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APERTURE EXCITATION OF A WIRE IN A RECTANGULAR CAVITY

ABSTRACT

In this work, the problem of determining the currents excited on a
wire enclosed within a rectangular cavity is considered. The wire and
cavity interior are excited by electromagnetic sources exterior to the
cavity which couple to the cavity interior through a small aperture in
the cavity wall. It is assumed that the wire is thin, straight and
oriented perpendicular to one of the cavity walls.

An integral equation is formulated for the problem in the frequency
domain using imaged dipole moments to approximate the effects of the aper-
ture. This integral equation is then solved numerically by the method of
moments. The dyadic Green's functions for this problem are difficult to
compute ‘numerically; consequently extensive numerical analysis is necessary
to render the solution tractable. Sample numerical results are presented
for representative configurations of cavity, wire and aperture, and
suggestions for future extensions of this work are discussed.
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CHAPTER 1
INTRODUCTION

An investigation has been undertaken of the problem of a wire
inside a cavity which is excited by an external source. The effects of
this external source are coupled to the cavity interior and wire through
an aperture in the cavity wall. The currents excited upon the wire and
the fields within the cavity are to be determined. This boundary value
problem is an idealization of a wire in some metal enclosure. As
examples, the wire may be inside the shielding or housing of an elec-
tronic or mechanical unit on an aircraft, or it might simply pass from
one metal partition to another through a region which is essentially
empty.

This paper deals primarily with the problem formulation (Chapter
2) and the consideration of the many numerical difficulties which are
encountered in obtain a solution (Chapter 4). In addition, an analogous
two-dimensional problem is considered (Chapter 3) and some sample
numerical results are given (Chapter 5). 1In Chapter 6, in addition to 2
summary of this work, several possible extensions are discussed. The
remainder of this introductory chapter is devoted to the modeling of the

problem and its historical background.

Modeling of the Physical Problem

In order to model the system of interest, a rectangular box

having an aperture in a side wall and enclosing a wire is considered.
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The appropriate geometry is shown in Figure 1. The problem is formu-
lated in the frequency domain. It should bé noted, however, that given
the frequency domain solution, desired time domain quantities can be
obtained by numerical inverse Fourier transform.

As is usual in the investigation of complex problems, simplifi-
cations must be invoked to render tﬁe problem tractable. The assump-
tions and conditions of the cavity/wire problem are summarized as
follows:

1. The cavity is the interior region of a perfectly conducting
rectangular box.

2. The material in the box is uniform, linear and isotropic.

3. The cavity is excited through a small aperture in a cavity
wall such that aperture dipole approximations may be used.

4. The wire is straight, circular and perfectly conducting, and
is oriented perpendicular to a side wall of the cavity.

5. The wire ends may or may not be in electrical contact with
the cavity walls.

6. The wire is thin at the frequency of operation and thin-wire
assumptions can be utilized. ‘

Historical Background

In recent years, a great deal of work has been done on the
problem of scattering from wires in free space and efficient techniques
have been developed to handle them (Butler and Wilton 1975, Wilton and
Butler 1976). More recently problems for which a wire couples to an
aperture in an infinite planar screen have been considered (Butler and
Umashankar 1976; Seidel and Butler 1976).

Historically, the work done on the rectangular cavity problem

has been primarily concerned with formulating the dyadic Green's
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Figure 1. Geometry for Aperture-Perforated Rectangular Cavity with
Interior Wire.
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functions for the potentials and fields for a rectangular cavity. An
expansion for the electric field dyad was found by Weyl (1913, 1915).

It was pointed out by Teichmann (1952) that the expansion was incom-
plete. This was later corrected by the addition of another term
(Teichmann and Wigner 1953). Several other authors have also shown that
that the additionzl term is necessary for completeness (Kurokawa 1958;
Collin 1973; Tai 1973; Howard 1974).

The dyad for the magnetic vector potential for the rectangular
cavity is formulated.in Morse and Feshbach (1953, pp. 1845-1851}.

More recently, this dyad and the dyad for the electric field were
formulated by Tai and Rozenfeld (1976) using the vector wave functions
L, ™ and N (Hansen 1935) and by Rahmat-Samii (1975) who also derives
the dyad for the electric vector potential. Both of these authors took
care to insure completeness of the expansions.

Recently, Cheng and Chen (1975) formulated the solution for the
problem of a rectangular cavity-backed aperture in an infinite screen.
However, at the present time, no numerical data has been presented
using this formulation.

It should be noted that at this time there appears to have been
no work performed on the cavity containing an interior scatterer. This
is probably due to the present uncertainty of computational methods
for evaluating the dyadic Green's functions in the cavity, especially

in or near source regions.
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CHAPTER 2
FORMULATICN

For the purposes of this problem, consider a perfectly conduct-
ing rectangular cavity. One corner of this cavity is located at the
origin of a cartesian coordinate system (Figure 1). The dimensions of
the cavity are denoted by a, b and ¢ in the x, y and z directioms,
respectively. Within this cavity, there is a perfectly conducting,
round thin wire of radius r(r<<i) which is parallel to the z-axis.

This wire may or may not be attached to either or both walls of the
cavity.

One of the walls of the cavity is perforated by a small aper-
ture whose center is located at Ea = (xa, Yy za). The exterior region
to which the aperture couples the cavity interior may be of two differ-
ent types. The cavity may be located behind an infinite, perfectly
conducting, planar screen such that the cavity wall containing the
aperture is a portion of the infinite screen. Alternatively, the
cavity may be situated in a free space envircnment. In either case,
the excitation for the problem is provided by sources in the exterior
region.

Finally, it is assumed that the medium in both tHe interior
and exterior regions is homogeneous and isotropic and is characterized

by (€,u) where € can be complex for a lossy medium. It is assumed
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that the problem is time harmonic with angular frequency w and the

factor el " has been suppressed throughout.

Dyadic Green's Functions

In order to formulate an integral equation for this problem,
it is necessary to know the Green's functions for the éotentials and
the fields within the interior, or ;avity, region. These Green's
functions are dyadic in nature and, as one would expect, are singular
in the source region.

One can define the dyadic Green's function for the magnetic

vector potential by
(V2 + k*) G, (7,7 = - T 8(z-7 1), (2.1a)

A x (k2T + W) - ﬁA =0 on S (2.1b)

where k is the wavenumber of the homogeneous, isotropic medium of the
cavity interior, I is the identity dyad, i is an inward-directed unit
normal vector on S where S is the surface of the cavity. This Green's
dyad has been derived by Tai and Rozenfeld (1976) in terms of the
vector wave functions L, M and N and is shown as a matrix in Table 1.

Once éA has been determined, the Green's dyads for the electric
and magnetic fields due to an electric current source can be found.

They are defined by

Gy = (K*T + VW) - EA 2.2)
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Table 1. Dyadic Green's Functions for the Magnetic and Electric Vector Potentials.

(cc)x(ss)y(ss)Z 0 0
o £ € E
= 1 mn L .
G, = —— e 0 {ss)_(cc). (ss)
A abc m,n,RF"O K2 "k2 X y Z
mnk
; 0 0 (ss)x(ss)y(cc)z
(ss)x(cc)y(cc)Z 0 0
= 1 °i-‘ “n*nfe
g T oo R 0 (cc)_(ss) (cc) 0
F abc m,n,f=o0 K2 -k2 X y z
mg
0 0 (cc)x(cc)y(ss)z
where
= ¢ X' si i ' g5i i '
(cc)x(ss)y(ss)Z coskxx coskxx 51nkyy 51nkyy 51nkzz 51nkzz ., etc.
=—I£T—- :P..T[. :3‘—1—[— 2 = 2 2 2
ke =2 ’ky b 0 K, =T o K =k vk vk
and
e, = ’1 , i=o
12, ifo .

TI-SvE
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for the electric field and
& =Vx@G (2.3)

for the magnetic field. The matrix forms of ﬁe and Eh are given in
Table 2. They were obtained by simply operating upon EA as prescribed
by (2.2) and (2.3).

It should be noted that this result for Ee agrees with that
derived by Tai and Rozenfeld (1976) directly using éhe vector wave
functions. It also would agree with a similar result obtained by
Rahmat-Samii (1975) if an obvious sign error in that paper were
corrected. Note that this agreemént is a2 most important point. In
these two papers, the authors have taken great care to insure complete-
ness of the expansion functions for Ee in the source region of the
cavity. The agreement between their results and that given here
demonstrates the fact that completeness is insured when the problem
is formulated through use of the potentials and the fields are then
derived from those potentials.

It now remains to determine the dyadic Green's function for

the electric vector potential and its related field dyads. Consider

the Green's dyad for the electric vector potential defined by

(V% +k?) EF(E,EQ = - 16(x-7") (2.42)

, on S. (2.4b)
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Table 2. Dyadic Green's Functions for the Electric and Magnetic Fields Due to an Electric
Current Source,
(12 12 - )
(k —kx)(cc)x(ss)y(ss)Z kxky(cs)x(sc)y(ss)Z - kxkz(cs)x(ss)y(sc)z
= 1 v Emenel 2 4.2
Ge = he Iy < - kxky(sc)x(cs)y(ss)Z (k —ky)(ss)x(cq)y(ss)z -~ kykz(ss)x(cs)y(sc)Z
m,n, =0 K° -k* .
mnf
' _ ' 2 42
\— kxkz(sc)x(ss)y(cs)Z kykz(ss)xfsc)y(cs)z (k kz)(ss)x(ss)y(cc)zl
( 0 - k_(ss)_(cc). (cs) k_(ss)_(cs)_ (cc) )
z X y z 7y X y z
= 1 v Emsneﬂ. $
. —_— Y -
Gy = Ths m’n’ZQm g 4 kz(cc)x(ss)y(cs)z kx(cs)x(ss)y(cc)z
mn L i
\~ ky(cc)x(cs)y(ss)Z kx(cs)x(cc)y(ss)Z 0 )
where

(CS)X(SS)Y(SCJz

cosk_x sink _x' sink y sink y' sink _z cosk z' , etc.
bis X y y z z

71-G%E
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Rahmat-Samii (1975) has obtained a sclution for EF' It is given in
matrix form in Table 1. Again the sign error has been corrected.
Now that EF is determined, the dyads for the electric and

magnetic fields due to a magnetic current source can be defined by

Ze = -V x EF (2.5)
and

Eh = (k2T + v7) - EF . (2.6)
If Ee is written in matrix form, it is found that

g, (7,F") = - éhcf',f) (2.7)

where the tilde denotes the transpose of the dyad.
As a matter of notation, an upper case G denotes a dyad due
to an electric current source; similarly a lower case g denotes a
dyad due to a magnetic current source. The subscript A, F, e or h
denotes the particular potential or field which is given by the dyad.
Before proceeding with the formulation of the integral
equation, it is worthwhile to consider a few of the general properties.
of these dyadic Green's functions. Probably the most apparent property
is that each component of each dyad is in itself a triply‘infinite
Fourier sum. It can be seen, however, that any one of the sums can be

performed analytically using onre of the following relationships:
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x
i i t = a . . .
mzl et 51nkxx 51nkxx §E§§EHEZ'Slnhax<51nha(a x,) (2.8a)
X
(- .
mZO oo’ coskxx coskxx Eg;ﬁgaz-coshax<cosha(a %) (2.8b)
X
® k
X ) __a . )
mzl o’ cosk x sink x, = 5 Sinhoa coshex sinhe(a-x,) (2.8c)
X

m k
X . -a .
sink _x cosk = =————— sinhax_cosha(a-x 2.8
Z 2 2%< xx> 2 sinhaa < ( >) ( )
m=l k*+q
X
where

k.= x = min{x,x') , x_ = max(x,x') , ¢ <x, x' <a.

x Py k] < 3 s > * > —_ —_—

Equations (2.8) are easily derived by considering the ordinary differ-
ential equation

d?
(E;; + k; g(x,x') = 8(x-x')

on the interval (0,a) with various combinations of unmixed Dirichlet
and Neumann boundary conditions. The function g is then obtained by
a closed form construction to obtain the right-hand side 6f {(2.8) and
also by a spectral expansion [to produce the left-hand side of (2.8)].
An azlternative technique to derive these equations has been given by

Collin (1960, p. 581).
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Another important property of these triple sums can be seen if
one remembers that both sinh x and cosh x approach :5% e* for large x.
Thus, if |F-T'| # 0, any one of the triple sums can be reduced to a
double sum which is exponentially convergent. This demonstrates that
outside the source region, a2ll components of all the dyads converge,
and in fact, converge exponentially. Therefore, all dyad components
are uniformly convergent outside the source region (Titchmarsh 1939,
p. 4).

Since it is valid to differentiate a series term by term pro-
vided the resulting series is uniformly convergent (Titchmarsh 1939,
p. 37), the method used to construct the Green's dyads for the fields
using (2.2), (2.3), (2.5) and (2.6) is valid outside the source region.
This leads to the next observation regarding relative convergence of
the sums. Note that the effect of a differential operator on each term
of any one of the sums is to introduce a multiplicative factor of m, n,
or £ in the numerator. This will slow the rate of convergence of the
A and §F will exhibit the

most rapid convergence, whereas Ge and éh’ which are constructed using

series. Thus, for |[T-T!| # 0, components of G

the second order differential operator VV+, will exhibit the slowest

convergence.

Integral Egquation Formulation

To formulate the problem, one first uses the theories advanced
for small apertures by Bethe (1944). This theory allows a small aper-
ture, whose center is at the point §a’ in a perfectly conducting screen

to be replaced by imaged electric and magnetic dipole moments
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located at Ea' Figure 2 (a2 and b) depicts this equivalence. The
electric dipole moment ﬁe is normal to the cavity wall, and the mag-
netic dipole moment ?m is tangential to the cavity wall. Note that
now the aperture has been shorted, and thus one has in this equivalent
problem a wire scatterer in-a rectangular cavity excited by the dipole
sources ?e and ?m. (A more precise definition of these dipole moments
will be comnsidered later in this chapter.)

It is useful to make use of yet another equivalent problem. By
using the equivalence principle (Harrington 1961) one can replace the
wire scatterer in the cavity by unknown surface currents 35 which are
located upon a mathematical cylindrical surface which coincides with
the surface of the wire in the original problem. This equivalence is
shown in Figure 2 (b and c¢). Now one must force the boundary condition
that the tangential electric field must vanish on the cylindrical sur-
face. When this is accomplished the two problems are equivalent and
the surface currents in the equivalent problem will be equal to the
surface currents induced upon the wire in the original problem.

Note that in this second equivalent problem one has a cavity
whose interior is entirely homogeneous and isotropic, and is driven
by the unknown scurces js’ ﬁe and Pm. Thus the fields in the cavity
may be obtained by simply taking the scalar products of the appropriate
dyadic Green's functions and these sources and integrating over the
volume of the cavity.

The total electric field at the point T in the cavity can be

broken into two parts in the following manner:
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E(F) = B ) « E5(D) (2.9) .

where E* is the field produced by the aperture dipole moments ﬁe and

?m and E° is the field produced by the surface current density 35.
Thus

=1i.- —}_=_- . B . = e - . 3

E7(r) = = Ge(r,ra) Pe + jkn ge(r,ra) Pm (2.10)
and

B = - &8 4 ). J J G, (7,7 + I (x")ds' (2.11)

wire
where n = Yi/€ is the characteristic impedance of the medium interior
to the cavity. |
Since the wire scatterer is assumed to be thin (r<<i), one can
use the traditional thin wire approximations to simplify (2.11). These
approximations have been used extensively and are summarized as follows:

1. The circumferential component of current on the wire is
negligible and may be assumed to vanish.

2. The remaining axial component of current has no circumferen-
tial variation.

3. There is no current on the end caps of the wire and the axial
current must go to zero at unattached ends of the wire.

4. It is sufficient to require only the axial component of the
electric field to vanish on the wire surface.
If these approximations are incorporated into (2.11}, and the
axial component of (2.9) is forced to vanish on the wire surface, one

obtains the following integral equation:
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. [:%3 k2T + v9)° j j G (F,T") * #J (F')ds’

wire
+ Eici)] =0 (2.12)

where T is on the wire surface and # is a unit vector parallel to the
axis of the wire.

It is seen that (2.12) is an integro-differential equation in
which all three components of the dyadic kernel and all nine components
of the dyadic operator VV will, in general, couple. As will be seen
in Chapter 4, the Green's functions are extremely difficult to calcu-
late numerically in or near the source region. Because of this problem,
the feasibility of solving (2.12) for the most general case of arbi-
trary wire orientation is questionable. However, if one considers the
case where # is equal to one of the three cartesian unit vectors (let
that unit vector be % by convention) then (2.12) reduces to a scalar

integro-differential equation as follows:

l%ﬂ (ii— + kz)j J G, (F,F') J (z0)ds' +2 - E'@) = 0
(2.13)

for T on the wire surface.

Note that if (2.13) can be inverted, a solution for J: will be
obtained. However it should be remembered that Ei contains ﬁe and ﬁm,
which as of yet are unknown. Thus it remains to obtain additional
constraints which will uniquely specify the values of these dipole

moments.
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Aperture Imaged Dipole Moments

Before attempting to determine the dipole moments ?e and P_,

m

it is necessary to review the basis of small aperture theory. This
summary is patterned after that in a recent paper by Butler (1976) and
the work of Collin (1960). Consider an infinite perfectly conducting
screen at z = 0 which separates two half spaces of the same properties
(4,€). This screen is perforated by a small aperture centered about
the point (0,0,0). If the aperture is sufficiently small and T is
sufficiently far from the aperture, then the fields at T due to the
aperture can be approximated by the radiation from an electric dipole
with moment ﬁe and a magnetic dipole with moment ﬁm located at (0,0,0)
which radiate in the presence of the unperforated screen. This equiva-
lence is illustrated in Figure 3.

The moments of the electric and magnetic dipoles for the right

half-space (z>0), which are located at (0,0,0+) are given by

=
i

= sae(sjc'(a) - BT ()2 (2.14a)
and

= ~5C- .= =SC+ =
Bo=-a « (B0 - BTN (2.14b)

where (E°©7, A%°") are the short circuit fields in the left half-space,
that is, the fields in left half-space in the presence of the unperfor-

+

ated screen. Similarly, (E5¢F, g°°*y are the short circuit fields in
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the right half-space. The electric polarizability %y and the magnetic
polarizability ém relate the specific excitation to the moments for a
given aperture. Polarizabilities are available in the literature
(Bouwkamp 1954; DeMeulenaere and Van Bladel 1977, Collin 1960, pp. 285-
302; Cohn 1951, 1952) for several small apertures. Specifically, for

an elliptical aperture defined by (x?/2%) + (y?/w?) =1 for & > w,

@y = Torey - (2.152)
1t

o, = 3XE - E® (2.150)

o - é_ miie , (2.15¢)

2
Yo e - k@

and all other components of ém are zero. The square of the eccentricity

(&) is defined by
W, 2
£ =1-(3

and K and E are the complete elliptic integrals of the first and second
kind, respectively, as defined by Abramowitz and Stegun (1965, p. 390),
where £ is the parameter of the modulus.

It should be noted that, where the small aperture theory is
based upon an aperture coupling two half-spaces, in the actual problem
of interest the interior region is a rectangular cavity and the exte-

rior region may or may not be a half-space.
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First, consider the exterior region. Suppose the cavity is
behind an infinite screen, such that the exterior region is actually a
half-space. Then the short circuit exterior fields are easily deter-
mined from a knowledge of the incident field by application of physical
optics.

However, if the cavity is not behind a perfectly conducting
screen, the problem becomes more difficult. It now becomes necessary
to determine the short circuit fields on the exterior surface of a
rectangular box scatterer. This problem has been solved numerically
by Tsai, Dudley and Wilton (1974). Since the short circuit fields are

related to the surface current and charge by

- ~ "SC"‘
JS =nxH
and
_sc-
q . = € i« E s

these values could also be provided by experimental measurements of
surface charge and current densities. Note that (E”, £°¢7) and
=SC+ pSC+, . .
(E , H ) have been defined for the problem of interest to be the
short circuit fields in the exterior and interior regions, respective-
ly. For the remainder of this paper it will be assumed that (E°°7,
B°°7) are known.

Now consider the interior region of the problem as illustrated

in Figure 2¢. It is readily seen that (ESC+, ESC+) will be driven by

the surface currents on the wire. However, this region is a cavity,
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and the use of yet another equivalent problem is necessary in order to
account for this problem properly. If the method of images (Collin
1960) is applied to the equivalent problem depicted by Figure 2c, a new
equivalent problem can be obtained in which the aperture dipoles and
the wire currents have been imaged in such a way that there is a three-
dimensional infinite array of image sources in a half-space. A two-
dimensional cross-section of that array is given in Figure 4. This

SC+, ﬁ5C+) are produced by all of the sources in that half-

means that (E

space except for the original aperture dipoles Pe and Pm located at T,
Now if it is realized that these arrays of image sources in the

half-space are equivalent to the original sources in the cavity (the

problem of Figure 2c), one obtains the following relations for the short

circuit fields in the cavity region:

Sc+ = S = - ipon . & - - -
EE" () =G, (r,r )P, + jknfi « g_(r,r.) * P
n erm a en e a m
- in 6 (5,5 (F')ds' (2.16a)
k enz ? z
wire
and
=SC+ =, _ &Q - - . oA £ - - . 5
HZ () = 5= Gylzory) + A Pen * g (T,T) ¢ P
+ J f Ehc{-,i-') * 27 (F)ds! (2.16b)
wire

where fl is the unit vector in the wall of the aperture and the symbol
(") over the dyads indicates that the original or self term of the

image series (Green's function for half-space) has been deleted. Thus
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-P, 4%-_13 -P, ..;}_ﬁ
Source m l m

Aperture Xgm

P

Figure 4. Equivalent Interior Problem Which Accounts for Effects of
Wall Reflections and Wire Currents on Aperture Dipoles.
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~ -jkR
- - - = - - = e

GA(r,ra) = GA(r,ra) - I S (2.17a)
and

2 = . o KR

S - - = - - e

ge(r,T) = gplr,r) - T = (2.17Db)
where R = IE-faf. Now the desired dyads may be obtained using the
following relations:

g - 2—",—' . 3

Ge = (k°I + W) GA s (2.18a)

G =Vx§,, (2.18b) )

g, = - Vxg, (2.18¢c)
and

g, = WT+vW) - gp. (2.184)

The functions defined by (2.17) and (2.18) will be referred to as
deleted Green's functions in an effort to indicate the deletion of
the singular, free space Green's functiom.

One now defines &l and §2 to be the two cartesian unit vectors

which are tangential to the wall of the aperture in such a fashion

A

that ﬁl x d, = fi. For example, if the aperture were in the y = 0 wall

of the cavity, then §1 would be Z, §2 would be % and fi would be ¥.
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Note that since Pe has only a normal component and ﬁm has only a
tangential component, there are only three non-vanishing unknowns:

p , P and P . If new unknowns E and ﬁT are introduced such that
m m T

en 1 2 n
_ gSC- = _ pSC+ .=
ETn = En (ra) En (ra) (2.19a)
and
& _ §SC-.z y _ §SC*.s ' ;
HT = H (ra) H (ra) (2.19b)
then by (2.14)
Pe
.o E (2.20a)
e T ? ’
n
P =-aq (2.20b)
my M1 HTI
and
P = -q . (2.20c)
) m22 HT2

Now, if (2.20) is substituted into (2.16), which in turn is substituted

into (2.19) one obtains the following equations:
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[1+eG, (,7)]E. - jknfe NS (F,,7,)H, ]
e enn a’“a Tn m11 a HT n2 a’“a HT2
X f f Genz(ra,r')Jz(r')ds' = En (ra) s (2.213)

wire

ik o s - 8z -
= (r,,t ), + [l -a 8§ (F,7)]H. - « & (r,T)
n e hln a’“a Tn m11 hll a’“a HT Mys h a’“a H‘I’2

- f f G, (F,,F) J,(ENds' = H°7(F) , (2.21b)

: 1
wire %

Lo GLidE -o g G, 8, (F.,F
s - g (Tt )H, + [l -¢ g (r_,r )]
n e h2n a’“a Tn m11 h21 a’“a Ti M, h22 a’“a HT2

+ f [ Gy z(ia,i')ché')ds' = Hsc'(i ) (2.21¢)

wire

It should be noted that the unknowns ET . HTI and HT are
related to the unknown dipole moments by the aperture polar12ab111+1es

Thus if (2.20) is substituted into {(2.10) one obtains

a i _ - = R - =
Z - E ()= Gy Ge7n(r’raJETl - Jknamll gq (r,ra)HT

- jknamzz g (r,ra}HT2 (2.22)

This means that (2.13) contains the unknowns E, s HT and HT
‘n

addition to J . The three additional constraints prov1ded by {2.21)
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when solved simultaneously with (2.13) will provide a unique solution
for the currents on the wire and the quantities ETn, HTl and HTZ.

It is helpful at this point to attempt to describe physically
the various terms in (2.21). First, it is noted that the terms con-
taining the deleted Green's functions account for the fact that the
aperture dipoles will be affected by the fields reflected back from the
cavity walls. This is apparent if it is remembered that these terms
are the fields in the aperture due to the array of the images of the
aperture dipole. These virtual sources account for all of the reflec-
tions and multiple reflections from the cavity walls.

It can also be noted that the integral term in (2.21) repre-
sents the field scattered back into the aperture by the wire and thus
accounts for the coupling between the currents on the wire and the
aperture dipoles. If all of these coupling effects are assumed to be

sc-). If on the

o s - _ SC=- =
negligible, (2.21) reduces to (ETn, HT) = (En , H
other hand these effects are not neglected, the difference between
(Ep » ﬁT) and (E;C', A°°7) will in some way reflect the degree of to

n

which the cavity walls and the wire scatterer couple to the aperture.
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CHAPTER 3
A PRELIMINARY TWO-DIMENSIONAL PROBLEM

In an effort to gain insight for the three-dimensional cavity
problem, it is helpful to consider an approximately analogous two-
dimensional problem. For this case, thé kernel functions would also
be singular Fourier series, although of lower dimensionality. Thus
where in the original problem the sums were doubly and triply-infinite,
they are one- and two-dimensional in this two-dimensional analog. In
addition to any insights which this effort might provide toward the
solution of the three-dimensional cavity, the solution to this analo-
gous problem may provide data pertinent to the physical problem being
modeled. For example, in this simpler model, it is feasible to account
for the actual coupling through a large aperture rather than use the

aperture dipoles for small apertures.

Formulation

The geometry of the analogous problem is shown in Figure 5. It
consists of an incident plane wave impinging upon a perfectly conduct-
ing infinite planar screen perforated by an infinite z-directed slot of
width d. The slot is backed by a rectangular cylindrical. cavity of
depth a and width b. Within the cavity are L z-directed thin wires of
various radii. The incident plane wave 1s polarized such that E is
parallel to the slot. Thus only the EZ, Hx and Hyfield components are

excited.
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Figure 5. Geometry for Analogous Two-Dimensional Problem.
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One now formulates the problem, using the thin wire approxi-
mations described previously in Chapter 2, by expressing Ez and Hy in
terms of the unknown aperture electric field and the unknown surface

currents on the wires. Then by forcing the boundary conditioms that

Ez and Hy be continuous through the aperture and E, vanish on the wire

surfaces, two coupled integral equations are obtained. They are

h+d
2
T G+ 1D ! B2 ') 1 ly-y' ) + 38,0y ey

dy h
L
= [ g, S, (x',¥,y")de’
2=1 .
2th wire
= -2 Hinc (0,y) , h<y<h+d (3.1a)

and

h+d
{ Ei (') 8,(x,y,y")ady! '
h

Jy J Sy (x,x",y,y")de!
2th wire

L
- jkn ]
2=1

=0, (x,y) on surface of the sth wire, for s = 1,2,...,L

(3.1b)
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where Ei is the unknown aperture electric field, Jz is the surface
current density on the Lth wire, H;nc is the y-component of the
incident magnetic field and n = vii/é is the characteristic impedance

of the space., The functions Sl’ Sz, and S3 are defined by

£

-]
2 ] .
S, (y,y') = = Z sink vy sink y! (3.23)
1 ab m, n=o K;n_kz Y Yy

k
X

[+-]
_4 . . .
Sz(x,y,y') =2 §= 51nkxx 51nkyy 51nkyy' (3.2b)

2 _p2
m,n=1 %m'k

and
4 3 1
S ty,y') = — ink ink %' sink ink y!
3(x,x SY,Y o5 . §=1 7 sink x sink x' sin yy sin yy
! ™n
(3.2c)
2 _ 2 2 _ mm . < DT
where K ks + ky s kx =3 and ky 5

Note that any of the double sums in (3.2) can be reduced to a single
sum by use of (2.8) and will thus converge exponentially as long as
T # r' [that is, when (x,y) # (x',y")].

Now assume that no two wires touch one another and that no
wire is in the aperture region. This means then that with the exception
of the first sum all of the infinite sums in (3.1a) are uniformly con-
vergent. Indeed this first sum is uniformly convergent everywhere

except when y = y' in which case it diverges like Z%-. Similarly, all
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sums in (3.1b) are uniformly convergent, with the exception of the
term where I=s, in which case one point on the surface of integratien
will coincide with the point (x,y}.

It is now useful to make the approximation that the wire cur-
rent resides at the center of the wire and that field boundary condi-
tions are still enforced at the wire surface. This approximation is
commonly known as the reduced kernel approximation. For this problem

it can be stated by

J Ss(x,x',y,)")dc' -~ 271'1‘ Ss(x,xc,)’,)’c) (3'3)
wire

where (xc,yc) is the center point of the wire and r is the wire radius.
This can be justified by noting that SS’ the Green's function for the
magnetic vector'potential in the cavity, must contain the free space
two-dimensional Green's function, which goes as &n|r-r'|. Note that
#n|T-T'| can be integrated analytically over the wire surface, where

T is also on the wire surface, to give the desired result that

T
1
j ln(erinlgjard¢' = 27rin T .

-

Since the wire is thin and the remaining portion of 53 is a smooth,
homogeneous solution to the wave equation, it too can be validly approx-
imated by this technique. It should be noted that given the wire radii
small but finite, the application of the reduced kernel approximation

makes all of the infinite sums in (3.1b) uniformly convergent.
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Reduction to Matrix Equation by Method of Moments

An effective technique for the numerical solution of integral
equations in electromagnetics is the method of moments (Harrington

1968). Consider the operator equation

Lu = £ (3.4)

where L is a linear operator, £ is a known vector, and u is an unknown
vector for which the solution is desired. Using the method of moments,
one approximates u by a finite linear combination of expansion vectors

U_. Thus let
n
- ? -
u = au . (3.5
41 a4

Now take the inner product of (3.4) with N testing vectors ﬁp. If
(3.5) is substituted into this result, and it is noted that L is
linear, one arrives at the matrix equation

N - - -

qgl <wp,Luq>aq = <wp,f> , p=1,2,3,...N . (3.6)

Note that (3.la) is a linear operator equation with an integro-
differential operator and unknown function Ei(y) and the unknowns {Jz}.
Further, one has the boundary condition that Ei must vanish at each
edge of the aperture because the tangential electric field (EZ) must
vanish at these two points. If the inner product for this space is

defined to be
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h+d
<u,v> = J u(y)v(yldy
h

the method of moments may be applied to approximate (3.1a) by a matri¥
equation.

The optimum choice of expansion functions (ﬁp) and testing
functions (Qp} for this integro-differential operator and these bound-
ary conditions has been the subject of many examinations (Butler and
Wilton 1875; Wilton and Butler 1976). It has been shown that one effi-
cient choice (Wilton and Butler 1976) is that of pulse, or piecewise-
constant, expansion functions and piecewise-sinusoidal testing
functions, dencted pq and A; respectively and defined in the coordinate

system of this problem by

g Lo vyl < 5

pq(y) (3.7)

A
(O ) IY'qu >§'
and

sinkcA-]y-ypI) . Iy-yp[ <A
(3.8)

S
AP(y)
0 s - > A
ly ypl

where A = d/(N+1) and Yq = h+qA. Thus the unknown aperture field is

approximated by

: N
&y) = X 3.9
E_) qzl B Pq ) (3.9)
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Figure 6 shows a plot of such an approximation as well as the
testing functions A;(y). It should be noted that a half-pulse of zero
amplitude has been placed at each end of the aperture. This is done
because of the boundary condition that Ei vanish at each end of the
aperture.

In order to perform the inner product one takes advantage of
the piecewise-sinusoidal testing functions and the differential portion
of the operator, éi; + k%, and integrates by parts twice. The integral
portion of the regilt vanishes, leaving only three boundary terms.

If these expansion and test functions are applied to (3.la) and

the same expansion functions are substituted into (3.1b), the following

equations are obtained

N
1
a q__Z_l Bq [Fq (¥p-1) - 2c0skAF (rp) + Fo(¥,,;)]

L .
- . inc
+C 221 1gS; 0%y ¥, = - 2CH " (0,y) (3.10a)
forp=1,2,...,N and
N L
t .4 =
LBy | Sylxgygsydy' - dkn [ T1oSs(xgxy,y ,y,) = 0
q=1 =1
Aq
(3.10b)
for s = 1,2,...,L where
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F () = [ 1 k[y-y Dyt + 5 J S, (r,ydy' . (3.11)

Aq Aq

In (3.10), IQ = ZﬂerZ is the current due to the uniform surface cur-
rent density on the £Lth wire and Aq is the interval (ydméuyq;é). The
point Ez = (x,,y,) is the centerpoint of the 2th wire and Es = (xg,7)
is a point on the surface of the sth wire. However, for thin wires,

this distinction is important only when 2=s. The constant

+A
o
C = { A;(y)dy = 2(1-coskA)

A
’p

results from assuming that both the incident magnetic field at the
aperture and the magnetic field in ghe aperture excited by the currents
on the wires can be approximated over the range of pth testing function
by their respective values at yp.

It is now observed that (3.10) represents two coupled matrix
equations for the unknowns qu} and {I,}. These equations can be
solved simultaneously by standard matrix techniques, such as Gauss
elimination, to find the solution for the unknown aperture field and

the currents excited on the interior wires.

Numerical Considerations

Although the problem has been formulated and the integral

equations have been approximated by matrix equation (3.10), it is noted
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that one must be able to calculate the infinite sums S2 and SS’ possibly
near the source where convergence is poor. The sums S1 and S2 must be
integrated, Sl over the source region (3.11). Consequently, it becomes
necessary to develop techniques for handling these situations.

First it should be noted that in (3.10b) it is valid to inte-
grate S2 term by term since 82 will always be uniformly convergent
over the range of the integration (Titchmarsh 1939, p. 36). It can be
shown that Sl in (3.11) can also be integrated term by term, even
though at y=y/, Sl diverges. Because Sl is uniformly convergent at
every other point in the range of integration, and because the series
that results if Sl is integrated term by term is absolutely convergent,
it is valid to integrate S1 term by term (Titchmarsh 1939, pp. 44-45).
This is an important result since as a general ryle it is numerically
more efficient to integrate the series term by term.

It remains to develop a téchnique for efficiently summing these
series, even when |r-T'| is small. It is expected that the convergence
will be poor from a numerical standpoint. To demonstrate the method

which is used to make this improvement, consider the special case of

S3 {(3.2c). By applying (2.8a) to (3.2¢) one finds that

sinhYby<sinhYb(b-y>)
YbsinhYbb

= 2 : : '
S, = = ) sink x sink x (3.12)

m=1
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Note that just as easily the double sum could have been reduced
by eliminating the sum over m. Thus, there is always a choice of which
sum to remove analytically by (2.8). Let Sgsx be defided as the asymp-
totic series of 83 such that its terms are the limit of the terms in

(3.12) for large m. Thus

8

1
1 . X _._ mrx' _-m bt
7 Sinmm: sin —=— e a . (3.13)

asy _ 1
537 =3

i ~1

m=1

Series S3 has exponenfial convergence, the rapidity of which increases
as |y-y'|/a increases. It can easily be seen that if the sum over m
were removed analytically, S3 would converge exponentially like
|x-x"[/b. It is reasonable to assume from this that as a general rule
|y-y'|/a should be compared to |x-x"|/b and (3.2) should be reduced to
a single sum in that way which maximizes this exponential convergence.
For example, if |y-y'|/2 > |x-x'|/b, then (3.2¢) should be reduced to
(3.12). 1Indeed, the validity of this general rule can be substantiated
by the results of numerical testing.

Now return to (3.12). Suppose, however, that although ly-y'l|/a
is larger than |x-x'|/b, it too is small, and (3.12) remains poorly
convergent. Convergence of such a series can often be greatly improved
if a closed form expression can be found for the corresponding asymp-

totic series (Lewin 1975). This means that if S = g S5 8, 7S ' as

n n
n + o, and S!' = % sn' = h where h is a closed form expression, then
D = % (sn - sn') will converge more rapidly than S. Consequently, S
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can be evaluated by S = h + D. Thus if (3.13) can be evaluated in
closed form, the convergence of (3.12) could be improved.

For this particular sum, SS’ one rewrites (3.13) as

gasy o 1 ) ¢ (cosmS1 - cosmSz) (3.14)
where

q:ﬂ%ﬂ.,sl:’ﬁ_l_x%}i'_l_ and82=ﬂ%xt)_.

But it is known that (Jolley 1961, pp. 110-111)

@ -nx P
cosnmA = % - = in(coshx - cosA) - %-an . (3.15)

8|

n=1

With the use of (3.14) and (3.15), (3.12) becomes

S, = 2 § sink _x sink_ x' [%lnhﬁby<51nhﬁg(b-y>)
3 a n=1 X X Yb sznhybb
~-mc cosha - cosB
1l e } 1 2
-7 kx | bR (;osha - cosBl) ) (3.16)

It should be noted that numerically the sum in (3.16) is
rapidly convergent regardless of how small |F-r'] is, so long as it
is not zero. Indeed at |T-7'| = 0, « and B, go to zero and from (3.16)

it is seen that 83 possesses the expected logarithmic singularity.
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Although this procedure is demonstrated here only for 83, it
can also be successfully applied to any sum or term-by-term integration
of a sum which is needed in this problem. One will, however, need the

following asymptotic series in closed form:

T e 1 {sinA

y 2 — sinnA = tan’ Eig————- , (3.17a)
n=1 e"-cosA

T nx sina
nZl e sinnd = 2{coshx - cosiA) °? (3.17b)
© -X
-nx _ COSA -~ e
nZI e cosnA = T(coshx - cos\) ° (3.17¢)
and
S eHX g2 x? 9 Ban2n+l
nzl nz = 6—- + x&nX-x - Z— +n§1 m (3.17d)

where Bi is the ith Bernoulli number as defined by Abramowitz and
Stegun (1965, p. 804). In the literature, (3.17a) can be found in
Jolley (1961, p. 110-111), (3.17b) and (3.17c) are found in Wheelon
(1968, p. 38), and finally, (3.17d) is found in Lewin (1958, p. 246)
or Lindeldf (1947, p. 140). 1In (3.17d), the left side converges well

for large x and the right side converges well for small x.

Sample Calculations

Now that the matrix equation has been formulated and methods
of computing its elements have been devised, solutions for various

cavity and wire configurations can be obtain via numerical solution
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on a digital computer. In this section, a few representative solutions
are presented.

It should be noted that a similar problem in which the infinite
screen is omitted can be solved using a formulation and computer code
previously developed (Seidel 1974) to calculate the currents on an
array of cylindrical scatters in free space. From these currents, one
can easily calculate the electric field in the aperture. Therefore,
in addition to solutions of the problem at hand, solutions to the
similar problem are presented. These problems are referred to as the
flanged and unflanged solutions, respectively, flange meaning the
infinite planar'screen of the initial problem.

First consider the case of a cavity with a depth (a) of .6A
and a width (b) of .8A. This cavity has an aperture width of .6A which
is centered in the cavity wall (d = .6A, h = .1A). The cévity is
excited by a plane wave with unit magnitude electric field which
impinges on the cavity from the negative x direction. Figure 7 shows
a plot of aperture field for this cavity for the case of no internal
wires. It is seen that the difference between the flanged solution
and the unflanged solution is relatively small. Since the interior
fields are uniquely determined by the aperture fields, this indicates
that the presence of the flanges has little effect upon these interior
fields. Note also that the aperture fields go to zero at. the edges of
the aperture and that they have a maximum magnitude of slightly less
than unity. The fields are symmetric azbout the center of the aperture
because of the symmetry of the cavity itself and the symmetry of the
incident field.
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Figure 7. Aperture Field for Cavity with No Interior Wires.
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Consider now the same cavity and excitation, but with a wire
of radius .001X located at the geometric center of the cavity, (.3A,
.41). Figure 8 shows the aperture field for this case. Again the
difference between unflanged and flanged solutions is relatively small.
Note that this is also true for the.currents excited on the wire, which
are (~1.00 - j 1.48)ma for the unflanged case and (-.94 - j 1.38)ma for
the flanged case. The one significant difference between this solutiom
and that for the case of no wires is that the maximum magnitude of the
aperture field is approximately three times larger with the wire than
without.

Again consider the same cavity and excitation, but now with
twe wires of equal radii (xr = .001A) which are symmetrically located
about the center of the cavity at (.3X, .25X) and (.3Xx, .55A).

Figure 9 gives the aperture field for this case. The currents on the
two wires are equal due to the symmetry and are (-.42 - j 1.19)ma and
(-.42 - § 1.25)ma for the unflanged and flanged cases, respectively.
The same observations that were made for the case of one wire are also
applicable here, except that the peak magnitude of the aperture field
is for this case slightly larger.

Finally consider the same cavity and excitation for one
centrally located wire (r = .001), but with a centered aperture of
width .4A. The aperture fields for this case are shown in Figure 10.
The wire currents are (.82 - j 1.71)ma and (.98 - j 1.48)ma for the
unflanged and flanged cases respectively. By comparison to Figure 8,

it is seen that as a result of shortening the aperture, the magnitudes
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Figure 8. Aperture Field for Cavity with One Interior Wire.
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Figure 9. Aperture Field for Cavity with Two Interior Wires.
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of the aperture field and current have slightly increased and the
phase has changed considerably. Again note that the difference between

unflanged and flanged solutions is relatively small.

Final Observations

At this point a summary of the portions of this two-dimensional
problem which will provide insight toward the three-dimensional cavity
problem is in order. Such items can beldivided into two categories:
those which provide insight toward efficient computational methods and
those which lead to a better physical understanding of the problem.

First consider those items in the computational category. If
the improvement of convergence of the two-dimensional sums is necessary
in this problem, then surely it is necessary for the triple sums of the
three-dimensional problem. Such techniques as removal of the asymp-
totic series should be considered, although the amount of work done in
the literature on double sums is very small in comparison to that done
on single series. Another numerical technique which should be consid-
ered 1s the use of the reduced kernel approximation for the thin wire
scatterer. Remember that this approximation removed the necessity of
performing an integration of a diverging series.

Secondly, physical insight inte the effects of modeling
approximations can be gained by noting the one overwhelming result of
the data presented. Except for electrically small cross-section or
grazing incidence, the interior cavity fields and the wire currents

are relatively imsensitive to the presence of the infinite screen in
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this two-dimensional analog. It is quite reasonable to assume that
this will also be true for the three-dimensional problem, and thus
provides valuable information relating to modeling the three-
dimensional cavity problem with or without the infinite screen. This
finding is important because it is much easier to consider the problem

with an infinite screen than without a screen.
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CHAPTER 4

NUMERICAL METHODS FOR CAVITY PROBLEM

Approximation by Matrix Equation

In order to obtain a solution to the integral equation (2.13)
for the three-dimensional cavity (with the coupled comstraints in
(2.21)), it is possible to approximate the integral equation numeri-
cally by a matrix equation. This is generally accomplished by the
application of the method of moments, which was outlined in Chapter 3.

Consider the integro-differential equation (2.13) for the

unknown current Jz(z). It is seen that the differential portion of
2

(d

dz?

in (3.1a). Since by thin wire approximations one also knows that the

the operator is the harmonic operator + k?), which was encountered

current must vanish at z, and zy (the z-cocrdinates of the wire end-
points, with z, > z4), the use of plecewise sinusoidal testing func-
tions and pulse expansion functions is indicated (Wilton and Butler
1976), as was the case in the two-dimensional precblem. For this

problem, these functions are defined by

A
1, Iz'qu < 7

PQCZ) = (4.1)

and

445




EMP 3-38 345-55

. sink(A-[z-zp]) , [z-zp} < A
-"\P(ZD = (4.2)
0 , Jz-z_| > A
P

where 4 = (zu-zz)/(N+l) and ;q =2y gh.

Figure 11 illustrates these expansion and test functions. It
is important to note that if the wire is attached to the cavity at one
or both ends, this choice must be slightly modified because the wire
current does not necessarily vanish at the attached end. To rectify
this problem, the zero half-pulse at an attached end is replaced by a
half-pulse of unknown amplitude. Consequently, a new testing function,
which is a half-piecewise sinusoidal function, must be introduced.
These are shown in Figure 11 by dashed lines. In the subsequent
development of the matrix equation, it is assumed that the wire is
unattached. However, the extension to attached wires is straightfor-
ward.

Since JZ is assumed to be uniform azbout the circumference of
the wire it is helpful to define the current to be the integral of
the current density about circumference of the wire. By this assump-

tion

Iz(z) = 27T Jz(z) . (4.3

Now approximate IZ by

N
1,(2) = qzl 1.2,(2) - (4.4)
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If this is substituted into (2.13) and (2.21) and the inner product

defined by
vA
u
<yu,v> = [ u(z)v(z)dz
22

is taken of (2.13) with the functions A;, the following coupled matrix

equations are obtained:

N a 3 b
q§1 %q g * qzl %q tq =0 (4.52)
p=1,2,...,N, and
N c 3 d -
qzl Uq I * q§1 QUq Tq = Fp (4.5b)

p = 1,2,3. These functions provide the solution for the unknown
current amplitudes {Iq} and the unknown aperture fields (tl’tZ’tS) =

(ETn,HTl,HTZ) driven by the exterior short circuit fields (E;,E,,E;) =

s¢c- .- c- - SC- - , . .
(En (ra),Hi (ra),Hz (ra)). The matrices in (4.5) are defined by

a

=-inlA _(z - 2coskdA (z + A (z , 4.6
a in{ q( p+l) c q( PJ q( p_lJ} (4.6}
b _ces ELE) (4.7a)
Qpl e e p’Ta’ ’ )
n
QC, = -iCknay g, (FL.E) (4.75)
11 z1 P
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b
= - jCkne T, s 4.7
3 jCkn mzzgezZC 52 Ta) (4.7¢)
c _ _jnmd 5 =
Q = - G (r_,T.) , {(4.8a)
1g 3 enz a’’p
Q, = 06, Gy (4.8b)
Z
B = 86, Gpfy) (4.8¢)
z .
and
1+¢aG - jkno_ g - jkno. 8 .
e enn m11 enl M2 en2
‘k ~
=d [ILq 1-a 8 -a B (4.9) .
Q= eGhm myyhyy Myp o
iE'aeah " % % L-o 8
n 2n By1 0y 22 22

where the deleted Green's functions in (4.9) are evaluated at (r,r')

= (ra,ra). Define

Aq(zp) = J K(zp,z')dz' (4.10)
Aq
where Ag is the interval (z_ - 4 z_ + éJ and
T
1 - -
K(zp,z') = 5= J GAzz(rp,r')d¢' s (4.11)

-T
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wheré ¢' is the angular coordinate of a cylindrical coordinate system
about the wire axis (Figure 1). Also, C = 2(l-coskA) and Ep and '
are on the wire surface. Note that to obtain (4.5), the integral over
the qth tubular surface segment on the wire has been approximated by
the product of the surface area of the segment and the integrand
evaluated at a point on the center of the segment.
In order to solve the coupled matrix equations (4.5), one need

only obtain a numerical solution to the partitioned matrix equation

3 (i
¢ =d :

Q t

Vo]
)
ol

n

(4.12)

et

g

Note that if the effects upon the aperture field of the fields scat-
tered by the wires are ignored, 5c = 0. On the other hand, if the
effects of the cavity wall reflections upon the aperture field are
ignored 5d = I, the identity matrix.

However, as in the two-dimensional problem, difficulty arises
in attempting to compute the elements of the matrix, each of which
contains one of the triply-infinite sums defined in Tables 1 and 2.
The computations which exhibit this difficulty can be categorized into
three basic types, the first of which is computation of any one of the
sums outside the source region. The second category is that of the

integral of G over the surface of the wire, for which at one point

A
44

of the integration GA will be divergent. Finally, the deleted
2z

Green's functions must be computed at the aperture. The remainder of
mp 2

this chapter attempts to deal with precisely these difficulties.
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An Efficient Method of Computing the Sums
Qutside the Source Region

As was noted in Chapter 2, each of the Green's functions
(Tables 1 and 2) can be reduced from a triple sum to a double sum
which is exponentially convergent for |r-r'| # 0 using (2.8). Indeed,
it is easily shown that the asymptotic series asscciated with any one
of these exponentally convergent serieslis of the form

asy e-kc]z-z’|
s = ] f(m,n) ~—fy— (4.13)
m,n k

c

where kz = (%Ea + (%EJ , @ = 0,1,2 and £(m,n) is a non-exponential
function of m and n.

As was found in Chapter 3, it is a good general rule to reduce
the triple sum in such a way as to produce the double sum with the most

rapld exponential convergence. For example, if

2

-+ 2 (z-2)?
a? p?

is greater than both

G Dyexn? and Ao v Lypyn?
b? ¢t a e?

then the sum over & should be reduced.
Following the lead from the two-dimensional problem in

Chapter 3, one would now attempt to find the closed forms of (4.13)
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for the various f£(m,n) and «. It turns out, however, that the list

of double sums for which a closed form is known is painfully short,

and does not seem to include (4.13) for any a and f(m,n) of interest
in this problem.

Another method which has been suggested is to remove the
known singularity from the series by expanding the singularity in the
same expansion functions as the series itself. Both Tai and Rozenfeld
(1976} and Rahmat-Samii (1975) have removed a delta function singular-
ity from their series for ée in this way. However, this serves little
purpose because the known singularity of Ee is not the delta function.
In fact, as shown by Howard (1974), the singularity of Ee is actually
the longitudinal portion of I§(F-%').

The third alternative, and the one that is used for this work,
is to simply sum the double series in an efficient manner. Note that
because of the exponential convergence, as one attempts to make this
computation nearer and nearer the source, the series will become more
and more poorly convergent. Thus one should expect to reach a point
such that for |r-T'| less than some minimum value, numerical computa-
tion of the sum in this fashion becomes unfeasible.

However, some things can be done which make this method more
efficient. Because of the exponential convergence in the asymptotic
series (4.13), one would expect an efficient ordering of terms to be
in order of increasing kc' This takes advantage of the exponential
convergence as well as the kg in the denominator. At this point, it

is useful to partition the m-n plane with successive curves
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(Bromwich, 1926, p.83). If the sum of all terms lying between two
successive curves is called sq, then the double series can be converted

into the single series of the form

By the proper selection of these curves, the most efficient ordering
of terms can be determined.

For this problem such.a choice would be that of ellipses with
semi-axes in m of aqa and semi-axes in n of uqb, where aq is a monoton-
ically increasingrsequence of constants. Such a partitioning is shown
in Figure 12. Note that for such a choice, each successive partition

contains terms for which kc is larger than in the preceding partition.

Also note that since the sum of terms in the qth partition is the qth
term of a single infinite series, methods used for determining the
convergence of single series can be applied.

To test this method, the sums were numerically computed via
digital computer. Figure 13 shows the notation used for the sum.
Note that it is assumed without loss of generality that a < b.
Numerically the series was truncated to include only those terms with-

in CM' The maximum value of m was M. Note that the total number of
BA

~ Tb

terms 1is approximately the area within CM or NT vy

M2, Let S_ =
P

E s and R_= s . Then Ry is the error resulting from trunca-
q=1 q P g=p+1 !

tion. RM can be crudely bounded from above with an integral bound.

However, for actual computation, convergence was defined to have been
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& 1}
S
n

Figure 12. Choice of Contours in m-n Plane for Efficient Summing of
Double Series.

b/a bM/a =

Figure 13, Terms Used in Numerical Computation of Sums.
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reached when ratio (sP/SP) was less than some small constant Cs for
25 consecutive values of p.

Note that any one of the Green's functions can be reduced to
three entirely @%fferent doﬁble sums. For the purpcse of testing, the
Green's functions were computed by all three double sums, and then
these results were compared. Indeed, the effectiveness of this test
is attested to by the several programming errors which it detected.
However, once these errors were corrected, extensive testing demon-
strated that theifhree values always agreed to approximately the
accuracy specified by the constant Cs' This test also showed that the
general rule of reducing the sum so as to give the most rapid exponen-
tial convergence did, in fact, produce the particular one of the three
possible double sums which required the fewest number of terms.

Finally, extensive testing demonstrated that for cavity sizes
in the vicinity of the first resonance, the Green's functions could be
easily obtained for values of |T-T'| greater than A/20 (for larger
cavities, this minimum distance increases; for smaller cavities, it
decreases). Computations at even smaller values of [r-T'| are mnot
impossible, but rather more and more time consuming.

Numerical Eveluation of the Integral
of the Singular Sum

Consider now that evaluation of Aq(zp), defined by (4.10) and
(4.11). As earlier noted, when p = q, the integrand GA of the
ZZ
integral over the tubular wire surface segment diverges at En =T,

Even for p # q, 1f p is near q then the integrand will converge poorly.

These two difficulties must be overcome.
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In order to sidestep the first problem, it would Ee helpful
to apply the reduced kernel approximation (assume all current resides
at center of wire). With this approximation, when p = q the integrand
would never diverge and, in fact, would be uniformly convergent every-
where on the surface of integration because |7 -T'| > r. However, one
very important consideratiom is the validity of using the reduced
kernel approximation for the kernel (4.11). This kernel is known to
include the singularity of the free space‘kernel plus a remaining
smooth homogeneous solution. If r << A, it is justifiable to assume
that the smooth part of K is essentially the same at the center of
the wire and at points on the wire surface. Thus one needs a like
comparison for the singular portion.

Define Ko and Kr to be the free space exact and reduced

kernels, respectively, given by

T
K (€) = = { g2 « ar? sin® Y72 1 (4.142)
=T
and
K.(§) = [§% + r2]72 (4.14D)

Since ultimately integrals of the kernels over § are needed, such

integrals will be compared. Let

z
v (2) = I K (§)dE = I (4.158)

0
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and

z z z 1/2
v,(2) = [ K,E)g = niE + (D2 + 137 (4.15b)
)

where I0 has been defined by Butler (1975). Figure 14 shows a compari-
son of these two functions. It is readily apparent that such an
approximation is valid for the singular part of the kernel and thus
valid for the kernel (4.11).

Using the equation for G from Table 1 (reducing it to a

A
zzZ

double sum by (2.8b)) and applying the reduced kernel approximation to

{(4.11), one obtains

=  coshy _z cosh c-2z
K(z .t - 4_. E YC < YCC >)
p’ ab

F(xc,ycj (4.16)

m,n=1 chinhch
where yé = k; + k; - k%,
F(xc,yc) = 51nkxxcs1nkxxP51nkyyc51nkny s (4.17)

(xc,yc) is the location of the center of the wire and EP = (xc + TCOSY,
Yot rsing, zp) is a point on the wire surface. By using a hyperbolic
trigonometric identity, one can express (4.16) as the sum of two terms
by
K{(z_,z') = S(jz_-z"' + S{z_+z! (4.18)
(z5,2") = S(]z,-2']) + S(z,+2")

where
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—_—y,(2)

z/T

Figure 14. Comparison of the Integrals of the Free Space Exact
and Reduced Kernels.
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2 @  c¢osh Yc(c-B)

Flx.,v.) (4.19)
To evaluate Aq(zp) defined by (4.10), one needs to calculate the
integral with respect to z' of the kernel (4.18) and thus of (4.19).
If this integration is performed on (4.19) term by term, and sub-

stituted into (4.18) and (4.10), one finds that

A = - - 4,20
q(7p) = lzy -z 1) + Qlz,*z) (4.20)
where
( @ *%‘ A
B=a- 7
Qe) = ¢ (4.21)
%” a %‘ o A
P(8) + P(B) , e <>
g=20 8 =0
\
and where P(8) is the indefinite integral of S(B) given by
=  sinh v _(c¢-8)
P(R) = - %J- ) -———E———F(xc,yc) (4.22)
m,n=1 Yé sinh ¥_c

Thus, if P(B)} can be evaluated for B > 0, then Aq(zp) can be evaluated
on the wire using the reduced kernel.
Consider the case where f = 0. Note that the hyperbolic sine

functions in (4.22) cancel, leaving

459

EMP 3-38




EMP 3-38 | 345-69

®» sink_x_ sink_x_ sink y_ sink y
PO) = - 2 ] xte P PNYTe YYDy 23
m,n=1 k; + k; - k?

It is now recognized that

1
P(0) = - 5 SSEXC’XP’YC’YP) (4.24)

where S3 is defined by (3.2¢). Thus P(0) can be readily evaluated
numerically using (3.16) for r > o. Note that in (4.22), because the

hyperbolic sine is an odd function,
P(2¢c - 8) = -P(B) . (4.25)

Thus by {4.24) and (4.25) it 1is also true that

P(20) = 5 S5(xsX ,Y s Yy) - (4.26)

¢ prretp
For B#0 or 2¢, there appears to be no alternative other than to
perform the two-dimensional sum by the methods of the previous section.

Note that asymptotically P is of the following form:

== _kB
paSY . 7 p& . o<gc<c.
m,n=1 kg

Thus for B near zero (or near 2¢, as indicated by (4.25)), poor conver-
gence is expected.
It is known that the reduced kernel (4.16) must contain the

singular portion free-space reduced kernel (4.14b) plus a smooth
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homogeneous function. By (4.18), S(B) must also contain that

singularity. If a function Y¥(z) is defined similar to (4.15b) by
A
Y(z) = { S(B)dB = P(z) - P(0) (4.27a)
o}

and ws(z) is defined by

V() = 9(z) - U_(2) | (4.27b)

then ws is the integral of a smooth function and thus itself is smooth.
Since P(0) is readily computed, Y(z) can be computed numeri-

cally for z greater than some minimum value z, Note that the function
wr(z) can be calculated by using (4.15b) for any z. Thus ws(z) can be
numerically evaluated for z > Z,- Note that if ws is smooth and Zg is
sufficiently small, ws(z) can be interpolated for o < z < z, Then if
wr(z] is added to these interpolated values of ws(z), P(z) can be
found for o < z < Zge

To demonstrate the practicality of this ;echnique, consider the
curves of Figure 15. They show the functions ¥(z), wr[z) and ws(z} for
0 £z < .5, The cavity dimensions are a = .7A, b = .8X and ¢ = .8A
with a wire of radius 4 = .001X located at X, = .35X and Yo = X
Note that for z < .2A, ws is almost linear and could be interpolated
quite accurately. The utility of this method is appreciated if it is
noted that for this example the calculation of P(z) took 98 terms at
z = .2\, 242 terms at z = .1X and 2189 terms at z = .025A. In each

. . -5
case, the convergence criteria was Cg = 10 ° and ZS = 3.
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Figure 15. Example Computed Values of y(z), wr(z} and ws(z).
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Before leaving this section, one important observation should
be made. By examination of (4.20), it is seen that Aq(zp) is a func-
tion of two terms, one of which depends only upon |p-g| and the other of
which depends only upon (p+q). This means that Aq(zp]can be calculated
for all values of q and p by 3N + 1 computations rather than N? + 2N
calculations. Thus for N > 2, the computing time required can be

significantly decreased.

Numerical Evaluation of the Deleted Green's Functions

In the previous sections of this chapter all of the computation-
al difficulties in filling the matrix in (4.12) have been resolved in a
workable fashion except for evaluation of the deleted Green's functions
in (4.9). These functions, defined by (2.17) and (2.18), must be
evaluated at the aperture (E=§a). Note that although these deleted
functions are bounded solutions to the homogeneous wave equation at the
point Ea‘ they cannot be calculated directly from (2.17) because both
@A(f,fa) and EF(E,Ea) are divergent at §=§a.

Ideally, one would like to have expansions for the various
free-space dyadic Green's functions so that the singularities could be
removed from the cavity dyads term by term, as was discussed earlier
in this chapter. The resulting convergent sums would be precisely the
deleted Green's functions of (2.17) and (2.18). However, at the pre-
sent time, practical techniques of employing this method are not

available.
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In this work, a different approach was taken that relies upon
some of the earlier observations of this chapter. Since the deleted
Green's functions are homogeneous solutions to the wave equation, it
is logical to expect that they could be found by using an interpola-
tion method similar to that employed in the previous section to

evaluate A (z ).
qC P)

Note that such an interpolétion scheme would require the
evaluation of several different components of the various cavity dyads
at points near the source. If it is assumed that the accuracy of the
interpolations would improve as the points move nearer the source,
increased accuracy would require increased computation time.

Since the double sums in‘the dyads for the vector potentials
converge more rapidly than those for the fields, it is advantageous to
compute only the components of ﬁA and EF at several points near the
source. Then by (2.17), the associated deleted Green's functions for
the vector potentials could be subseguently computed. To find the
values of %A and §F in the aperture, an interpolation scheme was em-
ployed. To find the values of the other deleted Green's dyads, the
differential operators in (2.18) were approximated by finite difference
techniques. Note that the points at which the dyads are computed
should be chosen carefully so that they provide the proper information
for the interpolation and finite difference techniques.

A cruciel criterion for the success of this method is the
smoothness cf the deleted Green's functions. Figure 16 shows plots of

A

GA and Re(GA ) as a function of distance from the aperture. Note
2z ZZ
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that the deleted function is indeed smooth and could be approximated
near the source by interpolation techniques. Figure 17 shows similar
plots of gr and Re(§F ) and the same observations can be made.

This method hasygeen tested numerically for several aperture
location/cavity size configurations. For each configuration, the
computations were made with the distances between the aperture and the
points at which the computations were made becoming successively
smaller. The calculated values of the deleted Green's functions for
the successively smaller distances were then compared in order to
determine if the process was convergent. In all cases tested, it was
indeed convergent. Although error bounds are not available, based
upon the numerical testing, accuracy to within 10 to 15 percent is
estimated for distances from aperture .to computation points being
approximately .05A to .1i.

It should be noted that these values for the deleted Green's
functions are computed with less accuracy than any other terms in the
matrix of (4.12). Nonetheless, their computation requires far more
computer time than any of the other terms in the matrix. In additionm,
because these functions are always multiplied by the aperture polar-
izabilities (which are small for small apertures) in (4.9), they
manifest themselves primarily as perturbations and have only a slight

effect upon the solution, as will be seen in the following chapter.
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CHAPTER 5§
NUMERICAL RESULTS FOR SAMPLE CASES

A computer code has been written which implements the
numerical formulation presented in}the previous chapter. In this
chapter, selected numerical results are presented which demonstrate
the capabilities of this numerical code. The program allows for an
elliptic aperture in any one of the three walls defined by x = 0,

y = 0 or z = 0, and assumes that the wall containing the aperture is
an infinite planar screen. For all cases presented here, the aper-
ture was chosen to perforate the x = 0 wall of the cavity. Also

note that all lengths are in units of wavelength A.

As a first example, consider a relatively small cavity
whose dimensions are defined by a = .2, b = .25 and ¢ = .3 which
encloses a wire of length .2 and radius .00l. The wire is exactly
centered in the cavity sz = .05, . s .25, X, = .1, Yo = .125).
The aperture is circular with a radius of .01 and has its center at
r, = (0., .125, .15). The exterior excitation is a plane wave
which impinges from the -z direction and is polarized such that the
electric field is in the -x direction.

Figure 18 shows thé current excited upon the wire for this

configuration. Since both aperture and wire are symmetric about the

c . . .
plane z = 3, one would expect to observe symmetric properties in the
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wire currents. This is indeed the case. The real part of the
current, which is excited by the magnetic aperture dipole moment,
possesses even symmetry, where the imaginary part, which is excited
by ?e’ has odd symmetry about z = .15. This relationship between
the real and imaginary parts of the current and Pm and ?e respec-
tively can be seen by examination of (4.5a), (4.6) and (4.7). Also
note the magnitude of the current which peaks at approximately .04 upa.
One would expect currents on the order of 1 ma for the same wire in
a free space environment. Thus the shielding of the cavity reduces
currents by approximately five orders of magnitude.

Next consider the case of a much larger cavity containing a
longer wire. For this case, a = }4, b = .6 and ¢ = 1.3, which is

larger than the first several cavity resonances. Again the wire is

centered in the cavity (zz =.,15, z_ = 1.15, x

= . = .3 d i
u 2, Ve } and is

c
one wavelength long with radius r = .001. The elliptic aperture has
semiaxes of .05 and .01 in the y and z directions, respectively and
is located at Ea = (0, .2, .4). Again, the incident plane wave
impinges from the -z direction with a -x directed electric field.
Since the wire is of resonant length, one would expect to
excite resonant currents. Indeed, as shown in Figure 19, this is the
‘case. Also, note that the current magnitude now peaks at approxi-
mately 10 ua. This increase over the previous case can be attrib-

uted to three causes. First, the aperture is larger and thus more

energy is coupled. Second, the wire is of resonant length. Finally,
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the smaller cavity is considerably below the lowest cavity resonance,
whereas the larger cavity is near several resonances.

Note that if one semiaxis of the aperture is much larger than
the other, the aperture begins to look like a short slot. One would
expect that the strongest coupling would occur when the slot is per-
pendicular to the wire and the incident electric field is perpendicular
to the slot. To test this, consider a cavity with dimensions .7 x .7

x .8 (a, b and ¢ respectively) with a one-half wavelength wire of

1]

radius r = .001 which is located in the cavity at Zy .15, zu = ,65,

[

X, = .35, Yo = .4. The aperture is located in the x = 0 wall [fa =
(0., .4, .4)], and has semiaxes of .07 and .0l. The plane wave is
incident from the -x direction (normal to wall of aperture) and has a
2z directed electric field.

Consider two cases: that where the slot is perpendicular to
the incident electric field, and that where the slot is parallel to
the incident electric field; that is, where che major semiaxis of the
aperture is in the y or z direction, respectively. Figure 20 shows
the current excited upon the wire for these two cases. It is readily
seen that the current excited when the slot is perpendicular to Einc
is approximately twenty times larger than that excited when the slot
and Einc'are parallel. Thus the expected effects are observed.

Now consider the same case except change the polarization of
the incident plane wave such that the electric field is in the -y

direction. Whereas in the previous case the incident electric field

was perpendicular to the slot, it is now parallel to the slot, and
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consequently one would expect the excited currents to be much smaller.
As shown in Figure 21 this is the case. Again the currents are shown
for both the slot perpendicular and parallel to.the incideht.elect:ic
field. Note that the currents are again related by a factor of ap-
proximately twenty, but-are over five orders of magnitude less than the
currents shown in Figure 20. However, for the same wire and excitation
in free space, if thin wire approximations are used, there will be no
current excited upon the wire.

An examination of (4.5) shows the small, but nonetheless
nonzero current in Figure 21 is due to the depolarizing effects of
the cavity wall reflections. Indeed, if one lets 5d =T in (4.5},
this polarization will not excite the wire in the cavity. Since for
small apertures, these effects manifest themselves as perturbations,
one does expect the currents excited by this depolarizing effect to
be small.

Another effect of the cavity wall reflections is seen by
noting that for the case in Figure 20, since the excitation is nor-
mally incident, Eic'(fa) is zero, and thus if the wall reflections
are neglected, ﬁe would be zero. However, the wall reflections
produce a small but nonzero Pe and thus a small imaginary current.
Although not shown in Figures 20 or 21, there was actually an imagi-
nary part of the current, which in all cases was more than two orders
of magnitude less than the corresponding real portion.

At this point it is helpful to ascertain the size of this

perturbation effect. In order to accomplish this, solutions were
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obtained in two additional manners. In the first, the cavity wall
reflections were neglected (5d = f). In the second, the wire scatter-
ing effects at the aperture were also ignored (ac = 3, 5d =1).

These solutions were then compared for several cases, including

those presented in this chapter. It was found that the difference
between solutions increased as the aperture size increased. This is
expected as the perturbation is on the order of the aperture polariz-
abilities, which increase as the size of the aperturé increases.
However, in no case did the difference between the original solution
and the first additional solution exceed one percent (largest aper-
ture considered was circular with radius .05) and the difference

was much less for smaller apertures. The difference between the two
additional solutions was even smaller.

It is apparent that for these small apertures, a solution
closely approximating the exact one can be obtained by simply
neglecting these perturbation effects. Since for apertures much
larger than those considered, the applicability of small aperture
theory becomes increasingly questionable anyway, this result is
quite significant. Since the computation of these perturbations are
very time-consuming, their omission would substantially decrease
computing time.

Finally, consider the case of wires connected to the cavity
at one or both ends. Figures 22 and 23 show the wire currents for
these two cases respectively. The cavity size is .7 x .8 x .8 and

the wire axis is at (xc, yc) = (.15, .5) with a wire radius r = .001.
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The aperture is located at ia = (0., .3, .6) and its semiaxes in the
y and z directions are .07 and .01 respectively. The plane wave is
normally incident upon the aperture from the -x direction and the
electric field is z directed.

In Figure 22 the wire is connected at z = .8 and as expected,
the axial (z) derivative of the current goes to zero at the wall.
Also, as expected, the current at the free end of the wire vanishes.
Similarly in Figure 23, where the wire is connected at both ends of
the cavity, the axial derivative of the current vanishes at both
z =0 and z = .8. In both cases, the current magnitudes are on
the order of 10 pa. For a similar cavity and excitation, but hav-
ing a free wire (Figure 20, perpendicular slot) the current magni-
tude is also of this order.

Thus it has been shown that physically reasonable numerical
solutions can be obtained for a variety of cavity/aperture/wire con-
figurations. It should be noted however that important comparisons
between theory and experiment must await the publishing of experimen-
tal results applicable to this problem. Such comparisons would

demonstrate the applicability of the modeling and the accuracy of the

solution.

479




P 3-38 345-89

CHAPTER 6
CONCLUSION

In this paper, the task was undertaken to formulate and numeri-
cally solve the problem of an aperture excited wire scatterer in a
rectangular cavity. The formulation in Chapter 2, although tedious,
was relatively straightforward. It was found that the major difficul-
ties of the problem lay in the numerical evaluation of the infinite
double sum Green's functions for the cavity interior.

By considering the preliminary two-dimensional problem in
Chapter 3, valuable insight was obtained toward resolving the numerical
difficulties of the three-dimensional problem. It is important to
realize that the two-dimensional problem is also a significant problem
in and of itself. Two-dimensional problems in many cases provide
adequate models for more complex three-dimensional structures. In
addition, solutions to this problem have the advantage of being appli-
cable to large apertures whereas the major solution herein is restricted
to small apertures only.

The real significance of this work is contained in Chapter 4.
Here it was demonstrated that the dyadic Green's functioﬁs for the
cavity problem can be calculated (although in some cases, only with
considerable effort). This finding is particularly essential in or

near the source region. This is because the treatment of the singular
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kernel of an integral equation in the source region is crucial to its
numerical solution. Thus the ability to numerically solve the integral
equation for a scatterer in a cavity is demonstrated, and indeed,

numerical results can be provided as found in Chapter 5.

Suggested Extensions of this Work

Perhaps more important than what this work has accomplished is
rather what extensions and applications can be found for it. 1In
general, the most immediate extensions of this work would be to elimi-
nate some of the restrictions caused by the initial assumptions of the
problem. The relevance of an extension can thus bhe measured by asking
how restrictive is the assumption which the extension eliminates.

A very important extension would be to allow a large aperture

in the cavity wall., It should be noted that in order to do this an
aperture field integral equation must be formulated and solved simul-
taneously with the integral equation for the wire (2.13). In general,
the aperture fields must be divided into a two-dimensional array of
surface patches, requiring large amounts of computer storage and time.
However if the aperture is small in one dimension (a slot), it need
only be divided into a one-dimensional array of surface patches.

A second extension of the present work would be to account for
more complex scattering gecometries. This might include uniformly or
lumped loaded wires, more than one wire, or wires which are not paral-
lel to one of the coordinate axes. The first two of these suggestions

would be relatively straightforward (but only if each wire remains
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parallel to one of the coordinate axes) and would primarily require
extensive logic for their numerical implementatiom.

It should be noted, however, that the consideration of a wire
which is not parallel to one of the coordinate axes would require
considerable effort. First of all, integral equation (2,12) would
have to be used, and thus all nine components of the dyads would be
needed. In addition, the benefits of piecewise-sinusoidal testing

- {namely, the removal of the differential operator) are no longer appli-
cable. Probably the most important problem this extension would cause
is that the methods outlined in Chapter 4 for evaluating the integral
of the kernel could no longer be applied. Careful examination reveals
that this technique is crucially dependent upon the fact that the wire
is z-directed.

Finally, consider the application of this work to the case of
a time dependent excitation (such as EMP). T.e corresponding time-
dependent solution can be obtained by inverse Fourier transformation.
Note that this would involve the use of the time-harmc.ic solution at
many angular frequencies w over the spectrum of the excitation. It
should be noted that for many transient excitations (including EMP)
the low frequency portion of the spectrum is dominant. Thus for such
excitations, a quasi-static solution for the problem is needed for
small w in order to perform the inverse Fourier transform numerically.
Alternatively, transient results could be obtained by finding the poles
of the system in the complex s-plane (s=iw) using the singularity

expansion method (Baum 1976).
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