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SECTION I

INTRODUCTION

Two separate but related efforts are described in this

1
i
i
i
i

report. The first and more significant effort is a demonstration
of the capability of the patch zoning method for numerically
solving the magnetic field integral egquation (MFIE). This is
accomplished by comparing experimental data with numerical
computations of the current density induced on metallic struc-
tures. The most immediate impact of this capability is its
effect on determining the potential and limitations of experi-
mental procedures.

The structures that were treated numerically and experi-
mentally are an aircraft model in free space and a metallic
cylinder of finite length in free space and also above and
parallel to a metallic ground plane. The experiments were

' performed at the University of Michigan by Valdis Liepa and
his associates under contract to the Air Force Weapons Labora-
tory.

The secondary effort is a derivation of the electric £field
integrodifferential equation (EFIDE) and the MFIE for electro-
magnetic pulse external interaction with perfectly conducting
bodies above a finitely conducting half-space. The relation-
ship between the two efforts is that the equations are repre-
sented in such a manner that the computational results, which
are compared with experimental data, are readily seen to
correspond to the numerical treatment of special cases of the
MFIE finitely conducting ground egquations.

The derivation of the EFIDE and the MFIE, which include

lossy earth effects, utilizes the explicit representations of



Green's dyadics given by Tai (ref. 1) after appropriately
accounting for missing terms (ref. 2). The results obtained
by the straightforward use of Tai's dyadic representations
contain infinite sums of infinite integrals. We introduce a
procedure that primarily consists of a coordinate change that
reduces these sums to finite sums of well studied Sommerfeld
integrals. The reduction of the infinite sums to finite sums
was not unexpected since we could have obtained the same
results by appropriately combining vertical and horizontal
dipole solutions.

To enhance the utility of our equations, we change Tai's
notation to that of Banos (ref. 3) after the infinite sum
reductions. We do this for two reasons. First, Banos presents
a detailed theoretical investigation of the resulting Sommer-
feld integrals. The other reason is that the work of Lytle
and Lager (refs. 4, 5) uses BaNos notation and it contains com-
puter codes for the evaluation of the Sommerfeld integrals.

Tﬁe recent work of Haddad and Chang (ref. 6) also contaiﬁs both
theoretical and numerical work related to the evaluation of

the Sommerfeld integrals.




SECTION II

PRESENTATION OF UNSIMPLIFIED REPRESENTATIONS
FOR E(r) AND H(x)

For the purpose of this analysis it is convenient to divide
our volume of interest into two regions (fig. 1), Ve and VC.
VF is the volume bounded by the surface of the object, S, the
interface surface, Sg» and the upper hemisphere at infinity,

Sfw: Vg includes the volume V; over which the source J(x) is

defined. VC is the semi-infinite volume bounded by SB and the
lower hemisphere at infinity. The equations satisfied in each

region are

vV x E;(@) = iwn, Hy (D) r €Vy (1)
vV x Hy(¥) = -iwey Ej () + 1(D) r €Vg (2)
. and J(r) = 0 unless r € V;. The equations in V. are
V x E5() = iwn, H,y(@) r €V, (3
V x Hy(x) = -iwe Ey(r) r € vVea (4)
where € is a complex function of w [i.e., & = ER(w) + ieI(w)] to

account for the fact that the half space VC is lossy and
frequency dispersive. Combining equations 1 and 2 we obtain

Lp E1(2) = iwn, JI(D) | (5)
where

2
L V XV x = ko (6)
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Figure 1. Geometry for Electromagnetic Scattering
from a Perfectly Conducting Body Situated Above
a Finitely Conducting Half Space.




and

2 _ 2
ko WU ES-

Similarly combining equations 3 and 4 we obtain

~ Lo E,(x) =0 (7)
where
Lo =V x v x -k? (8)
and
k2 = wzuoe. (9)

Ly G1(zzy) = T 8(z - 1) r,r, € Vg (10)
and
L. G,(x,z ) =1 6(r - ) L €Ve
C "2'='=9 = v ‘11
Io € Vp- (11)

Next we use the dyadic identity for an arbitrary vector a and

dyadic A found in reference 7. That is



f{(v"(v"y)'K-Q-(V"(VXZ))} dv

\

=f{(£x§) c (VB + (0 x (v x a) -K}ds (12)
S

where V is an arbitrary volume bounded by the closed surface S
which has an outward normal a. By adding and subtracting either
—kgg . A or -kzg « A the identity (eq. 12) can be expressed as
either of the following two identities. '

f{(LFé) cE-a- @) @
s

=/{(ﬁx§)-(VxK)+(ﬁX(Vx§)) -K}ds (13)
S

or

J/'{(ch) - A~ a - (LCK)} dv
v

/{(ﬁX_g) « (v xB) + (0 x (7 x a)) -K}ds. (14)
S

We now employ equation 13 where a = E;(r) and A = El(z,go) and

vV = VF' Using equations 1, 5 and 10 we obtain

E(xy) = Ep(zy) *+ Ig + Igpy t Igre (15)

10




where

Er(x,) = J/~ (iwuo)(i(g) . 51(5,50)) av
v
J

= iwng -/ﬂ(ﬁs(g) x H(z)) - Gy(z,zr,) ds
s

= _./F {(ﬁw(g) x EI(E»_ . (V X 61(3'50))
SFw

I
“SFe
+ iwuo(ﬁm(z) x El(z)) . ﬁl(z,zo)} ds

Lsp1 = ’_/’{(531<£) x Ej () - (v Gy (z, )}
s

B
+ tung(fg (@ x By (@) -+ §p@.zy)fds
and ﬁS(E) is the outward normal to S. Similarly, employing

equation 14 for a = E,(r), A = EZ(E’EO)’ V = V. and using
equations 3, 7 and 1l we obtain

where

(16)

(17)

(18)

(19)

(20)

(21)



toe = of {fox @) - (72 Gasy)
SCe
+ iong (B, x B,@) - Gy} as. (22)

We now simplify equations 15 and 20 by employing the boundary
conditions satisfied by the fields and the Green's dyadics. First
we note that Ign = 0 as a result of the radiation condition and
Lsce
radiation condition would be sufficient if € were purely real).

= 0 as a result of the exponential decay due to losses (the

Next we note that the volume integral in equation 20 is zero
because the integration is over Ve and according to equation 11,
r, € V- Combining these results we can write equations 15 and
20 as

E(z.) = Ep(zy) + ioug fgs (x) + Gy (z.z,) dS + Lgp; (23)
S
and
Lggy = O (24)

where we have used equation 17 and the definition

J.(x) =n_(x) x H(D). (25)
We now use the fact that n x E and n x H are continuous across the
interface and that El and 52 are chosen with this fact in mind in
order that Igpq = LSBZ which according to equation 24 equals

zero in order to write equation 23 as

E(xy) = Eplzy) + iong fgs@ + By (z.z,) ds. (26)
S

12



We now return to equation 17 which combined with the information
contained in equation 26 enables the interpretation (and evalu-
ation for plane wave excitation) of ET(EO) without explicitly
performing the indicated integral over V;y. From equation 16 we
see that ET(EO) is independent of the surface S. From eguation

26 we see that by imagining S to vanish, §T(£o) can be inter-
preted as the total field, incident plus scattered, due to the
lossy half-space with S absent. For an incident plane wave, §T(£o)
would be simply expressed (algebraically) in terms of the Fresmel
reflection coefficients.

We now rewrite equation 26 with the following change variables
to conform to standard notation, i.e., I, is now denoted as r and

T is now denoted as r'. The resulting equation is
E() = Ep(n) + iwuof_J_s(g') . 51(5',5) ds' (27)
S

which can be rewritten as

n
E(r) = Ep(z) + iwuofilq',g) . J (') ds’ (28)
S

where N denotes transpose. We now use the fact that

e

(et = M e (29)
where E§ll)(£,£') is the notation used by Tai (ref. 1) and has

exactly the same meaning implied in that book. Combining equations
28 and 29 we have

E(x) = Ep(@) + imuofﬁ§ll) (x,z') - I (x') as’. (30)
S

13



Up to this point, all of the work presented has been tutorial;
now we make our first significant point. As pointed out by Tai
(ref. 2), the dyadics presented in his book lack necessary terms.
His method of correcting these dyadics leads to expressions that
do not explicitly exhibit the best form for subsequent numerical {
treatment. For the lossy half-space dyadic (and others as well)

we can express the dyadic as the sum of two terms

M) =& e + 8 @) (31)

and the omitted terms were omitted only from Eb(g,g'), the free
space Green's dyadic. By correcting 50(5,5') by supplying the
missing L related dyadic terms (or equivalently the missing ¢-
function term) we would end up with a representation for EO(E,E')
that would not be as useful for numerical purposes as the standard
representation that does not contain the L, M, and N related
dyadics. The following two observations are the basis of this

claim:

1) The expanded version of EO(E,E') will always contain two
different representations that require separate numerical treat-
ment, depending on whether one of the spatial observation point
coordinates is larger or smaller than the corresponding integrationm

i |
point coordinate. %
i

}

2) The derivation of the integral equation in the magnetic
field case, or the integrodifferential equation in the electric
field case, requires that the limit be properly treated as the
observation point approaches the integration point on the surface
S. By expressing Eo(g,g') in the standard closed form, we can
make use of existing analysis to treat this limit. With this as

background we have the following representations:

Qll

(r,r') = (’I‘ + % Vv)g (32a)

kO

o)

14




(32b)

and

=(11 1 - i dA '
B5e ) @) = f?./r *hy EE: :E: (2 = 8,0 {allyn, (B, (hy)
o

+ BN (RN (Y (33a)
where
_ cos ihqz
Me (b)) =V x [J (Ar) %8 ng e z] (33b)
.
Nepa(By) = o VX Mep(hp (33¢)
h, - h
)
a= =2 (33d)
R, + &,
2 2
k?h, - k°h
b = 221 022 (33e)
ksh, + k’h,
2 2 .
ko = wH Ey (335)
k% = wzuoe; € is the complex permittivity
of the lossy half-space (33g)
172
hy = (kg - xz) (33h)
1/2
hy = (k% _ 2 (331)

15



and 5no is the Kronecker delta function. Implied, by the explicit
relationships presented in equation 33, is a coordinate system
having its origin at the interface between the semi-infinite
lossless half-space and the semi-infinite lossy half-space. The
usual cylindrical coordinate system is employed with z being
measured as positive as the distance from the interface is increased
into the lossless medium. In summary, equations 28 through 33
present an explicit representation for the electric field, E(x),
off the surface S once J_(r) has been determined. A discussion
concerning the determination of an appropriate equation having
18(5) as its solution will be given in subsequent sections.

The equations that present an explicit representation for H(r) off
the surface S, once {s(g) is determined, are arrived at by taking
the curl of equation 28 and employing equation 1. The resulting

representation is

H(z) = Hp () + '/‘?(g.g') - I (') ds' (34)
’ S

where

(11)

=~

(£,r') =V xG

r 3 (r,r') (35)

and employing the same arguments that led to the interpretation
of ET(r) without the explicit evaluation of equation 16, we can

interpret
(£) = 1o 7 % Eq(D) (36)
Er(@) = o Er(z
as the total magnetic field (ET(E)), incident plus scattered, due

to the lossy half space with S absent. For an incident plane
wave, Hn(r) would simply be algebraically expressed in terms of
Fresnel reflection coefficients.

We now simplify equation 35, to a limited extent, by straight-
forward substitution. In the next section we will simplify it

16



a great deal more and discuss the numerical benefits of the form
we ultimately obtain. First we write

RK(z,r') = K (z.r') +K (z,z") (37)
where
R, =V xG(z,r') =vgx1 (38)
and
R, = v x &I, (39)

with Egil)(g,g') given by equation 33. Equation 39 can be simpli-
fied by employing equation 33c and the relationship

v x EI--gn)\(hl) = koggnx(hl)' (40)
The expression obtained is

ik [ |
'y d '
J(z,r') = "4_“2/1_111'2 Z (2 - 8,5 {agank(hl)lian}\(hl)

0 n=0 a=e,o0

=

+ B (R () (41

The resulting expression for H(r) is

H(z) = Hp(o) + /(Vg x is(E')) ds’
S

+ f(is<£.£-) - 3 (z")) ds'. (42)
S

17



SECTION III

PRESENTATION OF THE ELECTRIC FIELD INTEGRODIFFERENTIAL EQUATION
(EFIDE) AND THE MAGNETIC FIELD INTEGRAL EQUATION (MFIE)
IN UNSIMPLIFIED FORM

The representation for the electric field off the surface is
given by combining equatioms 30, 31, and 32 to obtain

E(x) = Ep (@ + 1wy, {fg(ls - r'|) I (') ds’
S

l t ' =(ll) ] ' '
+ F fVVg . ls(g ) d8' + fG3s (r,z') - _._I_s(£ ) ds
o S S (43)

We take the cross product of both sides of equation 43 with ﬁ(g)
where r is the point on S approached by the r in ‘equation 43

which was a point off the surface in that equation. We also
consider the behavior of the second integral in equation 43 as

the volume observation point approaches the surface. (The behavior
of the other two integrals requires no special treatment.) The
behavior of this limit was treated in reference 8 and we can
directly use those results by employing representation 31.

Finally, by following the described steps and employing the
boundary condition

n(r) x E(x) =0

Lo}

€S (44)

we obtain .our unsimplified EFIDE

18




x ET(E) = imuo ﬁ(E) x %fg(lE -z I) ‘—T-s(z') ds’
S

+ LQS(E_') <+ ngl’l) (x.z') - is(z') dS'}
S (45)

where equivalent representations of L are

lsiLJ_S@') = vV - fg (lz - ') I " ds' (46a)
S

= VJg(Ir - v e 3 .(z") ds’ (46b)

=][Vg (lz - 2 l)v - 3,(x") as' (46c)

=fg|£ -] VY- 3" dS; ' (46d)

= ofve(lz - 2')) - 3, o (46e)

and the principal value sign is only employed when it 1is
required.

The MFIE is obtained by taking the cross of both sides of
equation 42 with the ﬁ(;) just described. We also consider
the behavior of the first integral in equation 42 as the volume
observation point approaches the surface. This limit is
precisely the one treated in the free space MFIE and its
result is known. The second integral in equation 42 requires
no special treatment as the volume observation point approaches
the surface observation point. Again, this is a major

benefit of the Green's dyadic representation 31. The

19




MFIE resulting from taking the described cross product and
limit is

£() J(x) = A x B @ + f{ﬁcp x (vg x 3(z"))} as’
S
+ f{r?(g) « R (x.r') - I} as’ )
S

where we have used the definition (25) and dropped the sub-

scripts on J(r). The £(Q2) comes from the limiting process

associated with the first integral in equation 42 and is

£(Q) =1 - Q/4nm (48)
where Q is the solid angle subtended by the surface S at r.
If we don't choose r at a discontinuity in curvature, then

Q = 27 and £(Q) assumes the value 1/2 which is usually seen
in the magnetic field integral equation.

20




SECTION IV

DERIVATION OF THE TRACTABLE FORMS FOR THE EFIDE
AND THE MFIE

An examination of the EFIDE presented in equation 45 and
the MFIE in equation 47 reveals that the subsequent numerical
treatment of either of these equations requires the treatment
of an infinite sum of infinite integrals. This is the case
because equation 45 contains ﬁg;l)(g,g') defined by equation 33
and equation 47 contains KS(E,E') defined by equation 41. The
objective of the work presented in this section is to derive
new exact representations for Eéil)(g,g') and fs(g,g') as finite
sums of demonstrably convergent integrals. These new represen-
tations when substituted into equations 45 and 47 constitute
the tractable forms for the EFIDE and the MFIE.

The method of obtaining the simplified forms relies on
the interpretation of the r and r' that appear in Egll)(g,g')
presented for the first time in equation 29. After the change
in variables and transposition, then ﬁgll)(g,g') satisfies the
equation

2EiM ey = Te@ -z @9

vV ox ¥ x 53(11)(5,5') - k
where the derivatives associated with the curl operator are
with respect to the r variation, and the boundary conditions at
infinity and at the interface are applied to r approaching
infinity and r on the interface. This interpretation means
that r' is not required to vary for representations 33 and
41 to be valid. Even though r' is not required to be a
variable for those representations, the application of those
representations, for example equations 45 and 47, do require
that r' be a variable point that has no particular restrictionms.
We use these facts in the following manner. First consider

that we have a fixed coordinate system in which r and r' are

21



radius vectors to the observation point and source point
respectively. Next, consider that we have another coordinate
system in which the radius vector to the observation point

is denoted as Ip and the radius vector to the source point is
denoted 56. The subscript D is employed to indicate that

the second coordinate system is oriented in a special manner
with respect to the delta function that appears in equation 49.
The relationship between these two coordinate systems will now

be described with the aid of the following figure.

o

|o
o

Figure 2. Coordinate Systems

The origin for both coordinate systems is on the interface
and z and zp are measured positive as the distance normal to
interface increases into the lossless medium. The reason
that the subscript D is employed can now be explicitly

stated as

Ip = z' a,. (50)

i.e., D refers to the fact that in this coordinate system,
the origin lies directly under the delta function source.
The reason for introducing the D coordinate system is that

22




Ip and Eb satisfy the described requirements for equations
33 and 41 to be a valid representation in that system. Upon
using this special representation for 56 we will find that
the infinite sums in equations 32 and 41 reduce to finite
sums. After obtaining the simplified representations for
3(11)(rD r;) and K (p, Ip) we are not in a position to use
the representations in equations 45 and 47 because 55 is not
free to vary in the D coordinate system. We obtain our
simplified representations that can be used in equaticns 45
and 47 by explicitly performing the substitutions impiied by
the following equations

5§§1)<£'£'> - Eﬁl)(ED(z.a'). rh(z,z")) (51)

R (x.r') = R (rp(z.z"). rp(z.z")) (52)

with the relationship between the coordlnates (see fig. 2)
given according to

8p =0 -8 (53)
Zn = z (54)
zy = z' . (55)

We will now present explicit results obtained by following
the described procedure. First we note that for r _6 given by

equation 50, the only M A(hl —D) and N A(hl —D) that are
nonzero are the follow1ng

23



M!y, (hy,zp) = - 3 etP1E 2 - (56)

y
' - A ihqz' » ’ . F
Mopa(hyEp) = 5 e T ey 6D
N' . (h,zh) =ﬁ eib1z’ 3 '(-5‘5)
=eoA " 1’=D " 8z »
_ z .
h.aA I .
. h ! A~ P
Ny Ep) = & g e &y (39)
h A
) P | ih1z' 2
No1a(hy-Zp) = 1 3 @ 2y (60)

Accordingly equations 33 and 41 reduce to the following
finite sums in the D coordinate system

«©

g (1) RO A -\ . :
G357 (Ep:Ip) = 41rf *hy ° a(Ma1a (hyoZp) Mgy By 2p)
(@]

+ M1, (o Ip) b—‘én(hl’ifn))

1 : :
+ b(f Neox(By.Zp) Nogy(hy.zp)

] ]
+ Nelk(hl’ED) NelA(hl’ED)

?

* No1a (B Ep) Eélk(hl,'gb))f © (6D

24




and

ik -
= 'y = o d\ ' '
Ks(@p.zp) = 4n./f *h {a(ﬁelx(hl'ﬁb) Me1a(Py.zp)
o

+ No1alhyozp) ﬁélx(hl'fb))
+b(iM (hi,r) N' . (he,zh)
2 =eoA "1’=D’/ —woA‘"1l’'=D

Mo1a(hy Ip) Niq, (hy.zp)

* My, By Ip) Némhl:zﬁ))‘ (62)

The remaining expressions necessary to make equations 61
and 62 explicit are given by

~

= ihtz
Jy (Apn) . .
Yepa(hyozp) = - _27%;2_ sin ¢ e M12 %05
J, (Apnr) .
1 D ihiz 2
+ | —— - AT _(A
( o o( pD))cos ¢, e a¢D
(64)
25



0O 0 5 i ﬂ
v,

J, (Apn) .
= L D ihiz 2
M lk(hl’ED) = o cos ¢D e app
J,y (hpy) .
1 D _ . J.hlz A .
+ (——7;——— AJO(ApD)) sin ¢, e a¢ (65)
2 . h.A .
_ A ih1z » _ ; % ih, 2z .
E-eol(hl'rD) = ko JO(ADD> e az 1 —'—ko Jl(ADD) e 1 apD
(66)
N .. (hy,zn) = 22 J; (hpp) cos ¢ RN
Zelat103p kg °D D z
ih J, (Apgw) .
1 1D ihyz ¢
+ —= [ AMJ_(App) - )cos ¢n © a
ks ( °*""D °p D~ b
Apn) .
l l( D . ihyz -~
- sin ¢, e~ 1% a (67)
L Pp D - ¢D
N (hqy,Tn) = li J. (Aps) sin ¢ eihlz >
Solx1rEpl T kR U1 Pp n %p 2z
ih J. (Apn) .
1 1 D . ihiz »
+ — (AT _(App) - ——)sin ¢, e a
kO ( o D QD ) D DD
(Aey) . .
+ k1 1 D’ <os ¢D elhlz 3, (68)
o Pp D

To obtain 335(5,5') and ?s(z,g') we use prescriptions 51 and 52
in conjunction with transformation equations 53 through 55 and

"

= - '

pp =l = 0"l

A p - p'

a — —

- (69)

Pp 5s

a, =a_xa

p Z °p




We are now in a position to- rewrite the EFIDE and MFIE
operators as the sum of three terms as we stated in the abstract.
The first term describes free-field interaction, the sum of the
first two describes interaction above a perfectly conducting
ground and, naturally, the sum of all three terms describes
interaction above a finitely conducting ground. The corresponding

decomposition for the source term will be given in the next section.

Equations 31 and 37 represent the first stage of the decomposi-
tion, i.e., the free-field interaction term has been separated
from the scattering form. Thus we must further decompose the
scattering term. Recalling equations 61, 62 and subsequent
equations 63 through 68 we can cast EBS(ED’Eﬁ) and ?s(ED’Eﬁ) into
the following forms

G (rn,rl) = G 3 a + G ; 3 + G 5 a
3s'=D'=D 3spp Pp oD 3s9¢ ¢D ¢D 3spz pD z
+ G3s.zp a, apD + G3szz a, a, (70)
X (r~,xl) = a a + K a a + K a_ a
s =D'=D spo °p ¢D =uRe ¢D °p szé z ¢p
+ Ks¢z a¢ a, (71)
D
where
G S S [ N J U (72a)
3spp 2 2 21 o 22 o) 21 22
4tk ap
oL D
1 1 3 2 2 (72b)
G = — — (=G + kT V., + kT (-G + U )]
3500 4"kz L °p apD 21 o 22 o 21 22
2
1 9 2
G (-G + kv )] = =G
3spz 4“kg {BpD oz 21 22 3szp (72c)
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2
_ 1 9 2 _ 2
C3s22 = 2 [( 7+ ko) (-G,; + k VZZ)J (724)

41rko 0z
_ 1023 - 1 3
Rspo = 37 |5z (G21 ~ U22) * N T sz] (72e)
' i 2
=L (2 (- .9
Ksop = 7 13z (C21 * U22) = 3 sz] (72£)
p
D
Kezo = 5 |5os (<Ggy *+ 0 ] (729)
sz¢ 4m L 9p, 21 22 g
_ 1[0 .2
Ksoz = 7w Lop; Ga1 ~ K sz)] (72h)
where
elk R, © ieihl(z+z )
Cpn="w® —° [ i Jo (App) A dA
+ 1
o _
(73a)
= 1y 2 271/2
R+ = [(z + 2')° + pD]
lh (z+2")
Voo = f J_,(Apy) A da (73b)
22 + k2h ° D
2
lh (z+2"')
Uyy = / h T, Jo (App) A dA (73c)
o
o ihl(z+z')
2(h; - hy) e
Wy, = f —— I_(App) Ak (73d)
o 1 2
The above integrals are well studied and can be found in reference ‘

3 where the same symbols are used with a slightly different but
equivalent representation for the integrands.
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To proceed with the decomposition we consider the limit as

: ‘ conductivity o of the ground becomes infinite. One can show that
! .2 : , .
. lim k™ Vv = 2G,,, 1lim U =0, lim vV =0, limWw =0
! k>0 22 21 ko 22 K+ 22 Koo 22
and equations 72 in this limit becomes
2
P - _ _1 3 2
G3SOD o [(a 5 + ko) GZl] (74a)
o °D
P _ 1 [(1 d 2) ]
G = - - + k G (74b)
3s0¢ 4“kg Py 5DD o 21
2
P 1 3 P
G = G = -G (74c)
3spz 4ﬂkg{§°D 9z 21] 3szp

([ ~2
P _ 1 d 2 i
‘ C3szz = 2 L< 7 * ko) GZl] _ (744)

41Tko oz
3G
P _ 1 °F21 _ _.P
Kspo 4T 3z Ksoo (74e)
3G
P _ _ 1 °%21_ _p
Ksz¢ = 7 47 To, - sz (74£)

where the superscript P means perfectly conducting. By
regrouping terms in equations 72 and utilizing equations 74,

we obtained the following decomposition

G3g = G3g *+ G3g (75)

= _ =p F

K, = Ks + Ks (76)
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where the elements of Egs and Kg are given by equations 74

and the elements of G._ and ﬁs (F stands for finitely conducting)

3s
are given by

AV
F _ 1 22
G3spp T am 502 + U22] (77a)
L pD '
[ A
F 1 |1 9V ;
C3s¢0 = 47 (o, Fp, T V22 (770) .-:
D D #
F 1 32 2 F
G3spz = 2 19p. oz (k™ Vo, = 2G5 = -G3SZQ (77¢)
4ﬂko D
-1 |(2% . k2 )(x2 v.. - 2G6..) (774)
3szz 2 2 o 22 21
41Tko 22
: [ 3U
Foo_ 1 |_°%%22 1 3
Ksp¢ T 47 5z T p 3p WZZJ (77e)
| D
Els 2
Foo_ 1 |%Y22 3
Ks¢o T 4w 9z 5 2 WZZ} (77£)
o
L D
oU
F _ 1 22
Rsz¢ = 77 3o (77g)
D
2 N 2
Ks¢z = 53; (2G21 k sz)]. (77h)

Thus by invoking equations 31, 37, 75 and 76 we can complete the

promised decomposition:

3s o) G3s + G3s (78)

ol
0
ol
+

E + & (79)

=
]
=
+
=
+
=




where Eo’ ?o are given by equations 32 and 38 respectively, the

elements of EP and ?P

by equations 74 and the elements of
=F — 3s s

F . _
G35 and Ks by equations 77.

As a check to the above calculations we should arrive at
equations 74 by employing the standard forms for EP and EP.
These represent the scattered parts for interaction above a

perfectly conducting ground and are given by the well known
expressions

\

el —gg(z' » -2') I +'2&z az g, (z' + -z')) (80)

gt = (; ¥ 2 vv) .
s k
(]

—

_ 1 -
s T VCGpp x I (81)

where 95 is the free space scalar Green's function given
by equation 33, G21 is defined by equation 73a and Tr is a reflec-
tion operator given by

T =4, &, +4&, a, -4 4.
r Pp  Pp ¢D ¢D z "z

It can be shown by some rather lengthy algebraic manipulations
that equation 80 is identical to equations 74a through 744 and

equation 81 is identical to equations 74e and 74f.
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- SECTION V

REPRESENTATIONS FOR E; (r) AND H(r)

Using equation 16 in conjunction with the coordinate
notation changes described to obtain equation 27 and equation
29, we obtain

(£) = iwn fééll) (z,z') - J(z') av’ (82)

Vs

Enp

and using equations 35, 36, and 82 we obtain

Hp(x) = f

Vs

|

(x,r') - J(x') av'. (83)

As discussed in the previous section, E,(r) and Hp(r) have
.meaning in their own right, independent of their role in the

appropriate EFIDE or MFIE. They are the total electric and
magnetic fields at any point r in the lossless medium due to

a specified source distribution J(x'), r' € V and equations

82 and 83 include all interaction with the logsy half space.

The work presented in the previous section enhances the utility
of equations 82 and 83 in that the form to be used for Géll)(g,E')
is the simplified form given by equation 78, while the form to

be used for K(r,r') is the simplified form given by equation 79.

If we now focus our attention on the role of En(zr) and Hyir)
in the EFIDE and MFIE then we consider two cases. The first case
is when we desire to calculate the surface current density
induced on the scattering body and the source of excitation is
a specified distribution of current that exists somewhere in the
lossless medium. For this case we must employ equations 82 and
83 explicitly in conjunction with the EFIDE and MFIE. The second
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case is one of considerable interest, This is the case when the
source of excitation is an incident plane wave. For this case
we make use of the fact that E,(r) and ET(E) are simply the
incident plus reflected fields from the lossy half-space and
we do not have to explicitly evaluate equations 82 and 83.

For completeness we will present explicit representations for
this case. These representations are obtained in the standard
manner in which the incident field is decomposed so that it

is the superposition of two component fields. One component
field has its electric field polarized perpendicular to the
plane of incident, and the other component field has its
magnetic field polarized perpendicular to the plane of inci-
dence. The analysis leading to the results is straightforward
after the described decomposition is employed. For an inci-
dent field given by

A
~ ikanaer
= e E_e OO0 =

E; o (84)

with e being a unit vector along the polarization direction and

~

n, being a unit vector in the propagation direction, the total
fields are

En = E; + g? + g? (85)
and
Hp, = H, + g? + g? (86)
where
H, = (E,/2,) (A  x &) ikoho (87)
EP _ ‘Eo[(é MR+ & (ﬁR y ﬁ)] oikofR (88a)
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A AN : ~ ~ ~ ~ 7
B =g [(Ry + D@ - BIR 4wy - DG - G x B
oikohRr L (88b)
g = -(E_ /2 ) Bé - By, x ) - (& - G)ﬁ]eikoﬁR'E (88c)
- o "o R

= /2[Ry + D@ - R Gy x B+ (R - D@ - D

R

. n_ x Sz N A .
h = —2 (If n_ = -a_ then h = a_)
In_x a © ¥
o 2
v =h x ng (89)
np =n, ° (L - 2a,a))
1/2
~ ~ 2 2 ~ ~ 2
., - -k (A, - A) - [k - k (1 - @, - 8 )]_ |
~ ~ 2 _ .2 2 A 2 Jl/Z
-ko(az n,) + [k k (l (a, no) )
(90)
2 A ~ 2 2 ~ a2\ 1/2
k%@, - A ko[k kS (1 - (3, - ag) )]

fv = - | ; 1/2
%2, - A +k (k2 - 12 - @&, - no)zﬂ

RH and RV are the usual Fresnel reflection coefficients
so the sguare root is defined to have a positive real part.
We note that as the conductivity of the half-space approaches

infinity, then RH + -1 and RV + 1. It can now be seen that

in this limit g? and H vanish and this was the reason for the
and H

decomposition of T

ET as expressed in equations 85 and 86.
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The first two terms in these'gxpressions represent the total
fields, incident plane reflected due to the presence of a
perfectly conducting half-space. The addition of g? and g?

to the "perfectly conducting” total fields, yields an exact
representation for the total fields, g? and g?, resulting from

the presence of the finitely conducting half-space.
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SECTION IV
COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL
DATA FOR METALLIC OBJECTS IN FREE SPACE AND
ABOVE A PERFECTLY CONDUCT;NG GROUND

In this section we compare numerical data derived via our
Magnetic Field Integral Equation (MFIE) Code to experimental
data obtained at the University of Michigan. The guantity of
interest is the magnitude of the current den§ity induced on %
metallic objects in free space and in the presence of a per- §
fectly conducting ground by a monochromatic plane wave. In
particular we considered a perfectly conducting circular cylin-
der in free space and also above a perfectly conducting ground
and a perfectly conducting aircraft model in free space. Thus
figure 3 presents the comparison for the magnitude of the
induced current density as a function of kh (k being the £free
space wave number and h the halflength of the cylinder) at the
two points P and Q indicated on the graphs. The incident wave
is polarized with its electric vector parallel to the axis
and the propagation vector k is perpendicular to the axis.

The agreement is generally very good. Notice that the peak
value obtained via the MFIE code is higher than the one
measured at the University of Michigan. This is in agreement
with the results obtained by Sassman (ref. 9) who calculated
the total current I as a function of kh. Sassman obtained
84a for the peak value of the I/Ho and this should be smaller
than Zwa[Jp|/Ho since |Jp| is maximum at P. The code gives
Zna]JP|%89a and the measured data gives 84a. (Figures 4 and 5
are taken from the University of Michigan report since the
solid curves in figure 3 are our smoothed out drawings for
the original graphs in figures 4 and 5 and as such they are
subjective.)

9. Sassman, R.W., The Current Induced on a Finite, Perfectly
Conducting, Solid Cylinder in Free Space by an Electromagnetic
Pulse, Interaction Note 11, Air Force Weapons Laboratory,

1967.
o
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In Figure 6 the cylinder is situated above a perfectly conduct-
ing ground with its axis parallel to the ground. The incident
field is the same as in Figure 3 and the distance of the cylin-
der axis from the plane is 5a.

Again, Figure 7 refers to the original graph in the Univer-
sity of Michigan report. Figure 8 depicts the same situation as
in Figure 6 except that the cylinder axis is much closer to the
ground. (Figure 9 is the corresponding graph in the University
of Michigan report.) Notice that the deviation near the two
maxima is much greater than everywhere else. To satisfy our-
selves that the discrepancy between the experimental vaiues
of current density and the corresponding numerical predictions
were not the fault of the finite number of zones used to parti-
tion the surface of the cylinder, we systematically increased the
number of zones until we obtained what appeared to be a con-
verging seguence. For the cylinder in free space and for the
cylinder 5 radii above the perfectly conducting gfound nlane
we increased the zoning until for each frequency the response
was insensitive to zoning changes. However, the small change
in the predicted resonant frequency due to a change in zoning,
coupled with the sharp resonance for the case in which the
axis of the cylinder was 1.5 radii above the ground plane,
caused the above convergence criterion to be too stringent to
be practical for frequencies near this resonance; instead, in
this region, we required that both the resonant frequency and
the peak value be insensitive to zoning changes.

The zoning scheme that produced the results found in
Figure 8 was 18 zones along the length and 10 zones around
the circumference, while for Figure 6 it was sufficient to use
10 zones along the length and 6 zones around the circumference.

In both cases there was one zone along the radius of the endcap.
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Figure 10 is a schematic for the aircraft model considered

at the University of Michigan the exact dimensions of which are
given in Table 1. The experiments were conducted with the brass
scalé model; however, our graphs refer to the unscaled aircraft
dimensions given in Table 1. Figures 12, 14 and 16 present the
comparison for the magnitude of the induced current density
along the top of the fuselage for kh = 0.82, 1.694, 20.1l4, where
h is the fuselage halflength. Figures 13, 15, and 17 refer to
the bottom of the fuselage. The incident plane wave has its
electric vector polarized parallel to the fusalage and the
propagation vector perpendicular to the fuselage axis. The
distance £(in meters) shown in the graphs is the arclength
defined in Figure 11. Notice that the deviation between experi-
mental and theorectical values on the fin (vertical stabilizer)
1s much greater than on the fuselage. (In figure 13 our results
were off scale and are not shown.) A possible explanation for
this discrepancy may be based on the fact that the measuring
sensors are of finite size and do not pick up the fields right
on the surface. This is important because the ellipticai Cross
section of the'ﬁin has a ratio av/bvi¥6, i.e., the curvature
about the points where the measurements were performed varies
rapidly and consequently the fields can change rapidly as we
move away from the surface. This is at least true for the
special case of a perfectly conducting cylinder of infinite
length and elliptical cross section immersed in a magnetostatic
field parallel to the minor axis. For this case we found that
at a distance (in the direction of the major axis) equal to

0.25 b ¥ 0.025 in (b is the minor semi-axis) the azimuthal com-
ponent of the total magnetic field is equal to half its value

on the surface. The above discussion indicates that our

higher values on the surface of the fin may actually be compat-
ible with the lower values obtained with the finite size sensors

which of necessity measure fields at points off the surface.
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Table 1.

MODEL SPECIFICATION

U. of Mich.

Air Force U. of Mich. (scaled)

Parameter (meters) (meters) (inches)
L ] 40.00 40.00 - 6.847
Lf 16.76 16.76 2.869
Lm 17.08 17.08 2.924
Lr 6.16 6.16 1.054-
Lw 18.11 18.11 3.100
Lh 4.22 4.22 0.722
LV 6.5 6.5 1.113
ag 1.85 1.83 0.313
a, 3.66 3.651 0.625
b, 0.73 0.634 0.109
ay 1.83 1.826 0.313
bh 0.37 0.317 0.054
a, 3.00 3.104 0.531
bw 0.61 0.537 0.092
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