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It is found that the shielding effect of a screened boron~epoxy composite

laminate is essentially that of the screen itself. The laminate only has an

effect on the equivalent sheet impedance of the screen for parallel-polarized
fields, and this effect is relatively minor over the EMP frequency spectrun.
The temporal behavior of the fields transmitted through a planar layer or
penetrating a cylindrical shell of composite material is interpreted on the
basis of the "low-pass' behavior of the graphite composite and the "high-pass"
behavior of wire-mesh screens. Comparisons are made between the shielding
effectiveness of the two types of composite materials which are discussed in
the report, and it is noted that the screened boron-epoxy composites can be

decidedly superior to graphite composites insofar as their shielding effec-

tiveness with respect to EMP waveforms is concerned.
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SECTION I
GENERAL INTRODUCTION

1. COMPOSITE MATERIALS

Advanced composite materials have become increasingly important in
recent years because of their great strength and relatively light weight.
In fact, it is estimated that the F-18 aircraft will use advanced com-
posites to the extent of nearly 407 by weight and 807 outer surface
coverage [1].

Advanced composite materials are laminates, or multilayer "layups”,
of many individual laminae. A single lamina consists of a planar array
of fibers (of boron/boron tungstate, graphite+, etc.) in an epoxy matrix.
Typical lamina thicknesses are around 0.2 mm, and a typical aircraft skin
panel comprises seven layers. The arrangement of the layers can be varied
to suit the strength requirements of the liminate in given directiomns.
Typically, however, a 0°-90° of 0° -45° -90° layup will be used, so that
the laminate is nearly isotropic in its mechanical characteristics in

directions parallel to its surfaces.

A review of the literature has shown that the basic electrical para-
meters (e.g., permittivity and conductivity) of advanced composites are
only now beginning to be studied [1,2]. However, it seems generally to
be agreed that graphite composites behave as good conductors (in the sense
that conduction currents dominate displacement currents in the material)

4

with conductivity roughly one-fourth that of pure graphite (7.14 x 10

mho m—l), and that boron-epoxy composites behave as mildly lossy dielectrics.

+i.e., a pyrolyzed organic fiber such as polyacrilonitrile.



In this Note we shall assume that these materials are isotropic.
It is clear from consideration of the physical structure of composite
laminates that they are probably anisotropic, but for simplicity we shall
for the present ignore this aspect of these materials. 1In a related study
[3] it has been shown that the anisotropic conductivity of graphite com-
posites is not of prime importance in characterizing the material, the
transverse conductivity (i.e., that in the directions parallel to the
laminate surface) being the descriptive parameter of principal interest.
Furthermore, the anisotropy of boron-epoxy laminates appears to be weak.

Since boron—-epoxy composite is such a poor conductor, it provides
negligible shielding against penetration by electromagnetic fields. To
improve the shielding effectiveness of a boron-epoxy composite laminate,
a conducting screen may be embedded in one of its surfaces. 1In this
study we shall assume tha; the wires in the screen are bonded at the
junctions and develop an extension of the now claifisltheory of Kontorovich
[4] in order to take into account the effect of the presence of a dielectric
layer on the behavior of the screen.

The advanced composite materials we shall consider, therefore, are
of two types: graphite composites, which are modeled as homogeneous,
isotropic, conducting materials; and screened boron-epoxy composites,
modeled as dielectric layers with a bonded wire-mesh screen in one surface.
The conductivity of the graphite composites will be taken to be around
1.5 x 104 mho m_l (roughly one-fourth the conductivity of pure graphite)
and the relative permittivity of the boron-epoxy composites will be
assumed to be in the range 4-5 [3]. Typical laminate thicknesses are

in the range 1-3 mm and typical wire-mesh screen parameters are:

10




mesh size: 20 x 20 to 200 x 200 (per inch)
wire radius: 0.05 to 0.15 mm

wire conductivity: 1.1 x lO6 mho m_l (stainless steel)

to 3.7 x 10 mho m ' (aluminum)

2. ELECTROMAGNETIC SHIELDING CONSIDERATIONS

We shall concentrate in this study on the nuclear electromagnetic
pulse (EMP) shielding characteristics of graphite and screened boron-
epoxy composites. This restricts the frequency range of interest to
f < 108 Hz. It should be noted that characterizations of advanced com-
posite materials which are valid in this frequency range may not be
useful, say, for studying the interactions of advanced composites with
radar signals. The inhomogeneity and anisotropy of the materials, which
may be neglected for EMP studies, may become critically important in

dealing with higher-frequency interactions.

The standard EMP waveform which we shall use in this study is [5]
Et) = E (et - 7BY (1.1)

in which Ep denotes the peak amplitude of the electric field, and

—ato —Bto -1
A = [e - e J = 1.1373 ... (1.2a)
t =-2 an 2 <2104 x 1077 sec . (1.2b)
o B-a a
a = 4.80 x 107 sec”t (1.2¢)
8B =1.76 x 102 sec™t (1.2d)

A plot of E(t)/Ep vs. t is shown in Fig. l.l+. The magnitude and phase

+The logarithmic time plot will be used throughout this report, in order
best to display the detailed time history of the transient signals
considered.

11
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spectra of this EMP signal are shown in Fig. 1.2. The function E(t)

describes the electric field time history of an incident electromagnetic

wave, which is assumed to be plane. The associated magnetic field H(t)
= E(t)/no, in which n, denotes the intrinsic impedance of free space.

Two geoﬁetrical forms, the infinite sheet and the infinitely long
cylindrical shell, are of principal interest to us. We shall address
the problems of electromagnetic wave transmission through an infinite
sheet of advanced composite and of electromagnetic wave penetration
into the interior of a cylindrical shell of advanced composite. Both
types of composites (graphite and screened boron-epoxy) will be considered
and both frequency and time-domain calculations of the transmitted or
penetrated field will be made, under the assumption that the incident

field is as given above in (1.1) and (1.2).

. 3. OVERVIEW OF THE WORK

In Section II we shall develop a 'boundary connection Supermatrix"
which relates the electromagnetic fields on either side of a multilayer
shield of more or less arbitrary shape. In addition to its utility in
non~separable geometries, it simplifies the analysis of separable
problems in that the number of regions to be explicitly considered is
reduced. This supermatrix is used in the problem formulations in
Sections ITI-VI.

The interaction of plane electromagnetic waves with planar graphite
composite laminates is discussed in Section III and the interaction with
cylindrical graphite composite shells in Section IV. Both the frequency
and the time domains are investigated (the latter via inverse Laplace

transformation).

13
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Screened boron-epoxy laminates and their interactions with plane
electromagnetic waves are considered in sections V and VI, the planar
case in V and the cylindrical case in VI. Again, both frequency and
time domains are discussed.

The work 1s summarized and the results are discussed in Section
VII. We also suggest some extensions of the problems considered in
this report, as well as some logical next steps to be taken in studies

dealing with electromagnetic applications of advanced composite materials.
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SECTION II
BOUNDARY CONNECTION SUPERMATRICES

1. INTRODUCTION
In order to assess the degree of electromagnetic shielding provided
by a layer of a given material of specified shape, one must determine the
relationship between the electromagnetic field on one side of the layer
and that on the other. This fundamental mathematical problem is often
complicated by the fact that the geometry of the shielding layer does
not correspond to one in which the vector wave equation is separable.
Therefore, in order to determine the relation desired, one must either
develop exact solutions of such complexity and generality as to be of
little use for practical purposes, or take advantage of whatever special
circumstances exist in order to develop useful, albeit approximate,
solutions to the problem.
‘ Fortunately, such special circumstances occur in the type of problem
in which we are primarily interested. They are that
(a) the thickness of the material layer is usually much smaller
than either of its two principal radii of curvature,
(b) the wavelength in the material is usually much smaller than
the wavelength outside, and
(c) the shield is usually made of a lossy material.
- We conclude from the second and third conditions above that the electro-
magnetic behavior of a shield is largely a local phenomenon, in that the

fields at points (El,£2,€3)+ and (gl + Agl,gz + A£2,£3) are not closely

+€l’ EZ’ and €3 are coordinates of a system whose origin lies in one
surface of the layer, the other surface heing at €3 = d. gl and €2

are therefore coordinates locally parallel to the shield surfaces.

17



2]1/2 >> d, the thickness of the layer.

coupled when [(AEl)2 + (AEZ)

Therefore, the development of the "transfer characteristic'" of the

shield layer requires consideration not of the whole shield, but only

of local portions of it. By virtue of the first condition listed above,

we may consider these portions to be planar and utilize a planar model

to determine the shield transfer characteristic. Having developed this
characteristic, we may then apply the results to geometrical configurations
which are nonplanar and for which the shield characteristics may even
change with position, provided that these changes are sufficiently gradual.

The planar geometry which we shall consider in this chapter is shown

in Fig. 2.1. The region 0 < z 5-ds contains the shield material. This
material may be arranged in layers of different thicknesses and electrical
properties, and the layers may be separated by admittance sheets. We
shall assume that the individual layers and admittance sheets are homo-

geneous, linear, and isotropic. In the following paragraphs, we shall

develop a matrix of dyadics M (the Boundary Connection Supermatrix or BCS)
which expresses the relation between the tangential components of the
electromagnetic fields on either side of the layer+. The BCS's for single
layers and admittance sheets are derived in section B, and simplified
forms of these BCS's applicable in special circumstances are discussed in
paragraph 3.
3. SINGLE LAYERS AND ADMITTANCE SHEETS

We consider first the derivation of the single-layer supermatrix ?2,
which relates the tangential components of the electromagnetic field at

z =z + dz to those at z = 2, in a homogeneous medium of permittivity

T . .
The relations to be developed constitute an extension and modification

of the ABCD matrix approach to the problem [6].

18



Figure 2.1.

F—1
Ysn-i
n

gg;ﬁiﬁ

A general multilayer shield. n, and k., denote the intrinsic
impedance and propagation const%nt of %he ith layer. Y
denotes the sheet admittance operator on the right side

of the ith layer.
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e+ and permeability Moo The time dependence exp(jwt) is assumed.

The relations which we seek are most conveniently developed in terms

of the Fourier spectra of the electric and magnetic fields. Let us write

the fields as follows:

E(x,y,2) E(k_,z)

o -jk et ,_
- Jﬂ I e ° dzkt (2.1)
H(x,y,2z) ﬁ(E

in which £ and ﬁ denote the Fourier spectra of E and H, Ez . Et = 0, and

=2 =~

r is the position vector. E and H are expressible in terms of two functions

;(z) and ;(z) as

k.- 2
= = = % Sgar ., 1 (2. 43}
E= Jkt *a, - we dz + jwe [k + 2 ¥ b (2.2a)
dz
. k = 2
= - - t d¢ 1 2 d T=
H=-jk_xa ¥+ ——~ - [k + ———J¢a (2.2b)
t z wh dz quo dz2) z
2 _ 2 - - ., .
k- = w U and ¢ and Y satisfy the equation
a®t 2 - -
5 + (k" -k *k )E =0 (2.3)
dz tt

Solving eq. (2.3) for ¢ and ¥ and inserting the solutions in eq. (2.2)
yields expressions for the tangential field components (denoted by subscript

t) as functions of z' = z - zl:

= 'y o _aT -
E (z") Jkt % az(A

sin k z' + B
t 2

cos k z')
z

¢ ¢

k

-2z v s '
oe kt(Aw cos kzz B sin kzz ) (2.4a)

b

TIf the medium has finite conductivity o, & should be replaced by & + jw/o.

20



' = il - : ' '
H (z") Jkt x az(Aw sin kzz + B cos kzz )

t [
kz _
+ L ; ' .
- kt(A¢ cos kzz B¢ sin kzz ) (2.4b)
The constants A¢, B¢, Aw, and Bw, which are the arbitrary constants
associated with the solutions of eq. (2.3), are to be evaluated in terms
- of the tangential field components at z' = 0, and
2 _ 2 - =
kz = k" - kt kt (2.5)
We have, setting z' = 0 in eq. (2.4),
Et(O) = —Jkt X azB¢ = e ktAw (2.6a)
Ht(O) = —Jkt x asz + o N (2.6b)
from which we obtain
: _ TWwe = 0=
A¢ = 5 kt Et(O) (2.7a)
k k
z t
wHoo N
A¢ = 5 kt . Ht(O) (2.7b)
k k
z t
B =-2-2 . [k x & (0)] (2.7¢)
P .2 “z t t :
Ik,
B =-—2 3 - [k x £ (0)] (2.7d)
¢ 42 Z t t :
Je

21



Now substitute eq. (2.7) into eq. (2.4) and set z' = d2 (z = zy + dl)'

We find, after some simple manipulations, the compact relation

Et(dl) I cos k.zd2 U sin kzdl Et(O)
. (2.8)

f

nHt(dl) ~U sin kzd2 I cos kzdlj nHt(O)

where n = Vuo/e denotes the characteristic impedance of the medium, 1 is

the identity operator, and

:—_:_ l - - - 2=
b= jkkz a, ” (ktkt + kzI) (2.9)

Eq. (2.8) is the relation which has been sought. We define the single-

layer connection supermatrix ﬁk as follows;

- — -
I cos kz(z1 - zz) U sin kz(zl - zz)
MQ(Z 'k;zz) = (2.10)
- U sin kz(zl —-22) I cos kz(z1 - zz)-J
so that in general,
E_(z,) E (z,)
tt1l (z - ) t 2 (2.11)
- 2 1’ .
nHt(zl) nH, (z,)

The notation chosen for the arguments of M makes equations of the form
of (2.11) read naturally from left to right. Note also that ﬁil(zl;k;zz) =
MI(ZZ;k;zl)'

We now consider the connection between tangential field components
across an interface. Such an interface may comsist of a boundary between

two different media, or of a sheet impedance, or both. We shall construct
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the connection supermatrix for the general case;

then, if the media on either

side of the boundary are identical or if the admittance sheet is absent,

the connection supermatrix will reduce to a simpler form.

Let the boundary be located at z

a x
z

Y
s

3
s

at =

zZ zZ
S

= z_. Then we require that
Et(z = zS+) = Et(z = zS—) = Et(z = zs) (2.12a)
[Ht(z =z +) - Ht(z = zs—)] = YS . Et(z = zs) (2.12b)

is an admittance operator which relates the

to the tangential electric £

!

Jg =Y - Et(zs)

surface current density

ield there:

(2.13)

It follows immediately from eq. (2.12) that if the characteristic impedance

of the medium on the

side is n_, then

Et(zs—)

n—

Eq. (2.14) is the relation which has been sought.

matrix in eq.

ﬁ; and write

so that

ﬁt(zs-)

zs+" side of the sheet is n, and that on the "zS—

0 Et(zs+)
(2.14)
n_ ~
— I nH (z +)
n+ + t s

We define the 2x2

(2.14) to be the admittance-sheet connection supermatrix

H
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n_H (z_-)

M (n_3Y_sn,) -

(2.16) ’

The notation chosen for the arguments of ﬁ; makes equations of the form

of (2.16) read naturally from left to right. WNote also that ﬁ:

M_(n ;-Y_sn_).

Y sn) =

-+

Now as an illustrative example, let us construct the boundary connection

supermatrix for the configuration shown in Fig. (2.2). This is a material

layer of parameters n and k in the region 0 < z j_dz, having an admittance

sheet on the surface z =

0.

space, and we wish to connect the free-space fields at z

space fields at z d2+.

[ E. (0-)

“H:(dz‘)

b =

from which it is apparent

We have the following relations:

Et(0+)
= Ms(no,YS,n) . )
n Ht(0+)
= Mz(o;k;dl) . i
“Ht(dz')
-
Et(dz+)
= Ms(n;O;no) .
“oHt(dz+)

that
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The medium outside the structure is free

0- to the free-

(2.17a)

(2.17b)

(2.17¢)




t t g
= §£ . (2.18)
noHt(O—) n Hc(dz+)
in which
M = MS(nO;YS;n) . Mz(O;k;dz) . Ms(n;O;no) (2.19)

One will note that the arguments in eq. (2.19) read naturally from left
to right, and correspond to the physical features of the shield structure,

as is shown in Fig. 2.2. Furthermore, note that

M© = M_(n_305n) « My (d;3k;0) - M_(n5=Y_s3n ) (2.20)
Generalizations to arbitrarily complicated shield structures are obvious.
In many practical problems, the connection supermatrices which have been

developed in this section can be simplified under certain conditions. We

consider this problem in the next section.

3. SPECTIAL-CASE FORMS
In this section we consider the forms taken by the connection supermatrices
when
(a) the electromagnetic field is either parallel-polarized or
perpendicular—-polarized
(b) the (effective) permittivity of the shield material is large
compared to that oﬁ the surrounding medium (usually free space)
We also consider the conditions which must hold for an electrically thin

layer to be modeled as an equivalent admittance sheet.
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>7

Figure 2.2. A single-layer shield in free space with a sheet admittance
in one surface
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The tangential fields Et and ﬁt can be resolved into components

parallel and perpendicular to Et as follows: denoting either Et or ﬁt

by F , we have

t

Ft = F; + F: (2.21a)
. _ kk .

Fr o= [1 -t t) . F (2.21b)

t k2 t
t
:n_l__- .,.__
Fy = Rk, - F (2.21¢)
t

in which fé denotes the perpendicularly polarized part of ﬁt and Fg denotes

the parallel polarized part. Substituting representations for Et and

~

ﬁt of this form into eq. (2.11), we find that the resulting equations

decouple into two sets:

E! (z)) E! (z,)
i} = =}(zl;k;22) . ) (2.22a)
nH;:'(zl) nﬁ;:' (zz)
E;:'(zl) E't' (z,)
] = W) (z,3k52,) - . (2.22b)
nH": (zy) nH":(zz)

where

M/ (zl;k;zz) =
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- jk_ _ -
I cos kz(zl - 22) _EE a, x I sin kz(zl - 22)
ﬁz{zl;k;zz) =
_ Jk = T o1 - T -
kz a, x I sin kz(zl 22) I cos kz(zl 22)

(2.23b)

The supermatrices ﬁ; and MZ are substantially simpler than ﬁl'

We also consider the supermatrix MS in those cases in which the admittance

operator ?; diagonalizes for perpendicularly-polarized and parallel-polarized

fields:

L

ten =Yé,n? ' (2.24)

For such cases, the connection supermatrices M are
s

=

5 ]

= (2.25)

=

Fron RIAERLIN
MIPT(n_sY 7y

+;|'3

T]Y”";. X? T
- S -4

L ' i

When the effective permittivity of the shield material is large

compared to that of the surrounding medium (which is usually free space),
the condition ki << |k|2 is valid for values of Et corresponding to real
angles of incidence. 1In such cases, the approximation kz = k holds and

may be used to simplify MZ’ §3, and M". We find that

2
I cos k(zl - zz) jaz x I sin k(zl - zz)
M =M = b={"- =~ ‘
o =M - (2.26)
-ia, x I sin k(zl - zz) I cos k(zl - zz)
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We conclude this section by considering the conditions under which an
electrically thin layer may be modeled as an equivalent sheet admittance.

The connection supermatrix Mt for a layer in free space is

M_ =M (n ;03n) - M_(0;k;d,) - ﬁs(n;?;n ) (2.27)

We define the equivalent sheet admittance §;eq by the relation

by v —:—l . . .=
Ms(no’Yseq’no) = M2 (O’ko’dl) Mt (2.28)
The factor ﬁzl(O;ko;dZ) is inserted to account for the physical distance

dl occupied by the layer. Expanding the product in eq. (2.27) and sub-

stituting in eq. (2.28) yields the following four equations expressing the

equivalence:
= = ﬂo = =
I = COCQI + o Sosl UO . Ul (2.29a)
0= c,s. U, - 2—0 5,C.U, (2.29b)
- = ﬂo = —
a, X noYseq = ;*'COSQUQ - SoCzUo (2.29c¢)
I=cc,T+ g—o 5,5,U, - U, (2.294)
in which
Co = cos kzodz (2.30a)
C2 = cos kzddz (2.30b)
So = sin kzodl (2.30c)
SZ = sin kzddl (2.304)
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T =-——1 3 ki 27 2.30e)
o ik k az x (ktkt + kzoI) (
0O ZO
T = -—= 3 K 27 2.30f)
Ul © jkk z * (ktkt + kzdI) (
zd
2
and k2 = k2 - k2, k2 = k2 - k2. Now if quantities of order (kd)”~ and
Zz0 o t zd t

higher are neglected, we find that egs. (2.29a) and (2.29d) are satisfied

as they stand; eq. (2.29c) yields the well-known result [7,8]

Y =3 1T 2.31
noYseq jkyd, (e -1)T ( )

as we expect; but eq. (2.29b) reduces to

= = 2

= ( € _ (k. k kT _

0 = Jkodltl - EQJ a, x tzt - —% IJ (2.32)
kO kO

which is not true in general. It is obviously true if Et =0, i.e., at
normal incidence.

The condition (2.32) is also true when the electromagnetic field is
polarized perpendicular to the plane of incidence. This is so because

(cf. eq. (2.21c))

- - 2= - - =~
(k ke, - kTI) - kk - H =0 (2.33)

as is apparent by inspection. We now inquire under what conditions the

expression (2.31) is valid for parallel-polarized fields. We consider

the problem of reflection and transmission of a parallel-polarized plane

electromagnetic wave by an electrically thin dielectric layer and by a

sheet admittance in free space. We readily obtain the following results:
jk d jkzd

thin layer: R" = [ ; (sr—l)cose - 2; secf (1 - %—)] T" (2.34a)
o T
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2

jk d jkid L -1
T" = [1 + — (Er—l)cose + K secO (1 - E—)] (2.34b)
o T
admittance sheet: R" = — Y; cosf T" (2.34¢)
no -1
™ = (1 + — Y; cosf8) (2.34d)

where ki = kisinze. It is apparent upon comparison of (2.34a) and (2.34b)
with (2.34c) and (2.34d) that if Yg is given by eq. (2.31), then we must
require that for the approximation of a thin layer by an admittance sheet

to be valid,

tan26 << lsrl (2.35)
where, in general,
e = —— (o + jue) (2.36)
r jweo

We therefore conclude that the characterization of an electrically thin
layer as an equivalent sheet admittance is valid for perpendicular-

polarized fields generally, and for parallel-polarized fields in which

e/
5 5 << [er| (2.37)
1 - ki /k
t o
where kz denotes wzu £ € being the permittivit £ th di
o o out’ Tout y ot the medium

outside the sheet admittance.
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SECTION III

PLANAR GRAPHITE COMPOSITE SHIELDS

1. INTRODUCTION

In this section we shall consider the problem of electromagnetic wave
transmission through a planar layer of graphite composite in the fre-
quency and time domains. A brief description of graphite composite
materials has already been given in Section I of this report; we summarize
here certain facts pertaining to these materials which are relevant to
our electromagnetic analysis.

(a) A layer of graphite composite is a layup of anisotropic laminae
assembled into a "cross-ply' configuration. Therefore, the layer
is itself probably anisotropic in behavior. However, some
limited experimental data which has been previously mentioned
[2] indicates that the anisotropy is weak. Therefore, we shall

model the graphite composite as an isotropic material.

(b) The conductivity of graphite composites appears to be roughly
one-fourth that of pure graphite [l1]. This value is 7.14 x lO4
mho m_l; we shall use a value of conductivity equal to 1.5 x
104 mho m—l for the composite material in our numerical work.
(c) Graphite composite is nonmagnetic and we shall use a value for
permeability equal to that of free space in our numerical work.
In the next section, we develop the boundary connection operator for
a planar graphite composite layer in free space. Then in paragraph 3,
the problem of electromagnetic wave reflection and transmission by such

a layer is solved in the frequency domain. The transmission of a transient

EMP signal through the layer is considered in paragraph 4.
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2. THE BOUNDARY CONNECTION SUPERMATRIX FOR A PLANAR GRAPHITE CUMPUSITE
LAYER IN FREE SPACE

The conductivity of a graphite composite is sufficiently high that
the material may be considered to be a good conductor for frequencies
throughout and beyond the EMP spectrum. Consequently, displacement
currents may be neglected in comparison to conduction currents in the

material, so that

k2 = mzu € = jwu 0 = -jwu O
g8 J g 8 J g 8

(3.1)

in which ug, eg, and Gg denote respectively the permeability, permittivity,

and conductivity of graphite composite. Furthermore, since Gg >> we - we

neglect k2 in comparison to k2 in forming k2: thus
t A

kd=kd= (1-j)d/$ (3.2)

/2

where d is the thickness of the layer and § = (Z/mugcg)l is the skin depth

of the material. The boundary connection supermatrix for the graphite com-

posite layer in free space is thus given by eq. (2.27), with §2 given

by eq. (2.26) and k = (1-j)d/$
M _ _ _ 1
I cos(1-j)d/$§ —j %—-az x I sin(l-j)d/§
o
Mt = : (3.3)
i ;‘3 a, x I sin(1-3)d/$ T cos(l-j)d/$

in which n = ijug/og is the characteristic impedance of the graphite
composite.

In the low-frequency limit (d/6 << 1)

=

R

H

—Jkod a, x I

H

(3.4)



and when d/6 >> 1

T SDg«T
n, 2
Moo= L UFDA/S (3.5)
t 2 1 .
23 x1I I
—n z -
Additionally, we note that
n, n,o dl1/2
—_— = Y= 3.6
7 3™k q (3.6a)
(o]
1 - kod 1/2
— = vj (3.6b)
R noogd

3. PLANE~WAVE REFLECTION AND TRANSMISSION BY A PLANAR GRAPHITE COMPOSITE
LAYER

The geometry of the problem to be considered in this section is shown

in Fig. (3.1). A plane electromagnetic wave of frequency w is incident

upon a planar graphite composite layer of thickness d, from the region
z < 0; the angle of incidence is 8. The medium outside the layer is
free space. The reflected and transmitted fields are to be determined
as functions of the wave frequency.

The incident wave in the region z < Q is given by

—jko(xsine + zcos8)
[ (132 - = .
[any + Eo(axcose a251n6)]e (3.7a)

il

inc

- _ = —jko(xsine + zcosb)
[E0(3251n9 - axcose) + EQay]E (3.7b)

H,
Mo ®inc

in which Eé and EB denote the amplitudes of the perpendicular-polarized

and parallel-polarized components of the incident-wave electric field.

The reflected wave in the region z < 0 is
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Figure 3.1. Reflection and transmission of a plane wave by a planar
graphite composite layer: geometry of the problem
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—jko(xsine - zcosB)

b~ _ tpty _ pURt (o A e .
Eref = [R any R Eo(axcose + a251n6)]e (3.8a)
-jk _(xsin® - zcos®)
boned = ot - . +||n_ .
n, Href [R Eo(axcose + a251n9) R any]E (3.8b)
and the transmitted wave in the region z > d is .
—jkOIxsine + (z-d)cos®]
i = tpty T - T ad
Etrans [T any + T Eo(axcose a231n9)]e
(3.9a)
—jko[xsine + (z-d)cos6]
- _ Yot 7= . _ = +nn_
o Htrans [t Eo(a231n6 axcose) T any]e
(3.9b)

in which R', R", T', and T" are the reflection and transmission coefficients

for the perpendicular-polarized and parallel-polarized parts of the field.

The tangential components of the fields at z = 0 and z = d are

E! (0)
n H'(0)
Er(0)
n, H.(0)
E! (4)
n H(@)

B (d)

2'
n Ht(d)

1+ R")E' a
( )Oy

-cosf (1l - R')Eé

a
X

cosf(l - RME" a
x

0

(L+R )EO ay

T'E'! a
0y

-cosf T'E! a
X

0

ptt
cosfT EQ ax

T"E" ;
0y

36

(3.10)




Connecting these fields across the graphite composite layer using the

boundary connection supermatrix given in eq. (3.3) yields two sets of
equations which may be solved for the reflection and transmission

coefficients. We have

—C—jq—coses 1 ] R'-1 C—j?]—coses
°© ; = ° . (3.11a)
cos6 C + j Eg S cosh T' cos8 C - j ﬁg S
cosd C + j %— S cos® R" cos8 C - j LU W
N ° = : ° (3.11b)
C+jn—ocoses o -1 " —c+j;°—coses

in which C = cos(1-j)d/S8, S = sin(1-j)d/8. Solving eqs. (3.11), we obtain

'

expressions for R', T', R", and T" as follows:

n ;
‘ . R' = ]]5—. jS[n— cosze - —O—J (3.12a)
. n n
o
' 2
T" = D cosb (3.12b)
n
"o _]-_ . o 2 n_
R" = D" JS [n cos 6 - n ] (3.].2C)
o
wo_ 2
T = D coso (3.124)
in which
n
D' = 2cos6 C + jS {%— cosze + EEJ (3.13a)

(o)

n
D" = 2cos8 C + jS [ﬁg cosze + (3.13b)

J,J
-
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Now, ln/nolz = ko/noog << 1. Neglecting this quantity with respect

to unity, which is consistent with neglecting the displacement currents

with respect to the conduction currents in the graphite composite, we

obtain the following expressions for the transmission coefficients:

n
T' = (C + %“Eg secH S) 1 (3.14a)

. 0
™ = (C + Jz' n—° cosg $)7 T (3.14b)

Further approximations to the transmission coefficients are useful. In
particular, it is easy to show that for the graphite composite, the
condition d/§ << nocgd will hold for frequencies throughout and beyond
the EMP spectrum. As a consequence, the approximation

- 2cos6

' _ay 4 _y d
T nocgd (1-3) 5 cse(1-3) s (3.15)

is valid for all angles of incidence ©, and the approximation

2secH

. .y d .y d
T - T’locgd (l J) s CSC(l J) 8 (3°16)

is valid for angles of incidence up to a point only a few hundredths of a
degree from 90°. Eqs. (3.15) and (3.16) show that the effect on the
transmission coefficients of changing the wave frequency (and thus d/§)
is almost completely separable from the effects of changing noogd and 6.
Therefore, we may express T' and T" in terms of their values at d/§ = 0O

approximately, as follows:

N (1-9) %csc(l—j) % (3.17)

in which
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cosét
= (3.18)

Ta g sech

O -

Numerical results pertinent to the analysis carried out in this
section are presented in Figs. 3.2 and 3.3. 1In Fig. 3.2, Té and
TB are plotted as functions of 8 for various values of the conductivity-
thickness product ogd (note that if og = 1.5 x lO4 mho m_l, cgd = lSdmm,
where dmm is the layer thickness in millimeters). A plot of the magnitude
and phase of (1-j)x esc(l-j)x as a function of x = d/§ is given in Fig.
3.3. Since the data in Figs. 3.2 and 3.3a are presented in logarithmic
form, the curves may be used to evaluate T' and T" for various combinations
of values of cgd, ®, and d/6 simply by adding the appropriate quantities.
Ié should be noted that since the magnitudes of T' and T" decrease as the
frequency is increased, the graphite composite layer acts as a low-pass

filter. This point is important for understanding the transient behavior

of a transmitted EMP signal, which is considered in the next paragraph.

4., EMP TRANSIENT PROPAGATION THROUGH A PLANAR GRAPHITE COMPOSITE LAYER
By using the approximate formulas for the transmission coefficients
in the frequency domain which were developed in the previous section and
given in eqs. (3.15) and (3.16), we may readily evaluate the temporal
behavior of the transmitted wave. Making the formal substitution s = jw
in T' and T", we construct a Laplace integral for the transmitted field

as follows:

1 ‘rcost Ysrd ST
E (t) = _—T'J E (s) [ ] — e ds (3.19)
trans 2] PB © noogd sect’ sinh /;ﬁ;
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in which FB denotes the usual Bromwich contour, 1, is the shield diffusion

d
time, defined by

T, =pnpod (3.20)
and
T = t --% [xsin® + (z-d)cos6] (3.21)

c = l/Vuoso, the vacuum speed of light. 1In eq. (3.19), "cos8" is to be
used when the incident wave is polarized perpendicular to the plane of
incidence, and "sec®'" is to be used for parallel polarization. Eo(s)

denotes the Laplace transform of the EMP signal discussed in Section TI;

it is
N S
Eo(s) = A[s+a +B (3.22)
in which
-at -Bt -1
’ A=( %-e 97" =1.1373... (3.23a)
= 1 g
to = B n o (3.23b)
7
a = 4.80 x 10 (3.23c)
9
B =1.76 x 10 (3.234d)

The integral in eq. (3.19) is readily evaluated using the Cauchy

residue theorem. The poles of the integrand occur at s = -a, s = -8, and
nznz
s =8 = - (n>1) (3.24)
n T4 -

Furthermore, it is easy to show that FB may be closed at infinity in the
right half plane for T < 0, yielding a null result for E(r), in accordance

with causality; and for t > Q, FB may be closed in the left half plane at

infinity to yield for E(T):
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2A -aT

nocgd

E(t) =

cosb
[ ;

]U(T) {/drd csc YoT, e

sect

T

- VBTd csc BTd e—B

N .
N

+ 2 (3.25)

o (—1)n (nﬂ)z(aT - Brd) —nzﬂzrlrd
2 € }

n=l (n’r’ - ot ) (n’m Qré;;}
U(t) is the unit step function. The result in eq. (3.25) is based upon the
assumption that all the poles of the integrand in eq. (3.19) are simple,
i.e., that

2_2

(at, or BTd) #nm (3.26)

d
for any n # 0. If this condition is violated, the appropriate limit of
eq. (3.25) can be taken to yield the correct result.

Plots of E(T) vs. T, normalized by (Z/DOOgd), are given for the case

® = 0° in Fig. 3.4, for three values of 1 The values chosen correspond

4
if ug is chosen equal to the free-space value 4m X 10—7 henry m_l'and
Og = 1.5 x 104 mho m_l, to thicknesses d of 1, 2, and 3 mm. A non-

normalized curve of the incident EMP signal is included for comparison.
One will note the increasing attenuation of the peak value of the trans-
mitted signal, the increasing time delay before the main buildup of the
transmitted signal, and the increasing‘pulse width of the transmitted
signal as d is increased. All these features are in keeping with the
low-pass filter characteristic of the graphite composite layer which has

been mentioned previously.
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Figure 3.4. Normalized transmitted EMP waveforms:
graphite slab, normal incidence
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SECTION 1V

CYLINDRICAL GRAPHITE COMPOSITE SHIELDS

1. INTRODUCTION

In this chapter we shall consider the problem of electromagnetic
field penetration into the interior of an infinitely long hollow cylindri-
cal shell of graphite composite. A similar problem has been recently
addressed by Schieber [9-12], who considered only cylindrical shells which
were electrically thin (i.e., the thickness of the shell was much less
than the skin depth of the shield material). He found that the axial
electric field at the center of the cylinder exhibited strong peaks as
the frequency of the incident wave was varied, these peaks occurring at
the transverse resonance frequencies of the cylinder. At these resonant
peaks, the axial field strength was equal to that of the incident wave,
so that the shielding effect of the cylinder was nil.

The shielding behavior of a thick cylindrical conducting shell was

studied by Wu and Tsai [5,13,14]. They found that when the cylindrical
shell thickness was at least equal to the skin depth of the shield
material at the resonant frequencies of the cylinder, the resonant peaks
in the axial field were significantly reduced. Resonance effects,
however, were still evident. To assess the importance of these resonances,
Wu and Tsai considered the temporal behavior of the axial electric field
when Fhe cylindrical shell was illuminated by a normally incident TMZ-
polarized plane wave whose time dependence was that of the standard EMP
signal which has already been discussed. They found that the temporal
behavior of the axial field was only slightly affected by the cylindrical
resonances in a "worst case" analysis. In their example, the radius of'

the cylinder was 10 m and the product of the conductivity and shell
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thickness was 0.1 mho. The reason for this behavior is,.of course, that
for cylinders of this size the lowest-order resonances occur for fre-
quencies far Aut in the "tail'" of the EMP spectrum, and so are only
weakly excited. As the radius of the cylinder is decreased, the resonant
frequencies are increased and their excitation becomes even weaker.

The cylindrical'shells to be considered in this section have radii
of 2 m or less (typical aircraft-fuselage sizes) and conductivity-
thickness products of the order of 30 mhos. We therefore expect the
resonance effects on the transient behavior of the intermnal fields
induced by an EMP signal to be negligible. We introduce a new frequency-
domain measure of shielding effectiveness for hollow bodies of resonant
size or less which takes the entire internal field into account. This
measure, based on a ratio of stored energies in the interior of the
body, represents the space averages of the internal fields.

In the next paragraph, the problem of plane-wave scattering from a
cylindrical shell of graphite composite is formuiated in the frequency
domain, using the BCS developed in the previous chapter for this material.
We present results illustrating the energy shielding ratio as a function
of frequency for several representative cases. Some time-domain con-

siderations are discussed in paragraph 3 of this section.

2. FORMULATION OF THE PROBLEM: FREQUENCY-DOMAIN RESULTS

The geometry of the problem is shown in Fig. 4.1. An infinitely
long cylindrical shell of graphite composite, whose inner and outer
radii are a and b, respectively, is illuminated by a plane electromagnetic

wave. The shell thickness d = b-a is small in comparison to the mean
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No, Ko

Incident Wave <
Graphite Composite Shell

Figure 4.1. Plane-wave penetration of, and scattering by, a cylindrical
shell of graphite composite: geometry of the problem
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radius po = Vab. The medium outside and inside the shell is free space.
For simplicity we consider only the case in which the propagation vector
of the incident wave has no axial component and we shall investigate the
two possible wave polarizations separately. The total fields may then
be obtained by superposition.

Consider first the case in which the incident wave is polarized TM

with respect to z. The field components present are Ez, H¢, and Hp,
where
= =7 4.
Ez Jwu ¥ (4.1a)
oV
H = - 2% 4.1b
5 3 ( )
1 9Y¥
H - = - 4.1c
P p 3P ( )
and
2
13 a¥) 1 37y 2
_ . —_— A+ V= —— Yy =
> 30 (o apJ 75+ k¥=0 (4.2)
o 3¢
in the free-space regions. In the interior and exterior regions of the
problem, appropriate expressions for ¥ are
E, = jn(e=-¢")
0 < < a: V¥ = nie=
<p<a Tom g AJ (ke (4.3a)
0 n=-®
b <o <w e _0 (2) in(e-o")
o < Tou_ nZ_m [3 (ko) + B H ) (k_o)]e (4.3b)

where An and Bn are to be determined, EO is the amplitude of the incident

electric field, and
' = ¢O + n/2 . (4.4)

¢o is the angle of incidence shown in Fig. 4.1.
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In order to evaluate the coefficients An and Bn’ the tangential field

components are connected across the graphite composite shell using the

appropriate connection supermatrix, which is that given in eq. (3.3), modified

for the change in the coordinate system (Ez is replaced by Ep):

T cos(1-j)d/s -j %—-Ep x T sin(l-j)d/é
o
M, = i (4.5)
i =2a x I sin(1-j)d/6 T cos(1-j)d/6

The spectra of the tangential field components at p=a and p=b are

Et(p=a) = EOAan(koa)e'j“¢' EZ (4.6a)

n, B (o=a) = —onAnJé(koa)e—jn¢ 3, (4.6b)

F (p=b) = E [J (k. b) + B HZ (k p)]e ™" 3 (4.6c)
t o n o n n o) z °

", ﬁt(p=b) = -JE_[J} (k_b) + BnHiz) (kob)]e’j“¢ 5¢ (4.6d)

in which the primes (') denote differentiation with respect to the argument.
For this problem, the spectral variable Et = (n/p)5¢. Connecting these
spectral components using ﬁ; as given in eq. (4.5) yields a pair of

equations for A and B :
n n

J (k a)C + 2~ J'(k_a)$s P J[a ] [0 ]
n' o n, noo n o n n' o
= (4.7)

J'(k a)C - 22 J (k_a)s —H(z)'(k b) B J'(k _b)

n' o n n‘o n o n | n' o j
Solving eq. (4.7) for An and Bn, we obtain

S S 5 I
An =3 [nk b] (4.8a)
n o
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1 [ ]
B = B—-{C[Jn(koa)Jn(kob) - Jn(koa)Jn(kob)]

n "o } (4.8b)
+ S[;;—Jn(koa)Jn(kob) + ;—-Jn(koa)Jn(kob)] .

where

2 ]
D_ = c[3? (e aii?) (ke b) - 3 (e )P (e b))

' n 2
- S[%—-J;(koa)niz) (k b) + ﬁg'Jn(koa)Hé )(kob)] (4.9)
(o)

C and S denote cos(l-j)d/é and sin(l-j)d/S respectively. An and Bn may
2 .
be simplified if we assume that kod << 1 and |n/no| << 1. These condi-

tions hold throughout the EMP spectrum in the cases we consider; so we

obtain

nod
~ o8
An [c + > (nkopo)Jn(kopo)H

(2) S -1
0 (kopo) 21:375751 (4.10a)
nocgd 2 S
Bn ~ —An 2 (ﬂkopo)Jn(kopo) m (\l&.lOb)

A useful frequency-domain measure of the shielding effectiveness of
the graphite shell is the ratio of the time—-average stored energy per unit
length inside the shell (0O<p<a) to the time-average stored energy per unit
length in the same region with the shell removed. Since this ratio is
obtained by integrating the stored energy density throughout the cylindrical
volume, it represents an "averaged" shielding effect, and so may be more
useful than, say, the axial field strength, as a shielding effectiveness
measure for a closed surface. It is easy to show that the time-average

stored energy per unit length inside the cylinder is
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"oy 2 [* 2 n® ) 2

= —_— v

W= 2 nz_m IAnl JO [Jn(kop){l + zsz + Jn(kop) ]odp (4.11)
o o

In the absence of the cylinder, the time-average stored energy in the
same volume is simply eonain/Z; so performing the integrations in eq.

(4.11) and normalizing the result yields the '"energy shielding ratio" T

@ 2 \
_ 2 ., 2 2f n
r = Z-m IAn| [J)(k a)” + I (k_a) [1 - 2 2J
oa
1 '
+ @ Jn(koa)Jn(koa)] (4.].2)

1 2
When koa << 1, r. %5 (]Aol + lAllz), and we obtain an approximate low-

frequency expression for r, as follows:
~ L o S -2
r, 5 {[C Jﬂodgd kopo (1=3)d/8 n kopol

k a<<1
o

nod
o

-2
;i 2 8 S
e+ I =5 ke ayars }

Curves of r, asa function of frequency are given in Figs. 4.2-4.4 for

(4.13)

various values of Py> d, and Og' The values of Py chosen correspond to
typical aircraft; d = 1, 2, and 3 mm: and Og varies around the base value

1.5 x 10* mho m L.

The analysis for the case in which the incident wave is polarized TE

to z is similarly carried out. The field components present are H , E
z

¢’
and Ep, where
Hz = jweo ¢ (4.143)
E = _ 9%
¢ 3p (4.14b)
E = l a_®
o) p 99 (4.14c)
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and

19 90) L 1 2%% 2 _ ‘I"f
L [ —)] S L2002 g (4.15)

in the free-space regions. ¢ is given in the interior and exterior regions

by

E « - At
0<p<ar o=z ] AlT(k _p)ed™ (8707 (4.16a2)
0 n=-=

o - o 1 (2) jn(é-¢")

b<p <o &=- ) [J (k) + B'H " (k p)]e (4.16h)
0 n=-«

in which A; and B; are to be determined. Applying the connection operator
ﬁl given in eq. (4.5) to the field representations obtained from.eqs.

(4.14)-(4.16), we solve for A& and B;, obtaining

0
Al = %T {FEJBJ (4.17a)
n (e}

v___l_ ' _ T
Bn = D; {C[Jn(koa)Jn(kob) Jn(koa)Jn(kob)]

no ' ' n
+ S[;— Jn(koa)Jn(kob) + E;'Jn(koa)Jn(kob)]} (4.17b)

where
(2) (2)’
| - 1] -—
D) = CLJ}(k a)H “"(k b) -~ J (k a)i “" (k b)]
s s grae A @by + 7 e )E® & b)] (4.18)
n n* o n o N, B o n fo) ¢
Approximate expressions for A; and B&, valid if kod << 1 and |n/n0|2 << 1

as we assume, are
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Ny9ed ' s -1
o g ' (2) U B (4.19a)
Aé = [c+ 2 (ﬂkopo)Jn(kopo)Hn (kopo) (l—j)d/ﬁ]
o d
B' = -A' Tog (ko )J' (k_p )2 e (4.19b)
n n 2 oo’ "n oo (1-3)d/§
The energy shielding ratio for this polarization, r;, is given by
e 2 2 2 n?
= 1 ' -
! = ) IAnl. [3!(k a)” + J_(k a) [1 kzazJ
n==—o o
1 ' (4.20)
+ koa Jn(koa)Jn(koa)]
In the case k a << 1, r' = 1 (|A'|2 + |A',2), and we obtain an approximate
o w 2 o 1
low-frequency expression for r; as
1 noG d S -2
i ~ T+ . g
Ty ) {'C + 3 =5 ko =yass|
k a<<l
o
nocgir S -2
+ -] 4.2
€= 3 2k o~ apyars } (4-21)

Curves of r& as a function of frequency are given in Figs. 4.5-4.7 for
the same values of a, d, and Gg used in the curves for T, calculated
previously.

It will be noted that when d/8 << 1, r, > 1 as kopo -+ 0 but r; - %
as kopo -+ 0. This is so because the TE electric field (which is normal
to the cylinder axis) terminates on surface charges on the cylinder
surface. Thus r; contains only a contribution from the internal
magnetic field, while both electric and magnetic fields contribute to
T, One will also note from eqs. (4.13) and (4.21) and Figs. 4.2-4.7
that the principal "break frequency" for both r, and r; is approximately

l/ﬂuoooogd.
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3. TIME-DOMAIN SHILELDING
In the frequency domain the ratio of the internal magnetic field

Hint to the incident magnetic field Hinc is readily shown at low

frequencies to be

nod ~1

= [c+3 2B xop S (4.22)

int
2 o o (1-3)d/$

H.
inc

for either polarization. We now construct a Laplace integral for the
internal field as follows (the incident waveform is the standard EMP

double exponential):

st
2dA 1 1 1 d
Hint(t) - no 2nj J (s+a - s+B) —_— -eAi-'§?H — (4.23)
o o Vi vsT, sinh vVs1, + — cosh Vst
B d d ] d
o
in which all quantities have been previously defined. Now 2d/oo << 1 in

the cases which we consider, so that the poles of the integrand, in
addition to those at s = -a and s = -8, are approximately located at

s = —2d/pOT and —nznz/T (n > 1). Thus we obtain for the internal

d d

magnetic field the approximate expression

-8t —-at
2dA
H. (&) = { = €

int Dono VBTd sin VBtd VaTd sin VaTd

-n2n2t/rd

[»o]

) (-n"e
- nzwz)(BTd - nznz)

+ Z(B—Q)Td

n=1 (aTd

vy —(2d/p T )t
{—l— S ° 47 (e (4.24)

aTd BTd

in which we have made use of the assumption at, >> 2d/po. This assump-

d

tion is easily satisfied in the cases we consider.
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For late times, the dominant contribution to Hint(t) is the last

term in (4.24) (cf. ref. [15]):

H,  (6) > 2Ad [ai - Bi ]e'(Zd/"on)t (4.25)
"5%0 d d

+
A plot of nOHint(t) vs. t for three values of T, is shown in Fig. 4.8 .

d
The three values of T4 chosen correspond to thicknesses d of 1, 2, and 3
mm if Gg = 1.5 x lO4 mho rn_l and dg = g The radius po is taken to be
1 m in each case. The contribution of the expression in (4.25) at late
times is readily apparent.

Comparing Fig. 4.8 with Fig. 3.4, one will observe the "integrating'
or "low-pass' character of the cylindrical geometry itself. Thus an
incident signal is, in a sense, doubly low-pass filtered in passing into
the interior of a cylindrical region shielded by a conducting shell.

Contrasting behavior is evidenced by screened composite structures, which

we shall consider in the next two sections.

TThe reader is reminded that in Cal Comp plots such as Fig. 4.8, the
axis labeling is such that the exponential factor (in this case 10-2)
is to be associated with the ordinate values, not with the axis label.
Thus the maximum ordinate in Fig. 4.8 is 0.0025.
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SECTION V

PLANAR WIRE-MESH COMPOSITE SHIELDS

1. INTRODUCTION

The characterization of a wire-mesh composite layer which we shall
develop in this chapter is that of a dielectric layer with an admittance
sheet on one of its surfaces. The presence of the dielectric layer in
the vicinity of the wire-mesh screen is necessary for the correct charac-
terization of the screen, since its periodic structure causes the screen
to carry with it a reactive field which "hugs' the screen and decays
exponentially in directions normal to the screen. Thus, a part of this
reactive field penetrates the dielectric layer and is affected by its
presence. The equivalent sheet admittance operator ?; which describes
the screen is therefore dependent upon both the dielectric properties

and the thickness of the composite layer of which it is a part.

The behavior of wire mesh screens in free space has been studied by
Kontorovich [4] and others [16-18] using the so-called "method of averaged
boundary conditions." This method is known to produce good results for
screens made of fine wire and having spatial periods much smaller than
the wavelength. More recently, Hill and Wait [19] have considered wire
mesh screens using Fourier expansions of the wire currents and have found
a computational technique which enables one to calculate the wire currents
relatively rapidly when the mesh size is small with respect to the wavelength.
We shall employ a method similar to, but an extension of, that used by
Hill and Wait to speed the convergence of the numerical solution for

the wire currents.
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The screens which have been used to shield boron-epoxy composites
are not generally fine enough to allow the unconcerned use of the thin-
wire approximation which is basic to the present theory of wire-mesh
screens. We shall, therefore, compare the results of our main analysis
(which is based upon the thin-wire approximation) with the results
obtained by considering the limit in which the screen is replaced by
a conductor with a periodic distribution of small rectangular apertures
in it. Using this comparison procedure, we can then establish bounds
on the behavior of "thick-wire" mesh screens.

In paragraphs 2 and 3 of this section, we formulate the problem of
plane-wave scattering by a fine wire-mesh screen in the surface of a
dielectric layer of finite thickness. An equivalent sheet impedance for
the screen is derived in paragraph 4, and the fields transmitted through
the wire-mesh composite layer are considered in paragraph 5. The ''per-
forated screen” model is discussed in paragraph 6 and comparisons drawn

between the two models.
2. FORMULATION OF THE PROBLEM

The geometry of the problem is shown in Fig. 5.1. A dielectric
layer of relative permittivity €. (which may be complex) and relative
permeability 1 is located in the region 0 < z < d. A rectangular grid
of conducting wires is embedded in the upper (z=0) surface of the layer:
wires parallel to the y-axis are located at x=pa (p = 0,+1,...) and wires
‘parallel to the x—axis are located at y = qb (q = 0,+1,...). The wire
junctions are assumed to be bonded. The wire radius r is assumed to be

small in comparison to the spacings a and b and to the wavelengths in

65



Incident Wave

€=€r€o

‘Mesh wires are
of radius r and
junctions are
bonded

Figure 5.1. Reflection and transmission of a plane wave by a dielectric
layer with embedded wire-mesh screen: geometry of the
problem

66



free space and in the layer material; thus the wire currents are purely
axial and the thin-wire approximations are valid. The wire impedance

per unit length is given by

n, IO(Twr)

Z = 47— — (5.1)
W 2nr Il(Twr)
in which
s 1/2
n, = (quw/cw) (5.2a)
P 1/2
T, = (quwcw) (5.2b)

B, and o, denote respectively the wire permeability and conductivity, and
In(-) denotes the modified Bessel function of the first kind. The time
dependence is assumed to be exp(jwt).

The region outside the layer is free space. A plane electromagnetic
wave is incident upon the layer from the region z<0. The incident electric

field is given by

E. =Ee (5.3)

in which r is the position vector, and

ko = ko(ax sinb cos¢ + ay sin® sin¢g + a cosB) (5.4
Eo = Eoe(ax cosb cos¢d + ay cosB sing - a sinb)
+ Eo¢(,—ax sing + ay cos¢) (5.5)

Eoe and E0¢ denote respectively the amplitudes of the 6-polarized and
¢~polarized components of the incident electric field, 6 and ¢ are the

incidence angles in spherical coordinates, and ko = quOEO.
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The wire currents IX and Iy are expressed in terms of space-harmonic

series as follows:

—jkyoqb oo - -jkxmx
Ix(y = qb) = e m_—E.:_oo Ixme (5.6a)
-jk__pa « . -jk_y
I (x=pa)=e 0 I,e yn (5.6b)
=—c0

-~

I and I denote the space-harmonic components of the currents I and I
Xm yn X y

respectively, and

k = ko sin® cosé + 2mm/a (5.7a)

=
l

k sin® sin¢ + 2wn/b (5.7b)
yn o

The electromagnetic field is expressed in terms of a vector function ¥

as follows:

H=V x ¥ (5.8a)
= 1 2= -
E = Jue [VV + k71I] ¥ (5.8b)
where ¥ = ¥ a2 4+ ¥ a_ and
X X vy
v2F + %7 = 0 (5.9)
. 2 2 2 2
with kW = k'e_and € = ¢ € for 0 < z < d; and k™ = k7, ¢ = ¢_ elsewhere.
or o -7 - o o

The periodic nature of the wire grid indicates that the various field
quantities will be most conveniently expressed in terms of two-dimensional
space harmonic series as

© © - -jkxmx -jk oY
F(x,y,2) = } ] F _(2)e e 7 (5.10)
m:—w n=-oo
We thus obtain for the tangential (x and y) space-harmonic components of

E and H the following expressions:
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E =15 .3§ (5.11a)
tmn  jwe “mn mn
i =9 @G x¥ (5.11b)
tmn dz z mn
in which
k2 - k2 - k
Xm Xm yn
=;n = (5.12)
- k k2 - k2
Xm yn yn
. = = 2 2
In the dielectric layer, P =P , kW = ke , and € = ¢ _g_; elsewhere
mn dmn or or
P =P , k2 = k2, and € = € . The space-harmonic components of the
mn omn o o

surface current density due to the currents in the grid wires are

I I
= _Xm - 4. ynz (5.13)
b X a

(SN

smn
We now construct appropriate solutions for Wmn in each of the three

regions of the problem. We have

= - 1k omn” - _jkzomnz
-0 < z < 0: V¥ = e ZOW + 7T e (5.14a)
mI mI mn
0<z<d: ¥ =B cos k z + C sin k z (5.14b)
mn mn zdmn mn zdmn
~ - —Jk o (Z—d)
d <z < o Y =D e (5.14c)
mm mn
where k2 = k2 - k2 - k2 and k2 = kza - k2 - k2 3 A -D are
zomn o Xm yn zdmn or xm yn mn mn
vector functions of m and n to be determined; and 7 n represents the
incident wave:
T = jwe 58 PL «E (5.15)
mn o mn ~omn ot

i
—~
=il
{
P
oy
Nt
t

8§, denotes the Kronecker delta-function and E
k ot z 2z o

[cfE. eq. (5.5)].
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We are now in a position to construct the boundary-condition equations

from which the unknowns A -D may be determined in terms of LIS, and
mn mn

continuity

jsmn' By ensuring continuity of tangential E at z = 0 and z = d,

of tangential H at z = d, and the appropriate discontinuity of tangential

H at z = 0, we obtain the following system of equations:

P -A-~2F -B=-p -7 (5.16a)
o € d o
r
k ~
E--24 g7+ L 3 (5.16b)
jk jk s
Z0 z0
. cos k . d P. - B + l—-sin k .dP, - C-P +D=0 (5.16c)
zd d £ zd d o
r r
. = 5o s B = .16d
k 4sink ,dB -k , b cosk dC jk,, B =10 (5 )

We have dropped the (m,n) subscripts in eq. (5.16) and in the following,
for simplicity of notation. They will be reinserted where necessary for
clarity.

It is sufficient for our purposes to solve eq. (5.16) for A and D.

We obtain, after some tedious but straightforward manipulations,

__= = P l = e
A=F 7+ ijzo r JS) (5.17a)

CF.Gelo 3
D=F (r + T3k JS)Sec kzdd (5.17b)
zo
in which
F=1]I+ 5 {g;— Po . Pd + kzder Pd . Po]] (5.18a)
R
A= 5 [? PO . Pd - kZdEr Pd ° POJ (5.18b)
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k
= = 20 =-1 | 5
' =1+¢ < Po Pd (5.18c)
r
and
jtan k_.d *
£ = 2d (5.19)
k k
zo zd
?, T, and T may also be expressed as follows:
F = afI + bey (5.20a)
A= a)‘I + b).Kx (5.20b)
T=al+bK (5.20c)
Y Y X
in which
[ 2 k k
kx Xy
' K = ) (5.21a)
k k k
=y y
k2 ~k k
y Xy
K = (5.21b)
y 2
-kxk kx
L y
) and
2
—1+5 KX e + ) 17t (5.22a)
ag¢ 2 zo'r €. -ccd
=5 _ 112 £ 2 2 -1
bf Zsr (sr 1) af[l + 3 (kzo + kzd)] (5.22b)
=_£ .2 -
a, = > k.o(,t-:r 1) (5.22¢)
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b, = 2 (2 - 1) (5.22d)

A 2¢e r
r
a = 1+¢ Kk (5.22e)
Y zo
b =& (¢ -1) . (5.22f)
Yy €. T

In order to determine the still unknown wire currents and thereby
complete the solution to the préblem, we apply the boundary condition at
the wire surfaces that the component of E parallel to a wire axis is
equal to the wire current times its impedance per unit length. Since the

wires have been assumed to be thin, it suffices to apply this condition

at the tops of the wires,

Ex(x,qb9—r)

E a, ,_r)
y(p y

The conditions (5.23) lead directly to the following coupled set of

equations:

i.e.,
zZ, 1, =ab) (@ = 0,4l,...)
Zwa(x = pa) (p = 0,+1,...)

—Jk
1 o zomn _ — ~ -~
jweo nz_m ijzomn % " %m Jsmn T “wixm
=-a - b - Eot o (m = 0,+1,...)
1 w e—szomn _ — . ~
jwe Z 2jk ay B Jsmn - Zw n
0 m=~-® zomn y
= —ay b - Eot 6n (n=0,+1,...)
in which
2 =P «F T
mn omn mn mn
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(5.23b)

(5.24a)

(5.24b)

(5.25a)




= = = = _jkzooo = 3%,000" =
b="p___ - ( - A + T y « p1L (5.25b)
foYe) 00 0o 000
Since kzooor = korcose i_kor << 1, we have
b=P «(F <A _+1) -pP 1 (5.26)
000 00 00 000

Equations (5.24) can now be solved for the wire currents, and the solution
to the problem is formally complete. We address the problem of solving

eq. (5.24) in the next paragraph.

3. GRID CURRENTS
Equations (5.24) may be rewritten as follows:

(e -]

+ = = 0,%1,... .2
u I nz_m Vonlyn = Ron (m = 0,%1,...) (5.27a)
+ = =
ol mz_m X I =528 (n = 0,%1,...) (5.27b)
in which
_ 1 o (1,1) zomn
Um W jwe X mn 2jk b (5.28a)
O n=—> zZomn
1 (1,2) e zomn
Vv = - == -
mn jwe %nn 2jk a (5.28b)
o zomn
1 (2,2) e 20mm
W= - = yooa - (5.28c)
n W jwe -, mn 23 zomn®
_ 1 a(z’l) o zomn
mn jwe  “mn 2ik b (5.28d)
o zomn
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(1,1) (1,2)

R =E (b cosfBcos¢ + b cosfsing)
o o6
+ E ¢(—b(1’l)sin¢ + b(l’z)cos¢) (5.28e)
o
S =E (b(z’l)cosecos¢ + b(z’z)cosesin¢)
o} 09
+ Eo(b(—b(z’l)simb + 522 6s4) (5.28£)
2
(1,1) _ 2 2 _ 2 + zomn
qnn B afmn[ko(l + Emnkzomn) kxm(l Emn €. )]
+b. KK (1 +E K ) (5.29a)
fmn o yn mn zomm
2
L2 D) Lk e+ zomn,
mn mn fmn xm yn mn e
b, Kk _k_(1+E K> ) (5.29b)
fmn o xm yn mn zomn )
k2
(2,2) _ 2 2 _ 2 + zomn
gmn - afmn[ko(1 + Emnkzomn) kyn(l Emn €. )]
2.2 2
+ bfmnkokxm(l + gmnkzomn) (5.29¢)
(1,1 _ 2 2
b =1t #r00?foo T %00 Aookxo T 200 fookyo (5.29d)
(1,2) _ ,(2,1) _
b =D B kxokyo(afoobAoo + aAoobfoo) (5.2%e)
(52 =1+ 2 2 (5.29f)

#x00%f00 * @)oo fookxo * 2£00” 100 yo
Equations (5.24) can be solved numerically for ixm and iyn; however,
Hill and Wait [19] have shown that in the case where the dielectric layer
is absent (i.e., the wire grid is in free space), convergence of these
equations can be extremely slow. They found that by incorporating a

Kirchhoff's-law junction condition into the solution, the convergence
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was radically improved. Anticipating a similar difficulty in the present
situation, we shall modify eq. (5.24) by incorporating junction conditions
which should speed the solution.

Consider the functions

w’ .
£ = %—J ;. L 2inmx/a (5.30a)
g () = —2 L Hnmx/a (5.30b)
a (21)7 n=- n
which are shown in Fig. 5.2. Ea(x) has a unit jump discontinuity at
x=0, +a,...; ga(x) has a unit discontinuity in slope at x=0, +a,... . Let
us write for Ix(x,y = gb) and Iy(x = pa,y):
-jk_gb -jk_ x
= = yo X0
I_(x,y =qb) =e e [Af_ (x) + s 8 (%)
v 1 enHma (5.31a)
-jk__pa -jk__y
_ - X0 yo _
Iy(x pa,y) = e e [-af (y) + sygb(y)
+ ) I e~2miny/b, (5.31b)

yn

n:—a)
The parameters A, Sx’ and sy are still to be determined; it will be noted,
however, that Kirchhoff's current law is automatically satisfied at the
wire junctions. The expressions given in eq. (5.31) are equivalent to
as
A

I X
I =17 - — + (1 -68) (5.32a)
Xm Xm 2mjm (2ﬂm)2 m

The primes on the summation signs in eq. (5.30) and elsewhere indicate
that the term n=0 is deleted.
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~ ~ r A bs
I =1" + — _ 11 =8) (5.32b)
yn yn [ZWJH (2mn)> n

It is now required that the charge density on each wire be continuous

at the junctions, i.e.,

a1 a1
X - 5_§ (5.33a)
9x xX=pa- x x=pa+t+
a1 a1
3—1 = 5—1- (5.33b)
Y ly=qpb- % ly=qo+

for all p,q. The conditions of (5.33) are obtained from the continuity
equation. Imposing these conditions yields expressions for S, and sy in
terms of A:

s = ijk_A (5.34a)
x X0

S

S L (5.34b)

If these expressions are introduced into eq. (5.32), we obtain

- - 1 ik 02

L= 17 - A8 )5 X 5] (5.35a)
Xm xXm ] (27m)

. . L L

I =1 + A(1-6 )] — + ] (5.35b)
yn yn n’ "2win (2ﬂn)2

The final condition to be imposed is that the charge density on the
"x-wires'" be equal to that on the "y-wires' at the junctions. This
requirement leads to the condition

dI
(5.36)

which yields the equation for A:
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2 .2 2 2
a

k° b k
_ |1 yo 1 X0 -1
A—b(l+ 12)+a(1+ 12)
3 nz_m konlon = mz_m_kxmlxm (5.37)

This last condition may be interpreted physically by noting that it implies
no potential difference between the wires at a junction. Kontorovich (4]
used a more general condition than (5.36) to include the effect of a

finite junction impedance. Inclusion of this effect in our analysis can

be shown to modify eq. (5.37) by an additive term ¢ in the first square

brackets; and

g = ijZj ‘ (5.38)
where Z., is the junction impedance and K is a proportionality constant
given by

1
K=g— [qx(x=pa,y=qb) - qy(x=pa,y=qb)] (5.39)
Pq

qu is the junction potential difference and 9, and qy denote respectively
the linear charge densities on the '"'x-wires" and the "y-wires." It is
tempting to proceed with incorporating this junction condition in our
present analysis. However, Wwe Trecognize that by initially formulating
our problem with the x~wires and y-wires coplanar, the solution for the
currents will converge to the result for which =0, no matter what value
of ¢ is initially assigned. Therefore, we shall consider only the bonded-
junction limit in the present work, and reserve the case of finite
junctipn impedance for further study.

Incorporating eqs. (5.35) into eq. (5.27) and simplifying, we obtain
a new set of coupled equations for the "modified" space harmonics i;m

and i’ as follows: together with eq. (5.37), we have
n
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uIs o+ ¥ © -PA=RS (m = 0,+1,...) (5.40a)
m~ xm ne—w MR YD m o m
WI” + ) X I +QA=S38 (n =0,*1,...) (5.40b)
nyn Mo WO X n on
in which
jk a
P = Zi'm = 2 a - Gm)
m m J (2mm)
o, jk b
- -7 21, o (5.41a)
ne-w M0|27jn (20m)? |
jk b ]
Qn - wn Zi'n + - 2 a- 6n)
J (2nm) J
®, jk_a
-7 - o (5.41b)
me—e W0 2Tim (2um)
‘ The various summations required in the evaluation of the currents can be

put into rapidly convergent form by adding to and subtracting from each
summand its dominant behavior for large values of the summation index,
and then performing the sum over the added dominant terms in closed

form. We readily obtain

a(l,l) -jk r
_ Iy =2nr/b.-1 mo e zomo
U =2 - —+——2n(l - e > - .
m \ 2rjwe jwe 2ik b
(o] (o] Zomo

- 3%, onat
L N zomn 9n ~2nlme/o

jue = | mn 2jk, b AL

(5.42a)
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(2,2) -jk
r zoon
_ D oon(l - —2nr/a)—1 on e
Wo = % T Zmjwe Jue, 23k, 0003
/™ zomn T
_ 1 °E°‘ 2(2:2) e n_ _-2|m|rr/a (5.42b)
jwe o | ®n0 2jk omn® 4 m|m
@ v s
2 ‘mn _ m _ _=2mr/by-1
Z . n 2mjwe fn (1 )
o " zomn s _ .
_ ‘l ) (1,2) e _ -2 . 2[njwx/b (5.42¢)
jwe ) 2 & mn 2n3kzomna 4|n|m
o an tn 27rr/a -1
y —=- - n(l - )
m 21 jwe
m=—(1)
® "% zomn t ;
_ .l Z a(2,1) e _ __n ~2|m|7x/a (5.42d)
jwe 2 o | mn Zkazomnb 4 m|w
in which
2
2k
s 1 _ ., 2 _ Xm
q, = lllm a = ko T+ & (5.43a)
n e r
2
2k
_ , (2,2) _ .2 _ yn
r = 1im a = ko 1+ e (5.43b)
[m|oe r
=41k
= 14 (1,2) b _ " xm
Sm |iT2m 2 na a(&:r + 1) (5.43c)
-41k
o as (2,1) a2 _ yn
tn IiTTm 2nn mb b(er + 1) (5.43d)
The above results hold when d > 0. (If d = 0, the correct results are

obtained by setting €. 1.
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We are now in a position to calculate the wire currents in a
relatively efficient manner, and from the currents to construct all
the field quantities of interest in the problem. Our principal interest,
however, is in developing a relatively simple characterization of the
screen embedded in the surface of the composite, in the form of an

equivalent sheet impedance. This problem is addressed in the next

paragraph.

4. EQUIVALENT SHEET IMPEDANCE OF THE GRID
In this paragraph we derive an equivalent sheet impedance for the
wire orid embedded in the surface of the dielectric laver. The relation

which we seek is

-1 .3 (5.44)
SO0 S SO0

o
(ST

too = Zs )
which relates the space-averaged tangential electric field at the grid

to the space-averaged surface current density [cf. eq. (2.16)].

From eqs. (5.11la), (5.14a), and (5.17a) we obtain

E (z=0) =—2—PF @G +7 )
too JwEO 000 00 00
-+ ¢ -F K _+P ) -m
JwEO 000 00 Q0 000 00
r‘o = = == ~
- ;;5 secH POOO . FOO . Poo . JSOO (5.45)
(o)

and using eqs. (5.15) and (5.25),

0
1"
0
@
P
L]
(S

Etoo(z=0) =bh + B - (5.46)

00 S00
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Now substituting eq. (5.44) in (5.46), we have

= ~ = n =
Z + 3 =b +E_  -— secd a .
s S00 ot 2k2 00 soo

i

(5.47)

The system of eqs. (5.27), or (5.37) and (5.40), can, in principle at least,

be reduced to a system of the form

U1 + VI = R (5.48a)
X0 yo o
X1 + WL = S (5.48b)
X0 yo o
or, equivalently,
bU aV I /b R
X0 o
- - - = (5.49)
LbX aw Iyo/a SO
Now,
R
0 = -
=b - Eot (5.50)
S
o
and defining
bU aVv
Z = 5.51
o L (5.51)
bX aW
we obtain
Zg ) Jsoo =b- Eot (5.52)

Substituting eq. (5.52) into eq. (5.47) yields

n

E

secH a_ . (5.53)

7 =7 =
S & 2k

owN
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which is the relation required. It is evident that the problem of finding
the equivalent transfer impedance E; has been reduced to determining the
impedance E;. This can always be done numerically, of course: calculating

the currents I and T from (5.37) and (5.40) for given E and E
X0 yo o o

0 ¢

permits the evaluation of 6, 6, &, and i; however, we recognize that
in the applications we have intended to consider, the mesh dimensions
will always be much smaller than the wavelengths involved. As a
consequence, an approximate analytic solution can be obtained.

The approximate solution is based on the fact that in the low-
frequency limit, the system of equations (5.40) together with the
auxiliary condition (5.37) has proven to converge using only one modified
space~harmonic in IX and Iy (discussion of the appropriate numerical
results is deferred to paragraph 7 of this section). Therefore, in

this limit, we have

U=U +k fp (5.54a)
(o] X0 (o]
V=V -k fP (5.54b)
00 yo o
X=X -k £Q (5.54¢)
W= W+ kyof Q, (5.54d)
in which
1 kzzobz 1 kioaz -1
f=J[g(l+ 12)+2(1+ 12)] (5.55)
Thus, if
z z
_ SXX sXy
z, = (5.56)
z z
SyX sSyy
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then

~3%00n
1,1)
Z = Zwb - 'ie ! ] -{aén
SXX JWE S p=—o zoon
jk_ b
x? a 2min (27n) on
-jk .
—fk w, zoon jk_ b
1
A =1 X aéi’Z) e2’k [2w'n + 2] (5.57b)
SXy  JWE e %2000 J (2mn)
-jk r .
-fk ®, zomo jk_ a
1 1
z - X0 }‘ an(]g, ) 32'k [2'rr'm + X0 2] (5.57¢)
syx  JWe =—0 3% 20mo J (27m)
o _jkzomo
. 2,2
Zsy N jie ! jk {aéo’ )
y 0 m=—« Zomo
jk_ a
T z]aii’l)} (5.57d)
y J (2mm)

In obtaining the above results we have used the approximation
exp(jkor cosf) = 1. In order to simplify the results of eq. (5.56)
further, we take the limit as k a, k b, k.,a, k,b, k a, and k_ b all

o o d d X0 yo
approach zero, retaining only terms of first order in the final results.

We obtain, after some tedious manipulation,

kob kob kio jf
stx = Zwb + Jno 27 le - Jno E;_';f— 1+ a )LZb (5.58a)
o

nof kxokyo

Zoxy © T T Zme . “2b (5-580)
nof kxok o
[ —z_.

Zsyx 211k0 L2a (5.58¢)
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koa koa kyo if
= j — ~ —_ L= + <= .
Zsyy Zwa + Jno 2w L1a Jno 2n k2 (1 b )LZa (5.584)
o
in which
o  -2nmr/q _
L, =} &——— =30 - e 2mr/qy-1 (5.59a)
1q = n
n=1
o e—Zmrr/q L+ e /er
L2 - X — [ -- i q I ] (5.59b)
4 n=1 1+ 5t (e +—)
2 q T €
T
t = tanh (2274, (5.59¢)
nq q
where g = a or b.

Let us now consider the eigenvalues of the impedance matrix ZS for
the case of a square mesh, a=b. It is easy to show that the two eigenvalues

z and ZS are given by

sl 2
e 2
_ . o _ _—2nr/a,-1
Zsl = Zwa + ]no(ZTT Y2n (1 e ) (5.60a)
koa kio )
Z82 = ZSl - Jno(zTT ) B LZa (5.60b)
2k
o
2 2 2 2,2 . .
where k =k + k = k"sin"8. Consideration of the eigenvalue equation
to XO yo (o]
(Zs - ZsiI) . Jsoo =0 (5.61)
for i = 1,2 reveals that
for Zs = 251’ kto . Jsoo =0 (5.62a)
for ZS = ZSZ: kto x Jsoo =0 (5.62b)

where Eto =k a + k Ey. The conditions of eq. (5.62) are immediately
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recognized as those corresponding to perpendicular and parallel polarization

respectively; therefore

ZSl = Z; = l/Yé (5.63)

is the equivalent sheet impedance for a perpendicular-polarized field,

and

zZ,=2"=1/y" (5.64)
s s

s2
is the equivalent sheet impedance for a parallel-polarized field.
Several features of these results are worthy of some discussion.
These are:
(a) Z; and Z; (or Y; and Yg) are isotropic, i.e., they do not depend
upon the angle ¢. This result is not surprising, since a bonded
wire mesh in free space is known to behave isotropically [4,19]
at low frequencies.

(b) Zé and Z; are not equal except when Eto = 0; thus the wire mesh

is fundamentally different from a simple surface admittance

layer in this respect.

(c) Z; is dependent upon kio’ so the wire mesh is spatially
dispersive. This result also agrees with the known results
for the wire mesh in free space.

(d) Z; depends upon €. and d. Physically, this occurs because for
parallel polarization a normal component of electric field is
present which penetrates the dielectric layer. The real impor-
tance of this result is that the behavior of the grid depends
upon its surroundings. As a consequence, the total behavior
of the grid and the dielectric layer cannot be found by

considering these components separately.
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(e) The function LZa is bounded as follows:

¢n(l - e“ZTTr/a)_l > L, >

~2nr/a.-1
— 2a e

en(l ~ )

+ |

The upper bound follows from setting €. = 1 and/or d = 0 in
(5.59b); the lower bound follows from letting d/a become large
in that equation.

(£) With regard to the observation made in 5 above, it must be
emphasized that ler] cannot be too large, since the condition
(kda/Zﬂ) << 1 must hold in order for our approximate analysis
to be valid.

The thickness of the dielectric layer can be simply accounted for

by defining an equivalent relative permittivity eeqr as follows:

e =2 gn@ - e 2mrlay-l (5.65)
eqr L2a
eeqr will depend upon d/a, € and (weakly) upon r/a; and
koa kio -2rr/a.-1
Z" = Z a + jn_¢( Y[1 - 18n(l - e ) (5.66)
S W o 2w 2
k™(1 + ¢ )
o eqr
where 1 < ¢ < ¢ . We have calculated curves of € vs. d/a for
— eqr — r eqr

various values of €. and r/a; the results are shown in Fig. 5.3. It

is evident from these numerical results that when d/a is greater than

unity, eeqr = €3 and since this is the situation which normally prevails

in wire-mesh composite applications, we shall set Eeqr =€ in the

remainder of this Note.
A generalization of this result is obvious: if a wire grid is
embedded between two dielectric layers of relative permittivity €1 and

€9 and the thicknesses of both of the layers exceeds a, then the equiva-

lent surface transfer impedances of the grid will be simply
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jou _a
) -2nr/a-1 (5.67a)

ZS = Zwa + 7m tn(l -~ e ) .
jou a k2 .
¢4}
20 = za+— 2 (1 - e~ 2mr/ay=1 [y _ 5 to ] (5.67b)
s v " Koe . +€..)
o' rl r2

The physical reason behind these results is simply that the reactive field
of the wire grid decays exponentially in the directions normal to the
grid as exp(—Zﬂ\zl/a); and if the layer boundaries are sufficiently far
removed from the grid, these boundaries are not "felt" by the reactive
field.

It is convenient to express the equivalent sheet impedance for a

square mesh in dyadic form as

(-3k, ) -3k, )

ZS = zslI + ZSZ 5 (5.68)
k
o)
or in dyadic operator form as
_ A~ - Vtvt
Zs B slI + ZSZ 2 (5.67)
k
o]
in which
~ koa
Zsl = Zwa + Ny 27 la (5.70a)
~ koa
ZsZ - Jno 4 L2a (5.70b)

and Vt denotes the transverse or surface del operator. The eigenoperators

for perpendicular and parallel polarization are then given by

-

Zé = ZSl . (5.71a)

-

z" + 2 \72/k2

s Zsl s2't' o (5.71b)
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We have used the fact that Vt is equivalent in the space domain to _jEto
in the Fourier spectral domain to construct the result (5.69) from
(5.68) and (5.71b) from (5.67b). Curves of Z; = RS + jXS are shown
plotted as functions of frequency for typical screen parameters in
Fig. 5.4.

In the next paragraph we shall consider the problem of transmission
of a plane electromagnetic wave through a planar layer of the wire-mesh

composite, using the equivalent sheet impedance E; which has been developed

in this paragraph.

5. THE TRANSMITTED FIELD

Having developed an equivalent sheet impedance operator to characterize
the wire-mesh screen, we may make use of the boundary-connection formalism
developed in Section II to solve the problem of transmission of a plane
electromagnetic wéve through a planar wire-mesh composite shieldf. The

boundary connection relation for our problem is (cf. eq. (2.19))

E_(0-) M E (d+)
t - tll tl2 . (5.72)
r'oHt(o-) Mo1 £22 n Ht(d+)
in which
€11 = 1 cos kzdd (5-733.)
M, =-—"T7sin k .d (5.73b
tl2 /e—r- n zd * )

TWe could, of course, calculate the transmitted field directly from the
analysis in paragraph 2 of this section. However, in the frequency range
of interest for EMP studies, the approach based on the equivalent Z is
much simpler. s
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Figure 5.4a. Curves of RS and Xs (Z; = Rs + sz) vs. fréqueﬁcy;
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= - =1 = .
= ¥ k .d (5.73c)
Mt21 no cos kzdd a, X ZS + €. U sin 2d
M T o a2 xzhH T (5.73d)
= — — i . U -
Mt22 I cos kzdd - sin kzdd (az x ZS )
r

and U is given in eq. (2.9) with k = kOVEr and kz = kzd'

For perpendicular polarization, the elements ﬁzij are, when kzdd << 1,

M'. =1 5.74a)
Mg =T (
M= -5 3 x T 5.74b
g12 = Tikgda, <1 ( )
M), = )" a_ x I 74
Migp = [ng(2g) — k_ la, x I (5.74¢)
= _l _—
M = i ! .74d
iy = [1+ 3kdn (z0) "I (5.74d)
and for parallel polarization, we have

= =

Mtll =1 (5.75a)
_ ko

(1] = - - T

MtlZ — a, x I (5.75b)

or

= _l - B

" - " .

Mipy = [no(Zs) + Jkot-:rd]az x I (5.75¢)
= kidd 1.,=

" — . 1wy — =

Mi, = [1+] ke, n,(29) TIT (5.754d)

We have introduced the approximation kzdd << 1 because such a relation
will hold for a composite panel of this type over the entire EMP frequency

range: for example, if e = 4.0 and d = 2mm, kzdd < 0.0084 at £ = lO8 Hz.
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Now carrying out an analysis similar to that done in Chapter III,

we obtain for the transmission coefficients T' and T" the expressions

no -1 jkod -1 —jkod cosH
T' = {l + [E_ (Z;) + 2 (er—l)]sece} e (5.76a)
n jk d
"no_ _0 " -l —O -
™ = {l + [2 (ZS) + 2 (er 1) ]cos®
. jk d _ -1 -jk d cosS®
+ 5 sinze(l - %—)[sece + no(Z;) 1]] e ° (5.76b)

r
to first order in (kod). It is clear from eq. (5.76a) that for perpendi-
cular polarization, the equivalent sheet admittance for the wire-mesh

composite layer is

1 jkod

' = A% -

Ys,eq (ZS) + (er 1) (5.77)
o

which is in agreement with the result given earlier in eq. (2.31). For

parallel polarization the "equivalent'" sheet admittance is

-1 jk d
" = "
Ys,eq (Zs) +

(er—l)
o

jk d

+ o]

sin26 sec8 (1l - %—)[sece + no(Z;)—l] (5.78)
o r

The equivalent sheet admittances given above can be substantially
simplified if we restrict our attention to realistic screen parameters
and the EMP frequency range. For example, a screen with a = 0.635 mm
(40 x 40 meshes to thé inch) made of stainless-steel wire (conductivity
1.1 x 106 mho m—l) of radius 0.05 mm yields a value of lno(Z;)-ll greater

than 3 x 103. Thus we may neglect terms proportional to kod; and

T ~ v‘l
YS’eq = (Zs) (5.79)
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and, except for angles of incidence 8 very close to 90°,

1" ~ 1] -1
Ys,eq = (ZS) (5.80)

It is therefore apparent that the screened composite layer is essentially
equivalent to the screen alone, insofar as its behavior as a shield is

concerned. It should be noted, however, that the effect of the dielectric
layer does indeed enter the results, in that Z; depends upon the relative

] 12}
permittivity of the layver. We give explicit expressions for Y ’

S,eq
for plane waves below:
Jwu a
' . o _ _~2wr/a-1.-1
Ys,eq = [Zwa + ¢n(l - e Y 7] (5.81a)
n = [Z a+ Juuya a1 - e—ZTrr/a>—l(l _ sinze )]—1 (5.81b
s, eq W 2m 1+ ¢ - )

For fields other than plane waves, sinze should be replaced by kio/kg.

The transmission coefficients T' and T" are given approximately by

-jk d co
VoL I%¢ ¢ sb 2cos6
T =e ) (5.82a)
2cos8 + n_(Z")
o s
-jk d
"o, 1 o cos9 2secH
T = e (5.82b)

2sech + n (Z")-l
o'’s

These very simple expressions will quickly yield numerical values for the
frequency-domain transmitted field. Some representative curves of the
magnitudes of T' and T" as functions of frequency for various angles of
incidence are shown in Figs. 5.5-5.8.

The problem of transmission of a transient EMP signal through the
wire-mesh composite layer is of interest and may be easily attacked.
For simplicity, we shall assume that Zw = (nrzow)_l, i.e., that the screen

wires have radii small in comparison to the skin depth over the frequency




MAG (T)

OO
=t 30°

- 60° N\

?
]

o a = 0.212 mm
o r = 0.051 mm

o o =1.1x lO6 mho m_l

¥ T T VT TTTF} [ Il yrang T T T TITTTTY 1 T T ITTTIT] T T 1T 1TV 5TT)

102 103 10
FREQUENCY (HZ)

Figure 5.5a. |T'| vs. frequency; a = 0.212 mm, r = 0.051 mm,
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range of interest.

This assumption will be reasonably valid over most

of the frequency range occupied by an EMP signal, and will lead to a

relatively simple analytical expression for the transmitted field.

Setting

up a Laplace integral for the transmitted fields E;(T) and EE(T), we

easily obtain

|

" - -
Et’ (T) = Ae ot vt Y %
§’ +vyv° -o
1 1"
- Ae—BT 1 I T "
6 > + ,Y bl - B
\ " ] " 1] 1
_ s + ’ > -
Ae (6 Y )T lj_ﬁ " o0y 6 B '('B'{a’_ii' t o1 (5-83)
1’ +y’> —o)(@ > +v’> -38)
in which A, o, and B have been previously defined, and
2

y' = — — (5.84a)

uorzow n(l-e 2nr/a) 1
sinze -1
Y=y (1l - T+ ¢ ) (5.84b)
T

5t = Tc secH (5.84c)

a Qn(l—e_Z“r/a)_l
"o_ 1 2 sinze -1
§" = 8'cos™O(1 - T + Er) (5.84d)

Now for angles of incidence not too close to 90°, §' and &" are large

in comparison to «, B

for the transmitted f

)
)

E
t

|

§

+

» v', and y".
ield is

(0 = L E ()

3>

1 dEo

Therefore, an approximate expression

dt

|

T n
6 ’

(5.85)
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in which EO(T) is given in eq. (1.1). The factors y'/8' and y"/68" are

given by
]
%T = ———235—— cosb (5.86a)
T nro
o W
"
‘%W = ———235—— sec6 (5.86b)
Tnro
o W

Note that the quantity nrzcw/a plays the same role in these expressions
as does the quantity cgd in related formulas for the graphite composite
case. Curves of Et(T) vs. T at normal incidence are shown for two
representative cases in Figs. 5.9 and 5.10.

The shapes of the Et(r) curves of Figs. 5.9 and 5.10 can be
understood readily in terms of the "differentiating" or high-pass charac-
ter of the bonded wire-mesh screen. The sheet impedance of the screen

comprises both resistive and inductively reactive components, and thus

increases in magnitude with increasing frequency. The effect of this
behavior on the transmission coefficient in the frequency domain is
¢vident in Figs. 5.5 through 5.8: configurations with g, = 1.1 x

10° mho w ™t yield values of |T'| and |T"| which are nearly constant with
respect to frequency over the range of interest, and the sheet impedance
is primarily resistive. Increasing the wire conductivity to 3.72 x lO7
mho m—l decreases the resistive component of the sheet impedance, making
the reactive component relatively more important. For the two mesh
size/wire radius combinations considered, the transmission coefficient
at low frequencies is higher for the case a = 0.212 mm, r = 0.051 mm than
for the case a = 0.635 mm, r = 0.127 mm, as a consequence of the fact

that the second configuration contains more metal per unit area, even

h )
though the mesh size is larger. On the other hand, the inductive reactance .
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of the 0.635/0.127 configuration is larger than that of the 0.212/0.051
mesh, for equal wire conductivity; the magniéude of the transmission
coefficient for this case is correspondingly greater at higher frequencies.

The effect of this behavior on the time-domain transmitted electric
field is evident in Figs. 5.9 and 5.10. The 0.212/0.051 mesh yields
an Et(r) response which is nearly independent of g, up toT =5 X lO_12
sec; this early-time behavior is principally a result of the inductive
reactance of the sheet impedance. At later times the resistive component
of the sheet impedance exerts the dominating influence on the transmitted
field.

The 0.635/0.127 mesh, on the other hand, yields a much higher
amplitude for the transmitted field at early times (again, up to T = 5 X

10712

sec, the response is nearly independent of ow) as a consequence of
its larger ;nductive reactance. The late-time amplitude is again dominated
by the resistance of the screen, although some undershoot is apparent

for T > 2 x 10_9 sec for the case of the larger wire conductivity.

The most interesting comparison to be made among the four curves

presented is that between the two higher-conductivity cases. The finer

. . . . 2
mesh, even though its equivalent conductivity-thickness product 7r ow/a

is smaller by a factor of 2 than that of the larger mesh, yields a

smaller transmitted field. This observation leads one to conclude that
the conductivity~thickness product alone cannot be used as a measure of
the effectiveness of mesh shields. The time-domain behavior of the
incident fields must also be taken into account; in fact, an interesting
problem for further study would be to design a screen to yield minimum

transmitted field under a given set of constraints.
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One should also compare the curves in Figs. 5.9 and 5.10 with

those in Fig. 5.4 for the planar graphite composite layer. The pulse

shapes have already been discussed. Of interest, however, is comparing
the peak transmitted electric field amplitudes for the two types of com-
posite. TFor example, a 2 mm thick graphite panel of conductivity Gg = 1,5 %

lO4 mho m_l yields a peak transmitted electric field amplitude of 9.7 x 10-5;

the 0.635/0.127 mesh yields a peak value of 45 x 10—5; and the 0.212/0.051 mesh,

15 x 10-5. The screened panel would thus seem generally to be a poorer

shield than the graphite panel, at least at early times. We will return to

this type of comparison in the next section.

6. THE PERFORATED SCREEN MODEL FOR A WIRE MESH

In this paragraph we briefly consider the problem of transmission of
a plane electromagnetic wave through a periodic square array of square

apertures in a perfectly conducting plane, in order to compare the results

to those previously obtained for the wire mesh. Our purpose is to gain
some insight into the behavior of the mesh screen when the assumption
r/a << 1 does not apply and the thin-wire approximation breaks down.
Let the screen be in the surface z=0 and let the apertures be square
of side length h and centered at (x = (m + 1/2)a, vy = (n + 1/2)a) for
~» < m,n < ®. The geometry is shown in Fig. 5.11. It is well known
(cf., e.g., [20]) that an electrically small aperture in a conducting
screen can be modeled in terms of equivalent electric and magnetic
dipoles. We therefore consider the electromagnetic field radiated by
a planar array of electric and magnetic dipoles in free space located
at (x = (m+l/2)a, y = (n+l/2)a, 2=0). The electric and magnetic

dipole moments are assumed to be given by

114



STT

Figure 5.11.

Perforated screen geometry




—jkxoa(m+l/2)

pe(x =ma + a/2, vy = na + a/2) = Peor228
-y +
. jk,a(ntl/2) (5.87a)
- _  —jk a(wtl/2)-jk a(nt+l/2)
pm(x =ma + a/2, y = na + a/2) = Poo® Y

(5.87b)

in which Ee denotes the electric dipole moment and Bm denotes the magnetic

dipole moment. P and p__ are constants; furthermore p =p
eoz mo mo

pmoyay'

When the period of the array a is very small in comparison to the

free-space wavelength, the radiated electric field is easily shown to be

E = 1 (kxopeoz _ )e-kaoX - Jkyoy - szoz (5.882)
X 2a2 wso moy
k_ p -jk. x - jk_ vy - jk =z
E = 1 ( yo'eoz . Ye X0 yo zo (5.88b)
y 2 WEe mox
2a
-jk. x-jk y-jk =z
Ez B é [k oPmoy ~ k oPmox Zis (kio + kz )le * 7o =
22k X Y y o yo
z0
(5.88c)
in the region z > 0; also, k2 = kz - kz - kz .
zo o X0 yo

Now the dipole moments Pao and Em& are given in terms of the fields

4

EZo and ﬁto which would exist in the plane 2z=0 if the apertures were

closed by the relations

eoz JmEomeEzo (5.892)

o
[

Pro —jun e Hto (5.89b)

in which ae and @ denote respectively the electric and magnetic polariz-

116




abilities of the apertures. Latham [20] has calculated these polariz-—

abilities; his results are

3 _ 0.114 (h/a)>
1 + 0.104(h/a)>

3 _ 0.260 (h/a)>
1 - 0.185(h/a)>

Let us now assume that a perpendicularly polarized plane wave is

incident upon the perforated screen from the region z<0. Then Ezo and

H are given by

to
E =E' =90 (5.
zo zo
_ B —ZEécosa _ _
= ! = - + i .
Hto Hto Y (aX cosd ay sing) (5

in which Eé denotes the electric field amplitude in the incident wave;

furthermore, k = k sinb cos¢, k = k sin® sin¢, and k = k cosf, in
X0 o™ yo o Zo o

which 6 and ¢ are the incidence angles. The transmitted electric field

amplitude is now easily shown to be

i = 3 3 !
Ltrans Jkoacose(am/a )EO (5.

When a parallel-polarized plane wave is incident upon the screen,

the fields E and H are
Zo to

E = E" = -2E" sin#é (5.
zo zo o
_ _ 2E"
- " = - . -
Hto Hto ey ( a, sin¢g + ay cosé) (5.

where E; denotes the electric field amplitude in the incident wave. The

transmitted electric field amplitude is

" = . 3 - : 2 11
Etrans Jkoa sece(um/a Y[l (ae/am)31n G]Eo (5.

117

(5.90a)

(5.90b)

91a)

91b)

92)

93a)

93b)

94)



Now let us compare the expressions given in eqs. (5.92) and (5.94)

with those obtained for the electric field transmitted through a perfectly

conducting wire mesh screen, in the low-frequency limit. We have, from

the results obtained in the previous paragraph,

' - 1 _ _—2mr/a,-1 _,
Etrans = Jkoa cosf p- an(l e ) Eo (5.95a)
" I _]; _ ~2mr/fa,-1 - l . 2 "
Etrans = Jkoa sech - an(l e )y (1 > sin e)E0 (5.95b)
Examining eqs. (5.92) and (5.95a) for Eérans’ we see that the expressions
% Rn(l—e-ZFr/a)_l and am/a3 (cf. eq. (5.90b)) are to be compared. We

shall compare them on the basis of equal optical coverage by letting

h = a-2r. The two expressions are shown as functions of v/a in Fig.
5.12. The wire-mesh model factor is always larger than the perforated-
screen factor; the former is accurate in the limit r/a - 0, and the
latter is accurate in the limit r/a -+ 0.5. It is clear that the wire

mesh model overestimates the transmitted field amplitude, and therefore

underestimates the induced currents on the screen, for values of tr/a
which are not very small in comparison to unity.

Examining eqs. (5.94) and (5.95b) for Egrans’ we see that the relevant
comparison is between the constant factor 0.5 for the wire-mesh model and
the ratio ae/am for the perforated-screen model. This ratio is shown as
a function of r/a in Fig. 5.13. It is apparent that the mesh model
overestimates the importance of the "sinze" term in the transmission
coefficient for parallel-polarized fields. The reason for this is probably
the use of the thin-wire approximation in the analysis of the mesh model.
In effect, the equivalent permittivity of the mesh for electric fields

normal to the plane of the mesh, caused by induced line dipole moments

on the wires, has been ignored. It is clear from our earlier analysis
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of the effect of a dielectric environment on the wire mesh that including
. . . . 2

these line dipole moments would decrease the coefficient of the "sin 8"

term and thereby improve the accuracy of our approximate solution for

the sheet impedance operator E;. This aspect of the problem would seem

worthy of further study.
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7. NUMERICAL COMPUTATION OF GRID CURRENTS

The equations (5.37) and (5.40) can be solved for the modified
current harmonics I;m and I;n by means of the procedure outlined in this
paragraph. We begin by substituting eq. (5.37) into eq. (5.40), thereby

eliminating the wvariable A from further consideration and yielding

© -~

yows +3493p 1 yoow_ -39 p y1r =R (5.95a)
& mn 2 m xn’ " xn & mn 2 m yn’ “yn o m
n=-o n=-—o
K B - oo R
- Jda ' 192 o 5.95b)
) + + =5 g .
nz_w(qnm 2 kaxn)lxn nz_w (wmdmn 2 kayn)lyn So(?m (
as the coupled sets of equations for I' and I' . Also,
xn yn
a ,1 kiobz 1 kioaz -1
=g G+ )+ G+ 2 )] (5.96)
Now define matrices E: . i s ﬁz , and ﬁ such that
xx> xy’ yx vy
vl = jga
M dm = Yl T2 Pukn (5.97a)
N - _ Jjaa ' -
(Mxy)mn an 2 Pmkyn (5.97h)
M = - Jga
(Myx)mn X oo 7 W¥sn (5.97¢)
v = jga
(Myy)mn wmémn + 3 kayn (5.97d)

and let f; and T; denote the modified space harmonic current vectors.
Finally, let R and §o denote the "driving" vectors; these each possess only

a single nonzero element. Then the coupled equations (5.95) may be written
= R (5.98a)

t L)
XX x Xy y o

=S (5.98b)
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This system 1s readily solved for I' and f;. We obtain

I'= N_-R -N_ -5 (5.99a)
X xr o xS o
Ir= N _-R%R -N_ -5 (5.99b)
y yr o ys o
where
N o= @t oW o -uMteu ytoxt (5.100a)
xr Xy XX vy yx xy
N =@M r.ed -mr.ugyt.ogt (5.100b)
xs Xy XX yy yx yy
N o=qalow -ul.moytont (5.100¢)
yr XX Xy vX vy~ XX
N =@t .M -mt.om ytot (5.100d)
ys XX Xy yx vy yx
and the solution is formally complete. A can now be calculated using
eq. (5.37).
The calculation of the grid impedance E; defined in eq. (5.52) is
straightforward. We readily obtain
- — -1
1 = 1 =
- b ( xr)oo b (Nxs)oo
7 = (5.101)
g
1 = 1 =
a (Nyr)oo T a (Nys)oo

Now using eq. (5.533), we may calculate the equivalent sheet impedance E;.
The efficient numerical evaluation of the matrix elements defined in
eq. (5.97) has already been discussed (cf. eqs. (5.42) and (5.43)).
We have calculated the eigenvalues of the equivalent sheet impedance
operator ?; as a function of N, the number of modified space harmonics

included in f;,and f; (note that N = 1,3,5,...), for the case d/a = 1,
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b/a =1, rfa = 0.01, € = 4.5, ¢ = o, 8 = 60°, where ¢ = 0° and 45°

and koa = 1.0 and 0.1. The results of these computations are shown in

1 T n

Figs. 5.14-5.17, in which values of X; and X; (Z;’ = jXS’ ) are
plotted vs. N. The rapid convergence of X; and X; with increasing N

is evident (note, however, that in the ¢ = 45° cases this is not at

all surprising, since there is no discontinuity in the junction currents
when ¢ = 45°, 135°, 225°, or 315°, by symmetry). The use of the N=1
case to derive an analytical approximation for 3; when koa << 1 is
justified by the rapidity of convergence apparent in Figs. 5.16 and

5.17 for koa = 0.1

fNote that for typical mesh dimensions the maximum value of koa occurring
in the EMP frequency range is of order 107~.
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SECTION VI

CYLINDRICAL WIRE-MESH COMPOSITE SHIELDS

1. INTRODUCTION

In this section we shall consider the interaction of a plane elec-
tromagnetic wave with an infinitely long cylindrical shell of wire-mesh
composite. As in Section iV; we shall consider only the cases in which
the propagation vector of the incident wave has no component along the
cylinder axis.

In the next paragraph, the problem is formulated in the frequency
domain using the equivalent sheet impedance developed in the previous
section to describe the screen in the surface of the composite shell.
Some representative frequency-domain results are presented. In paragraph
3, we briefly consider the transient behavior of the internal magnetic

., field when the circumference of the cylinder is small in comparison to
the wavelength over the frequency range of interest and the temporal

behavior of the incident wave is that of the standard EMP signal.

2. FORMULATION OF THE PROBLEM
The geometry of the problem is shown in Fig. 6.1. An infinitely
long cylindrical shell of wire~mesh composite of inner and outer radii
a and b respectively is illuminated by a plane electromagnetic wave.
The medium inside and outside the shell is free space and the shell
thickness d = b - a is small in comparison to the mean radius Vab.
The side of the wire-mesh composite in which the grid is embedded is
the outer surface of the cylinder. For simplicity we shall again consider
only the case in which the incident wave's propagation vector has no

lx\ axial component, and we shall investigate the two possible wave polarizations

separately. The total fields may then be obtained by superposition.

129



N
7]

Incident Wave
Composite Shell

Figure 6.1. Plane wave penetration of, and scattering by, a cylindrical
shell of boron-epoxy composite with a bonded wire-mesh screen
in the outer surface: geometry of the problem
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The shell itself is modeled as an equivalent sheet impedance, based
on the results obtained for the planar case in the previous section.
We shall denote the mean shell radius by Poe Z;, which, as will be
recalled, depends upon the transverse propagation constant, will be

denoted Z; for each angular eigenfunction in the field expansion, and
b

(6.1)

Consider first the case in which the incident electromagnetic wave

is polarized TM with respect to z. In this case, the field components are

EZ = —jwuo‘«y (6-2a)
oY
H, = - — .
0 % (6.2b)
1 a¥
H == — .
0 T (6.2c)
where
s % in(o-¢")
0<op e ¥ jwuo nz_w Aan(kop)e (6.3a)
S (2) in(4-¢")
p 2o ¥= Tou, nz_w [J (ko) + B H " (k p)le (6.3b)

An and Bn are to be determined, Eo is the electric field amplitude of
the incident wave, and ¢' = ¢o + w/2, where ¢o is the angle of incidence

as shown in Fig. 6.1. The appropriate ZS for this polarization is Zé.
Now the boundary conditiomns at p=po are applied. We have

Ez(p =p,") =E(p=pH) = E (o =0)) (6.4a)

Hy(o = ot = Bylo =02 = ZD7T B, = p) (6.4b)
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from which expressions for An and Bn are readily obtained. We find

n ozt
_ o' ’s (2) -1
An = [l + ﬁkopo - Jn(kopo)Hn (kopo) (6.5a)
-1
nO(Z;) ”
Bn = —nkopo —————2————-Jn(kopo)An . (6.5b)

When the incident wave is polarized TE with respect to z, the field

components are

Hz = jweo® (6.6a)
oo
E = - — .
5 5 (6.6b)
1 3¢
E == 22 6.6
) p 9¢ ( c)
where
Es % Jn(o-9")
. - ]
0<p ey &=y Z A'T (k p)e (6.7a)
0 n=-w
s ° 2) in(4-9")
. = - t
o >p: ¢ ik, ng_m [3_(kp) + B'H " (k p)]e (6.7b)

A; and B; are to be determined. At p = Py the boundary conditions to

be applied are

E(=p-)=E (= po+) =E (o =p) (6.8a)

= = ___n'l -
Hz(p =p,t) - Hz(o =p,7) = -2 T E (e =0)) (6.8b)

in which

" -1 - ]

(Zg) " E (o) = nz_m (25 D7 Ega(py) (6.9)

We find for A' and B'

n n

" _l
n (Z_ )
_ 0 "s,n ' ) -1

An = [1 + nkopo - Jn(kopo)Hn (kopo)J (6.10a)
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.

" -1
no(Zs’n)

v ' 2 4 6.10b
B! nkopo 2 [Jﬁ(kopo)] Al ( )

The energy shielding ratios T, and r; are given in terms of An and
A; in eqs. (4.12) and (4.20). To obtain expressions for T and r;
appropriate for the screened composite cylindrical shell, An and A&
given in eqs. (6.5a) and (6.10a) are substituted into eqs. (4.12) and

(4.20) respectively. When koa << 1, approximate expressions for T, and

r are
w
-2
1 {‘ . -1
T = 1 -ijkp n (Z") in k p ‘
k a<<l Fa o 0 (e} s o 0
UNCIPRIER
+ ‘l + jkopo 5 f (6.11a)
-1
n " ) T -2
ol el e ]
k a<<l -
o -
@ -2
o O

Curves of T, and r; as functions of frequency are given for various values
of screen parameters and a cylinder radius oy = 1 min Figs. 6.2 and 6.3.
(am, rather than a, denotes the mesh size in this section). As in the
related curves for the graphite shell, we note that unless O = oy r, > 1
and r; - 0.5 as £ » 0. The reason for this behavior, as before, is that
r; contains only a contribution from the internal magnetic field, while
both the internal electric and magnetic fields contribute to L Also,

we have not included curves for r; in the case €. = 1; over the frequency

range shown, they are indistinguishable from the curves for the case

E_ = 4.,5.
T
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Comparison of Figs. 6.2 and 6.3 with Figs. 4.2-4.7 reveals

that for cylindrical geometries the screened boron-epoxy composite shells

with o, = 1.1 x 106 mho m-1 are comparable to graphite composite shells
in shielding effectiveness, while those with o, = 3.72 % 107 mho m—l are
decidedly superior. The reason for this is that the principal break
frequency, below which the shielding is relatively poor, is approximately
l/(wuopo(nrzcw/a)); and nrzow/a, which is the equivalent conductivity-
thickness product for the mesh is comparable to cgd for graphite shells
when o, = 1.1 x lO6 mho m_l, but is significantly larger than cgd when

o, = 3.72 x 107 mho m T,

Not shown in the r, and r; curves is the higher-frequency effect of

the screen inductance. This is apparent in the time-domain internal field

response, which is discussed in the next paragraph.

3. TIME-DOMAIN SHIELDING

The ratio of the internal magnetic field to the incident magnetic

field in the frequency domain is readily shown to be given when kopo << 1
by

H,

ﬁ -+ ke, 22 T (6.12)
for either polarization. This result does not involve the relative
permittivity of the composite shell at all, since the case in which

the magnetic field is perpendicular to the cylinder axis corresponds

to perpendicular polarization (and Z; does not involve er), and the

case in which the magnetic field is parallel to the cylinder axis

utilizes only the n=0 angular eigenfunction in the low-frequency limit

(and Z; does not involve er).
’

0
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When the screen wires are perfectly conducting, the result in

eq. (6.12) reduces to

int
H

™o _ -2nr/a_ _,y-1
{l + 3—9-1n l(l - e ™ 1
inc - m

a —2nr/am

m
;E—‘,Q,n(l—e )
o

-1

13

(6.13)

which is a constant, independent of frequency. Thus the time dependence
of the internal magnetic field is identical to that of the incident
field, except for a constant attenuation. This behavior is attributable
to the combined ""differentiating" effect of the perfect screen and the
"integrating'" effect of the cylindrical geometry.

Another simple result of some interest is obtained if we assume
1

that Zw = Rw over the frequency range of interest, where Rw = (ﬂrzow)_

is the resistance per unit length of the screen wires. In this case, we

—21rr/am -1

find that when (am/ﬂpo)ﬂn(l-e ) << 1,

int amL jo + ZNRW/UOL 6.10)

inc TTpo jo + ZRwam/uopo

-2nr/a -1
in which L denotes &n(l-e ) . The impulse response of the internal
magnetic field is therefore approximately given by
a L 2Ra =-(2R a /u p )t
. I w m wm O o
Hint(t) _—”po §(t) + _—”opo e (6.15)

so that the internal field response to a standard EMP waveform is
dominated at late times by the slowly decaying exponential function in
the second term in (6.15). More specifically, under standard EMP

excitation, the intermal magnetic field is given by
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1 =-at
= e - = e ]
o3

- -at -Bt T wm
noHint(t) * o Ale - e ] + A[

(6.16)

. A(é ) %) [ijam)e—(ZRwam/uopo)t
oo

in which we have made use of the fact that (8 and o) >> 2Rwam/uopO in
typical cases. Representative curves of noHint(t) vs. t are shown in
Figs. 6.4 and 6.5 for various values of screen parameters and a
cylinder radius, Py = 1 m.

The curves in Figs. 6.4 and 6.5 show very clearly the enhancement
in shielding effectiveness with increasing wire conductivity. In the
curves of Fig. 6.4, for example, the peak value of the internal field
drops from about 0.09 to about 0.005 when o, is increased from 1.1 x 106
to 3.72 x lO7 mho m_l. One will also note the long '"tails" of the internal

field waveforms due to the term in the expression in (6.16) depending

on t as exp(—ZRWamt/uopo).

Comparing the lower-conductivity curves in the two figures, one notes
immediately that the 0.635/0.127 mesh is a better shield than the 0.212/0.051
mesh; this is a consequence of the larger equivalent conductivity-thickness
product of the former configuration. It is also apparent that the
"integrating' effect of the cylindrical geometry has delayed the onset of
the peak signal, in comparison with the planar case (cf. Figs. 5.9 and
5.10). Thus the wire conductivity (or, more precisely, the equivalent
conductivity-thickness product) controls the behavior of the internal
waveform. In the higher-conductivity cases the inductive reactance of

the screen becomes more important: one will notice the peak in the
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response for the 0.635/0.127 mesh near t = 2 x lO—9 sec. This peak is

absent in the response of the 0.212/0.051 mesh because of its lower
inductive reactance.

Finally, if one compares the responses in Figs. 6.4 and 6.5 with .
those in Fig. 4.8 for the graphite composite cylindrical shells' internal
field, one notes that the peak internal field for the thickest graphite
composite shell is about the same as that for the "worst-case'" screened
boron-epoxy composite shell; furthermore, the 'best-case' screened boron-
epoxy shell response is lower than that of the thickest graphite shell by
a factor of roughly 20. One could conclude from these results that a fine
mesh screen made of highly conducting (Al or Cu) wire would be a much better
shield for cylindrical geometries and EMP waveforms than even a thick

graphite laminate.
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SECTION VII

CONCLUDING REMARKS

1. SUMMARY AND DISCUSSION

In this Note we have considered both the frequency-domain and time-
domain shielding provided by graphite-—epoxy and screened boron-epoxy coml
posite laminates in planar or cylindrical geometries, with respect to EMP
signals and spectra. Graphite—epoxy éomposites have been modeled as
isotropic, homogeneous conducting materials and boron-epoxy composites
as isotropic, homogeneous dielectrics. The screen used in screened
boron-epoxy panels has been modeled under the assumptions that the wire
junctions are bonded and that the thin-wire approximation applies. These
assumptions may, in fact, not be well-satisfied in practice (the wire
junctions may be imperfect due to oxidation at the junction points of
overlapping wires and the condition that the wire radius is small in
comparison to the mesh period is not generally well met); however, they
provide a reasonable starting point for analysis and yield conservative
estimates of the mesh shielding effectiveness, since the thin-wire approxi-
mation tends to underestimate the mesh current.

We have developed a boundary connection supermatrix formalism which is
a generalization of the transmission matrix of network theory. Such a
formalism will be useful in dealing with shielding problems involving
bodies of non-separable shape as long as the local radii of curvature are
small in comparison to the shield thickness. The boundary connection
supermatrix possesses many intersecting properties which
have not been touched on here but which will be the subject of a forth-
coming Interaction Note. The principal utilities of the boundary connection

supermatrix are its generality (in that general multilayer shields with sheet
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immittances between layers are easily described) and the fact that its
use effectively reduces the number of regions which must be considered
in a shielding calculation by at least omne.

The transmission of electromagnetic plane waves through planar
graphite composite laminates is straightforward to analyze, and some useful
approximate formulas for the transmission coefficients of such a struc-~
ture have been given. The transmitted time-domain field behaves in a
manner easily understood on the basis of the low-pass filter characteristic
of conducting materials. We have calculated some time-domain curves for
typical cases and have found, for example, that the peak value of the
electric field transmitted through a 2 mm thick graéhite composite panel
is approximately lO“4 of the peak value of the incident field.

Penetration of electromagnetic fields into the interior of cylindrical
shells of graphite composite has been considered. Over the.frequency range
which has been of principal interest to us, and for cylinder radii on the
order of 2 m or less, resonance effects are of little importance. Con-

" sequently, low-frequency approximations are useful. We have suggested a
new frequency-domain measure of the shielding effectiveness of closed
surfaces in terms of the time-average electromagnetic energy stored in the
interior of the region, and have given simple formulas for this quantity
for cylindrical bodies. We have also presented representative curves to
illustrate the dependence of this shielding parameter on frequency for
several typical graphite-composite cylinders, and have pointed out that
the principal '"'break frequency'" below which the shielding is poor is given
approximately by l/nuoogdpo. The time-domain internal magnetic field

resulting from an incident EMP signal has been calculated for some
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representative cases. Its time dependence can be understood on the basis

of the "low-pass' character of both the composite shell material and the

cylindrical geometry itself.

The principal difficulty in treating screened boron-epoxy composite
laminates lies in finding an appropriate sheet-immittance description for
the screen. We have developed such a description appropriate for the case
where the mesh dimensions are electrically small, and which takes the
presence of the composite panel into account. Our result constitutes an
extension of the classic work of Kontorovich. Using this method of
characterizing the mesh we have addressed the problems of plane-wave
transmission through a planar screened boron~-epoxy composite layer and
penetration into the interior of a cylindrical shell of screened composite
material. We have found that the composite layer itself, except for its
effect on the Sheet impedance of the screen, is relatively unimportant
insofar as the shielding behavior of the screened laminate is concerned. ’;-*’
Thus one needs to consider only the sheet impedance, properly modified to
take into account the presence of the composite layer, in the analysis of
shielding problems.

The principal difference between graphite and screened boron-epoxy
composites from a signal-transmission standpoint is that the graphite
composite tends to act as a low-pass or integrating filter, while the
screened boron-epoxy composite behaves as a high-pass or differentiating
filter. Thus the time-domain field transmitted through a planar layer of
screened composite contains a contribution proportional to the derivative
of the input waveform, as a result of the inductive component of the screen

impedance. For standard EMP incident signals, this leads to an early-time

l46



response dominated by this derivative term, while the later-time response

is influenced most strongly by the wire conductivity in the mesh.

The cylindrical screened-composite shell is of particular interest
from an analytical standpoint because the integrating effect of the
cylindrical geometry tends to cancel the differentiating effect of the
wire-mesh screen. In fact, for an ideal screen with perfectly conducting
wires the internal magnetic field waveform is identical, except for a
reduction in amplitude, to the incident waveshape. For the screen para-
meters which have been considered in this report, it has been shown that
the energy shielding ratio principal break frequency tends to be lower
than that of a comparable graphite composite shell, especially when the
screen wires are highly conductive. Thus the screened boron-epoxy com-
posite shell can be a much better shield than a graphite composite shell as

a consequence of its larger equivalent conductivity-~thickness product.
. However, we have.also noted that the equivalent conductivity-thickness
product alone is not a completely wvalid descriptor of screened composite
panels; it is only useful at low frequencies, or, equivalently, at late
times. At early times the mesh size is the critical parameter, since it
determines the inductance of the sheet. 1In fact, we have presented
numerical data which indicate that overall, a screen with a smaller
equivalent conductivity-thickness product can be a better shield than
another with a larger product, at least with respect to the incident-field
waveforms considered here. This result suggests the possibility that one
might even design a screen, whose wires have a given conductivity and
which possesses a given amount of metal per unit area, for optimum shielding

performance against a given incident waveshape.
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2. CONCLUSION

It is clear that while advanced composite laminates are not yet as

effective as, say, aluminum panels in shielding against unwanted penetra-

tion of electromagnetic fields, they are nonetheless good enough to be used

as aircraft or missile skins without placing an unreasonable burden on

the internal shielding (conduit, cable braids, etc.). This fact, coupled

with the strength and weight advantages of advanced composites, guarantees

the increased future use of these materials, and points up the importance

of continued study both of their intrinsic electrical properties and of

the fundamental electromagnetic boundary-value problems which involve them.
Some suggested problems for future study include the following:

(a) Integral-equation formulation of scattering problems involving
hollow composite shells, using the boundary connection supermatrix+.
(b) Singularity Expansion Method (SEM) solutions of transient
scattering/penetration problems involving Qollow composite
shells of separable or non-separable shape’

(¢) Study of effects of imperfect panel-to-panel joints and joints
between metallic and composite panels

(d) TField penetration through apertures in composite panels

(e) Continued study of bonded and unbonded wire meshes, including
the effects of linear and nonlinear junction impedance and
dielectric environments

(f) Canonical problems involving the propagation of surface waves
on wire meshes, including interactions with nearby conductors;
composite waveguides.

These are only a few of the many problems which come to mind. Advanced

composites provide solutions to many problems because of their great

strength and light weight; but to the electromagnetic theorist and the

+Currently under study by the author.
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engineer concerned with electromagnetic shielding, they are a source of
many future challenges. It is sincerely hoped that this report will
contribute to an improved understanding of the electromagnetic shielding
behavior of these materials and excite the interest of other investigators

who will continue to study them.
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