obtains
b, (Y;:) 8 + I, (X,
Ai' =+ 1] 1 1] e—d)i(Yij) (94)
J Edki/dY]
Y=Yij
and equation (8%a) can be rewritten as
N (i)
S =Y S5 =6 (yig) _ P1lTay) Ly (£ s 5)
i j"l Y—Yij
(95)
For the sphere ¢ (y) = ay and consequently equation (95) shows

that an appropriate rearrangement of
inexorably leads to an SEM expansion
coefficients. 1In order to determine

¢i(y) for a general body we consider

the eigenmode solution (89%a)
with Class 1 coupling
the form of the entire function

the inverse Laplace transform

and we close in the left half-plane for times t > tg and in the

right half-plane for t < to where to

incident wavefront first hits the scattering body.

is the instant at which the
All the poles

are located in the left half-plane and for t < t, we should obtain

J(x,t) = 0, i.e., the integral on the large semicircle, Rey>o, should

approach zero as its radius approaches infinity.

of interest has the form

The integrand
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¢i‘(Y)+'YCt
i(y) = S (96)

Y <Yy

with Re Yij < 0. Consequently we require that

Re [0, (1) +veq < 0 (97)

[ |

for all vy along the seémicircle. Let us now define Wi(Y)'by the
equation

b (v) = ¢, (y) -yce + yet

E;t—to

For t < to condition (97) can be rewritten

Re ¥, (Y) < [e| cRe v . (98)
Recalling that Re y < |[y| wé can cast inequality (98) into the
form

V) :
Re;c_ﬁ{_r< IE[ :(99)

with € being an arbitrarily ﬁmall finite value. Recalling that
wi(Y) is an entire function bne would be tempted to expand it

in a McLaurin series based on the argument that equation (99) is
only reguired to be true on a finite semicircle at this stage of
the analysis and argue that equation (99) could only be satisfied
if wi(y) = constant with all remaining coefficients in the series
necessarily equal to zero. We have not satisfied ourselves with
this argument; however, we are willing to conjecture that wi(y)

= constant in view of the fact that any polynomial representation
for wi(y) can be shown to reduce to a constant. Making this’
conjecture, it follows that
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¢i(Y) = ~yct_ + constant (100)

Such a choice of course allows us to close in the left-hand plane
for t > to since the requirement

Re ¥, (y) < -ecRe vy = ec|Re v|, (Re Yy < 0, € > 0)

is then satisfied for large |v| with Re y > 0.

Assuming that ¢, (y) is given by equation (100) then 6, (v) -
¢i(Yij)= (Yij - y)to and equation (95) is an SEM solution with Class 1
coupling coefficients. Rewriting equation (95) after making

this substitution and using equation (89), one obtains

- ZN(i) Ciql0) (10la)
s « J(x,y) = E(y) E ?1;777
i 3=1 +J
where
E(y) = & %% ~ (101b)

C. (E) = e 13 O 1 17 —l — 17 (lOlC)

Combining the two indices (i and j) into the index "n," we can
write equation (101) as

~

z c
s ¢ J(x,Y) = E(Y) E ;——_—n—y— | (102)
n
n=1

and this form is convenient for a discussion of the relationship
between meromorphic functions and pole series expansions. A
consequence of the Mittag-Leffler theorem is that the most general
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infinite pole series representation of a meromorphic function

m(y) is

m(y) = ) [Pn(T{"—LY;) =B, o+ E) (103)

where P and 3n are finite degree polynomials not necessarily of
degree n and H(y) 1is an entire function. There exist meromorphic
functions for which Pn(lﬂf - Yn»= ChAy - Yﬁ and 5n(y) and H(y)
are identically zero. We also note that multiplying the meromorphic
function m(y) by an entire function E{y), would still result

in a meromorphic function. For the case where Yn and Cn havg the
appropriate n dependence to eliminate the need for Pn and H, we
would obtain a representation for the meromorphic function

M(y) = E(y) m(y) as follows

= c .
M(y) = E(y) Z -Y——_—n'r (104)
n=1 n,

which is consistent with both equation (102) and the Mittag-
Leffler theorem. This is also consistent with our assumed initial

representation shown in equation (89).
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SECTION VIII

NUMERICAL DETERMINATION OF POLE LOCATIONS AND EIGENFUNCTIONS
FOR THE SPHERE

In this section we describe the procedure that was used to
approximately find the pole locations for the spheré,‘i.e., those
values of vy for which L(y) - (1L/2I has a zero eigenvalue. To do
this we approximate the integral operatdr L(y) - (1/2I by a matrix,
M(y), according to the algorithm described in reference 7, and
try to find those values of y for which M(y) has a zero eigenvalue.
Since the matrix is of finite order its determinant, D(Y), equals
zero if and only if at least one of the eigenvalues of M(y) is
zero. This observation permits us to search for the zeroes of D(Y)
rather than the more difficult task of searching for the zeroes
of the eigenvalues.

Our method of calculation of the elements of the matrix M(y)
guarantees that D(y) is an analytic function of y. Assuming that
the errors due to the finite word size of the computer do not
interfere with certain properties of analytic functions we may
apply the method of Singaraju, Giri, and Baum (ref. 8) for
determining the zeroes of an analytic function to find those

values of Yy for which D(y) is zero. A brief description of the
method follows.

If both £(z) and g(z) are analytic functions of z in a
simply connected open domain, @, then Caughy's theorem states
that if C is the border of a rectangular region contained in @

7. Sancer, M. I., S. Siegel and A. D. Varvatsis, Foundation

of the Magnetic Field Integral Equation Code for the

Calculation of Electromagnetic Pulse External Interaction

with Aircraft, Interaction Note 320, Air Force Weapons
Laboratory, 1976.
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T}:—f f (z) dz = Z g , (lOé)
C

where the z, are the N zeroes of f£(z), counted according to

multiplicity, in the interior of C, provided that f has no zeroes
on C. In particular we have that

_ 1 £'(2)
N = Zﬂif (2) dz (106)

and

. ,
k_ 1 k £'(z2) . _

E (zi) = E?Il¢.z 1) k=1,2, ..., N (107)

i=1 - C

and from these eguations we can determine the z; .
To avoid the numerical difficulties associated with computing

f'(z), Singaraju et al. (ref. 8 ) integrate equation (105) by
parts to obtain ! : S o

N

Z g(z) = N glz, . ) + ':ZL_{ (z) ad3 log (£(z)) dz (108)
i=1 c

where adj log (f£(z)) is that branch of the locally defined log
function whose only discontinuity along the contour occurs at

Z:nit where it undergoes a jump of 2mi N. The problem of

8. Singaraju, B. K., D. V. Giri and C. E. Baum, Further

Developments in the Application of Contour Integration to
the Evaluation of the Zeros of Analyvtic Functions and

Relevant Computer Programs, Mathematics Note 42, Air Force

Weapons Laboratory, 1976.
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calculating f£'(z) has been replaced by the simpler problem of
finding the phase of f£(z) and guaranteeing that the phase change
from point to point is less than 7 radians. Using equation (108),
equations (107) become

k .
:E: - 1n1t 23‘_f. adj log(f(z)) dz k=1,2,...,N
¢ (109)

For further details we refer the reader to reference 7.

In their paper, Singaraju et al. provide a computer progfam
to determine the z, if a contour contains up to three zeroes,
however, the sphere problem has a high degeneracy and therefore
the numerical approximation has the zerces of D(y) clustering
about their true locations. We therefore found it necessary to
extend their procedure to arbitrary N. To accomplish this we
transformed the system of egquations (109) to the eguivalent Nth

degree polynomial equation

N
z B, il S (110a)

k=0
where Bk are defined by the recursive formula

B =1 (110b)
o

k

kB, + E By By = 1, «..s N
j=1

|
o
~
Il

Equation (110b) was found in reference 9 as suggested by Dr. Giri.

9. Krylov, V. I., Approximate Calculation of Integrals,

(Priblizhennoe Vychislenie Integralov), Moskva, Gos. Izd-Vo
Fizika Matematicheskoil Lit., 1959,

47



We have chosen to use the subroutine package ZRPCC of the
AFWL Scientific Program Library (ASPLIB) to find the zeroes of this
polynomial. This routine?forms the companion matrix whose charac-
teristic equation is identical to the required polynomial and then

returns the eigenvalues of that matrix.

For each Yy that estimates a zero of D(y) and therefore a pole
location of the sphere's response function we compute a new M(y).
We "feed" this matrix to another ASPLIB subroutine package, CIVAA,
‘which is documented as CG in the Eispack Guide (ref. 10). This
package computes the eigeﬁvalues and eigenvectors of M(y). We
expect to find, and in practice have found that all of the eigen-
values occur in pairs which sum to one (see equation (24 )).

We search the list of eigenvalues for those pairs near (0,1)

and identify the corresponding eigenvectors as the natural mode
vector J and its dual vector E. In ‘theory, because we are solving
the problem for a sphere, J and g are related by the formula

J(x) = ﬁ(g) x J(r) e'® where the e'® is introduced to account

for the arbitrariness in the phase of an eigenvalue; our numerical
experiments showed that this relationship held to within the errors
of our approximation.

$ince the sphere problem has a high degeneracy we cannot expect
our eigenfunctions to agree with those published in other sources
but we can expect ours to be linear combinations of theirs. As

an example, for the n = 1, g = 1 mode we found three eigenmodes

Jyr Iy o which can be related to those found in reference 2,

10. Smith, B. T., J. M. Boyle, J. J. Dongarra, B. S. Garbow,
¥. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigensystem
Routines - EISPACK Guide, Springer-Verlag, New York, Second
Edition, 1976.
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J. = sin 6 &¢
22 =‘fcos 8 c?$(¢ - m/8) §¢ - ;in(¢ - 7r/8)§e
J, = cos § sin(¢ - 3ﬁ/i6)é¢ - cos(¢ - 3Tr/16)ée

or

21 larl

Jy, = ajy 1 01y

= s :
Jy =cly ;1 tdlg,1

a = b* = _% e-iw/S
c = g% = _% e-l3ﬂ/16

and i&n are given by equation (A-10) in reference 2.
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APPENDIX A
PROOF OF EQUATION (14)

.{.

In this appendix we show that Q+'= Q* and M' ="2M, i.e.,

equation (14 ) is true.

QJ(x)

i

where

Notice that for a
the inner product .
andli(g):

(2,0Y)

L
i
\-\
u
wn
S

—~

3 5

tangential vector a, P * a = a.

Recall that

n(xr) x @(r) x ff(R) (r - x') x:J(x') as"

S

-2 (z) 'f’f‘m (r-z') x J(x') ds'
[S

fi

- A A = -A@ <(GE x 1)

. : { =YR
(1 + YR) (e——gm ) R=|zx-zx'|

Consider now

involving the tangential vector functions g(i)

HI
k__\
|
*
3

- /fds ds’ f(R){[g*(E) x (r = _r_’)} . E<£')}

If we interchange r and r' the "double" integral does not change

value and
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(2,0¢) = —ffds' as f(R){[g*(g') x (x' - 5)] - g(g)}
s's

-t

o

= - ffds' ds[f(R) (r - ') x 9*(£'>]' ¥z
‘S

]

o} '
0
"
!
ro

I8
Hh
o
kA
0
)
H
X
|
s
N e
*
o}
n
3
H

ﬁQ*g<g>)* . ¥(r) ds

(Q* ©,¥)

Recalling the defining relationship for Q+ we conclude that

Q" = ox.

Next we show that M+ = =M.
(9,MY) sfdsg*- (ﬁxg)=—fds (ﬁxg*) - ¥
S S
A *)
=fds (-n x @) Yy = (-M2,Y¥)
S
and this proves that M+ = =M
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APPENDIX B

- A L4 J
PROOF THAT N, d),/dy = fds[gi (n X 57 gi)
S

In this appendix we show the validity of the formulas employed
in section V for the coupling coefficients by demonstrating that

axr,
i _ ~ (2 3 . _
s

where we have ignored degeneracy since the proof is identical for

the degenerate case. We start with equation

L = g

and differentiate both sides w.r.t. y

N oJ di, 0d .

=i - a —1
Ay L YRy T a4t A e

We operate on both sides by M and consider the inner product of

the resulting equation with gﬁ defined in equation (9).

22 035\ _ Iy 53
O R T AR
| : ’j-’(B—727)
By definition (gi, MQ?agi/ay) = ﬁMQDTEi, agi/ay) and from eguation
(18) i& = F¥. We can now rewrite equation (B-2) as
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3J ;
fds EARCEE PN RACEAE )

S
dki - Bgi
Recalling equation (9) equation (B~3) is transformed into
0J"
3. 0(h 22 (1 :_.i_)
fds Iy [(n * 3y _J.i>]+ MME e Ty
S
dki agi
= a Ni + Ai(gi' M TY—)' (B~4)

If we now notice that (Mfgi, agi/ay) (gi, M Bgi/ay), equation
(B-4) yields the desired result, i.e., equation (B-1l).
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