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ABSTRACT

Surface current and charge densities induced on aircraft
fuselage by an electromagnetic plane wave of arbitrary inci-
dence at high frequencies is the object of this research. The
primary goal of this investigation is to develop a theoretical
solution for predicitng the induced surface and charge densities
on ailrcraft fuselage in an accurate and efficient manner. Since
it is a study of general-type aircraft, the aircraft is modeled
in its.most basic form. The fuselage is assumed to be an infin-
itely long, perfectly conducting elliptic cylinder in its cross-
section and a composite elliptic cylinder in its elevation
profile. The wing, cockpit, stabilizers (horizontal and vertical)
and landing gear are modeled by "n" sided bent or flat plates
which can be arbitrarily attached to the fuselage.

The solution developed in this study utilizes two elliptic
cylinders, namely the roll plane and elevation plane models to
approximate the principal surface profile (longitudinal and
transverse) at the observation location. With the belt concept
and the aid of appropriate coordinate system transformations
the solution can be used to predict the surface current and
charge densities induced on the fuselage in an accurate and
efficient manner. The radiation patterns due to infinitesimal
monopole and slot antennas en aircraft are related to the sur-
face current and charge densities 1nduced on the antenna loca-
tion via the reciprocity theorem.
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SECTION I
INTRODUCTION

The object of the research is to calculate the surface current
and charge density induced on aircraft by an incident electromagnetic
plane wave. The primary goal of this investigation is to develop a
theoretical solution for predicting the induced surface current and
charge densities on the aircraft fuselage in an accurate and efficient
manner. Since it is a study of general-type aircraft, the aircraft is
modeled in its most basic form. The fuselage is assumed to be an in-
finitely long perfectly-conducting elliptic cylinder in its cross-section
and a composite elliptic cylinder in its elevation profile. The wing,
cockpit and stabiiizers (horizontal and vertical) are modeled by "n'"-
sided bent or flat plates which can be arbitrarily attached to the
fuselage. The cylinder solution employed in the analysis is quite
accurate and useful in that reasonable approximations are made in ob-
taining the necessary diffraction terms.

The surface current and charge density induced on the aircraft
fuselage with plane-wave incidence are related to the radiation patterns
due to fuselage-mounted, infinitesimal monopole and slot antennas. The
relation between them will be discussed in the following. Let (Ei,E%),
(Eg,Ei) and (Eg,Eg) be the radiation patterns due to an infinitesimal
monopole, axial slot and circumferential slot antenna respectively.
Let.(pg1;p21) be the induced surface charge density, and (J$1,J¢1),

i i .
(Jg ,J$1) be the induced surface current density due to 8- and ¢-

%

incident plane waves with unit electric field intensity. From the
reciprocity theorem, the following relations exist:
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Note that the fuselage axis is assumed to be the z-axis of the
conventional spherical coordinate system where & (theta} is the angle
measured from the z-axis and ¢ {phi) is the angle measured from the
x-y.plane. A &-incident plane wave means the electric field intensity
associated with the incident plane wave is eé-polarized. Simjlarly, a
¢-incident plane wave means the electric field intensity is ¢-polarized.

Since extensive experimental scale-model measurements for flush-
mounted and blade antennas on aircraft are available for comparison, the
analysis for the induced surface current and charge density is carried
out in terms of antenna problems.

Based on the two principal plane (roll and elevation) modet analyses
from previous work [1] and extensive work on prolate spheroids [2], a
numerical solution for the volumetric pattern of fuselage mounted
antennas is developed. The solution present here not only predicts the
volumetric pattern accurately, it also reduces computer time and improves
computational efficiency considerably over that of a previous surface of
revolution approach [2]. The validity and capability of this new solu-
tion are illustrated through comparison with extensive scale-model
measurements performed at NASA (Hampton, Va.).

Among the first solutions used to compute on-aircraft antenna pat-
terns were the modal solutions for infinitely long circular [4,5] and
ellipticatl [6] cylinders. These solutions modeted the fuselage by a
cylinder whose elliptical cross-section approximated the fuselage cross
section at the antenna location. Arbitrary antennas were considered in
these studies in which the antenna was mounted either on or above the
fuselage. However, these solutions were not always adeguate in that the
effects of various scatterers such as wings and stabilizers were ignored.

A more recent approach for solving antenna pattern and impedance
problems is the integral equation method via moment methods. By enforc-
ing the boundary conditions on aircraft structure, the surface currents
and the resulting scattered fields can be found. One of the first moment
solutions applied to aircraft problems was the wire grid technique, de-
veloped by Richmond [7], using a point matching scheme [8]. This solution
required the determination of approximately 100 unknown currents per
square wavelength in order that the wire grid adequately model a per-
fectly conducting surface. A more sophisticated approach has been developed
by Richmond [2] in which the reaction technique is used to solve for the
unknown currents. Yet this solution still requires a wire grid model of
the aircraft with approximately 100 unknown currents per square wave-
Tength.

Another approach is the surface current model method [10] in which the
surface of a conducting body is divided into patches with each patch
having two orthogonal unknown complex currents. Using this approach, the
unknown currents have been reduced to about 20 per square wavelength.
Thus, one is able to consider a much larger surface using these surface
patch solutions. However, all of these solutions are restricted to lower




frequencies, based on the fundamental Timitation on the size of matrices
which modern computers can solve without excessive loss of accuracy.

Another approach that has found great success at analyzing aircraft
antennas is the Geometrical Theory of Diffraction (GTD). GTD is basically
a high frequency solution which is divided into two basic problems; these
being wedge diffraction and curved surface diffraction. The wedge dif-
fraction solution has been applied to determine the radiation patterns
of such basic antennas as parallel plate antennas [11,12,13], parallel
plate arrays [14,15], horn antennas [16,17], parabolic reflectors [18,19],
and rectangular waveguide antennas [20]. Both of these diffraction
solutions have been applied in computing the patterns of antennas mounted
on cylinders [21,22,23], rockets [24], wings [25,26], and aircraft [1,2,
27-32]. Using this approach, one applies a ray optics technique to de-
termine components of the field incident on the various scatterers. Com-
ponents of the diffracted field are found using the GTD solutions in terms
of rays which are summed with the geometrical optics terms in the far
field. The rays from a given scatterer tend to interact with the other
structures causing various higher order terms. In this way one can trace
out the various possible combinations of rays that interact between
scatterers and determine and include only the dominant terms. Thus, one
need only be concerned with the important scattering components and
neglect all other higher-order terms. This makes the GTD approach ideal
for a general high frequency study of aircraft antennas in that only the
most basic structural features of the aircraft need to be modeled.

Since GTD is essentially a high frequency solution, the Tower fre-
quency limit of this solution is dictated by the spacings between the
various scattering centers in that they should be at least a wavelength
apart. In some cases even this requirement can be relaxed. Under this
restriction, the Tow frequency Timit is typically around 100 MHz. The
upper frequency limit is dependent on how well the theoretical model
simulates the important details of the actual structure.

The basic approach applied in the present study is based on previous
work [1] which demonstrated the capability of the numerical solutions to
predict the radiation patterns of fuselage mounted antennas in an ef-
ficient and economical way. If the volumetric patterns were found
directly by analyzing rays on complex three-dimensonal surfaces as done
previously in Reference [2], the resulting numerical solution would be
very complex, time-consuming, and uneconomical. Nevertheless, if certain
assumptions can be made, the approach undertaken previously can be used to
overcome these difficulties and simplify the problem a great deal.

First, it has been shown by comparison with numerous scale model
measurements that the roll plane model (an infinite elliptic cylinder
with flat plate wings) can be extended to cover almost the complete
volumetric pattern except for two conical sectors (fore and aft) [30].
The Timitations of the roll plane model are due to the finite, Tength of
fuselage. Yet, the problem of finite Tength fuselage has been solved,
previously, in an elevation plane analysis (an infinite composite




elliptic cylinder). Furthermore, based on previous three-dimensional
studies of geodesic rays which contribute to the radiation pattern of an
antenna on various prolate spheroids, one is able to combine the analysis
of these two models to give the complete pattern.

In addition, the cockpit/radome section and vertical stabilizer
previously ignored are taken into account in the present study. The
cockpit/radome section and stabilizers are approximated by flat or bent
plates which can be arbitrarily attached to the fuselage. This is an
improvement over the previous roll plane model [1]. Using this approach,
the complete volumetric pattern can be obtained with a model consisting
of a composite elliptic cylinder to which are attached flat or bent
plates. As a result of this simplified model, the solution is very
efficient and requires Tittle computer storage.

The basic theoretical background on the geometrical theory of
diffraction (GTD) is presented in Section II. Both wedge diffraction
and curved surface diffraction are discussed. The infinitely long
elliptic cylinders (curved surfaces) is also presented in that section.
This formulation is essential for fuselage mounted antennas. Section II
also includes the near field scattering by a finite bent plate which is
necessary for the determination of the scattering effects of secondary
contributors such as wings, cockpit, and stabilizers.

Section III describes the mathematical model of the aircraft.
This section starts with a review of the two principal plane (roll and
elevation) analyses and their application to the radiation patterns.
It, then, explains the way these two analyses are combined into a com-
plete solution for the three dimensional ajrcraft model. The computer
simulation method to approximate the cross section and elevation profile
of an aircraft fuselage is also discussed.

Section IV presents the numerical results for the antenna patterns
using these newly developed solutions. Volumetric patterns of both cal-
cutated and the experimental results are presented to demonstrate the
validity and capability of this solution. Section V presents the calcu-
lated surface current and charge densities induced on various aircraft
models. A complete volumetric pattern for the charge density induced on
a Boing 737 is also presented in this section. Finally, a summary of
the present study and a discussion of future topics are presented in
Section VI.




SECTION II
THEORETICAL BACKGROUND

As stated in the introduction, the Geometrical Theory of
Diffraction (GTD) is ideal for a general high frequency study of
fuselage mounted aircraft antennas and induced surface densities of
current and charge. This is particularly true when the scattering
object is large in terms of the wavelength such as for electrically
Tlarge aircraft. An aircraft shape is, in general, quite complex con-
sisting of many complicated scattering structures. To be able to obtain
an accurate radiation pattern, one must take these various scattering
structures into account.

Based on past performance, the GTD has proven itself well suited
to this type of analytical study. Not onily does this approach fit
nicely into a ray optics format, but it also provides a means of
analyzing the effects of three-dimensional structures and identifying
the significant contributions in the resulting antenna pattern. Con-
sequently, the GTD is employed in this study to analyze the volumetric
patterns of fuselage-mounted antennas.

The Geometrical Theory of Diffraction was introduced by Keller [33]
as an extension of geometrical optics to include diffracted fields in the
high frequency solution. The theory is based on the following postuiates:

(1) The diffracted field propagates along rays which are
determined by a generalization of Fermat's Principle to
include points on edges, vertices, and smooth surfaces in
the ray trajectory.

(2) Diffraction 1ike reflection and transmission is a Tocal
phenomenon at high frequencies, i.e., it depends only on
the nature of the boundary surface and the incident field
in the immediate neighborhood of the point of diffraction.

(3) The diffracted wave propagates along its ray so that
(a) power is conserved in a tube (or strip of rays),
(b) the phase delay along the ray path equals the

product of the wave number of the medium and
the distance s.



Using these postulates, one can express the diffracted field
in the same form as a geometrical optics field with some coef-
fieient of proportionality to the incident field at the point of
diffraction. The coefficient is determined from a canonical
problem and is referred to as a diffraction coefficient.

For practical purposes, the GTD can be divided into two
categories: (1) wedge diffraction theory - to treat diffraction
by edges and (2) creeping wave theory - to treat diffraction by
curved surfaces. The GTD has evolved considerably from jts
original form in References [34] and [35]. Consequently,
descriptions of the wedge diffraction problem and the diffraction
by a curved surface are presented in the following paragraphs.

1.  DIFFRACTION BY A WEDGE

An asymptotic solution for the diffraction from a con-
ducting wedge was first solved by Sommerfeld [36]. Originally,
plane wave diffraction coefficients as presented by Keller were
used as the sole GTD solution; however, as shown in Reference
[37] diffraction of cylindrical waves is necessary in the treat-
ment of antennas.

Pauli [38] introduced the Vg function as a practical
formulation to the solution for a finite angle conducting
wedge. Recently, however, Hutchins and Kouyoumjian [38,40]
presented a formulation for the diffracted field (Vg), which
significantly improves the accuracy over that obtained from
Pauli's form. This improved diffraction solution [39,40]Vg(L,¢,n}
provides superior results in the transition regions (near the
incident and reflected shadow boundaries). It can be written
in the form

Vg(Lsgon) = 1 (Lygon) + I, (L,4sn) (1)
where
-j(kL + w/4)
I, (Lyoyn) =2 S Jreot(EE) « @
=n jnJ 2rn
jkla [ -3l
e e dr + [higher-order terms]
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and where the higher-order terms are negligible for large kL
and with n defined by the wedge angle [WA = (2-n)w]. Also,
a=1+cos (¢-2n7N) and N is a positive or negative integer
or zero, whichever most nearly satisfies the equations

2nmN-¢ = -7 for T__ (3a)

2nmN-¢ = +m for I, (3b)

The variables L and ¢ are defined later.

The three-dimensional wedge diffraction problem is depicted
in Fig. 1. A source whose radiated £ field is given by E(s) is
located at point s'. It can be an arbitrary electric or magnetic
source causing a plane, cylindrical, conical, or spherical wave
incidence on the wedge. The diffracted vector field at observa-
tion point s can be written in terms of a dyadic diffraction
coefficient. Kouyoumjian and Pathak [41,42] have given a more
rigorous basis for the GTD formulation and have shown that the
diffracted fields may be written compactly if they are in terms
of a ray-fixed coordinate system. The ray-fixed coordinate
system is centered at the point of diffraction Qg (or points of
diffraction in the case of plane wave incidence). Qp is a unique
point (or points) for a given source and observation point. The
incident ray diffracts as a cone of rays such that the half cone
angle 8g = B'y, the angle which the incident ray makes with the
edge . :

The relationship between the orthogonal upit yectors associ-
ated with the ray-fixed coordinate system (s’,8'0,¢'; S,So,¢) are
given by

U D>
i ou

85 X g ‘ (4)
8

where f is the incident direction unit vector, and s is the
diffraction direction unit vector. The diffracted field is,
now, given by

—d

E%(s) = E1(0) - Dp(s,1) Als) &3k (5)

The quantity A(s) is defined in Equation (13,) and Qg is the diffraction
point located on the edge.
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Where
DE(S’I) = 'Bé BODS -0'0 Dh (6)

Equation (6) is a dyadic diffraction coefficient as given in
Reference [41,42]. The guantities Dg and Dp are the scaiar diffrac-
tion coefficients for the soft (Dirichlet) boundary condition at
the surface of the wedge and the hard (Neumann) boundary condition,
respectively. These diffraction coefficients Dg and Dy are
related to the VB function described earlier by a constant as

Jr oJkL
b= i, BT 7)
h 0
where L will be defined Tater when applied to straight edge.

For our purpose, it is more convenient to write the diffracted
field in terms of the Vg function in Eq. (7) as*

ed(s) vy 0] el o
J s
. O
. (o]
Ed(s) o -vilLel(op) (8)
where
Vg = Vg(L,e7,n) ¥ Vg(L,e",n) (9)

The minus sign (V) applies for the E-field vector parallel to the
edge with boundary condition

( lwedge) =0 B (10)

*1f an edge fixed coordinate system is used, Eq. (8) takes the form
of a 3 x 3 matrix.
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The plus sign (VE) applies for the E-field vector perpendicular
to the edge with boundary condition

(% ) =0 (11) | y
an wedge

The angular relations are expressed by -

=0 =¢ F ¢ (12)

where the minus sign (&) is associated with the incident field
and the plus sign (¢%) with the reflected field. The quantity
A(s) is a ray divergence factor given by [41,42]

1 ptane, cylindrical (s =p},
» Jj; and conical wave incidence
A(s) =< (13)
ET271§7_ spherical wave incidence

and ‘L, distance parameter, is gfiven by [41,42]
2

s sin By plane wave incidence
!
L = ﬁ “%135” cylindrical wave incidence (14)
* .2 . .
s's sin Bo conical and spherical wave
L—S_!_—S. incidence.

For the two-dimensional wedge problem, illustrated in
Fig. 2, where there is cylindrical wave incidence with By = 90°,
Eq. (8) reduces to give

edore)] [-v; 0 1[EdGe"as") N

22
~ B e prp e‘J D'

d et
EC(050) 0 -VgilEj(o'h4") (15)
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In the far field (p>>p'),this becomes

d - 1 1 1
E“(Os¢) "VB 0 Eﬂ(P 0 ) ‘ e-‘jkp
" JD' e‘]kp 7—_
gd 0 Vel (er,en) ° (18)
.L(p’¢) - .L(p 3¢
-k
Putting this in ray form and factoring out éjg‘p , one obtains
| RY(s) o0 | Rigen
~| B (17)
d + i t
RY(4) 0 Vg Ri(s")
The ray form used here is given by
_ _ -jko
E(p,s) = R(o) & (18)
Je
Thus, R(#) is related to the far field pattern function.
For the three-dimensional wedge problem, where there is
spherical wave incidence, Egq. (8) reduces to give
Ed(s Y Vs 0 Ei(s‘ 8 yt") jks's sinzs
2> Pge B > %o o .-jks
1 - T €
; . N Sl sF
ES (s.8,50) 0 Vgl Ei(sthgyse) |
(19)
In the far field (s>>s'), we have
d(s.e 0] [V 0 ][E (s .8l 0! 2
[1V22Fg3 B It *Pp? jks'sin Bs e~jks
v s'e s
d + .i ] ] ]
Ey(5:8459) 0 -VgILlE (s",8..0") (20)

13
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Putting this in ray form and factoring out g_g__ , it is seen that
Rd( - i ] I3
i 80s¢) -VB 0 R”(Bos¢ ) 2
N e—JkS cos Bo
d + P00
Ri(85¢) 0 -Vg- R (8).0")

It is interesting to note that in the principal plane (B8y = 90°)

the ray form of the three-dimensional case takes on the same form

as the two-dimensional problem.

The total ray value at the observation point s is given by

the sum of the geometrical optics terms and the diffracted terms

Ri(s) = R® 0 (s) + RY(s)

-

where

R'(s) + R"(s) incident and reflected region I

Re-0(s) =< R'(s) incident region II

0 shadowed region III

and R"(s) may be determined from the image of the source term using

basic geometrical optics techniques. These three regions are
illustrated in Fig. 2 for a two-dimensional wedge diffraction
problem.

2.  DIFFRACTION BY A CURVED SURFACE

When an incident ray strikes a smooth, curved perfectly
conducting surface at grazing incidence, i.e., at the shadow
boundary, a part of its energy is diffracted into the shadow
region. To describe this phenomenon, Keller [43] introduced
a second class of diffracted rays which is now well known as
creeping waves. These ray paths include the points Q and Q
which form a curve on the diffracting surface, as i]]ustrateg
in Fig. 3. However, the actual concept of creeping waves was
introduced by Franz and Depperman [44,45]. The basic concept
as presented in the following discussion is taken from
"Asymptotic High-Frequency Methods™" by Kouyoumjian [46].

14
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The diffraction by a smooth curved surface is shown in

Fig. 3 in which 0 is the source point and P is the observation
point in the shadow region. Applying Fermat's principle, the
line OQ]Q P is the shortest distance between 0 and P which does
not penetrate the surface. In detail, a ray incident on the
shadow boundary at Qp divides; one part of the incident energy
continues straight on as predicted by geometrical opt1cs, a
second part follows the surface s into the shadow region as a
surface ray shedding d1ffracted rays tangentially as it
propagates where £, 78, and B are the unit vectors in the
direction of incidence, norma} to the surface s and binormal
tc the surface (b =1 x A), respectively. The incident field

qujmay be regolved into its normal and binormal components

. and b - E1(Q1)). It is assumed that these two
omponents induce surface ray fields which propagate inde-
pendently of each other along the geodesic arc between Q7 and

-
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From Reference [46] the binormal surface ray field at Qy
is related to the binormal component of the incident field at Qq
by

(a)

3 -

where Dg(Qy) is the scalar diffraction coefficient for a soft
surface. The amplitude of the surface ray is assumed to be
governed by the conservation of energy between a pair of adjacent
surface rays. Hence, the amplitude behavior of the fields is
given as : :

Q%
l:- J alt") dt']
dn Q',
AQ,) = A(Qy) {d—é : (29)
where
dn] and dn2 = the separation between a pair of rays at

Q1 and Q2, respectively.

a(t) = the attenuation constant wich is a function
of t, the coordinate along the surface ray,
because it depends on the local radius of
curvature and its derivatives.

The attenuation constant «(t) is introduced due to the
tangential shedding of rays as the surface rav propagates. It
is seen from Fig. 3 that Q is a caustic of the diffracted field
and the second caustic is located at a distance p from Q2 Thus,
the binormal component of the diffracted field which radiates
from Q2 towards P can be found, as in the previous edge diffrac-’
tion case, with one of the caustics used as a reference point and
is given by

)

-y o (Q, ik
by + E4P) = D (%) ARy © Ty e (26)
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From Eqs. (24), (25), and (26), there results
b, - E4(p) =| b, - D b_(n,) i
2 =| by - E(Qq)] Dg(Qq) D (D, FpfsTe 7 57

QZ
-j[k(t+s) + J a(t?) d?j

Q
e i (27)

It is found that by - Eq(Q ) excites an infinity of surface
ray modes each with its own diftraction coeff1c1ent and attenua-

tion constant. Thus, the expression in Eq. is replaced by
R dn
. Flpy = / o~Ilk(t+s)]
b2 E(P) = [ dn \/ + §Y
- J a (t') dt’
Q, "

[0, () 0, () e (28)
m

Equation (28) relates the diffracted field at P to the incident
field at Q] for the soft surface boundary condition.

An expression similar to Eq. (28) is also obtained for the
normal component of the incident field; in this case, the scalar
diffraction coefficients and attenuation constants for the hard
surface replace those of the soft surface. Therefore, the vector
diffracted field at P can be written in terms of the electro-
magnetic field incident at Q] as

HE) ={626] v(1,2) + byb, u(T,Z):l B [y e

(29)
in which v(1,2), u{1,2) are

d e
v(1,2) = u(1,2) = |2t eI Tp ()b (2) ¢ ]
2 m
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with the subscripts h, s, respectively, added to Dy and op.

Note that Q) and Qp have been replaced by 1 and 2 for the sake
of brevity. Finding dny, dnp, and p is simply a matter of
differential geometry involving the rays and surface; this is
discussed at length in Levy and Keller [43]. The generalized.
diffraction coefficient and attenuation constant can be found in
Reference [47].

The diffraction thus far discussed is applied to the open
curved surface. For a closed surface, each surface ray mode
produced at Qp encircles the surface an infinite number of times.
The length of the surface ray path for the nth encirclement is
t+nT where T is the circumference of the closed surface. These
multiple-encircling rays may be summed to contribute

T
-3kT - J a (t') dt’
T -e °

to the denominator of the diffracted field. It is interesting to
note that there must be another pair of diffraction points, Q3 and
Qz, for the closed surface as shown in Fig. 4. Therefore, the
field at any point P in the shadow region is the sum of these two
diffracted fields from Q1-Qp and Q3- -Qq. The total field at any.
point in the {illuminated region is, by the superposition principle,
the sum of incident, reflected and diffracted fields. A detailed
discussion of this subject can be found in Reference [47].

3. DIFFRACTION BY AN INFINITELY LONG ELLIPTIC CYLINDER

An important special case of this GTD solution is the one in
which the antenna is mounted directly on the curved surface. This
is especially true for our purpose, since the radiation from slots
and monopoles mounted on smooth curved surfaces is pertinent to
the design of flush-mounted antennas for aircraft and spacecraft.
Recently, Pathak and Kouyoumjian [48-51] have extended the GTD
technique to treat the radiation from apertures or slots in convex
perfectly conducting surfaces. This extension of GTD has been
successfully applied to circular and elliptic cylinders, spheres,
and spheroids. A similar GTD analysis of the radiation from
monopoles on a convex surface has, also, been recently completed
by Pathak and Luebbers [52] with the same degree of success.
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Figure 4. Diffraction by a smooth closed cylindrical surface.

The GTD solutions for analyzing the radiation of antennas
mounted on convex surfaces are found from asymptotic solutions
of appropriate canonical problems [48-51]. In the deep shadow
region, the surface rays excited by the antennas account entirely
for the field there; whereas, the geometrical optics ray field
adequately describes the field in the illuminated region (for
sufficiently large closed convex surfaces, the contribution from
the surface rays is negligible}. 1In the transition region
adjacent to the shadow boundary, the Fock-type functions are
employed to describe the field. This field reduces uniformly
to the surface ray and geometrical optics solutions outside the
transition regions. This modification in the transition regions
is required since the ordinary ray solutions fail therein.
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Using the GTD solution, a launching coefficient is intro-
duced to.re1ate the antenna field to the boundary tayer surface
WaVes wh1ch propagate around the surface along geodesic paths.
Energy is continually diffracted by the surface wave in the
tangent direction to the propagation path. This diffracted
energy is related to the surface rays by a diffraction coef-
ficient which is dependent on the surface geometry at the point
of diffraction. The surface wave energy decays along the
geodesic path in that energy is continually diffracted. This
decay is expressed by an attenuation coefficient which is
dependent on the surface geometry along the geodesic path.

The GTD solutions for infinitesimal slot and monopole
antennas mounted on an elliptic cylinder as shown in Fig. 5
are given, with torsional effects included [49-52], by:

a. - Monopole Case

(1) I1Tuminated region

E = - sin g 8 F(source) (31)

(2) Transition region

(a) ITTuminated side

_ . n' x §O
E=9n . ——— g*(g)
Z)(S0
X n' .
+ b (son) | — : 173
(SR
3
N -3(ks  + £°/3)
g*(z) e F (tangent) (32)

21



b e -
g

_—MONOPOLE

DIFFRACTION
POINT N_GEODESIC 9‘

. } PATH
n
/ACOMPONENT OF FAR FIELD

y PATTERN (TANGENT DIRECTION)
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Figure 5. Geometry of antennas mounted on an infinitely long
elliptic cylinder.
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(b) Shadow side
dw 1/6 | .
T =J__,_0[°9(9) 1 n g*(g) +
v [q(q")
. 6K Yar 1/3 .,
b (sgn) (1) -1 [‘JQ——‘—DQ(Q,)j g*(£)

eIk ¢ (tangent) (33)

(3) Deep Shadow Region

— ~ ~ P 1
E=) [nj E? + bj(sgn?j—ilgl—L -1 \Eg} - F. (tangent)

J °1(Q') J J
(34)
b. Slot Case
(1) ITTuminated region .
E= [(é] sin 8 - éé‘cos 8) x s]- F (source) (35)

(2) Transition Region

{a) Lit side

{ﬁ {Fin . CoS B -

A~

n' - s

™

w >

n' x
t = 9

| —

cos a_ sin BJg*(E)

Qe j/s)

-ilks, + £7/3)

wvr >

e e

+ b Sa(Q)
°2(Q")

- F {tangent)

sin a_ sin Bg*(£)] e
(36)
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(3)

where

(b) Shadow side
I el 1/6 )
E = §-/HEQL5§%%%Y] n [sin (as -8) g*(g)]

t -1 3
+ 5[:31@)_ - j[-.——z—————J ! )sin g Sin 8g*(e)
Pz(Q") kPg(Q')

S (tangent) (37)

Deep Shadow Region

= _ 1 N . h " _pj_(Ql) . . S:|
E == n. sin(a. - g) E; + b, =%/ sin o_ sing E?
2 {% 3 s J I Pe(g) s J
< Fs (tangent) (38)

E = ——— D L e

dy mZO

dy 1 ryS(2)ds
E> 2 5 piiSe M

1/3 . . .
c o3 ’ JQ K . | for i1luminated side
Q' \ 2 2g°(») shadow side

9*(-),5*(-) complex conjugates of the Fock functions [48]
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A A

ﬁ',B',E',ﬁ,b,t normal, binormal, and tangent unit
vectors to the surface, at source point Q'
. - and diffraction point Q, respectively,

F(+) phase factor required to refer the phase
of a ray to the center of the coordinate
system

,dwo/d¢ spread factor and equals unity for this
case [48]

D0 1ongitud1na1vand transverse radii of

97T curvature

i',%' unit vectors in the principal directions
in which the geodesics have no torsion

;o unit vector pointed from the source to
the observation point

S the distance from the source to the

observation point

. Note that the superscripts h and s indicate the hard and soft
boundary conditions, respectively.

The launching coefficients are given by [48]

1/3
h_[ j(w/12) b [ 2 =
LY = qe D {z— ] Ai(-q_)
m m kpg V™1 at the source Q'

. 2/3
LS = [ﬂe”(“m) D;(E——z > Ai(-qm)}
Pg at the source Q'

where Dp is defined in Table 1. The subscript m refers to the
mth mode of the boundary layer surface wave. Thus, ygp is the
propagation constant for the mth mode surface wave such that
ym = op * Jk, where oy is defined in Table I.  The quantity

qp is the root of Miller-type Airy function Aj(-qy), that is,
Aj(-qy)=0. Similarly g is the root of A;(-qy), the derivative
of Ai?-qm) with respect to the argument ot the Airy function.
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The incremental arc length along the geodesic path is expressed
by d&¢. The summation over j in the shadow region indicates that
several terms can contribufe in that region. It is noted that for
a slot oriented at 45° with respect to the z-axis, Egs. (36) to
{38) are not sufficiently accurate for calculating the radiation
pattern as a function of ¢ where ¢ = 45°, For this special case
and for cases sufficiently close to it, an additional correction

term EC should be included as indicated in Reference [50,51].
One must first find an efficient solution for the gecdesic
paths on the elliptic cylinder surface in order to analyze this
problem successfully using GTD. A preferred coordinate system
.for the elliptic cylinder is illustrated in Fig. 6 and defined by

X =d cosh ucos v = ap COS V
y =d sinh u sinv = bf sin v {39)
2=z

where 2d is the distance between the foci of the ellipse.
Note that for u = uf, where uf = tanh~!(bg/af), the preceding
equations define an elliptical surface. Thus, any point on
the elliptical surface is expressed by v, which varies from

0 to 27.

Using the calculus of variations, the z-coordinate of the
geodesic paths on an elliptical surface are given by

Ve _
2(v) = _C J ./afz sin® v + bf2 cos? v dv + 2(v;)

J1-¢2 7Y

Note that v4 and v¢ are, respectively, the initial and final
values of v along a given geodesic path. If one defines the
geodesic starting direction by the angle (ag) as shown in

Fig. 5, then € = -cos ag. The advantage of this geodesic
solution Ties in the fact that the integral can be quickly
evaluated using numerical techniques. The important parameters
of this problem are listed below:

(40)
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Figure 6. Diagram showing the elliptic cylinder coordinate system.

z = 0 % f \/a 2 s1'n2 v+b 2 c 52 v d
Tsin oyl v f £ 0 v
(geodesic equation)

v
.f.‘

Tg%ﬁ—agr JV \/afz sin2 v + bf2 cos2 v dv
i

(arc length)

P
\
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~ - i +
ag sin vx bf CoSs vy

e =
1
2 .2 2 2
J ag- sin” v + bf cos~ v
(curvalinear' coordinates)
't = sinae, - cos ae, (unit tangent vector)
~ bf Cos vx + ac sin vy

n = {unit normal vector)

\[afz sin? v + bf2 cos2 v

~ -~ ~

b=txn-=-cos cxse1 - sin asez
(unit binormal vector)

(af2 si‘n2 v+ bf2 cos2 v)3/2

p =
g . 2
afbf sin” o

(Tongitudinal radius of curvature).

Using the preceding relations, one can employ (31)-(38) to
determine the total radiated fields in the whole space except for
two small sectors around the cylinder axis where «g is near 0 or m,
since the solution fails in these regions.

4. NEAR FIELD SCATTERING BY A FINITE BENT PLATE

The near field scattering by a finite bent plate is a
relatively new topic at higher frequencies where the plate is
large in terms of the wavelength. The solution presented here
is a practical application of the three-dimensional wedge dif-
fraction theory given earlier. The source is defined by its
Tocation and far-field pattern. The far-field pattern of the
sgurce is appropriate in that the plate is located at least
2D2/% away from the source where D is the maximum dimension of
the source. The finite plate is simply specified by location
of its n corners. The junction edge is defined by the first
corner specified plus an additional corner (MC) defined as input
to the computer program. The plate is initially flat (« = 180° in
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Fig. 7). It can then be bent about the line joining corner #]
and MC such that 90° < a < 270°.

STATIORARY

X SOURCE
LOCATION

(XStYSﬁzS)

MOVING
Az PLATE

Figure 7. Bent plate geometry.

It is known that for a given scatter direction there is only
one point along an infinitely long straight edge at which the
diffracted field can emanate for a near zone source. Thus, this
point must be found for each of the n edges that describe the
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finite plate. There are many ways of finding this diffraction
point, one of which is described here. Since it is known that

By = Bo' (see Fig. 1), it is obvious that

~ ~

e, I-= ey d (41)

where em, I, and d are, respectively, the mth edge unit vector,
incident direction unit vector, and diffraction direction unit
vector. Since the scatter direction is known (6g.45), the
value of €, - d = cp is easily computed at each edge. One needs
only search along the edge to find the point where en I = o
Once the diffraction point is located, one must find the
diffracted field value from the mth edge. The far field pattern
of the source can be written as

> . ~-jks'

. . -jks'
E;(6,8) = [6 F(o.,¢) + ¢G(6,0)]

= R(8,9) (42)

S 1

where s' is the range from the source to the field point. Using
the geometry illustrated in Fig. 7 and applying the results
presented earlier, one finds that

RS vy 0 || R .
-jlk(s' - ¥) -kpo]
d = e (43)
+ i
Ry 0 -VB R_L
where

i _ -
R“ = 5(61 ,¢.|) ° 80

]' _ ~
R,L - R(e.!ati’]) * ¢’0

o Let il

kpp = ks' sin BO
Y = Xdp sin ss cos ¢s + ydp sin es sin ¢s + zdp cos es
; [ I 1
VB - VB(kDp/k ] ¢"¢’ s 2) + VB(kpp/k ] ¢+¢’ > 2)
% =1 X BO’
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" The coordinates (Xdp’ Ydp® zdp) define the point of diffraction.

Once these terms are determined, the total diffracted field
in ray form from a general mth edge is given by

-+

_pd s Ll
Rulegs o) = Ry By + Ry ¢ (44)

d
m

where $ = & X éo. Using the superposition principle, the total
singly diffracted field in ray form by the n edges of the plate
is given using Eq. (44) by

-+

R d

d( d

n -
8.5 ¢) = Z] Ry(8cs 0) (45)

m=

The first step in calculating the reflected field is to find
the locations of the image sources, which are uniquely determined
once the planes of the flat plates are defined relative to the
source location. In fact, the image is located along lines which
are orthogonal to the different portions of the plate and posi-
tioned an equal distance on the opposite side of the plate.

With the image position known, one needs to determine if the
reflected field contributes to the total scattered field using
the geometrical optics approach. If the reflected field is a
contributor, the ray from the image source in the scatter direc-
tion (8¢, ¢5) must pass through the finite plate limits. Thus,
one must find the location of the intersection point of this ray
and the plane containing the flat plate. This can easily be
accomplished using vector analysis. One can, then, predict
within certain limits whether this intersection point falls
within the bounds of the finite flat plate.

If reflections do occur, the reflected field from the image
source can be written in ray form as

= N s ~poar
RT(8gs 0.} = [60 Fiog, o) + ¢ G (65, ¢.)]
. ejk[xi sin 6, cos ¢, + y; sin e  sin ¢ * z; cos es]
(46)

where 5r and &r are related to the image source coordinate system
with the image location defined by (xj, Yis Zi)- The functions
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[F (6., ¢g) and G' (6 g, ¢g)] are found by employing the boundary
conditions on the per?ect?y conducting flat plate. The total
scattered field from the flat plate is, then, given by

- >

s =
R*(6g» o) = R

-

Yog, 84) + R0, 4) (47)

The four basic terms included in the present solution are as
follows:

(a) single diffraction of incident field as shown in
Fig. 8(a)

{b) single reflection of incident field as shown in
Fig. 8(b)

(¢) double reflection of incident field as shown in
Fig. 8(c)

(d) single diffraction of reflected field as shown in
Fig. 8(d).

Each of the terms has been illustrated in a two-dimensional view
just for simplicity in illustrating the mechanisms- whereas, the
actual solution is for the three-dimensional geometry. These
terms have all been incorporated in a general bent plate solu-
tion. Note that only those terms are included which are not
shadowed by another portion of the bent plate.

The accuracy of this solution is illustrated by the example
shown in Fig. 9 where it compares very favorably with measured
results taken for a A/2 dipole illuminating a flat plate. This
solution is also compared with results obtained using a moment
methad patch technique [50] as illustrated in Figs. 10 and 11.
Note that for these comparisons the plate dimensions are quite
small in terms of the wavelength, which accounts for the small
discrepancies in the patterns between the two solutions. This
structure will be incorporated into the aircraft model of
Section III in order to account for bent wings, moving flaps,
vertical stabilizer, etc.
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Figure 8b. Single reflection of incident field,
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SECTION III

MATHEMATICAL MODELING OF AIRCRAFT
FOR PATTERN COMPUTATIONS

In this section, the mathematical modeling of an antenna
on an aircraft is described. This mathematical model is intended
to be as simple as possible so that it can be used to simulate a
wide variety of aircraft structures, yet accurate enough that the
computed radiation patterns are comparable to measured results.
The model is systematically increased in complexity to resolve
discrepancies between calculated and measured results, yet basic
simplicity is retained. One of the restrictions in the model is
that the antenna under consideration is located near the top or
bottom of the fuselage surface.

This section begins with a brief review of the analyses
using the elevation plane model and the roll plane model. This
is followed by solutions for the volumetric patterns of antennas
on a three-dimensional aircraft structure. The approach used to
model the aircraft by two elliptic cylinders is explained in detail.
The numerical technique to generate the necessary elliptic cylinders
is also discussed. Finally, the radiation patterns in principal
planes for various cases are calculated to illustrate the versa-
tility of the newly developed solutions.

1. ANALYSIS OF ELEVATION PLANE MODEL

In most cases, the dominant structural effect in the
elevation plane is the profile of the aircraft for fuselage
mounted antennas. An aircraft fuselage is usually a convex
body that cannot be completely described by simple mathematical
equations. Hence, in practice, an aircraft shape is often
specified by points. Consequently, a method called "section
matching method” has been developed [28] to handle the problem of
an antenna mounted on a fuselage surface of general shape.
However, this method is restricted to principal plane pattern
calculations. For off-principal plane pattern calculations
the method is hard to apply, since a complete three-dimensiocnal
description of the fuselage surface is difficult to obtain.
Furthermore, the lack of information on the geodesic paths and
torsion effect of the curved surface create serious problems in
the prediction of antenna patterns. Consequently, a simple
model which simulates a general fuselage profile has been adopted.
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Since an aircraft fuselage is usually long and slender, a
composite elliptic cylinder appears to be a good model. This
model consists of two semi-eliiptic cylinders mounted back-to-
back as shown in Fig. 12. Note that as discussed in the last
chapter, the model employed here is not limited to the determi-
nation of the elevation plane pattern only. It can be used to
determine off-elevation plane radiation patterns also.

Recall that the solutions presented in the last section are
based on elliptic cylinder models; however, one of the advantages
of GTD is that it can be extended to new structures after making
certain assumptions. In this case, it is assumed that there are no
diffractions from the junction lines of the two ellipses.  This
assumption is justified since these junctions are non-existent in the
actual aircraft profile. Note that the GTD solution in the ilTuminated
region does not depend on the surface parameters in that it is
assumed the source is mounted on an infinite ground plane tangent
to the surface at the source point. On the other hand, the transition
and deep~shadow region solutions are modified due to their dependence
upon the surface parameters. This modification requires that one
use bf = b' for rays traveling to the right of the junction and
bf = b for rays traveling to the left of the junction. The parameters
b and b' are illustrated in Fig. 12. ‘

FIRST ANTENNA LOCATION
(FORWARD THE WINGS) SECOND, ANTENNA

’//”'LOCATmN { ABOVE THE

( WINGS )
jo=3.75° —
____.—-fj

re put s b'~ 60" 1

Figure 12. Theoretical model of KC-135 aircraft.
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Since the model employed is a composite elliptic cylinder,
the surface curvature at the junction line is not continuous due
to the different dimensions of the elliptic cylinders. To ensure
the. assumption made earlier that no diffraction occurs from the
junction line, the solution presented in paragraph 3 of Section
11 needs to be modified to correct for the difference in curva-
ture when the surface wave crosses the junction Tine. Since no
GTD solutjon for this problem is available at present, an alternate
way to account for the continuity of the surface wave crossing the
junction line is necessary. It is noted that due to the large radius
of curvature at the junction line in our model the reflection
effect is so weak that it can be neglected. A way to treat the
continuity of the surface wave across the junction is investigated
next.

Consider a source Tocated on a composite elliptic cylinder
as shown in Fig. 13. The field diffracted by a curved surface
can be written, according to Eg. {34) for hard boundary con-
ditions and with only the first mode retained, as
Q
-JQ.(u + jk) ds
E =CL(Q") D(Q) e (48)

where € is a complex constant. This result indicates that the field
diffracted from the curved surface is related only to the launching
coefficient at the source point and the diffraction coefficient at
the diffraction point. Thus, when the diffraction point is on the
right half elliptic cylinder, the field is given by

Q
- J (¢ + jk) ds
Ql

E=¢C L{a,b) D (a,b') e (49)

o

note that a and b are the semiminor and semimajor axes of the left
half ellipse and a and b' are the semiminor and semimajor axes of
the right half ellipse, respectively. Similarly, the field
diffracted from point Q on the left half ellipse is expressed as

Q
- J o+ k) ds
E = C L(a,b) Dy(asb) e Q (50)
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At the junction, Eqs. (49) and (50) become

- JJ (« + jKk) ds

E;=¢C L{a,b) DZJ(a,b') e Q¢ (51)
and
J
- f. (¢ + jk) ds
E; = C L(a,b) Dy j(ab) e ¢ (52)

respectively, where the subscript J denotes the junction.

It is noted that Eqs. (51) and (52) do not agree with each
other which indicates a discontinuity exists in the diffracted
field. However, this is not true in practice, since the field
must be continuous as the diffraction point crosses the junction.
Comparing Eqs. (51) and (52), one notes that if a modification
factor

D1J(a,b)
DZJZa,b‘i
is introduced, the field is continuous as the diffraction point
crosses the junction. Thus, Eq. (48) is modified to give
jQ (o + 3K)
- a + jk) ds

E=¢C W L(a,b) Dz(a,b’) e (53)

Notice that Eg. {53) is valid only for the surface wave which
crosses the junction, i.e., the diffraction point and source
paint occur on different elliptic cylinders.

From Table I, one sees that the factor introduced in Eq.
(53) can be simplified to give

D]J(asb> ng(a,b) 1/6 _[Q 1/3
N = - bl
D,;(a,b") |Pg;{a.b") } (54}

which depends only upon the ratio of the two
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of the composite ellipse. For a continuous elliptic cylinder,
this factor reduces to unity as expected. Note that Eq. (53)
can be generalized to describe the field diffracted from an
arbitrary point on the curved surface as

- JQ (e + jk) ds
E=CcLQ)D@ pe @ (55)

where

1 if @ and Q' are on same elliptic cylinder

pgJ(eHipse with source) 176

ng(e11ipse without source)

otherwise.

(56)

In a similar manner, this factor can be determined through
the field expression in the transition region as presented in
Chapter Il and is found to be the same as Eq. (56},

To illustrate the newly modified solution, the elevation
plane radiation patterns for antennas mounted on the KC-135 air-
craft are now analyzed. Since the antennas of interest are located
on top of the fuselage and along the center 1ine, the most significant
effects on the pattern result from the upper surface of the
fuselage profile. The structure used to simulate the 1/25th
scale model consists of a 3.75" by 60" right semi-elliptic cylinder
and an 3.75" by 8" left semielliptic cylinder as shown in Fig. 12.
Using Egs. (31) to (38) in Section II with the modifications just
described, the radiation patterns in the elevation plane for
antennas mounted on our model can be easily determined.

The elevation plane patterns for a A/4 monopole mounted
forward and over the wings are jllustrated in Fig. 14 (a) and (b),
respectively. The patterns for a circumferential KA-band wave-
guide are jllustrated in Figs. 15 (a) and (b). Finally, the
results for an axjal KA-band waveguide are shown in Fig. 16 (a)
and (b). The KA-band waveguide aperture fields are simulated in
our model by an array of infinitesimal elements as shown in Fig.
17.
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Figure 14a. Elevation plane pattern for a /4 monopole mounted
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MEASURED
¢ & & o CALCULATED

8 NOSE

180°
Figure 14b, Elevation plane pattern for a x/4 monopole mounted above
the wings on a KC-135 aircraft. (No radome and vertical
stabilizer included).



@«

RELATIVE POWER (dB)

S NOSE

Oe° e————— MEASURED
.« & 00 CALCULATEP

-0

~20

~30

180°

Figure 15a. Elevation plane patter

n for a circumferential KA-band

waveguide mounted forward of the wings on a KC-135

aircraft. (No radome and vertical stabilizer included).
g=0° MEASURED
® 6 o o CALCULATED
, @ N
‘ N
w
z
(o
o120
ut
. >
wl . ‘ p
w . ~ =30 1
o W =
z 5 \ W E
90° e : A ——*—90°
WV VQ :
180°
Figure 15b. Elevation plane pattern for a circumferential KA-band

waveguide mounted above the wings on a KC-135 aircraft.
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The comparison between calculated and measured results is
encouraging, especially when the antennas are located above
the wings. The discrepancy displayed in the fore and aft regions,
particularly for the case of antennas located forward of the wing,
is due to the effects of the cockpit and nose section and the
vertical stabilizer which are neglected in the present theoretical
modeT.

In the preceding analysis, the effect of the aircraft in the
nose of the radome was neglected. 1In order to simulate a fuselage
with a radome, a truncated composite elliptic cylinder model as
shown in Fig. 18 is adopted. This 1is based on experimental data
that the radome effect appears to be a diffraction from the bulk
head as if the radome were not present.

Before proceding to solve this problem, by careful consider-
ation it can be converted into a simpler problem. With the fact
that a slot or monopole radiating in the presence of a composite
elliptic cylinder can be considered as an antenna itself, the
present problem can be approximated by the radiation problem of
an equivalent antenna mounted on a wedge type structure as shown
in Fig. 19.where the antenna is mounted on the bottom of the
fuselage. This egquivalent antenna radiates the same pattern as
that of a slot or monopole mounted on our previous model without
the radome considered. The wedges are formed and defined by the
tangent planes at the discontinuities Qj and Qp. Thus, the
radiation problem of a fuselage model with a radome included
is transformed to a wedge diffraction prob]em, and can be solved
using standard GTD techniques. -

Figure 19 illustrates the necessary components of the total

electric field in the different regions given by
4

=1 =d | =dd -
Eeq +E°+E w-¢m1§95ﬁ, $=0
gd 4+ g

Ogﬁgﬁ-¢w],¢=0

=t
E” = (57)
T E d 0<8=m-9 o sd=T

=i —=d _

Eeq + E Tf"¢w-1_<_e_<_ns¢_'n
Note that E is the radiated field of the equivalent antenna
descr18ed aggv is the singly diffracted field from edge 1

and E99 §s the d1ffracted field from edge 2. It is noted that
the contributions from any other higher order diffraction terms
are so small compared to single and double diffraction that
they are ignored for our purposes.
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Using Eq. (57), the elevation plane patterns for the space
shuttle as shown in Fig. 20 with the radome included are calcu-
lated. Figures 21 to 23 illustrate the radiation patterns for both
vertical (monopole and circumferential waveguide) and horizontal
(axial waveguide) polarization sources mounted on the fuselage of
the 1/35%" scale model of the space shuttle with the radome considered.
The structure used to simulate the 1/35th scale model consists
of a 2,55" by 12.5". 1eft semi-ellipse and a 2,55" by 60.0" right
semi-ellipse. The size of the radome is 6.5" and the source is
mounted 2" away from the radome. Figure 24 shows the radiation
pattern of the space shuttle with radome size being 2" and
antenna mounted 1/2" away from radome. Note that the waveguide
used here is the same KA-band waveguide used previously. The
experimental results, which were taken at NASA (Hampton, Va.) at
a frequency of 35 GHz, are also presented. The agreement between
calculated and measured results illustrates the applicability of
the numerical analysis technique being developed in this study.

Note also that although the elevation plane model can be used
to compute the elevation plane pattern as well as off-elevation
plane patterns, it is found that for our fuselage model, this
model can only be used to compute the off-elevation plane patterns
accurately up to approximately ¥30° from the elevation plane.

2. ANALYSIS OF ROLL PLANE MODEL

The basic aircraft to be analyzed in this section is composed
of flat plates attached to an infinitely long ellipticecylinder.
Originally, a circular cylinder was used to represent the fuselage
[273, and the modal solutions were employed to determine the
field. However, an aircraft cross section is not circular in
general. To be able to predict the radiation pattern more
accurately, one has to consider a better model for the fuselage
approximation.

Since the roll1 plane cuts orthogonally across the fuselage,
one should expect the fuselage cross section to have a strong
effect on the roll plane pattern. On the other hand, an aircraft
fuselage is normally long and slender, such that its finite length
effects are generally secondary. Consequently, the infinitely long
elliptic cylinder representation of the fuselage for roll plane
caiculations appears to be a reasonable approximation in most
cases. Since the antenna can be arbitrarily positioned on the
fuselage with respect to the wings, one must consider the width
of the wing as well as its length in order to obtain a practical
analytic model. In order to accompiish this, the near field
bent plate scattering solution is adapted to this new model
such as illustrated in Fig. 25. Note that the wings are
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Figure 21. Elevation pattern of monopole on a 1/35th scale model
of space shuttle (with radome included).

56



VERTICAL POL. SPACE SHUTTLE
WAVEGUIDE WITH RADOME

(8 12" (6 1/2")

A?P:ELATWE POWER (d8)
0
o]

S2E

MEASURED
== == =~ CALCULATED

(4

§NOSE

/ /
- /

180°
ELEVATION PATTERN

Figure 22. Elevation pattern of circumferential slot on a
1/35th scale model of space shuttle (with radome
included).
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Figure 23. Elevation pattern of axial slot on a 1/35th scale
model of space shuttle (with radome included}.
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assumed flat here and each wing can be located arbitrarily
with any number of edges. The wings, also, can be mounted up
or down from the central location provided that the wings are
horizontal.

The model, now, consists of an infinitely long elliptic
cylinder fuselage to which finite flat wings are attached. The
various configurations analyzed are shown in Fig. 26 Tooking
from the front of the aircraft with the antenna mounted in
each case above the wings for the models illustrated. Using
these models, one should be able to analyze a wide variety of
aircraft shapes. This is verified by a comparison of results
taken on actual aircraft scale models and presented later.

Let us first find the effective source location for the
reflected field. Recall that in the flat plate result, the
source was imaged and the reflected field added to the total
solution provided the image ray passed through the finite
flat plate (wing) 1imits. One must initially determine the
effective source position and then the reflected field. With
the source mounted on an infinitely long elliptic cylinder,
the surface rays from the source propagate around the cylinder
along geodesic paths, from which energy is continually diffracted
tangentially. Now Tet us assume that the source does not i1lumi-
nate the right wing directly (as illustrated in Fig. 25(a)) and
proceed to determine the unique geodesic path that diffracts
energy from a known tangent point which is then reflected off
the wing in the desired radiation (or scatter) direction.

The effective source position for reflections from the right
wing in terms of the radiation direction (es, ¢S) is given by

Xg = dp COS V,
Yo = b sin vy (58)
Ve
_ 2 .2 2 2
z, = cot es Jv Y[af sin” v + bf cos™ v dv + Z.,

SO

where vg = tan'](bf/af cot 4g). These coordinates can, then,
be used in the flat plate problem as the effective source loca-
tion. Note that as the desired radiation direction is varied,
the effective source location changes. In addition, if the
source directly illuminates the wing for a given refiection
term, then the effect1ve source location is simply the actual
source location » 2Zgg). A result similar to Eq. (58)
can be found for tge re?]ect1ons from the left wing. Finally,
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Figure 26. Fuselage and wing geometry for theoretical aircraft
model Tooking from the front. The antenna is always
mounted on top of the models. -
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the actual source field value used to compute the reflected
term is determined from the GTD solutions in Chapter II.

Using a similar technique, the effective source locations
for the diffracted field components may be found. The bent
plate solution uses a search technique to find the diffraction
point by computing the diffraction angles at selected test
points along a given edge. Once a test point (xd, yd, zd) is
specified along the edge, one can find the effective source
Tocation (xe, Ye» Zo) using the geometry illustrated in Fig.
25(b). Again it is assumed that the source does not directly
illuminate the test point. One finds that the effective source
is given by

2.2 d\/ 22

N I afy agyg + - 3¢
e 2
ayg * bfxd

2 2 2 2 22 22

y 3gbgYy - beXgy agyy * bexy - agbs
e = 7 2 7.7
A¥q * beXy

bex 24, + agz  (vy - ¥.)1,

Z = — 1 (59)
e bex T aply -y T
where
Ve
I, = Jv J ai sin® v + b? cos? v dv,
O

' 2 .2 2 2
Iv jaf sin ve + bf cos Voo and Ve = tan~ (; /a‘>

Given the effective source location for the chosen test
point, the search technique is applied to find the actual dif-
fraction point along a given edge. Note that once the actual
diffraction point is determined, the effective source of the
diffracted field is specified by Eq. (59), and the source field
value is, again, computed using the GTD solutions.
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The total field is found by summing the directly radiated
field with the scattered field using the superposition principle.
The results for a A/4 monopole on the fuselage of a 1/25th scale
model of a KC-135 aircraft, as shown in Fig. 12, forward and over
the wings are shown in Figs. 27 (a) and (b), respectively. The
results for a KA-band circumferential waveguide forward and over
the wings are shown in Fig. 28. The results for a KA-band axial
waveguide forward and above the wings are shown in Fig. 29. The
fuselage, in this case, is approximated by a 3" x 3" infinitely
long elliptic cylinder. The waveguide antenna is modeled as in
the previous section, and the agreement in each case is very
encouraging. Again, it should be stressed that the roll plane
model solution not only can predict the radiation pattern
accurately in the roll plane, it also can be extended to cover
almost the complete volumetric pattern as shown in Ref. [30].

-

3. THREE-DIMENSIONAL MODEL APPROXIMATION OF AN AIRCRAFT

The analytical solutions described in the previous sections
provide a useful, efficient, and economical way for the evalu-
ation, Tocation, and design of fuselage mounted antennas based
on their pattern performance in principal planes. However, if
modern systems are to function properly, the antenna pattern
must meet certain specifications. These specifications are
usually given in terms of a coverage diagram for a particular
sactor in space which is to be met with antenna mounted on the
aircraft not on a finite ground plane where the original antenna
design was made. Thus, the desire for an accurate solution for the
complete pattern performance of antennas mounted on a complex air-
craft structure for given applications requires a more thorough study
of ways to handle the volumetric pattern.

If this problem is attacked directly by analyzing rays
on complex three~dimensional surfaces as done previously in
Reference [2], the resulting numerical solution would be very
complex, time-consuming, and uneconomical. Nevertheless, if
certain assumptions can be made, the approach undertaken in
the previous sections can be used to overcome these difficulties
and simplify the problem a great deal.

First, it has been shown by numerous scale model measure-
ments that the roll plane model can be extended to almost
cover the complete volumetric pattern except for two conical
sectors (fore and aft) [30]. The limitations of the roll plane
model result are due to the finite length fuselage. Yet, the
finite length fuselage has been solved, previously, in the elevation
plane model analyses. Furthermore, based on the previous

64




o— CALCULATED
o —=—— MEASURED

RELATIVE POWER {c¢8)

" -30

90°

180°

Figure 27a. Roll plane pattern (E.) for.a 1/25 scale model of a
KC-135 with a A/4 mon3p01e on the fuselage forward
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Figure 28a. Roll plane pattern (E,) for a KA-band circumferential
waveguide forward of %he wings.
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Figure 28b. Rol1 plane pattern (Ee) for a KA-band circumferential
waveguide above the wings.
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Figure 29a. Roll plane pattern (E¢) for a KA-band axial waveguide
forward of the wings.

=0°
6=0 — CALCULATED
== MEASURED

-
o
©

o~
| &
wl
=
(g
o Q.
‘}‘ :
w
) 2
)> pq..
o
a3  —
Ld P
\: o
. /

90°

I180°

Figure 29b. Ro1l plane pattern (E;) for a KA-band axial waveguide
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three-dimensional studies of geodesic rays which contribute to the
pattern of an antenna on various prolate spheroids, one is

able to combine the analyses of these two principal plane models
to give the complete pattern. In this study, computer simulation
models were considered that would resemble a wide variety of
aircraft shapes and yet could, also, be analyzed with reason-
able accuracy and economy. In this case, it is quite obvious
that the three-dimensional nature of the fuselage must be

modeled if one is to adequately determine volumetric patterns.

This resulted in the development of a general surface of
revolution model for the fuselage as presented in Reference
[2]. Through an extensive study of geodesic paths on a surface
of revolution, the number of dominant rays that contributed to
the radiation pattern were shown to be finite except for more
spnerical shapes. Furthermore, the computer result showed that,
for a prolate spheroid, the dominant rays needed to be con-
sidered would not exceed four rays; in most cases, it is even
Tess than that. These four rays are jllustrated in Fig. 30
in which two rays are propagating along the cross-section of
prolate spheroid; the other two are propagating along the profile.
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N
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/

\
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DIFFRACTION
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Figure 30. The four dominant GTD terms that radiate at
= 90°, ¢ = 145°),
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To demonstrate the significance of the four-ray contribution,
the elevatfon plane pattern of an axial slot mounted on a prolate
spheroid was calculated using a two-dimensional (two rays) and
three-dimensional (four rays) solution as shown in Fig. 31.
Experimental results are also shown to verify the calculated
three-dimensional result. It is immediately obvious that the
back Tobe region is not calculated with sufficient accuracy
using the two-dimensional result. However, the three-dimensional
solution is in good agreement with the measured pattern. This
leads to a new approach to handle the volumetric patterns for
fuselage mounted airborne antennas in a simplified and economical
manner,

As determined previously, the roll plane model {infinite
elliptic cylinder with flat plate wings) can be extended to cover
most of the volumetric pattern except for the fore and aft sectors
(about 15° conical sector as shown in Fig. 32). To cover these
sectors, one must incorporate the elevation plane model analysis -
with some modifications such that the effects of wings and stabilizers
are also included. In doing so, two different elliptic cylinders are
required to anaiyze the volumetric patterns; one being the cross-
section (rol1) cylinder and the other being the profile (elevation)
cylinder. This requirement is necessary since our solutions are
based on an infinitely long elliptic cylinder, in which the z-axis
coincides with the axis of the cylinder.

As discussed in the previous chapter, the most significant
effects on the radiation pattern result from the surface
geometry nearest to the antenna. The curvature of the surface
in the vicinity of the antenna Tlocation plays a dominant role
in predicting the radiation pattern. Thus, the elliptic
cylinders used to represent the fuselage profile and cross-
section need to model the ajrcraft structure as accurately
as possible near the antenna location. Once these two
elliptic cylinders are obtained, one is able to proceed to
solve for the complete volumetric pattern.

To determine the elliptic cylinders necessary to simulate
the fuselage profile and cross-section, one has to find some
way to approximate the curved surface near the antenna location.
Ore way to achieve this goal is to find an analytical function
which can best approximate the known curved surface profile
(either in elevation or roll plane) in a least mean sgquare error
sense. This leads to the development of a best fit routine
t0 generate the necessary ellipses for the fuselage model
through the use of a digital computer.
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Figure 3la. Elevation plane pattern of an axial slot mounted
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dimensional theoretical solution presented.
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theoretical solution presented.
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The theory behind the best fit routine is that a function
is to be found to best approximate a set of points in a least
mean square error sense. For the aircraft model, a best fit
ellipse is desired. The mathematical expression for an ellipse
is

2 2
e el (60)
a b

for its origin located at (x = 0, y = 0). The parameters a and
b are semi major and minor axes of an ellipse, respectively. To
simplify the mathematical expression, Eq. {60) can be written as

AX + BY = ] (61)

where X = x2, Y = y2, A = lz—, and B = lé-. Let (Xi’ yi),
a

b
i=1, -+ n, be npoints on which a best fit ellipse is to be
generated. Substituting these points into Eq. (61), one obtains
a set of n linear equations.

AX1 + BY1 =]
AX2 + BY2 =
AXn + BYn =]

In matrix form, these n equations become

7C = I (62)
where
r )
X Y
X Y
- 2 2 _|A
7 - ¢ - M
Xn Yn
o L -
DYy -
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and

1

i 4

"]
By multiplying both sides of Eq. (62) by Z, the transposed

of Z, one obtains a simple 2x2 matrix as given by

or

which can be simply solved for A and B in the least mean
Thus, the ellipse parameters are defined.

square sense [56].

Before the necessary ellipse or composite ellipse can be
determined through the numerical process, the data points that
described the surface of the praofiie or cross section of the
actual aircraft fuselage must be generated.

of the aircraft.

Ly
=71

(63)

To do so, a reference
Cartesian coordinates system is needed on a scale model drawing

These coordinates can be best located by align-
ing one of the axes with the center line of aircraft fuselage

with the origin being arbitrarily chosen according to convenience.
After the coordinate system is fixed, the positions of data points

on the profile or cross-section can be measured from the scale

model relative to the reference origin.

The data points are
taken in such a way that more points are needed around the

antenna location and less points away from the source.

antenna location, as described eartier.
the way data points are taken from a fuselage profile.
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This is
due to the fact that the surface profile is dominant near the
Figure 33 jllustrates

By feeding
these data points into the best fit routine and adjusting the
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Figure 33. ITlustration of data points taken from the scale
model ajrcraft for the determination of best fit
elliptic cylinder using a digital computer.
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origin of the coordinates in the routine, an eilipse is found to
best fit these data points. In the same manner, the ellipse to
approximate the cross-section of aircraft fuselage at the antenna
location can be obtained. Thus, the elliptic cylinders necessary
to simulate the fuselage profile and cross-section are determined.

Now let us consider how these two finite elliptic cylinders
can be used to describe the volumetric pattern for fuselage mounted
airborne antennas. First, a reference coordinate system is needed
so that the solutions based on our two-dimensional analysis in two
different coordinate systems can be incorporated into a complete
solution. Since an aircraft fuselage is usually long and stender,
its finite length effects are Timited to the small sectors off the
nose and tail. Conseqguently, the two rays which play the most
significant role normally come from the cross-sectional elliptic
cylinder. Thus, it seems more natural to have the reference
coordinate system correspond to the roll plane model coordinate
system, i.e., the Zpef axis is pointed aft and the Xpef axis is
pointed vertically upward as shown in Fig. 34. HNotice that the
origin of the composite ellipse in the elevation plane js chosen
as the origin of the reference coordinate system for convenience.

Recall that the roll plane model is not valid in the two
15° conical sectors in the fore and aft directions. In order to
overcome this handicap, a belt region arcund the antenna source
is chosen such that in this region the solution is obtained using
elevation plane model analysis. Everywhere outside the belt region,
the roll plane model analysis is used to analyze the radiation pat-
tern as done previously. Figure 35 shows the regions in which the
elevation and roll plane cylinder solutions are used. The angle
o is chosen such that the roll and elevation cylinder solutions
blend smoothly together. In fact, « is a function of the size of
elevation and roll plane cylinders used to simulate the aircraft
fuselage. For most cases in our model, the angle o« is set at
20°. This 20° belt has been tested and found to be satisfactory,
based on comparisons with measured results, as will be shown later.

As seen in Fig. 34, the elevation plane model coordinate sys-
tem is such that the Zeley axis points in the Ypas direction. In
other words, the elevation plane model coordinate system is simply
obtained by rotating the XYZp.of coordinate system by a 90° angle
about the Xpef axis. Notice that the antenna here is assumed to be
mounted on the center 1ine of the fuselage for simplicity, but this
is not a basic 1imitation. In order to determ1ne the eTectromagnetic
fields in a given radiation direction (8g pef, ref) within the
belt region, the solution obtained through the e?evat1on plane
model analysis is expressed in terms of the reference coordinate
system such that it can be superimposed with the roll plane
cylinder solution. This requires a coordinate transformation
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which relates the elevation plane model coordinates to the reference
coordinate system. The transformation of coordinate systems is
examined in Appendix A.

Notice that the coordinate transformations described in
Appendix A are very important for the analysis. This is especially
true when the antenna under consideration is mounted off the
center line of the fuselage. Using these transformations not only
can the electromagnetic field in the desired radiation direction in
the reference coordinate system be determined through the two
principal plane cylinder solutions, but the polarization problem
associated with the two different solutions can also be easily
resolved without any difficulty. In addition, these transformations
are the foundation on which the volumetric pattern analysis is based.
A detailed discussion on an off-center Tine mounted antenna 1is
given in Appendix B,

To determine the radiation angle (8pe, dre) in the elevation
plane model coordinate system which corresponds to the desired radia-
tion direction (6yo, ¢rg) in the reference coordinate system,

_Egs. (80) and (83) are employed. The subscripts e and o refer to
the elevation plane model and reference coordinate systems,
respectively. By definition, the unit radial vector for a given
direction (6, ¢) is given by

R =sins cos¢ X + sine sing y + cosp z (62)

Hence, the spherical coordinates (¢ ) of the radiation

» ¢
vector are determined by re- ‘re

-1 Yre
¢ = tan
re X
: (X2 + Y2 )1/2
8. = tan~ re re
re Z (65)

re

with the components xre’ Y e and Zre found through

r
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Xre cos ¢0 sin ¢o 0

=] - 5] 7 [°]
Y cos o sin ¢0 cos

in 8
re | cos ¢0 sin

0 0

B ed cin B 8
Z.o Lsin 8, sin ¢ sin 6 cos ¢  cos 8

sin 8., cos ¢,

sin e, sin¢ (66)

0
CSGY‘O

For the case where 9y = 0° and 8, = 90° as seen in Fig. 36,
Eq. (66) reduces to

Xre 1 0 0 sin ero cos ¢ro
Yre =1 0 0 1 sin Bro STN g (67)
Zre 0 -1 0 cos ero

Finally, the radiated field in the desired radiation direc-
tion can be determined from the field found in the elevation plane
model analysis with an appropriate polarization modification. Thus,
the solution obtained can be incorporated into the roll plane

cylinder solution to form a complete solution for the volumetric
pattern.

Let us now consider the polarization effect due to the

coordinate transformation, which is vital in achieving a com-

plete solution. Recall that, in the far zone, the electric field
can be written as .

E=E 68 +E ¢ (68)

or

3 6 ' +E' o | (69)

81




§ | o

Figure 36. Illustration of the spherical
coordinate system,

where the prime system denotes the new coordinate system as seen
in Fig. 36. Since the components E§ and E$ are found from the
elevation plane solutions, the corresponding Es and E4 in the
desired coordinate system are yet to be determined. f_ one

takes the dot product of Eq. {6%) with the unit vector 8, the
6 compconent of the electric field results, i.e.

E,*=Ey (8" - 0)+ E$ (6" - 8) (70)

Similarly, the ¢ component can be found as

~

E, =By (8" - 6) v Ex (0 - o) (71)
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Thus, the polarization of the radiated field in terms of the
reference coordinate system can be properly determined.

Before the roll and elevation plane model solutions can be
combined together, one must be concerned with the alignment
of the surface normal at the antenna location in the two
analyses. For an antenna mounted centrally on the fuselage, the
surface normal points vertically upwards in the roll plane model
analysis; whereas, in the elevation plane model it points in a
direction normal to the profile surface at the antenna location.
If the normals do not align properly, the two solutions would not
match to give a complete and continuous solution. Consequently,
the roll piane elliptic cylinder needs a tilt such that the normal
direction is common to both solutions. It is noted that a radial
monopole is mounted parallel to the surface normal at the antenna
location on the aircraft fuselage.

To accomplish this alignment, the Xpo11 axis of the roll
plare model coordinate system is chosen to line up parallel with
the normal to the surface at the antenna location on the elevation
composite elliptic cylinder as shown in Fig. 34. The tilt angle
et11t is found to be

( 2
a~ Z
tan—1<-€%—iilfgi> if 2, o 1s negative
J be xs ref
O¢irt ~ (72)
2
Z
1 e fs ref . . ‘o
tan (b'z » ') if ZS ref is positive
e s ref

whare Xg pof and Zg pef are the coordinates of the antenna source
relative to the re%erence coordinate system. The quantities ag,
be, and bg are the necessary parameters for the composite elliptic
cylinder model for the elevation plane model analysis. Notice that
the origin of the roll plane cylinders is located a distance ap
directly under the antenna. Again, the quantity ay represents an
axijs of the roll plane cylinder.

It is also noted that, the parameter a, is not equal to
Xs ref which is the height of the antenna on the elevation
composite cylinder model. This is due to the fact that the
two elliptic cylinders used to approximate the fuselage profile
and cross section do not match to give the true representation
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of a three-dimensional aircraft fuselage. Hence, to obtain the
necessary roll plane model solution, a coordinate transformation
similar to that of the elevation plane model analysis described
above is needed. The required rotation angle (8g, ¢g) of the roll
plane model coordinate system is found to be

o~ Stilt

¢, =0

for a centrally mounted antenna. Since the 8tj1t angle is
rotated about the y'-axis, Eqs. (80) and (85) shall be used.

One Tast note for the completion of our solution is the
phase reference problem. For both elevation and roll plane model
analyses, the origin of the individual coordinate system is
chosen to be the phase reference point. Hence, the result
obtained through these two principal plane model analyses needs to
be modified so that a common phase center can be utilized. For
convenience, the origin of the reference coordinate system is
selected as the phase reference point for both models. In this
way, the solutions blend smoothly together to form a complete
result for the three-dimensional geometry under consideration.

For each of the two solutions just described, only two
rays are considered. This is due to the fact that there are
only two dominant rays which propagate around an electrically
large elliptic cylinder. Recall that four dominant rays
contribute to the radiation pattern in the shadow region for an
antenna mounted on a prolate spheriod. To account for these
four rays necessary for the radiation pattern in the shadow
region, both elevation and roll plane model results are needed
in the pattern calculation.

In addition, the three-dimensional effects of wings and
stabilizers are considered by inciuding the rays reflected and
diffracted from these scatterers. The contribution of wings
and horizontal stabilizers are handled in the same way as done
previously.

The effect of the cockpit/radome section is determined
using flat plates attached to the fuselage just as the wings.
Since computation time in analyzing a real cockpit radome
section is so great, it is apparent that a simple model is needed.
Originally, a finite bent plate approximation of the cockpit and
nose section was considered because of an experimental investigation
of the radome. This resulted in a truncated fuselage model as
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discussed in Reference [31]. However, the radiation pattern cal-
culated using a flat plate model compared very favorably with the
bent plate model. Hence, the flat plate model was adopted not

only for its simplicity in analysis but, also, for its reduced
computer running time. Notice that the plate is mounted at
arbitrary angles relative to the cylinder to simulate the cockpit/
radome section as seen in Fig. 34 (a). This is an improvement
over the previous roll plane model where the wings are restricted
to be horizontal.

Similar considerations were made in studying the vertical
stabilizer which resulted in the selection of a bent plate
model. Thus, the scattering effects of the cockpit and vertical
stabilizer can be taken into account very simply. The theoretical
model as shown in Fig. 34 (a) is an illustration of the analytical
simulation of an actual ajrcraft. With all the necessary mechanisms
being completed, the radiation and scattering by the fuselage, wings,
cockpit, and stabilizers can now be calculated. Finally, the
volumetric pattern of a fuselage mounted antenna is obtained
by summing the direct field from the source and the reflected
and diffracted field from the various scatters.

Before it can be used to determine the volumetric pattern
for an airborne antenna, this newly developed solution must be
tested and verified. The elevation pattern of an axial slot
mounted on a prolate spheroid, thus, was calculated and is
presented in Fig. 37. The comparison between the measured and
calculated results is very persuasive. This particular problem
is an effective test in that it illustrates the accuracy for
the 1imiting case of a small nearly spherical object as opposed
to the large cylindrical aircraft model.

To illustrate the validity of the new solution, the principal
nTane radiation patterns of antennas mounted on the KC135 aircraft
that was previously computed are now computed with the improved
soiution. With the cockpit/radome and vertical stabilizer being
taken into account, the new computer model, consisting of an 80"
by 3.75" right semi-ellipse and an 8" by 3.75" left semi-ellipse,
is shown in Fig. 38. The cockpit/radome section is simulated
by a flat plate and the vertical stabilizer is approximated by a
bent plate model for better simulation. The elevation plane
patterns for a short monopole mounted forward and over the wings
are shown in Figs. 39 (a) and (b), respectively. The patterns
for a circumferential KA-band waveguide are shown in Figs. 40 (a)
and (b). The results for an axial KA-band waveguid are depicted
in Figs. 41 (a) and (b). It is observed that the comparison
between the calculated and measured results is very favorable.
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Elevation plane pattern of an
axial slot mounted on a 4x x 2x
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Figure 37b. Elevation plane pattern of an
axial slot mounted on a 4x x 2X
prolate spheroid using newly
developed volumetric solution.
(Geometry illustrated in Fig. 30).




L8

BENT PLATE
VERTICAL
STABILIZER
ANTENNA\
| 1
o R ——
’__——___"7

e Na

FLAT PLATE
NOSE WING
SECTION

Figure 38a. Computer simulated model for the fuselage profile of a KC-135
aircraft (side view).
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Figure 38b. Computer simulated model for the cross-section
éat antenna location) of a KC-135 aircraft
front view),
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Figure 38c. Computer simulated model for a KC-135 aircraft (top view).
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Figure 39b. Elevation plane pattern for a A/4 monopole
mounted above the wings on a KC-135 aircraft
(with radome and vertical stabilizer included).
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Figure 40b. Elevation plane pattern for a circumferential
KA-band waveguide mounted above the wings on a

KC-135 aircraft (with radome and vertical
stabilizer included).
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The discrepancy displayed in aft sectors in Figs. 14 and 15 no
longer exist in Figs. 39 and 40. For axial slot cases, the

hack Tobe is picked up as compared with previous results. Notice
that the nulls of the monopole for the theory and measurement do

not align together as one can see in Figs. 39 (a) and (b). This

can be attributed to some extent to the misalignment of the monopole
and surface normal in the experimental work.

Finally, the roll plane radiation patterns for the new model

are calculated. In each case, the pattern is only slightly improved
over previously calculated results as shown in Figs. 27 and 29. This
is attributed to the fact that the surface rays contribution from the
elevation plane model is negiigible in the plane of interest. In any
event, these results demonstrate the validity and applicability of the
new solution in determining the radiation patterns for general fuse-
lage mounted antennas.

To further demonstrate the versatility of this solution, the
radiation pattern for an infinitesimal monopole mounted on the bottom
of the fuselage of a Boeing 737 with a dielectric radome is calculated.
The model for this case is shown in Fig. 42 where the radome effect is
simulated by a flat plate mounted vertically upward. This model is
adopted because of the similar consideration as discussed previously.
Even though double diffractions are not included in the calcutlation,
the resultant pattern is still in very good agreement with the measured
result as shown in Fig. 43. This, again, illustrates the capability
of the solution in predicting the radiation pattern of fuselage mounted
aircraft antennas.
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~ Figure 42. Computer simulated model for a A/4 monopole mounted at station 222

on the bottom of the fuselage of a Boeing 737 aircraft (with radome/
nose section being modelled by a flat plate).
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Figure 43. Elevation plane pattern of a 1/4 monopole mounted
at station 222 on the bottom of a Boeing 737 air-
craft. (¢ = 0° at the left; ¢ = 180° at the
right).
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SECTION IV
VOLUMETRIC PATTERNS OF AIRBORNE ANTENNAS

The theoretical approach to analyze the complete volumetric
radiation pattern of fuselage mounted antennas was developed in
the last section. This theoretical solution was based on the two
‘principal plane analyses presented earlier and it has bheen veri-
fied by applying it to various cases previously calculated using
principal plane analyses. The results show great improvement
over previous calculations based on comparisons with
experimental measurements. Hence, the new volumetric solution
is now applied to analyze the volumetric patterns of fuselage
mounted airborne antennas.

The aircraft model of most interest in our study is the
Boeing 737 aircraft in that extensive experimental work is avail-
able. The volumetric patterns of this aircraft model is examined
in this section.

The models used to simulate a Boeing 737 aircraft are shown
in Fig. 44, where the roll plane cross-section of the fuselage
is approximated by a 65.86" by 43.3" elliptic cylinder for an
antenna mounted at Station 220 on the top of the fuselage. The
elevation profile is modeled by a composite elliptic cylinder
with a = 48.72", b = 308.56", and b' = 1307.04". Notice that the
cockpit nose section and vertical stabilizer are approximated by
finite flat and bent plates mounted obliquely on the fuselage
which results in a simple model for our aircraft as shown in Fig.
44,

In Fig. 44(c), the top view of our model is shown to
illustrate the finite three-dimensional effect of an aircraft.
The dotted 1ine indicates the width of the cross-sectional
(rol11 plane) cylinder used in the calculations. The models
of the wings, cockpit nose section, and stabilizers are also pre-
sented. The geometry is taken directly from the three principal
views of the aircraft scale model. As presented eariier, the
coordinate systems used for both the elevation and roil plane
geometries are depicted in Fig. 44. :

The radiation patterns for a A/4 monopole mounted at
tation 220 above the cockpit on a Boeing 737 aircraft are,
then, calculated using the model just described with the
analysis presented in the last section. The three principal
plane results are shown in Figs.-45 to 47 and found to be in
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Figure 44a. Computer simulated model for the fuselage profile
of a Boeing 737 aircraft (side view). The antenna
is located at station 220 on top of the fuselage. ;
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Figure 44b. Computer simulated model for the cross section

(at antenna location) of a Boeing 737 aircraft

(front view). The antenna is located at station
220 on top of the fuselage.
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Figure 44c. Computer simulated model for a Boeing 737 aircraft
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on top of the fuselage.
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Figure 45. Elevation plane pattern of a A/4 monopole mounted
at station 220 on top of a Boeing 737 aircraft.
(¢ = 0° at the left; ¢ = 180° at the right).
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Figure 47. Azimuth plane pattern of a /4 monopole mounted
at station on top of a Boeing 737 aircraft.
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very good agreement with measurements. The experimental work
was performed with a great deal of patience and precision by
the technical staff at NASA (Hampton, Va.}, using a 1/11th
scale model of Boeing 737 aircraft.

The coordinate system used for the experimental measurements
is shown in Fig. 48, in which the z-axis is vertically upward.
In order to calculate a radiation pattern in terms of this
experimental coordinate system, a transformation of coordinates
is necessary so that the corresponding radiation direction in
the analytical aircraft reference coordinate system can be
determined. This is accomplished by considering the z-axis of
the experimental coordinate system as a radial vector in the
reference coordinate system. By inputting its spherical coordin-
ates (ezref = 90°, ¢Zref = 0°) as the rotation angles ec and ¢c

required in the computer program, the corresponding radiation
direction, in terms of the reference coordinate system, is
ocbtained.

@G-
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A
¢ - 180°
g = 90°
.8 P
'_292(3 [ ——7 - >
e ¢ =90
6 =90°
¢
\\—-—‘/
X
$=0
8 = 90°

Figure 48, 11lustration of the coordinate system used for
experimental measurements.
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The compiete volumetric pattern for a A/4 monopole Tlocated
at Station 220 on top of a Boeing 737 aircraft is calculated.
The off-principal plane elevation patterns are shown in Figs.
49 to 52. The azimuth plane patterns are shown in Figs. 53 to
60. In each case, the calculated results compare very favorably
with the measurement. It is noted that the measurement results
have some asymmetry in the patterns. This could be attributed to
misalignment of the monopole with respect to the surface normal
or the movement of the model due to shifting weight during the
measurement.
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Figure 49, Elevation plane pattern of a x/4 monopole mounted
at station 220 on top of a Boeing 737 aircraft.
(¢ = 10° at the left; ¢ = 190° at the right).
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Figure 50. Elevation plane pattern of a A/4 monopole mounted
at station 220 on top of a Boeing 737 aircraft.
(¢ = 20° at the left; ¢ = 200° at the right).
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Figure 51. Elevation plane pattern of a A/4 monopole mounted
at station 220 on top of a Boeing 737 aircraft.
(¢ = 300 at the Teft; ¢ = 210° at the right).
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Figure 52. Zlevation plane pattern of a A/4 monopole mounted
at station 220 on top of a Boeing 737 aircraft.
(¢ = 40° at the left; ¢ = 220° at the right).
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Figure 54. Azimuth plane pattern of a A/4 monopole mounted
?t statign 220 on top of a Boeing 737 aircraft.
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Figure 57. Azimuth plane pattern of a A/4 monopole mounted
?t stgtggn 220 on top of a Boeing 737 aircraft.
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Figure 58. Azimuth plane pattern of a A/4 monopole mounted
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SECTION V
SURFACE CURRENT AND CHARGE DENSITY INDUCED ON AIRCRAFT MODELS

Based on the GTD analyses for the airborne antenna problems, this
chapter is devoted to calculate the surface current and charge density
induced on various aircraft models using the reciprocity theorem. Re-
call that in Chapter I the relation between the antenna radiation pat-
terns and the induced surface current and charge density has been dis-
cussed. For convenience, these relations are rewritten as follows:

0% 1= 2 colEy|

o |= 2 e 5|

FRMEE- ST

0, 1= 2 "
9,7 1= £ 1

0¥ 2 e

Using Eq. (74) and the GTD analtyses, numerical results of induced surface
current and charge density are presented for various aircraft models.

Consider a Boeing 747 iTluminated by a plane wave with broadside
incidence. The geometry of the aircraft and its computer model are shown
in Fig. 61 with observation point Tocated on the top of the fuselage
denoted by letter P in the figure. Note that the fuselage axis is
assumed to be the z-axis. The magnitude and phase of induced current
and charge densities for two different polarizations are presented
in Figs. 62-65. The THETA MODE and PHI MODE appearing in these figures
indicate that the elecfric field intensities associated with the in-
cident plane wave are o-polarized and ¢-polarized, respectively.

The computed model of a KC-135 is shown in Fig. 66. A plane wave
js incident at 9=45° and ¢=45°. The surface current and charge densities
induced on a KC-135 aircraft are shown in Figs. 67-70.
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Finally, a Boeing 737 aircraft is investigated. The geometry and
its computer model are shown in Fig. 71. The observation point is
located at station 220 on top of the fuselage. The coordinate system
used for the calculation is illustrated in Fig. 72. -The complete volu-
metric pattern for the charge density induced at station 220 on top of
a Boeing 737 is shown in Fig. 73.

Figure 6la. Boeing 747 heavy transport-aircraft.

121



GBS A’NT

Figure 61b. Computer model of a 747 aircraft.
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Figure 62. The surface current and charge densities
induced on a 747 ajrcraft.
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Figure 63. The surface current and charge densities
induced on a 747 aircraft.
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Figure 64. The surface current and charge densities
induced on a 747 aircraft.
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The surface current and charge densities
induced on a 747 aircraft.
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Figure 66. <Computer model of a KC-135 aircraft.
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Figure 67. The surface current and charge densities
induced on a KC-135 aircraft.
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Figure 68. The surface current and charge densities
induced on a KC-135 aircraft.
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Figure 69. The surface current and charge densities
induced on a KC-135 aircraft.
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Figure 70. The surface current and charge densities
induced on a KC-135 aircraft.
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Figure 71. Computer simultated model for a Boeing 737 aircraft
(top view}. The chservation point is Tocated at
station 220 on the top of the fuselage.
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SECTION VI
SUMMARY AND CONCLUSIONS

High frequency solutions for the three-dimensional surface current
and charge density induced on the aircraft fuselage for arbitrarily-
incident plane wave has been the object of this research. It is well
known that the induced surface current and charge density due to plane
wave incidence are related to the radiation pattern due to infinitesmal
monopole and slot antennas. Since extensive experimental scale-model
measurements for flush-mounted antennas on aircraft are available for
comparison, the analyses for' the induced surface current and charge
density is carried out in terms of antenna problems. This report pre-
sents an accurate and efficient solution for the problem using the geo-
metrical theory of diffraction (GTD).

The basic approach applied here is to break up the aircraft into
its simplest structural forms. -Due to the high frequency requirements
of airborne antennas, these structures may be analyzed using ray optics
techniques with numerical values obtained using GTD. Once the scatter-
ing from these various structures is found, it is then adapted to the
aircraft model simply by adjusting the field incident on the structural
scatterer. The only limitation of the GTD solution is that the source
and various scattering centers be separated by at least a wavelength.
In some cases, even this requirement can be relaxed.

A theoretical solution was developed in Chapter IV to analyze
compiicated three-dimensional volumetric radiation patterns for fuse-
lage mounted airborne antennas. This solution utilizes roll and ele-
vation plane model analyses developed earlier. The procedure to com-
bine these two solutions into a complete solution that can handle the
volumetric pattern is based on a previous study of antennas mounted on
prolate spheriods. The belt concept of blending these two solutions
together is the key to the success of the complete solution. The use
of flat or bent plates to approximate an aircraft cockpit nose section
and vertical stabilizer is also new and quite useful, not only because
of its simplicity in analysis but also due to its practicality in com-
putation.

A numerical procedure that can be used to model a practical air-
craft fuselage has also been presented. The three-dimensional fuselage
in the numerical model is simulated by two composite elliptic cylinders;
one approximates the aircraft profile and the other its cross-section.
These ellipses are numerically obtained through a best-fit ellipse
routine. The description of the wings, cockpit, and stabilizers are
measured directly from the three principal views of the aircraft.
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To demonstrate the validity and applicabjlity of the theoretical
solutions, the radiation patterns in the principal planes for antennas
mounted on various locations on a KC-135 aircraft and a Boeing 737 air-
craft have been calculated and compared with measurements taken at NASA
(Hampton, Va.). The results show good agreement between the analytical
and experimental work and obvious improvement over previous analses.

To iTTustrate the versatility of the new solution, the radiation patterns
for antennas mounted on a space shuttle with the radome taken inte account
have been calculated. Again, the result is very encouraging. The off-
principal plane radiation patterns of a A»/4 monopole mounted above the
cockpit of a Boeing 737 aircraft have been calculated. The patterns
obtained were shown to compare well with measurements taken at NASA
(Hampton, Va.}, which verify the assumptions made in the theoretical
sotutions.

Finally, some numerical results for the surface current and charge
density induced on various aircraft models are calculated and presented
in Section V. The solutions developed in this research provide a useful,
accurate, economical, and efficient means for determining the surface
current and charge density induced on aircraft fuselage due to arbitrary
plane wave incidence. For example, the program developed in this study
has now been delivered to NASA (Hampton, Va.), and it typically runs a
pattern in 30 seconds or less on a CDC 6600 digital computer.

It should be noted that in the present study, the effect of the
engines is negligible and they have been ignored in the model. However,
the engines appear to have some effect on the radiation patterns when
an antenna is mounted on the bottom of the fuselage. When necessary,
the engine effect can be included in the solution by using a finite
elliptic cylinder as presented in Reference [55].
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APPENDIX A
COORDINATE SYSTEMS TRANSFORMATION

Consider that a vector R (x, y, z) in an Xyz coordinate
system as shown in Fig. A-la. A second coordinate system,
(x'y'z') is also depicted, which is formed by first rotating
the x~axis of the origina1 coordinate system through an
angle of ¢o about z-axis and then, the z-axis through an angle
of 85 about the rotated x'-axis. Recall that in a vector space,
the coordinates x5 of a vector X representing a point in
n-dimensional space can_also be regarded as the coefficients of
the unit vectors e if X is represented as a sum of multiples
of the unit vectors

X: . =X] e]+-.-+x e (A"])

These unit vectors form a vector basis which span the n-dimensional
vectoy space. In the three-dimensional geometry, where n = 3,

let {x, ¥, Z} be a basis of the vector space under con51derat1on.
Thus, the vector R can be written in terms of these unit vectors
as

R=xx+yy+zz (A-2)

Let {x s y s z '} be another basis of the same space such that
the vector R is expressed as

'ﬁ"____ xl;l + yl;ll + Zl;l (A"S)

Then, by a linear transformation, the coordinates of the vector
R relative to the {X, y, 2} b§s1s can, be determined from the
coordinates relative to the {x', ¥', z'} basis through a matrix
relation as

X = PX' (A-4)

i
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Sigure A-Ta. ITlustration of coordinate system rotation.
(Rotate ¢_angle about z axis and then rotate
8, angle about x' axis).

*x

Figure A-1b. I1lustration of coordinate system rotation.
(Rotate ¢, angle about z axis and then rotate
8, angle about y' axis).
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Where X and X' are column vectors given by

X X!
X=|y [and X' = y' (A-5)
2z z'

and P_is a 3x3 transformation matrix from the {x, y, z} basis to
{x', y', z'} basis. By multipiying Eq. (A-6) by P-T, the inverse
of P, the coordinates of R in {x', y', z'} basis can be found in
terms of the coordinates in {x, y, z} basis, i.e.,

X' = plx (A-6)

Eqs. (A-4) and (A~6) describe the relation on which the coordinates
of a vector in one coordinate system can be determined from its
coordinates relative to another coordinate system.

Since the unit yectors &', $', and 2' are related to the unit
vectors, X, ¥, and 2 in the following manner, i.e.,

-, A ] A
= +
X cos ¢, x * sin ¢y
LI { " + y 4+ < . ~
y cos eo sin ¢0x cos 8, Cos ¢y * sin eoz (A-7)
' - . . A . . ~ + ~
z sin o, sing, x -sin 8, cos ¢, y * cos 8, 2z

the transition matrix Py, which is defined as the transpose of
the above matrix of coefficients, can be obtained as

_ . in e i
€os ¢ cos 8 sin ¢ sin 8, sin ¢,

PX =] sin ¢, Cos 8, COS ¢, -Sin B COS ¢ (A-8)
0 sin o, cos 8

where subscript x indicates the 8 angle rotation is about the
rotated x’'-axis. By inverting the matrix Py, the inverse matrix
Px-l of P, can be easily determined and is given by
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cos ¢o sin ¢o 0

p -t =

) ; - A-9
. cos 6, sin ¢, cos 8 cos ¢ sin o, (A-9)

sin 60 sin d)o -s1n 60 cos d)o cos 90

SimiTarly, if a new coordinate system, x'y'z' system, is set up

by first rotating the x-axis of an angle of ¢o about z-axis and
then the z-axis an angle of 8 about the y'-axis in a counter-
clockwise sense as seen in Fig. A-1b,  the transformation matrices
P, and Py‘] can be determined as

Y
cos 6, cos ¢ -sin % sin eo cos ¢0
Py = | cos o, sin ¢ cos ¢,  sin e, sin ¢ (A-10)
~sin % ) cos 6,
and
cos eo cos ¢o cos eo sin ¢0 -sin 90
Py'1 = |-sin ¢, cos ¢, 0 (A-11)

sin e, cos ¢, sineg sin¢ ~ cos o

where the subscript y indicates the rotation of 8y angle is about
the rotated y'-axis in distinction with that of the x'-axis in
Fig. A-la.
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APPENDIX B

GEOMETRICAL CONFIGURATION FOR OFF-CENTER LINE
MOUNTED ANTENNAS ,

Consider a source which is Tocated at some angle off the center
1ine of an aircraft fuselage as shown in Fig. B-1. This source can be
an infinitesimal monopole or arbitrarily oriented slot element. As
discussed in Section III, the surface geometry nearest to the antenna
has the most significant effect on the radiation patterns. For this
case, the Tongitudinal surface curvature in the plane which is parallel
to both the Zyef axis and the surface normal at the source location,
and the transverse surface curvation in the other plane which is
orthogonal to the Tongitudinal plane, as shown in Fig. B-1, play a
dominant role in predicting the radiation patterns of airborne antennas.
However, the transverse surface profile which cuts obliquely across
the fuseiage is not easily obtained from a scale model drawing of an
aircraft (usually, only the elevation profile and cross section are
given). Thus, to obtain the necessary elliptic cylinders for the
volumetric pattern analysis, the aircraft cross section which cuts
orthogonally through the source location is used to approximate the
required transverse surface profile cylinder. This approximation is
reasonable since the transverse surface profile of an actual aircraft
does not change drastically for a small angle deviation. For the other
elliptic cylinder which approximates the Tongitudinal surface profile
at the source location, the following approach can be employed.

First, let us approximate the elevation profile of the aircraft
of interest by a composite elliptic cylinder as done previously
in Section III. Its necessary parameters are given by ag, semi-
major axis, bg and bg', semi-minor axis for left and right half
elliptic cylinder respectively, as shown in Fig. B-2. Recall that
the source Tocation in our volumetric analysis is defined by
($gs2g)s as seen in Figs. B-2 and B-3, relative to the aircraft
fuselage cross section where the source is located. Since the
position of the source is given in terms of an elliptic cylinder
approximating the fuselage cross section at the source location,
its Cartesian coordinates can be easily determined as
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Figure B-1. Geometrical configuration of the longitudinal and transverse
surface profile at the antenna location.
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Figure B~2. Front view of the roll plane (transverse) cylinder
showing the antenna location and its surface normal.
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tad
]

s ~ Pg COS ¢

<
74
it

ps sSin ¢S

where

af bf

S.'-'-
Jrgg cosz¢S + ai sin2 g

o)

The quantities ap and by are the semimajor and semiminor axes
of the cross sectional elliptic cylinder. In terms of the
elliptic cylinder coordinate system as discussed in Chapter V,
x_ ' and ys' are given by

S
1
Xg' = af cos vS
(B-2)
Yg = bf sin v
where
a
f.'

v, = — tan ¢

S bf S

From Fig. B-3, the distance xgp between points P and Q is
found via the ellipse equation as

a. 5%
0 2 2 . . .
B; Jbo - Zg if zg is negative
Xeo © (8-3)
3 ' : . ‘s
BZ bo -z if z, s positive

where ag, by, and b, have been defined earlier. Since the origin of
the c¢ross sectional cylinder is defined at e from point P along
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line PQ, the source position in terms of the reference coordiante
system can be easily determined from Figs.

Xg = (xeo - af) + ag COS Vv,
(B-4)
Yo = bf sin v,

Once the source location is determined in the reference
coordinate system, the actual composite elliptic cylinder to
simutate the longitudinal surface profile at the anternna
location is given as

if Zg is positive

a, = (B-5)
if z, is negative

be =bh

bé = bé

As described earlier, the elliptic cylinder which simulates the
fuselage cross section at the source location is used to arroximate
the transverse surface profile. Consequently, the necessary axes
of the transverse elliptic cylinder are given by

(B-6)

Note that the transverse surface profile discussed previously
lies in a plane which is parallel to the surface normal at the
source location. Hence, the transverse or roll plane elliptic
cylinder needs a tilt such that the cylinder surface normal
aligns with the original surface normal as seen in Fig. B-&.

146




Int

Xrolt A 'fxref

ANTENNA

4.

ROLL PLANE ref

CYLINDER
CROSS SECTION

Figure B-4. IT1lustration of the coordinate systems used in the roll plane
model relative to the reference coordinate system for off
center line mounted antennas.



The required tilt or rotation (Br £i16” Op tﬂt) is given by

O titt ~

P titt ~

with respect to the reference coordinate system.
the rotation described here is about y

~1 ag Zg
tan | —————— if z, is positive
2{ 2 2
be Xs ¥ ¥g
-1 ag Zs .
tan —_  if Zg is negative
.2{ 2 2
be Xs + ys
Q

ref

(B-7)

It is noted that
axis and not xref axis.

Notice also that the coordinate system of the elevation plane
(Tongitudinal) model is rotated an angle (¢pn) which is the angle
between the surface normal and Xpef axis as shown in Fig. B-2

relative to the reference coordinate system.
elevation model coordinate system shown in Fig. RB-7 is obtained

In other words, the

through a rotation (eEi]t, 6ti1¢) Of the reference coordinate system
ix 1

as discussed in Appen

% tilt

%e tilt

where

Sy

with respect to the reference coordinate system.

The rotation angles are given by

= 90°

=¢n

ag sin v
tan'l bf cos vs
f [

the coordinates is shown in Fig. B-5.

(B-8)

The gecmetry of

With the necessary elliptic cylinders being determined, the
procedure to combine these two models to simulate the actual

aircraft is the same as discussed in Section III.

Thus, the

volumetric patterns for off-center fuselage mounted airborne
antennas can be determined.
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