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CHAPTER 1
INTRODUCTION

A. Objective

Energy associated with electromagnetic pulse (EMP) can penetrate

into a structure (such as an aircraft, a missile, a cable, etc.) by one

of the following processes:

(a)

(b)

(e)

Penetration through apertures. The apertures are usually

in the wall (or skin) of the structure and may be deliberate
such as in the cases of windows, wheel bays, etc., or they
may be inadvertent such as in the cases of cracks around

doors, seams between panels or imperfections of the walls.

Penetration through walls by diffusion. Since the walls
are at best conductors with very high, but finite,
conductivity, electromagnetic energy can penetrate the
walls by the process of diffusion (skin effect). Although
generally this process is dominated by the other two
processes of penetration, it is severe at very low fre-
quencies when the walls offer virtually no shielding of the

magnetic field.

Penetration through deliberate‘antennas. Overall, this
process may pick up most electromagnetic energy since the
antennas are designed for that purpose. Usually the narrow-
band nature of, and the lightning protection mechanisms
associated with most antennas somewhat reduce the EMP pene-

tration into the structure.



There are a large number of papers in the open literature and
reports in various organizations dealing with the problem of electro-
magnetic field penetration. In this report, useful information

selected from these sources is presented with the following conditions:

(a) Only the first two processes listed above are included.
This means that the penetration through apertures and

penetration by diffusion are considered.

(b) The materials presented are relevant to EMP problems. This
means that much information included is for low frequencies
when the typical dimensions of the structure are small

compared with the wavelength.

(¢) The materials presented are readily usable without requiring
the use of computers or complicated mathematical methods of
solution. Thus, as far as- possible, information is presented
in graphical form, tabular form; or as simple formulas
involving only elementary mathematical functions. Care has
been exercised to avoid the presentation of the results in
unsolved integral equations or differential equations which
require computers for their solution. Results involving
complicated series or complicated mathematical functions are

also avoided when possible.

The vast majority of results available in the literature is in
the frequency domain. Although EMP is a transient phenomenon, the use
of frequency domain results has its values. Once the spectrum of the
system frequency response is known, the time domain response due to a
particular excitation waveform can be found by taking the inverse Fourier
transform of the product of the frequency spectra of the system response
and the excitation waveform. Throughout this report most results
presented are in the frequency domain. However, when possible, the

time responses of some particular excitation waveforms are presented.




Most of the problems presented in this report involve the pene-

tration of plane waves into the structure.
B. Organization of the Report

The materials are divided into four major topics. They are:

apertures, cable shields, connectors and skin panels.

In Chapter II, the subject of penetration through apertures is
discussed. The chapter includes topics on small apertures, slots,
apertures on parallel plates, wires behind apertures, large apertures
and cavity-backed apertures. Most of the configurations involve apertures
on an infinitely large planar conductor. However, non-planar geometries

are also studied in the cases of cavity-backed apertures.

The subject of cable shields has been studied for some time. It
is important to limit the amount of electromagnetic energy induced in
the shielded conductors of a cable so that the instrument circuits at
the ends of the cable are protected from the induced energy. The
cable shields may contain apertures such as in the cases of braided
shields, tape-wound shields. Energy may also penetrate through the
shields by diffusion. The problem of penetration through cable shields

is presented in Chapter IIT.

In Chapter IV, penetrations through coaxial connectors are
discussed. Due to the uncertainty in the physical descriptions of the
imperfection on connectors, very limited amounts of theoretical work
have been done. Results presented in Chapter IV are mostly experimental

and qualitative.

Finally, in Chapter V, penetrations through skin panels by
diffusion are presented. Most of the results are for the cases of thin-
walled shields which have small wall thickness when compared with the
characteristic dimensions of the structures. In this chapter, results
are presented in the form of simple formulas which are valid at low

frequencies.



C. Units and Notations

All electrical units are presented in MKSA units. However, due
to the popular usage of British units in some non-electrical work,
limited quantities are in the latter units. Specifically, some panels'’

thickness are in inches since they are available in 1/16", 1/8", etc.

When presenting results in the time-harmonic forms (frequency
domain), the time variation exp(jwt) 1is used, where j = V-1, w is
the radian frequency and t dis the time variable. Sometimes the more gemneral

time factor exp(st) 1is used where s is the complex frequency.

Since each chapter is reasonably independent, the symbols are
consistently used within chapters. However, there may be some variation
between chapters. For example, in Chapter III, Y is used to denote the

complex propagation constant, whereas k is used in Chapter V.

General References

"Electromagnetic pulse handbook for missiles and aircraft in flight
EMP Interaction 1-1," AFWL TR-73-68, September 1972.

"State-of-the-art review on apertures/cable shields/connectors/skin
panels,'" AFWL, August 1976.

"EMP engineering and design principles,' Bell Laboratories, Whippany,

New Jersey, 1975,
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CHAPTER II
APERTURE PENETRATION

A, Introduction

In designing hardened systems, one must be able to characterize
and quantitatively determine the penetration of EMP signals through
apertures of general shapes in structures of varying configurations.
In this chapter a tutorial overview is given of electromagnetic pene-
tration through apertures in conducting surfaces. The emphasis of
this chapter is upon simplicity and it is intended to be informative

rather than theoretical.

Apertures of interest here are in the outer, conducting skins of
aircraft and missiles, among other units of interest to the EMP commu-
nity, and usually they are electromagnetically small over the spectrum
of the EMP. Furthermore, their existence may be intentional, e.g.,
windows, open access holes, and bombay doors, or they may be inadvertent
as in the case of cracks around doors and plates covering access ports
or poor electrical seams in buter skins. Obviously, harmful internal
currents can Be determined and avoided only if EMP penetration through

apertures in outer skins is understood and can be computed.

Even though the classic problem of penetration of time-harmonic
electromagnetic fields through an aperture in a planar conducting screen
of infinite extent has been the subject of intensive research for many
years, still the body of theory pertaining to this simplest of aperture
problems remains a rather complicated subject, and only in the case of
scalar diffraction by a circular aperture are analytical results avail-
able in the three dimensional problem. Greater progress has been achieved
for small apertures in planar screens, where, in this context, small means
that the maximum dimension across the aperture is small relative to the
wavelength of the time-harmonic electromagnetic field, as well as in the
two-dimensional problem of diffraction by an infinite slot of uniform width.
For apertures in nonplanar surfaces, far less progress has been made.
Fortunately, for many problems of practical interest, the introduction of
an infinite, planar screen in place of a finite one, or one with gradual

curvature relative to aperture size and, in some cases, wavelength, does

11



not seriously degrade accuracy of the solution of a problen.

Due to its importance in EMP studies, appropriate attention is
given in the following sections to the electrically small aperture and
to the determination of penetration through such small holes. Bethe's
equivalent dipole moment representation of an aperture is reviewed and
its use to compute penetration is outlined. Copious data are presented,
illustrating penetration through small apertures. Infinite slots of
uniform width approximate reasonably well certain practical situations,
so this two-dimensional problem is treated briefly. .The important, finite-
length, narrow slot is mentioned and data are given in a form which
shows the behavior of the electric field behind a slot in a conducting
skin. Next a discussion is provided of the problem of penetration into
the region between two parallel plates through a hole in one plate. A
small elliptic hole as well as a slot is considered and data are pre-
sented for both. Turning to a problem of great significance in EMP, the
authors characterize the behavior of current induced on a wire behind a
screen by excitation which passes through a hole in the screen. Also,
with the wire viewed as a transmission line, an equivalent circuit repre-
sentation of the problem is presented. Selected results are provided for
penetration through large apertures and apertures in nonplanar surfaces.
The penetration into closed regions is of interest in EMP and, thus, data

available in the literature are given for this situation usually classified

as a cavity-backed aperture problem.

Ultimate interest in EMP investigations lies, of course, in the time
history of the electromagnetic field at critical points in a system under
evaluation. Usually such a time history is computed (via Fourier inver-
sion) from knowledge of the corresponding time-harmonic field over a
frequency spectrum of practical limits. For this reason and, also, due
to the insight gained therefrom, it is of value to become familiar with
available information in the frequency domain. In addition, when one
has time-domain results (probably measured) for a problem under study,
he can Fourier transform his data and compare with frequency-domain
results provided here or elsewhere. Such provides a good check on the
accuracy of the time-domain information. Due to the paucity of time-
domain data available in the present state of knowledge, one must glean

whatever he can from the frequency domain.

12




B. Small Apertures

B.1l Introduction

In many EMP-related applications, apertures of interest are
electromagnetically small, a property which leads to very helpful sim-
plifications in computations. Small used here is taken to mean that
the maximum dimension across the aperture is short relative to the
wavelength of the electromagnetic wave and that the radii of curvature
of the conducting surface near the aperture are large compared to this
wavelength. In the case of a (transient) EMP signal, the wavelength in

question is the smallest of significance in the spectrum of the signal.

Diffraction by small circular and elliptic apertures has been
investigated by numerous workers employing a wide variety of different
approaches. Lord Rayleigh (Ref. 2.1) proposed a solution in the form
of a series in ascending powers of the wavenumber k (= 27/)) where A
is the wavelength. Bethe (Ref. 2.2) obtained results for the leading
terms in the series expansion by means of a scalar potential approach.
Later, Bouwkamp {Ref. 2.3) investigated the same problem using a more
complete set of coupled integro-differential equations and pointed out
errors in Bethe's solution. A comprehensive review of articles pertain-
ing to aperture diffraction in general is given in Ref. 2.4, and an

extensive bibliography is accumulated in Ref. 2.5. The low frequency

scalar diffraction problem also has been analyzed by Van Bladel (Ref. 2.6).

Rahmat-Samii and Mittra (Ref. 2.7) have solved the aperture problem for a
smail circular hole, and, recently, numerical solution techniques have
been advanced with the goal of attacking nonseparable geometries, e.g.,

rectangular apertures (Refs. 2.8-2.12).

One can demonstrate that the electromagnetic field which penetrates
a small hole in a conducting surface can be represented approximately
by the radiation from equivalent electric and magnetic dipoles plus a
linear magnetic quadrupole. These point sources are located on the
shadow side of the shorted aperture; that is, the conducting screen is
made continuous. If the hole is very small and the point of observation
is distant from it relative to the hole's maximum dimension, then this

equivalence provides a good approximation. Usually the quadrupole

13



contribution is negligibly small and it is most convenient to locate

the equivalent sources at the geometric "center" of the shorted aperture.
This equivalent problem is illustrated in Fig. 2.1, where one sees the
original excitation (Ei, ﬁi) plus the equivalent magnetic and electric
dipoles located on the continuous conducting surface at a point orig-

inally in the aperture (unshorted).

Bethe (Ref. 2.2) has shown that the equivalent dipole moments of
a given small aperture in a screen are related to the specified excita-
tion by the so-called aperture polarizabilities (Refs. 2.2, 2.11, 2.13-
2.16). Knowing the polarizabilities for an aperture and the illumination
of the perforated screen, one can determine dipole moments and, subse-
quently, the diffraction caused by the presence of a small aperture in
the screen. For a small aperture A in a planar conducting screen of

infinite extent (Fig. 2.2), the electric polarizability @, is defined by
p=ca, E (0-) (2.1)

and the components, o and a , of the magnetic polarizability are
m, XX m,yy

? ?

defined by
- sc, =
m = am,xx Hx (0-) (2.2a)
sc,=
m =-aqa H ~(0- 2.2b
y m,yy 'y (0-) ( )

In Eqs. 2.1 and 2.2, (E°C, B°®) is the total field which exists on the
shorted conducting surface at the point (0,0,0-) (illuminated side).
p2 and m are the moments of the equivalent electric and magnetic dipoles,
respectively; these dipoles are located on the shadow side of the shorted
surface at (0,0,0+).

We point out that, at the surface of a perfect conductor, only a
normal component of electric field can exist and only tangential com-

ponents of magnetic field exist. Of course, the normal electric field

is related to the surface charge density o and the tangential magnetic

14
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field is related to the surface current density K. If A is the out-

ward normal at a point T on the surface, then

e Ezc(E) = o(T) (2.3a)
and
a x B%°S(7) = R(T) (2.3b)

If, in addition, the conducting surface is planar and of infinite extent,
the incident field and short-circuit field are simply related at the

conducting surface:
E = =2E (2.4a)
and

% xa =28 xa (2.4b)

For a small aperture in a planar conducting surface of infinite
extent, polarizabilities are available in the literature for several
aperture shapes. An important example is the small circular hole for

which
D (2.5a)
and

a - a =_2_D (2.5b)

where D is the diameter of the circle. For an electrically small ellipse
whose length 2 is much greater than its width w, the polarizability com-

ponents are (w << %)

a =55 WL (2.6a)

17



L L
“m,xx | 24 rin 4o\ _ 7 (2.6b)
()
T 2
am,yy =% v '3 (2.6¢)

Polarizabilities for other apertures have been obtained by measurements

and still others by various numerical techniques. A selection of polari-

zability values is presented below.

B.2 Dipole Moments and Polarizabilities

The electromagnetic field which is diffracted by a small aperture
in a conducting surface can be approximated by the radiation from
equivalent electric and magnetic dipoles. Due to the simplicity and
utility of such an equivalence, a great amount of attention has been
devoted to the problem of determining the moments of the dipoles.

The diffracted field is, of course, dependent upon the excitation of
the aperture/screen and upon the shape and size of the aperture. In
the case of a planar conducting screen of infinite extent having.an

aperture whose maximum dimension is very small relative to the wave-

length of the electromagnetic signal of interest, the moments of the
equivalent dipoles are proportional to the components of the exciting

field. These constants of proportionality, the electric and magnetic
polarizabilities, are dependent only upon the shape and size of the
aperture. In addition, whenever the aperture possesses one symmetry

axis about an axis, only three constants are needed for computation of
the dipole moments: one for the moment of the electric dipole and two
for that of the magnetic dipole. Knowing the polarizabilities for an
aperture and the illumination of the perforated screen, one can determine
the equivalent dipole moments, and, subsequently, the distance diffracted

field caused by the presence of a small aperture in the screen.

Below we discuss aperture polarizabilities and equivalent dipoles and

18




provide a collection of polarizability data for numerous aperture shapes.

For a small aperture A of a given size and shape in a planar, con-
ducting screen of infinite extent, a section of which is depicted in
Fig. 2.3a, the electric polarizability a, is defined by Eq. 2.1 in which
pz is the moment of the equivalent electric dipole located at the aper-
ture (shorted) center on the shadow side of the screen (Fig. 2.3). We
point out that only a normal component of electric field exists on the
surface of the perfectly conducting screen with the aperture shorted;
so, relative to the location of the planar screen in Fig. 2.3, Ezci is
the total electric field on the surface of the shorted screen. Also,
the equivalent electric dipole is oriented perpendicular to the conduct-
ing plane and is located at 0 on the upper-side surface of the shorted

screen.

The magnetic polarizability has two components, a and a s
- ) _m,Xx m,yy
defined by Eq. 2.2. The magnetic dipole m = m X + myy is located at
(0,0,0+) on the shadow-side surface of the shorted screen and is parallel
to the screen. The negative signs in Eq. 2.2 account for the fact that
the equivalent magnetic dipole on the shadow side is in the direction

opposite to that of ﬁsc(ﬁ—).

In Fig. 2.3 we depict the original problem, the excitation, and the
equivalent problem. The original problem is seen in Fig. 2.3a, while
the illustration of Fig. 2.3b shows the aperture shorted with the short-
circuit electric and magnetic fields, Eic(ﬁ-)i and Hic(ﬁ—)ﬁ + H;c(a—)§,
at 0 on the under-side surface of the shorted screen. Fig. 2.3c shows
the dipoles on the upper surface of the short screen, which forms the
equivalent of the original problem. Radiation from these dipoles is
computed by standard methods; they radiate in the presence of the screen

and its effect must be included in any calculation of radiated field.

At the surface of a perfect conductor, only a normal component of
electric field can exist and only tangential components of magnetic
field exist. The normal electric field is related to the surface charge
density and the tangential magnetic field is rleated to the surface
current density as specified in Eq. 2.3, valid for a surface of any size

and shape. If the conducting surface is planar and of infinite extent,
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~
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Surface of
N Screen
ESS(0-)2 (Aperture Shorted)
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Aperture
Electric
Dipole

(equivalent)

(c)Equivalent Problem

Magnetic Dipole
(Equivalent)

Fig. 2.3. Illustration of Aperture in a Screen, Short Circuit
Fields, and Equivalent Problem.
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the incident field and short-circuit field are simply related at the

conducting surface by

Ezc(x,y,o-) = ZEi(x,y,O-) (2.7a)

and
A% (x,y,0-) x z = 2H (x,y,0-) x 2 (2.7b)

From knowledge of the polarizabilities for a given small aperture,
the moments of the equivalent dipoles are readily available, and from
them one can compute the field which reaches the shadow side of the
perforated surface. In the case of an infinite plane the shadow-side
field is equivalent to that radiated by dipoles of moments 2 pz and
2 @ located at O in a uniform space of infinite extent characterized
by (u,e) .

The polarizabilities for the circle, the ellipse, and the narrow
slit can be computed theoretically and values for these shapes are
available in the literature (Refs. 2.11, 2.15, 2.16). Formulas for the
polarizabilities are presented in Table 2.1 for these shapes (Figs. 2.4a

and 2.4b).

Cohn (Refs. 2.13, 2.14) has experimentally confirmed the expressions
in Table 2.1 and has determined values for several other shapes. His data,
together with values based upon Table 2.1 are presented in Figs. 2.5
through 2.8; Figs. 2.6 through 2.8 were taken from Ref. 2.17. Notice
that the polarizabilities are normalized with respect to 23 which results
in dimensionless quantities. As an aid to the reader, the direction for
the short-circuit magnetic field for a given magnetic polarizability is

indicated in the figures.

De Meulenaere and Van Bladel (Ref. 2.11) have computed by numerical
methods the polarizabilities for a rectangle, a diamond, a cross, and a
rounded-off rectangle, all of which are illustrated in Fig. 2.4. Their
results have been compared with Cohn's experimental values and with the

well-known values for the ellipse, and they find that their data are
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TABLE 2.1

*
APERTURE POLARIZABILITIES

:IF':_._.____._ S —
a
Shape ue um,xx o, yy
— — ]
Circle 1 3 1 3 11
= =D D
(D= Diameter) 12 b 6 6
3 2
+ 5wl xo 0 S S
Ellipse 7 E(e) 7% K(&) < ECE) 25 [\
(-) E(v) - K()
W
3
Narrow Ellipse o 2y o ? _ U
(w<< ) 24 ¥ ! 24 1n(4_«_> ) 2%
]
. o2
Narvow Slit o2 . no theoretical 6 v ¢
(w << 2) 16 value
1 -
L - v
*See Refs. 2.2, 2.15, 2.16
w i
+ : .
Ellipse [Eccentricity . = 2

K and £ are the complete elliptic integrals of the first and second kind, respectivelys

n/2
K(x.) =f R - d¢ , L(x) =
2 212
=0 E_ ]

-~sc
iValid for B "(0-) transverse to and constant

2
t sin

along slit axis (See Fig. 2.4a).
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Fig. 2.4.

fe—>

2

(a) Ellipse

(b) Rectangle

(¢) Diamond

(d) Cross

(e) Rounded-off
Rectangle

Various Aperture Shapes.
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highly accurate, having maximum error of *2%.

De Meulenaere and Van Bladel present polarizability data in the
formof curves, and, for convenience, their curves are normalized.
Electric polarizability is normalized with respect to the 3/2 power

3/2 vs. w/%, where A

of the aperture area; that is, they plot %y /A
is the aperture area (Fig. 2.9). The meaning of the length £ and
width w of the shapes is suggested in Fig. 2.4. As pointed out by

De Meulenaere and Van Bladel and supported by the data of Fig. 2.9,
electric polarizability normalized with respect to A3/2 is highly in-~
sensitive to aperture shape and depends almost entirely upon the width-

to-length ratio w/&.

In Figs. 2.10 and 2.11 are presented data provided by De Meulenaere

and Van Bladel from which magnetic polarizability components X wx and
a can be readily computed. In Fig. 2.10 is plotted A3/2/a and
m,yy 3/2 m, XX

in Fig. 2.11 is plotted a yy./A Again, excluding the cross, one

’
sees very similar values for the various shapes. Since values for the

ellipse are almost identical to those of the rounded-off rectangle, the

ellipse curve is omitted.

Latham (Ref. 2.18) also has computed by numerical methods the
polarizabilities for the rectangle and diamond, and, because he employs
a normalization factor different from those discussed above, it is of
interest to consider his findings too. He chooses AZ/P, where A is again
the aperture area while P is the length of its perimeter, as his normali-
zation factor and presents data for ae/(Az/P), am’xx/(AZ/P), andzam’§y/(A2/P).
It is interesting to observe from Figs. 2.12 and 2.13 that ae/(A /P) for
the rectangle and diamond is only slightly dependent upon aspect ratio.
(Note carefully the ordinate ranges in Figs., 2.12 and 2.13.) Further-
more, Latham claims that ae/(Az/P) is in the neighborhood of 0.4 or 0.5
for any hole of reasonable shape. To support his claim he mentions that,

for an elliptic aperture,

2/py =4 -
a /(A°/P) = 5~ = 0.424 | (2.8)

independent of the ellipse eccentricity,
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Fig. 2.12. Yormalized Electric Polarizability(-,v. /(AZ/P)>
for a rectangle. -

Fig. 2.13. Normalized Electric Polarizability(a /(AZ/P)>
e

for a diamond.
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The reader is invited to compare ae/(Az/P) of (2.8) with values from
Figs. 2.9 and 2.12.

From computed data, Latham observes that a useful empirical for-

mula can be given for e yy/(A2/P) for a rectangle:
L]

2 - w
am’yy/(A /P) =3 [1 + 0'55<z>] (2.9)

Eq. 2.9 differs from computed values by less than 3% for (%) < k.

In addition to computation of penetration through an aperture of
one of the relatively simple shapes considered above, one often faces
the problem of determining the penetration (leakage) through very nar-
row slots which exist around the perimeter of a.poorly (poor in the
electromagnetic sense) closed door or cover plate. When such apertures
are considered from the EMP viewpoint, they are called hatch apertures
(Ref. 2.19). Examples of hatch apertures are illustrated in Fig. 2.14,
each figure of which is intended to represent a narrow slot of width g
cut in a thin, conducting surface. 1In all cases, the slot width g is
much smaller than any dimension across an aperture, i.e., g << &, g << w,
and g << d. Of course, for the equivalent dipole representation of the
aperture to be a good approximation, the maximum dimension across the
aperture must be very small relative to the wavelength A (w << i, 2 << A,
d << 1) as well as relative to the radii of curvature of the conducting
surface in which such an aperture has been cut. Figs. 2.14a and 2.14b
might represent a "covered'" access hole or doorway while Fig. 2.l4c might
be a circular access hole with a cover hinged on one side (at y = -d/2)
and latched on the other (at y=d/2). The final example (Fig. 2.14d)

could be representative of a doorway closed by means of double doors.

Polarizabilities for the hatch apertures of Fig. 2.14 have been
determined by Yang, Lee, and Marin (Ref. 2.20), by Lee (Ref. 2.21), and
by Chen (Ref. 2.22), and simple formulas for them are given in Table 2.2.

One should note that the presence of the hinge and latch has no effect
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TABLE 2.2
POLARIZABILITIES OF HATCH APERTURES
—
! Aperture a o o
e m, XX m,yy
g, 214 - a4 - a3 7 a3
‘ '1g. 2.14a o T/
' 32 10(169) -2 16 106 4} - 2 16 1.6 4) - 2
: g g
i
| 3 3 [
“ 2 2l wﬂ v [“3\&)]
m L5 bl 9 m W
Fig. 2.14b % 2 ' 12 12
| i (1+ ;) 1nk(2 +w)/g] lnE(2+W)/g ‘ 11?E*(Q+W)/8
|
- Fok
2 3 2 3
)/ d
Fig. 2.l4c “88 [l - ?fzﬂz ] 11[_6 )
1+Qg"/(8mdh) In(16 g) -2
|
318 W W 2 3 2
g2 LT+ 2 wo [1+31=
n W . 3 £ 2 m \%)
Fig. 2.14d Z 7 24 E
(1+ ;)mE(Q +w)/g] in E.(JL +w)/g] ln[:l»(in)/g:l
#Refs. 2.20~2.22,
“*Q = 2 o (16 d/g)




on of Fig. 2.14c while it does modify a and a,, as is seen

0Lm,yy » XX
from a comparison of the polarizabilities of the apertures of Figs.
2.14a and 2.14c. Similarly, the presence of the center slot in Fig.
2.144 influences only a .

m, XX

B.3 Computation of Penetrated Field by Dipole Moment Approximation

From knowledge of the equivalent dipoles one can compute the field
which reaches the shadow side of the perforated surface. If the surface
is an infinite plane, image theory applies and the shadow-side field is
equivalent to that radiated by dipoles of moments 2 pz and 2m located at
0 in a uniform space of infinite extent characterized by (u,e). Radiation
from such dipoles is easy to compute (Ref. 2.23). After some algebra, one
can show that an electric dipole of moment pz and a magnetic dipole of
moment m = mxi + mv§, both located at O+ on the shorted screen and radi-

ating in concert, produce the field components given in Table 2.3.

Now we summarize how the time~harmonic field, which penetrates a

screen through a small hole, can be computed from knowledge of the exci-

tation and polarizabilities. First, from known short circuit field

S€.14%¢ 1°%) and known polarizabilities (a_;a v
z Tx ’Vy e’ m,xx’ m,yy

a specified hole shape, one computes the dipole moment compomnents (p;mx,my).

components (E ) for
Then, these moments are substituted into Eqs. 2.10 and 2.11 of Table 2.3

which leads to the desired field components.

For a circular aperture of radius R which is sufficiently small
relative to the wavelength, the cylindrical coordinate electric field

components Ez and E: in the hole have been determined (Ref. 2.7) to be

1
2

a _ 8i i T 2 _ 2)
E¢ + I ky ( Eycos ¢ Ex51n ¢) (R o)

1
2

'+ﬁik(asin¢-esin¢)(R2-p2) gt (2.12a)

3 z
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TABLE 2.3

ELECTRIC FIELD COMPONENTS IN REGION z > O DUE TO AN ELECTRIC DIPOLE OF
MOMENT pz AND A MAGNETIC DIPOLE OF MOMENT m (= mxi + my“y)
BOTH LOCATED AT (0,0,0+) ON AN INFINITE, CONDUCTING SCREEN*

<o)
*
[l
N
A "—‘
’—1
1
™
‘x
NN
T
=
N
1
.
w
g
t
at
N’W
S——
+
=
El
<
[
NN
=
N
}
e
|
S—

* The screen is embedded in a homogeneous medium characterized by (u,e); n =Y u/e .

(2.10a)

(2.10b)

(2.10c)



TABLE 2.3 (cont'd)
MAGNETIC FIELD COMPONENTS IN REGION z > O DUE TO AN ELECTRIC DIPOLE OF

MOMENT pz AND A MAGNETIC DIPOLE OF MOMENT m (= mxfc + my)?)
BOTH LOCATED AT (0,0, 0O+) ON AN INFINITE, CONDUCTING SCREEN#*

-5 (xmx+ymy) (k2 - j_%-%—) (2.11a)
r r

w
o

_ Y 2 _ .3k _ 3
" <xmx+ymy> <k i 3 (2.11b)

_'kr
1 e J 2 .3k 3
H=-5 "7\ % e N L A (2.11e)
r r

*The screen is embedded in a homogeneous medium characterized by (u,e); n = / ule




E =%‘3T-ky E;cos¢+E;sin¢ 4(R2-02) y— 2

p-%jk(acos¢+65in¢>(p2+ Ré —ll/-Ei (2.12b)
: (Rz_p2>2 z

where (a,B,y) are the usual direction cosines of the ray along which the

+
ERIN

incident field propagates and (El,El,El) are the components of the inci-
x’Ty’Tz

dent field evaluated at the center of the circular hole.

We point out that Eqs. 2.10 and 2.1l are exact for the case of the
specified dipoles on the infinite, planar screen, but the equivalent
representation of the aperture field is not accurate at points close to
the aperture, measured relative to the maximum dimension across A.

Eqs. 2.12 are exact in the aperture for a vanishingly small radius R.
However, for a surface which is large and whose radii of curvature are
large, relative to the aperture size, Eqs. 2.10, 2.11, and 2.12 are good
approximations at points close to the surface relative to the smaller
dimension measured across the conducting surface. If an object which
scatters energy back into the aperture resides on the shadow side of

the screen, corrections must be made to account for this additional
aperture excitation due to the back scatter. Usually such a correction

is very small for cases where the aperture is small unless some resonance
is caused by the presence of the obstacle behind the screen. Even for

an aperture in a wall of a closed surface, the equivalent dipole represen-
tation leads to good results in many (nonresonant) situations. Of course,
the field produced inside the enclosure must be computed by interior
boundary value problem techniques, not by the expressions of Table 2.3

except under very special circumstances.

B.4 Sample Data

For an electrically small aperture one may approximate the aperture-
produced fields by making use of Table 2.3 and the dipole moments calcu-

lated for the given aperture. How good the dipole moment approximation
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to the actual fields is depends upon the electrical size of the aperture,
the distance from the aperture to the point at whiéh the field is eval-
uated, and the choice of the coordinate origin with respect to which the
dipole moments are calculated. Therefore, since one wishes to take
advantage of the simplicity afforded by use of dipole moments to char-
acterize the electromagnetic behavior of an aperture, it is of interest
to compare the field computed this way with those computed by more

accurate means.

Fig. 2.15 shows the electric field which penetrates a small square
aperture (2a = 2b = 0.15)) subject to normally incident illumination with
a 1 volt/meter electric field directed along the y axis (Ref. 2.10). In
this case the electric dipole moment is zero (EzC = 0), so the total
field is approximated by that of a magnetic dipole. These approximate
values of fiélds together with values determined from numerical compu-
tations (Ref. 2.10) are both displayed for comparison. One sees good
agreement at a radial distance r = 1l0a but sees significant differences
at 3a and 2a. 1In Fig. 2.16 is displayed the field which penetrates the
same aperture subject to edge-on incident illumination with Ei-(o) = 1 volt/

meter and with the direction of propagation along either the x axis or the

y axis (Ref. 2.10).

The primary reason for the departure of the two results is the ap-
proximate nature of the dipole moment equivalence, which incorrectly
predicts an infinite field for z/A - 0. Thus, one must exercise caution
in using the dipole moment approach to compute the diffracted field very

close to an aperture.

B.5 Transient Fields

For cases where the polarizabilities are known, one can compute
time histories of the field which passes through a small aperture. This

is done by making use of Fourier transform techniques.

We point out that the polarizabilities of small, unloaded apertures
are frequency independent so, in view of Eqs. 2.10 and 2.11, the behavior
of the dipole moments with frequency w is seen to be the same as that of
the short~circuit field. Since the dependence of pz upon jw is the same

sc . - . =sc
as that of Ez and since m has the same behavior as does H ', one can
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- Fromn Accurate Numerical Solution

=== [rom Dipole lMoment Approximation

Z>0

\
\

§=-90° . 1. \8=+903
0.04 0.08 0.12
I. r=2a
2. r=3a
3. r=l0a

Fig. 2.15. Electric Field on Shadow Side of Square Aperture

(2a = 2b = 0.152, Ei- = 1 volt/meter, normal incidence).
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obtain time histories of the fields from the expressions in Table 2.3

whenever the short-circuit fields are known as functions of time.

If we denote the time dependent dipole moments components by p(t),

mx(t), and my(t), then
sc,=
p(e) = ea, Ez (9—,t)

~5C .=

mx(t) = - O‘m,xx X (-, ©)
and
sc,=
m (t) = - H™~(0-,t
Y( ) am,yy y )

(2.13)

(2.14a)

(2.14b)

We emphasize that the polarizabilities in Eqs. 2.13 and 2.14 are independ-

ent of time and that, once the short-circuit field is known as a func-

tion of time, so are the dipole moments.

If the w~domain field components of Table 2.3 are inverted by the

Fourier integral

o«

£(r) =F sy = z—ﬁrffm) Jut

one obtains the time~domain field components given in Table 2.4.

differential operators in Table 2.4 are defined by

2
1 3 c 3
Dl[f(r)] == (-——E £(1) + 257 f(T))

Dz[f(r)]

and
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(2.15)
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TABLE 2.4

TRANSIENT ELECTRIC FIELD COMPONENTS IN REGION z > O DUE TO AN ELECTRIC DIPOLE OF
MOMENT p(t)z AND A MAGNETIC DIPOLE OF MOMENT m(t) (= mx(c)i + my(t);})
BOTH LOCATED AT (0,0,0+) ON AN INFINITE, CONDUCTING SCREEN#*

Ex(;,t) = -zﬂﬂ— {cxzr_BD3 [p(t)] - zr—zDl [my(T)]}

Ey(;,t) = % {cyzr_3D3 [pCt)] + zr—zDl [mx(T)]}

B,(F,0) = o+ { er” D, [p(0)] + cz’r by [p(0)]

- r_ZDl [me(T) - xmy(T)]}

Note: T = (t - r/c)

*The screen is embedded in a homogeneous medium characterized by (p,e); n = v p/e .

(2.17a)

(2.17b)

(2.17¢)
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TABLE 2.4 (cont'd)

TRANSIENT MAGNETIC FIELD COMPONENTS IN REGION z > O DUE TO AN ELECTRIC DIPOLE OF
MOMENT p(t)z AND A MAGNETIC DIPOLE OF MOMENT m(i) (= mx(c)ﬁ + my(t)§v)
BOTH LOCATED AT (0,0,0+) ON AN INFINITE, CONDUCTING SCREEN*

Hx(;,t) E%- {— cyr_le [p(t)] - r—lD2 [mx(r)]

+ xr—3D3 [xmx(r) + ymy(T)]}

Hy(;,t) =5 {cxr—le [p(v)} - r_lD2 [my(T)]
+ yr—BD3 [xm (1) + ymy(T)]}

Hz(?,t)

- zr_3D3 [xmx(T) + ymy(T)]

Note: 1 = (t - r/c)

*The screen is embedded in a homogeneous medium characterized by (u,e); n =+ y/¢ .

(2.18a)

(2.18b)

(2.18¢)




D,[f(1)] = L —éi f() +3S2 £(0) + 3-EE £(1) (2.16c)
et = I T rar o \T 2 T -16c

where ¢ is the speed of light in the lossless medium characterized by

(u,e).
C. Slotted Planar Screen

C.1 Infinite Slot

Very long slots of uniform width in a planar screen, subject to
illumination which is transverse electric (TE) to the slot axis, can be
approximated in many typical practical applications by infinitely long
slots. If the slot is very narrow and the excitation is known, one can
compute the slot electric field directly, but for wider slots integral
equations can be solved numerically. Care should be exercised in approxi-
mating a finite-length slot by one of infinite length especially when

the slot length is near resonance or antiresonance. However, the field

pattern behind a long slot is quite similar to that behind one of in-
finite length when the point of observation is near the slotted screen
and not near the slot ends or a point at which the slot field has a null.
Of further interest in EMP applications is the fact that penetration
through a slot subject to TE excitation is typically much greater than
subject to TM excitation. Hence data for TE-excited slots represent

worse—-case fields insofar as EMP hardness is concerned.

For TE illumination of an infinitely long narrow slot in a planar
screen as illustrated in Fig. 2.17, the electric field Ei in the slot

is (Ref. 2.24)

sc
n Hy (0-) 1

. scC
i . ] — + Ez (0-)kx
(y + 2n K + 3 7)

adig) = X
B0 7 — 2

Sy - (o)

lkw| << 1 (2.19)
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TE Illumination (Cross Sectional View).
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where y = 0.57722 used here is Euler's constant and where w is the slot
width as depicted in Fig. 2.17. In view of the typical EMP spectrum,
usually encountered slots are narrow and one usually wishes to know
fields behind a slotted screen at points close to the slot relative to
the wavelength. At a distance p from the slot axis which is large rela-
tive to slot width w and small relative to wavelength A, the magnetic

field Hy is (Ref. 2.24)

HSC(O—) ESC(O_)
=1 y . (kv z 7
Hy(o,w) =3 1\') [Y"'fe‘*‘J 2:] +J<8> n £

kw . T
(Y + 2n ( ) ) + j 2

[w| << 1

w < p << A (2.20a)

where
2 4
- ko) _ 1 /w . _3 (v
fe = Zn( ) > 8 ( 5 51nw> 64 ( > 31nw> (2.20b)
and
w 1 w 3
fO = ;-s1nw +% (-; 51n¢> (2.20¢)

C.2 Finite-Length Slot

For a finite-length slot (Fig. 2.18) whose width w is much smaller
than the wavelength of the excitation and the length 2 of the slot, the
transverse component of slot electric field Ei is far stronger than the
axial component E2. 1In almost all cases of practical interest, the lat-
ter can be negleczed compared with the former. Maximum penetration
occurs when the slot length 2 is near A/2, or an odd multiple thereof,

and when the magnetic field of the excitation is directed along the slot
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axis and 'is an even function relative to the slot center. Strong pene-
tration occurs too through slots whose length is a multiple of one wave~
length when the axially directed magnetic field possesses a rich odd-
function component. Such "worse case' data can be computed from the dual

results available for thin wires.

As an example illustrative of the EMP field which might pass through
a finite-length slot, HSC(O-,t) is selected to be constant along the
slot axis with the double exponential pulse time variation shown in Fig.
2.19. Fig. 2.20 displays the time history of the electric field Ex(t)
(at a point two meters behind the screen) which passed through a

115 cm x 1.3 cm slot (Ref. 2.25).
D. Parallel Plates

D.1 Introduction

The determination of the field which reaches the interior region

between two parallel, conducting plates through an aperture in one plate

is of considerable interest. Such a configuration is representative of
the penetration into a semi-closed region through an aperture, and it is

a geometry of sufficient simplicity to permit careful analysis (Refs. 2.26-

2.28).

D.2 Elliptic Aperture in "Front" Plate

Taylor (Refs. 2.26, 2.27) has investigated penetration into a parallel-
plate region through very small elliptic apertures (Fig. 2.21). He com-
siders general plane wave excitation and provides copious data, which
are reproduced here in Figs. 2.22-2.27. For the purpose of normalizing

his data to render it applicable to a large variety of situatioms, Taylor

introduces
3
' = -
al; = 8 am,xx/l (2.21a)
al, =~ 8 a /13 (2.21b)
22 m,yy )
al. =8 o /23 (2.21¢)
33 e :
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, @ , and 23 are defined in Section B; also,

where o , a
m,Xx' Wm,yy e

( —aéz cos® sing , E polarization

a2 = (2.22)
—aéz sing , H polarizaton
~
and
0 , E polarization
ay= ; (2.23)
aé3 siné , H polarization

E-polarization is taken to mean, in the notation* of Taylor's paper,

that the time-domain field components of an incident plane wave are

Ei“c =0 (2.24a)
E;nc(t) = - % Einc(t) cosB cos¢ (2.24b)
H;nc(t) = - % Elnc(t) cosf sing (2.24¢)

while H-polarization implies field components

E:anC(t) - ElI‘lC

(t) sinb (2.25a)

*Taylor's notation is adopted here for compatibility with curves from
this paper (Ref. 2.27).
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B (e) = % E™C(t) cose (2.25b)

H;“C(t) - % E'™%(t) sing (2.25¢)
The angles 6 and ¢ (see Fig. 2.21) define the ray in spherical coordinates
along which the incident plane wave propagates. The reader is reminded

=inc

that Elnc, H , and the above-mentioned ray are mutually perpendicular

for a plane wave. 1In E-polarization, E'™C is rotated about the ray along
which the wave propagates until it has no (z-component) component per-
pgndicular to the conducting plane (Einc = 0), Yhile in H-polarization
ﬁlnc is adjusted until it has no z-component (H;nc = 0). This way of
specifying the incident field allows Taylor (Ref. 2.27) to present mini-

mum data to cover general cases of excitation.

Figs. 2.22-2.25.provide time~harmonic data indicative of the behavior
of field components between the plates, subject to the excitation dis-
cussed above, for different plate separations. In Figs. 2.24 and 2.25

=inc =inc

B =u H and B = p #, and %, is the length of the major semi-axis

of the ellipse (ZQl = ¢ where 2 is illustrated in Fig. 2.4a).

Computation of the equivalent electric and magnetic dipoles by means
of Eqs. 2.1 and 2.2 from knowledge of E- (0-) and H° (0-) and the polari-
zabilities leads to accurate results so long as the field scattered back
from the back plate into the aperture is small relative to the excitation.
Such would be the case for plate spacing d different from odd integer
multiples of A/2 or with lossy material between the plates. If d differs
from A/2 by less than 10%Z, then resonance effects take place and this

back scatter must be taken into account (Ref. 2.27).

To show that his results for penetration into the region between
parallel plates provide information valid for penetration (in certain
cases) into regions bounded by conducting walls of another geometry,
Taylor compares his time-domain findings with those of Bombardt (Ref. 2.29)

computed and measured for cylindrical walls (Fig. 2.26). Bombardt adopted
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inc -t/t

ine E (e e £ (2.26)

E'™™C(t) ='?e—
r

as his excitation, where t. is the rise time of the incident field,
Einc(tr) is its peak value, and e = 2.71828. The polarization is shown
in Fig. 2.26, and the normalized magnetic field at points on the cylinder
axis is shown in Fig. 2.27. Notice that Taylor's results (solid line)
based on his parallel-plate theory agree quite well with those obtained
by Bombardt. The reader should observe that the curves of Fig. 2.27 pro-
vide the field as a function of position; for the geometries under study,
the time variation of the field on the axis is the same as that of the

excitation.

D.3 Slot in Front Plate

If the aperture in the front plate is a uniform-width slot of infi-
nite length and is excited by an incident plane wave whose electric field
is in a direction transverse to the slot axis, as illustrated in Fig. 2.28,
the field which reaches the interior region can be computed, and the TEM
wave which is guided by the plates away from the slot can be determined
(Ref. 2.28). When the slot is narrow compared with the wavelength and
the plate separation, the slot field retains the essential features of
that found in such a slot in a single, isolated plate, i.e., the distri-
bution of Eq. 2.19. However, as is evident from Fig. 2.29, the strength
of the field differs from that of the field in the isolated, slotted plane,
and, as expected, depends upon the distance between the two conducting
planes. For h < A/2, only the TEM mode exists in the guide remote from
the slot. The electric field of this propagating TEM mode, apart from
jkx

the factor et , is given as a function of h in Fig. 2.30.

From a study of Fig. 2.29, one observes that approximating the field
in the narrow slot by means of Eq. 2.19 is justifiable for a narrow slot,
if extreme accuracy is not required in a given application. This obser-
vation enables one to greatly simplify the labor of gstimating the field

which reaches the interior region between the plates.
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Fig. 2.28. Slotted Parallel-Plate Waveguide.
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E. Wire Behind Aperture/Screen

E.1 Introduction

In this section results are presented for the problem of a wire
excited by an electromagnetic field which penetrates an aperture-per-
forated conducting screen (Refs. 2.30, 2.31). A problem to be considered
here 1s shown in Fig. 2.31 where one sees an infinitely long wire behind
a planar conducting screen in which.a slot has been cut. The screen is
assumed to be perfectly conducting, vanishingly thin, and of infinite
extent. The wire is also perfectly conducting and excited by the
electromagnetic field which passes through the aperture. Results are

given for the case of an infinitely long, thin wire and a small hole.

E.2 Transmission Line Equivalent Circuit for Wire Behind Aperture

In Fig. 2.31 is shown a thin wire of radius a(a/d << 1) whose axis
is parallel to the x-axis and at a distance 4 from a ground screen con-
taining an electrically small aperture. The wire axis is located a
distance p from the center of the aperture, which is centered at the
coordinate origin. The distance p from the wire to the aperture is
assumed to be somewhat larger than the maximum aperture dimension so
that the field illuminating the wire through the aperture can be assumed

to emanate from equivalent dipole moments.

Further, it is assumed that we are interested only in currents and/or
voltages sufficiently far removed from the aperture that only TEM modes
need be considered. The reflections caused by terminating loads on the
line can thus be accounted for by standard transmission line techniques.
With these assumptions, the transmission line-aperture interaction can
be represented by the lumped circuit and source models of Fig. 2.32
(Ref. 2.321). The sources account for the TEM current induced on the line
caused by fields illuminating the aperture from the region z < 0, while
the lumped capacitance and inductance circuit elements account for the
wire-aperture interaction caused by reflected TEM fields due to mis-
matched terminations. For nearly all combinations of the parameters, k,

p,d, and a for which the assumptions hold, the elements C and L may be
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Fig., 2.31. Geometry of a Transmission Line Behind an Aperture
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ignored. It is, however, instructive to point out that the negative
capacitance in Fig. 2.32 represents the lumpeé effect of the decrease in
transmission line capacitance per unit length resulting from the decreased
charging surface near the aperture. On the other hand, the additional
magnetic flux paths which may penetrate the aperture may be thought of as
increasing the inductance per unit length near the aperture, which effect

is accounted for by adding a lumped inductance.

The equivalent voltage sources Vl and V2 of Fig. 2.32 may be expressed
in the time domain by merely replacing the factor jk by-%-é% where ¢ is
the speed of light in the surrounding medium. Thus, the time domain volt-
age sources are approximately proportional to the time derivative of the

aperture fields. Fig. 2.33 shows a typical incident EMP waveform of the

form
L1, -ot -8t
E \t) = Ao(e - e )
with
Ay = 100 kV/m , g =10%1 |, o=3x10%71
and arriving at an angle such that
_ — .
EiC(O-, t) = v 2 ET(t)
BS¢(G-, ) = = El(p)
y n
We assume a set of aperture and wire parameters as follows:
radius of circular aperture 10 mm
distance from aperture to transmission line p = 22.4 mm
height of wire above ground plane d =10 mm
line length in (+x) direction 2.1 m
line length in (-x) direction 3.0 m
load resistance at (+x) port ' 10 kQ
load resistance at (-x) port 10 @
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The resulting voltage across the 10 kQ resistor is shown in Fig. 2.33 as
computed from the time domain source model by following in time the var-
ious induced waveforms and their reflections on the line (Ref. 2.31).

The differentiating effect of the aperture is apparent in the highly
peaked signal that first arrives at the load. The succeeding discontinu-
ities represent contributions from reflections at the terminations.
Because the two terminations almost constitute a short and an open cir-
cuit, respectively, there is only a small decay in the peaks as a func-

tion of time.

F. Large Apertures

If the size of an aperture is large or the frequency sufficiently
high that the largest dimension of an aperture is no longer a small frac-
tion but is rather on the order of a wavelength, then the small-aperture
approximations used in the previous sections are no longer valid. For-
tunately, in the EMP applications this situation is relatively rare

because of the band-limited nature of an incident EMP pulse. Almost

never occurring in EMP problems are cases when aperture dimensions are
several wavelengths long, where the Kirchhoff diffraction approximation
or the more accurate geometrical diffraction theory (GTID) would be
appropriate. Consequently, we restrict our consideration to apertures
whose maximum dimensions are on the order of no more than a few wave-
lengths. For such apertures, numerical techniques must be employed to

accurately determine aperture penetration.

The penetration of fields through circular apertures of moderate
size has been examined by numerical methods by Graves, et al (Ref. 2.32).
Although the results obtained exhibit some numerical convergence diffi-
culties, they nevertheless illustrate features of the transistion from
the electrically small to the moderate-sized aperture. Figs. 2.34 and
2.35 show the aperture electric field in both principal planes for a
circular aperture of radius 0.25A. The illumination is a normally inci-

dent plane wave whose electric vector is polarized along the y-axis.
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Note the nearness of the aperture field distribution to the Kirchhoff
approximation. Also observe that according to the Kirchhoff approxima-
tion the aperture field distribution is close to the incident field in
the aperture region. ‘Some comparisons with experimental results (Ref.

2.33) are also given in the figures.

Aperture fields in square apertures have been computed by Mittra
and Rahmat-Samii (Ref. 2.34), and they present comparison of the domi-~
nant aperture field component along the two principal planes for a
square and circular aperture given in Fig. 2.36 The dashed line curves

(---) represent measured data (Ref. 2.35).

Figs. 2.37 and 2.38 show the field penetrations of the electric and
magnetic field along the axis of a circular aperture. The components
of the penetrating fields shown correspond to those of the incident

plane wave.

G. Cavity-Backed Apertures

G.1 Introduction

Apertures in missiles or aircraft skins often should be treated
as cavity-backed apertures wherein the dipole moments used to represent
the aperture are corrected for the multiple reflections which take
place from the walls of the cavity-like region behind the aperture.
These reflections often influence the aperture field levels, partic-
ularly near frequencies at which the cavity itself is resonant. Unfor-

tunately, there is little data available on this important problem.

In this section, results are given for the magnetic field penetra-
tion into an open-ended circular cylindrical tube, both with and with-
out an aperture (Ref. 2.29). A simple formula for the magnetic field
penetrating a rectangular cavity in an infinite ground plane is also
given (Ref. 2.36). The field penetration of a slotted circular cylinder
with the incident electric field polarized along the slot axis has been
solved by Senior (Ref. 2.37). Finally, penetration into a sphere through

a circular aperture is also treated by Senior (Ref. 2.38).
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G.2 Magnetic Field Penetration into an Open-Ended Circular Cylinder,
with and without an Aperture
Bombardt (Ref. 2.29) considers the degradation in magnetic field
shielding by the presence of an aperture in a long, open-ended hollow
conducting tube. He considers a transient exciting field which is
essentially uniform in the region about the cylinder and whose temporal

variation is
inc

BI"C = A e ®fgingt (2.27)

2.07 x lO_2 w/m2

5>
it

o = 2.09 x 10° s %

8 =0.73 x 10° s+

The internal axial field in the cylinder resulting from the incident

field above is found to be (Ref. 2.29)

i
. Ala/b)? w -w, t _
Blnt - 1 a e L [acosat + (B-wl) sinat] e Bt (2.28)

a?+ (8w’

where

a = outer radius of the cylinder
b = inner radius of the cylinder
2
w

1 ho(a-b)

5.56 x lO7 mho /m

Q
]

Fig. 2.39 compares experimental measurements with results computed from

Eq. (2.28) above. For this axial field component, there is almost no
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change when an aperture is introduced. For the component transverse to
the cylinder axis, however, the corresponding change is much greater.

The transient peak of this transverse field component is plotted in

Fig. 2.40. The abscissa represents the distance from the center of the
aperture to a measuring point on the cylinder axis. Also shown for com-
parison are theoretical values for the field behind an infinite planar
screen with a circular aperture. The peak transverse field is seen to
occur almost directly behind the aperture edge at r = 20 cm and the field

is small directly behind the aperture.

G.3 Magnetic Field Penetration into a Rectangular Cavity

The magnetic field penetration into an open rectangular cavity has
been studied in Ref. 2.36. The magnetic field at the aperture is
assumed to be constant and is oriented in the x direction. The cavity
opening is b meters by a meters wide in the x and y directions,
respectively, and the cavity is h units deep (Fig. 2.41). It is

found that the H field internal to the cavity is given approximately by

H(x,y,2z) = Th 5

b

4Hx(o’()’0+) [ - TX m{(z +h)
_— X cos — cosh —————%
m cosh

+ 2 sinﬂ—;{-sinh "(z—b”‘)—:l (2.29)

It is assumed in the above that h/b > 0.5 and that the observation points
are not close to the aperture, but are well down inside the cavity. Note

that the field variation along the y direction is assumed uniform.

G.4 Field Penetration into a Finite Coaxial Cavity via a Hatch Aperture

Equivalent circuits have been developed to describe the quasi-static
field penetration into multiply-connected cavities through hatch apertures

(Ref. 2.20). One of the most interesting examples is the penetration into
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a coaxial cavity via a two-adjacent-rectangular-hatch aperture as shown
in Fig. 2.42. The coaxial cavity may be used to model a weapon bay,
while the hatch aperture represents the door slits. The dominant
magnetic field penetration can be represented by the equivalent

circuit shown in Fig. 2.43, where

Iic = total current interceﬁted by the hatch aperture
= aeox (short-circuit skin current density)

Rl = equivalent resistance of the door gasket

L2 = gself-inductance of the hatch

Lc = inductance of the coaxial cavity

M = mutual inductance between hatch aperture and the

coaxial cavity

i, , .
The total current IC induced on the center conductor is given by

Ii

c M 1
S T T T (2.30)
IQ. Lc l+SL2/RSZ,

sc

G.5 Slot in a Circular Cylinder

The problem of field penetration into a slotted circular cylinder has
been treated by Senior (Ref. 2.37) by means of a numerical approach. The
geometry, depicted in the inset of Fig. 2.44, consists of a circular cyl-
inder with an angular sector of half-ange 60 removed. The electric field
vector of the incident plane wave is polarized parallel to the cylinder
axis. Although this polarization does not provide maximum coupling to

the interior, it is, nevertheless, an important case of interest.

Figs. 2.45 and 2.46 show aperture field variations for normally il-
luminated apertures of half-angle 60 = 10° and 30°, respectively, for
various values of ka. 1In all the figures, the incident field is assumed

to be of the form
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Geometry of a coaxial cavity with slits.

Fig. 2.42.

[ve]
~



:[SC: F%l l:i L‘C

Lt = 5 (@dor20)

Y
Le = £= 4n(a/b)

HP
M =5 (ago+34)

Ly Lg >> M2

Fig. 2.43. Circuit representation of Fig. 2.42.
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Ei =3 e+jkp cos¢
It is noted that the shape of the aperture field is relatively insensitive
to the frequency. The field at the aperture center is depicted in Fig. 2.46
which shows the dramatic effects of interior resonances near ka=2.4.

Figs. 2.47 and 2.48 show the electric field variation along the cylinder
diameter from the aperture to the cyliﬁder wall for various frequencies.
Note the dramatic increase in interior fields for the wider aperture and

for frequencies near the interior resonance. Fig. 2.49 shows the cavity
field amplitude at the center of the cavity as a function of frequency.

Again, the effects of resonance are seen to be quite dramatic.

G.6 Circular Aperture in a Spherical Cavity

Senior (Ref. 2.38) has considered the electromagnetic penetration
of a spherical cavity through a circular aperture. As shown in Fig. 2.50

the aperture is centered about the polar axis and the angle 8. specifies

0
the angular extent of the aperture. The illumination is a plane wave
incident normal to the aperture and polarized with its electric vector
along the x direction. The magnitude of the two components of aperture
electric field are given in Figs. 2.51 and 2.52 for a sphere of radius
ka=2.5. The basic features of the shapes of these curves remains essen-

tially the same with changes in frequency.

Figs. 2.53 through 2.68 show the variation of the electric and mag-
netic fields along the sphere diameter from the aperture to the back of
the cavity. In addition to the exact solution, various approximate
solutions are given. 1In approximation A, the distribution of the field
in the aperture is assumed to be that of the incident field but with an
adjusted amplitude. The interior fields are then represented as in ex-
pansion in modes whose coefficients are computed from mode matching.
Approximation C is essentially the Kirchhoff approximation wherein the
aperture field is just the incident field and the interior fields are
then computed from the assumed aperture field by Huygen's principle. 1In

approximation D, the aperture is considered to be so small that it can
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be represented by an equivalent magnetic current moment computed as if

the aperture were in a planar sheet. The latter approximations, of course,
do not take into account the presence of the cavity and hence, as the fig-
ures show, they exhibit no resonance effects. As can also be seen from
the figures, such approximations should be confined only to very large
cavities and to frequencies not near cavity resonances. The figures
clearly show the strong influence of the cavity walls on the computed

field distributions and indicate why it is usually necessary to include

the cavity effects in computing aperture penetration.
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CHAPTER III
CABLE SHIELDS

A. Introduction

In this chapter we shall be concerned with the coupling of electro-
magnetic fields between the exterior and the interior of a cable through
its shield, which forms the boundary between these two regions. If a
cable shield were a perfect conductor without apertures, then the
currents and charges induced on the shield by an external source of
electromagnetic energy would reside strictly on its outer surface and
would produce no electromagnetic fields in the interior region. No
induced currents and voltages would appear on the conductor(s) inside
the cable shield; such a shield would thus be perfect, in that the
inner conductors would be completely protected from the effects of

external electromagnetic interference.

Unfortunately, such a shield does not exist. The conductivities

of typical shield materials are large but finite; furthermore, apertures

may exist in the shield, either as a natural concomitant of the shield
manufacturing process or because of the presence of connectors or actual
flaws in the shield. Consequently, our objectives in this chapter are
to examine the mechanisms by means of which electromagnetic fields can
penetrate imperfect cable shields and to assess the effects of shield
imperfections on the currents and voltages induced on the internal
conductor(s). Where possible, we shall also attempt to illustrate

problem-solving procedures with simple example calculations.

There exists a large body of literature dealing with various aspects
of cable shielding. A review of this literature was conducted in mid-
1976, and in the course of this presentation we shall draw heavily from
some of the articles which were reviewed. It was found that the papers

and technical reports on cable shielding could be categorized as follows:

1. works dealing with the transmission-line theory of shielded

cables
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2. works dealing with the excitation of the total currents and
charges on cables in various environments by an external
electromagnetic field

3. works dealing with the modeling of various types of cable
shields

4. works dealing with experimental techniques for the determina-
tion of cable properties and measurement of the internal

signals excited by external sources.

In the first category of papers and technical reports, the theory
of transmission lines is studied and sets of equations applicable to
imperfectly shielded cables are developed. It is found that for well-
shielded cables, the total current and charge induced on the cable by an
external field depend 1little on the detailed cable structure, so that
these total currents and charges can be calculated under the assumption
that the shield is perfect. Calculations of this kind are described in
the papers in the second catégory. Since, as we shall see, the sources
of the internal induced currents and voltages are the total current and
the total charge per unit length on the cable, the intermal induced
signals can then be calculated if the descriptive parameters of the
cable itself are known. These parameters are theoretically derived for
various types of cable shields in the papers in the third category, and
experimental procedures for determining the cable parameters are outlined

in the papers in the fourth category.

An important limitation to the results which are presently available
is that the great majority of the extant articles on various aspects of
cable shielding deal with time-harmonic, rather than transient, signals.
As a consequence, only a few representative time-domain calculations are
available at the present time. Furthermore, multiconductor cables have
not been as extensively studied as two-conductor (specifically, coaxial)

cables. These limitations will be reflected in this presentation.

We shall discuss four types of cable shield in this chapter and
concentrate our attention on coaxial cables, in which there is but a

single conductor inside the shield. These four shield types are
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1. tubular shields, both ferromagnetic and non-ferromagnetic
2. braided shields
3. helical and tape-wound shields

4. shields with isolated apertures.

The geometry of the tubular shields is shown in Fig. 3.1. These
shields are physically thin cylindrical shells of inner radius b and
thickness d. They are made of a highly conducting material and do not
possess apertures. A braided shield is typically constructed of woven
copper wire. The geometry of a braided-shield cable is shown in Fig.
3.2a and the developed surface of the shield is shown in Fig. 3.2b. The
angle y denotes the pitch of the woven braid and is measured from the
direction of the cable axis. Dielectric weatherproofing jackets are
commonly found on these cables. The geometry of a tape-wound helical
shield is shown in Fig. 3.3. Such shields commonly occur in flexible
armored cables. Isolated apertures in cable shields may occur as a
consequence of a break or other flaw in a shield; an isolated aperture

may also represent a cable connector, which is discussed extensively

elsewhere in this report.

'In the next section (section B) we consider the transmission-line
equations for imperfectly shielded cables and discuss the source terms
in those equations. We also consider the approximate decoupling of the
total electromagnetic problem of determining the induced internal currents
and voltages, given the external field, into two simpler problems, one
for the exterior and one for the interior of the cable. Tubular shields
are discussed in section C, and leaky shields (shields with uniformly
distributed apertures, e.g., braided or helical shields) in section D.
Isolated shield aperture effects are considered in section E. Experi-
mental procedures for determining cable properties are described in

section F, and the chapter is summarized in section G.
B. General Considerations: Transmission-Line Equations

A two-conductor transmission line of any type, including a shielded

line, can be described electrically by a pair of coupled first-order
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Fig. 3.1. Tubular~shield geometry. The shield thickness
d is small in comparison to the inner radius b.
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Fig. 3.2a. A braided-shield coaxial cable.
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Fig. 3.3. Tape-wound helical shield geometry. The shield
shown is 6-filar.
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differential equations, the transmission-line equations. Assuming that

*
all currents and voltages vary with time as exp(st) , these equations

may be written
4av

az = -ZI + E(z)

(3.1)
dI
Frte -YV - K(2)

in which z is the coordinate parallel to the axis of the line and V and

I denote the line voltage and current respectively: I is the current on
the center conductor and is taken to be positive in the +z-direction;

V is the potential of the center conductor with respect to the shield.
These conventions are shown in Fig. 3.4, Z and Y denote respectively the
series impedance per unit length and the shunt admittance per unit length
of the cable. E(z), the source term in the '"voltage-change" equation,
has dimensions volt m-l; K(z), the source term in the '"current-change"
equation, has dimensions ampere m—l. We shall discuss these source

terms more fully below.

Equations 3.1 can be used to construct a linear equivalent circuit
for an incremental length dz of the cable. Such an equivalent circuit
is shown in Fig. 3.5. One will note that the source terms E(z) and K(z)
appearing in Eq. 3.1 enter the incremental equivalent circuit as a
series voltage source E(z)dz and a shunt current source K(z)dz

respectively.

Latham (Ref. 3.1) has shown that for a shielded coaxial cable with
a periodic shield structure, the source term E(z) is proportional to
the total current It flowing on the cable (i.e., the sum of the currents
flowing on the inner conductor and the shield) and the source term K(z)
is proportional to the total charge per unit length Qt carried by the
cable. Equivalently (Ref. 3.2), K(z) is proportional to the potential
difference between the cable shield and an external "return" conductor.

We have, therefore,

*
The time-harmonic case corresponds to s = jw. More generally s = ¢ + juw,
the Laplace-transform variable.
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Fig. 3.4. 8Sign conventions for cable current and voltage.
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I(z)— 2Z dz E(z) dz I(z+dz)—

o—o r-——-Q-'. - - o)
+ +

V(z) Y dz K(z) dz V(z+da2)

Fig. 3.5. Linear equivalent circuit for a length dz of
transmission line.
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E(z) = ZTIt
K(z) = sTQ, (3.2)
= YV

in which ZT is the shield transfer impedance per unit length, YT is the

*
shield transfer admittance per unit length , and FT is the (dimensionless)

charge coupling coefficient. It and Qt have already been defined, and

Vt is the potential between the shield and an external return conductor,
as shown in Fig. 3.4,
Some auxiliary relationships among the source quantities It’ Vt’
and Qt and between the parameters YT and sFT can be found. For example, the

charge continuity equation

dIt
d—z_+ th =0 (3.3)
yields the result that
dIt _
K(z) = _PT iz (3.4)

Furthermore, defining an "external capacitance per umit length" C, via

the relation

Qt = Cth (3.5)
we find that
Y
_ T
FT =50 (3.6)
e

It is often convenient to define a parameter Ys through the relation

=X
PT =3 3.7)
s
so that
YTYS = SCeY (3.8)

YS may be termed the shield coupling admittance per unit length.

Btn. te t tyY # T-
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It is apparent that the source quantity of greatest interest is It’

since by Eq. 3.3,
Q = -+t (3.9)

Once It is determined, both E(z) and K(z) can be found if the parameters

ZT and TT are known. The determination of It is facilitated, for well-
shielded cables at least, by the fact that the cable may be modeled as

a perfectly conducting cylinder for this "external" calculation (Ref.

3.3)*. Thus the interior and exterior problems are approximately uncoupled,
and the process of determining the induced internal voltage and current

on a given cable in a given environment involves two distinct steps.

These are:

1. First, calculate the total current and charge per unit length
induced on the cable by the external field, assuming the shield
to be a perfectly conducting cylinder whose outer radius is

equal to that of the cable shield.

2. Second, evaluate E(z) and K(z) and solve the transmission-line
equations 3.1, subject to appropriate boundary conditions, for
the internal voltage and current. It is assumed that the

cable parameters are known.

If the transient response to the excitation is desired, then the final
step would be to invert the Laplace-transformed current and voltage I(z,s)

and V(z,s8) to obtain the time-~domain quantities i(z,t) and v(z,t).

In this chapter, we shall concentrate our attention on the second
of these steps, assuming that the exterior problem has been solved and
thus that the total current and the total charge per unit length induced
by the external field are known. The solution of the exterior problem
is beyond the scope of this presentation, and the reader is referred to

Refs. 3.4-3.6 for some examples of exterior-problem calculations.

*
If the cable has an outer dielectric jacket, the proper "exterior'
model is a perfectly conducting cylinder (whose radius is equal to
that of the shield) coated with a dielectric jacket (Ref. 3.14).
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The solution of the transmission-line equations 3.1 is straight-
forward. We shall present a few of the most important formulae relevant
to the calculation of induced terminal voltages and currents. First, we
note that V(z) and 1(z) take the form

V(z) = Ae Y2 + BeZ + V _(2)
P (3.10)
I(z)

1]
N|>

e Y% _ B e + 1 (z)
Z p
o o

in which A and B are constants to be determined, vy = vZY is the (complex)

propagation constant, and Zo = YZ/Y is the characteristic impedance of

the transmission line. Vp(z) and Ip(z) are the particular integrals of

the differential equations

2
d X - YZV = ZK(z) + Q%éil
dz
2 (3.11)
d"T 2 dK
AR LOEE
dz
Ip and Vp are related to each other by
1 dv
Ip =3 [E(2) - E;R]
. dI 3.12)
Vp =-3 [K(z)_+_2dz ]
Expressing E(z) and K(z) in terms of the total current It’ Egs. 3.11
become
2 dI
v 2 t
=2 V= -2y 3
2 (3.13)
2 a1
d’1 2 t
S -yI=T - Y7, 1
dzz T dzz Tt

Now, Eqs. 3.13 can be solved by several means, depending upon the form

of It' Let us assume for the moment that Vp(z) and Ip(z) are known.

Let the transmission line run between z=0 and z=%, and let the
terminating impedances at each end be denoted Z(0) and Z(L) respectively,

as shown in Fig. 3.6, so that
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Z(o) V(o) (Z,) V(L) Z(1)

Fig. 3.6. A terminated transmission line of characteristic
impedance Zo'

111



V(0) = -Z(0)I(0)
V() Z(2)I(R)

Now by imposing conditions (3.14) we may determine the constants A and B

(3.14)

and thus evaluate the terminal voltages and currents excited by the external

field. Substituting Eqs. 3.10 into 3.14, we find that A and B satisfy

1+ 20 1 - 20 Al [-s
Z o
% ° = (3.15)
Y - —Z—é—”')—] Yo+ Z(“]J B -s,
[e] 0
where
S =

v (0) + Z(0)I_(0)
°c P P (3.16)

vp(z) - Z(E)Ip(ﬂ)

[}

)

Solving for A and B, we obtain

YL (%) z(0)
[1+ 2 Is, + [1 - ©21s,

- o]
A= AQYE)
2Q0)2(8);

2 cosh YR[Z(O)Z+ Z(Z)] + 2sinh y&[1 +
o} ZO
(3.17)

Ry, _Z(8) . _ Z(0)
[1 Zo ]S0 [1 + Zo ]Sl

B =
2cosh YQIZSQlZi—ZiglJ + 2sinh y2[1 + Zﬁglgiﬁl]
o Z

o
The induced terminal voltages and currents are now given by Eq. 3.10

with z=0 or & and with A and B given by Eq. 3.17.

As a simple example of the use of these equations, let us consider
the case where It is a constant, independent of z and given by Ito’ and
the transmission line is terminated at each end in its characteristic
impedance, so that Z(0) = Z(L) = Zo' Let us further assume that at the
highest frequency of interest, [yl[ << 1. Eq. 3.13 reveals that V_ = 0,

and from the first of Eqs. 3.12, we obtain

I (z) =

ZT
7 I (3.18)

to
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Thus, from Eq. 3.16,

= -5 =21 3.19
So Sl Y ZTIto (¢ )
A and B are given approximately by
-ZTIto
A==y
Y (3.20)
5 = ZTIto(%TYz)
=
so that
-Z. % 1
V(0) = -V(R) = T2 to
(3.21)
I(0) = I(2) = sz Ito/ZZ0

In this example, as in the general case, the final results depend
upon the total induced cable current It and upon the parameters of the
line. The evaluation of the parameters Z, Y, ZT’ and FT for several
types of coaxial cables is the subject of the following two sections of

this chapter.
C. Tubular Shields

C.1 Non-ferromagnetic tubular shields

The simplest type of imperfect coaxial cable shield to analyze is a
non~ferromagnetic tubular shield made of a highly conductive metal
(e.g., aluminum or copper). The geometry of such a shielded cable is
shown in Fig. 3.7. Tubular shields were originally studied by Schelkunoff
(Ref. 3.7). The mechanism by which an external electromagnetic field
couples to the interior of a cable with a tubular shield is diffusion of
the magnetic field through the imperfectly conducting shield metal. A
good discussion of this phenomenon is given in the text by Ramo, Whinnery,
and Van Duzer (Ref. 3.8).

Schelkunoff's analysis is readily adapted to the determination of

the cable parameters Z, Y, ZT’ and FT. The following general results

are obtained:

113



SHIELD

/DIELECTRlc

CENTER CONDUCTOR

Fig. 3.7. Tubular shielded coaxial cable geometry.
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Sty b

Z=5 g+ Zy+ L,

2tsefn b
a

(]
[}

(3.22)
-1
T = 2n0_b(b+d)D

FT =0

in which uy and € are the permeability and permittivity of the dielectric
material between the center conductor and the shield, a is the radius of
the center conductor, and b is the inner radius of the shield. The shield
thickness is d and the conductivity of the shield material is os. Zi
denotes the impedance per unit length of the center conductor, and is

given by

7 = /Suolcc Io(/suodc a) (3.23)

i 2ra
Il(V-suocc a)

in which cc is the conductivity of the center conductor and In(-)

denotes the modified Bessel function of the first kind. 2 is given by

bb
Suo/os — —
be = 276D [Io ( Suoos b)Kl( suoos <)
+ Io(Vsuocs c)Ko(Vsuoos b)] (3.24)

where ¢ = b+d, Kn(-) denotes the modified Bessel function of the second

kind, and

D = Il(Vsuoos c)Kl(VsuooS b) - Il(Vsuoos b)Kl(Vsuoos c) (3.25)

When d is small in comparison to b, ZT is reliably approximated by the

simpler expression

fsuoos d
ZT = W csch Vsuocs d (3.26)

It is interesting to note that Z comprises contributions from the
finite impedances per unit length of both the center conductor and the

shield as well as the usual inductive impedance contribution. It should
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also be pointed out that Y is identical to the result obtained for an
ideal coaxial cable and that Pt = 0. This occurs because the induced
charge per unit length resides entirely on the outer surface of the
shield and no radial electric field penetrates from the exterior region
to the interior of the cable. Thus the coupling between the exterior
and interior of the cable occurs via the magnetic field alome; and the

coupling is referred to as purely inductive.‘

In most practical situations, the purely inductive term in Z is

dominant and Z. can be approximated by the expression given in Eq. 3.26.

T
Thus the transmission-line parameters of a tubular shielded cable are

approximately
sy
z==2gn2
2m a

1 by-1
Y = gn =)
2mse a (3.27)

Zy = Ro/érds cschvst

r..=0
T
in which we have introduced the notation

_ 2
T4s = uocsd (3.28)

ds

for the "diffusion time constant' of the shield, and

1
R, = 270 _ba (3.29)

denotes the dc¢ resistance per unit length of the shield.

Curves of the magnitude and phase oleT(s=jw)/Ro as a function of
normalized frequency des are given in Fig. 3.8. These curves, together
with a knowledge of the conductivity O and the shield radius b and
thickness d, permit the calculation of the transfer impedance per unit

length for any given non-ferromagnetic tubular shield.

As an example of the transient behavior of the induced voltage and
current on a tubular-shielded cable, let us consider an electrically
short cable terminated at both ends in its characteristic impedance. We
found-in the previous section that the induced currents I(0) and I(%)

were given by
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ZT£ Ito

I(0) = I(2) = 37 (3.30)
o
where Ito was the (spatially uniform) total cable current. If the
temporal behavior of the total current is given by
i = 3.31
1to(t) IOU(t) ( )
where U(t) denotes the unit step function, then
I
1 =-2 (3.32)
to s
Now let ZT be given by Eq. 3.27. We obtain
ROE Ions cschvsrds
I1(0) = I(L) = 77 (3.33)
o Vst
ds
as the Laplace transform of the currents i(t,z=0) and i(t,z=2). This

transform can be readily

inverted, and a plot of ZZoi(t,z=O)/ROIOQ as a

3.9 (Ref. 3.4).

the induced current normalized to Io_is simply ROI/ZZO.

function of t/'rdS is shown in Fig. The final value of

As an additional example, consider the same situation as above, but

let
(3.34)

1,(6) = q,6(¢)

where 9, has dimensions of charge (Coulombs) and §(t) denotes the Dirac

delta-function. Thus Ito = qt and
R
I(0) = I(R) = 220 STy csch ST4s (3.35

is the Laplace transform of i(t,z=0) and i(t,z=2). A plot of

ZZotdsi(t,z=0)/R°2.qt as a function of t/rds is shown in Fig. 3.10 (Ref.
3.4).

One will note that the peak value reached by the induced current

is
Rozqt
i(t,z=0) 6[ZZ—TJ (3.36)
peak o ds
and q, is related to ito(t) by
00
q, = fo 1., (t)dt (3.37)
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The preceding examples will serve to give the reader an idea of the
responses to be expected when the total cable current ito(t) is an
exponential-form transient whose time constant is either very long or
very short in comparison to the shield diffusion time constant T4s*

C.2 Ferromagnetic tubular shields

Because of the very large equivalent relative permeability of
unsaturated ferromagnetic materials, cable shields made of such materials
can be very effective. This is so because of the increase in the shield

diffusion time constant (cf. Eq. 3.28) by a factor of u When the

r,eff’
shield carries a large current, however, the resulting magnetic field

can saturate the shield through a part of, or throughout, its thickness.
When complete shield saturation occurs, the relative permeability of the

shield drops essentially to unity and its effectiveness decreases.

Ferber and Young (Ref. 3.9) have developed an expression for the
depth of saturation of a thin tubular ferromagnetic shield of radius b,
thickness d, conductivity Oy and saturation flux density Bs’ which is
carrying a current is(t). Hysteresis effects are ignored and it is
assumed that the shield material is either completely saturated or
completely unsaturated with infinite effective relative permeability.
The B-H curve appropriate to these assumptions is shown in Fig. 3.11.
Denoting by x the depth to which the shield saturates (x<d), Ferber and
Young find that

rt 1/2
J is(t)dt
0

x=4d| a7 (3.38)
nbrds Bs/uo

. 2 . . =
where Tys = uoosd . BS is typically 1.6 Wb m 2 for the steel used in

electrical conduit.

Partial saturation of the shield (i.e., x<d) is far less serious
than complete saturation, since most of the shield current flows in the
saturated portion (the outer portion) of the shield and the current
carried on the inner unsaturated portion remains small. When complete
saturation occurs, however, this is no longer true. The condition for

complete saturation.is that
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Fig. 3.11. 1Idealized B-H curve for saturable ferromagnetic
shield material.
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tt
Jo is(t)dt Z-ﬂdeS Bs/uo (3.39)

Eq. 3.39 may be used to develop a design criterion for ferromagnetic

tubular shields if the maximum expected value of the total transferred

charge (i.e., the integral of is(t)) is known (Ref. 3.10).

D. Leaky Shields

Helical and braided shields do not generally completely "cover'" the

center conductor. Braided shields commonly possess a periodic distribution

of small diamond-shaped apertures appearing where the bands of shield
wires overlap. Helical shields usually have gaps between turns. Braided

and helical shields have been shown in Figs. 3.2 and 3.3.

The presence of these openings or apertures in the shield gives
rise to the possibility of electromagnetic field coupling directly
through the apertures between the exterior and the interior of the
shield. Both electric and magnetic fields can couple through shield
apertures; this coupling is indicated in Fig. 3.12. Thus in shields
with apertures, both inductive and capacitive coupling mechanisms are
present, and the inductive coupling can occur both via diffusion and via

direct aperture penetration.

Electrically small apertures can be modeled as equivalent electric
and magnetic dipoles (Ref. 3.11). As a consequence, the electromagnetic
quantities of interest for the analysis of aperture effects, especially
in braided shields, are the electric and magnetic polarizabilities of
the apertures. When these polarizabilities are known, the transmission-

line parameters Z_ and PT for braided shields may be expressed in terms

T
of them as follows:

nu_a

_ o m
ZT = ZTd + s z;;;;f
(3.40)
naeC
T = —_—
T € (21rb)2
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H(Is) H(I)

MAGNETIC ELECTRIC

Fig. 3.12. Illustrating coupling of magnetic and electric fields through
a shield aperture. Is denotes the shield current.
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in which @, and a denote respectively the electric and magnetic polar-
izabilities of the apertures, n is the number of apertures per unit
length of shield, and b is the shield radius. C denotes the capacitance
per unit length between the center conductor and the shield and €
is the permittivity of the inner dielectric. ZTd is the diffusion
contribution to ZT; it is given by (Ref. 3.2)
Ro .
Zpq = TT'/éTds csch/érds (3.41)

where V is the optical coverage of the shield, and the other quantities

in Eq. 3.41 have been previously defined.

The aperture polarizabilities appearing in Eq. 3.40 depend on

several factors, the most important of which are:

a. the size and shape of the aperture
b. neighboring apertures
c. the dielectric materials inside and outside the shield
. Latham (Ref. 3.12) has studied the first two effects in detail. He
‘ found that the polarizabilities of an isolated diamond-shaped aperture
aei and ami are given by
3 2
$ sin ¢ -
a .= (3 =% a @
2
ei cosy e (3.42)
3 2
_ (8y” sin gy =
“ai (ZJ cosy o"m(l‘b)

in which § denotes the dimension of the aperture along the direction of
the cable axis and ¢ denotes the pitch of the braid shield. The geometry
of the shield apertures is shown in Fig. 3.13. Ee and &m denote nor-
malized polarizabilities which depend only on . Curves of Ee(w)

and &m(w) as functions of ¢ are shown in Fig. 3.14.

The effect of neighboring apertures on the polarizabilities of a
given aperture in an array is to modify the polarizabilities of an
isolated aperture as follows:

a .
o« = ei
e

1+ (aei/wi)ze(w)
(3.43)
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Fig. 3.13. Geometry of aperture array for braided-shield cable.
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Fig. 3.14a. Normalized electric polarizability for diamond-
shaped apertures.
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Fig. 3.14b. Normalized magnetic polarizability for diamond-
shaped apertures.
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a .
ml

1+ (g /D5, )

GB
m
W is the distance between apertures in the direction normal to the
cable axis as shown in Fig. 3.13, and Ze and zh are "interaction sums"
whose dependences on Y are shown in Fig. 3.15.
Marin (Ref. 3.13) considered the effect on the electric polarizability
of an isolated aperture of the inner‘and outer dielectrics (i.e., the
dielectric between the center conductor and the shield, and the outer

dielectric weatherproofing jacket). He found that o the electric

ei’
polarizability of an isolated aperture in the presence of dielectrics,
was related to %o’ the electric polarizability of an isolated aperture

when no dielectric materials are present, by

o, =a_, [—ZE—J (3.44)
ei eio (e + €,
j,eff
in which € is the permittivity of the inmer dielectric and e, denotes

j,eff
either Ej’ the permittivity of the outer jacket, if one is present; or

*
€ if the cable has no jacket .

Equations 3.40-3.44 permit one to evaluate the coupling parameters
of a braided-shield coaxial cable when the permittivities of the dielectrics
involved and the shield geometry are known. The remaining parameters Z
and Y are affected by the presence of the shield apertures, but the
changes are small for well-shielded cables. Thus for a braided-shield

cable, Z and Y are given approximately by

U s
z =52 Zn%
(3.45)
é-= 1 in b
Y 21se a

To illustrate the effect of aperture coupling to a braided-shield
cable, let us consider as an example an electrically short section of

cable on which a constant total current Ito is induced by an external

% .
Actually, of course, e, of f is a function of the jacket thickness; but

it turns out that for Bfacticable jacket thickness, €. £F is essentially
equal to ej if a jacket is present. J»€
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Fig. 3.15. '"Normalized" interaction sums coszw).‘.e and cos3¢'2h

vs. V.
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source. We shall further assume that ZTd = 0 so that only the effects
of the apertures will be present. The cable extends from z=0 to z=% and
the terminating impedances at each end are Z(0) and Z(%), as in our
previous. example in section B. When Z(0) = Z(®) = Zo’ the induced
current on the internal conductor is
I(0) = 1(2) = E-Ti——z-lﬂ (3.46)
o

Now let us denote Zj by sLg, where L, is the "transfer inductance per
unit length" due to the aperture coupling. If the time-domain total

current ito(t) is a step function of magnitude I, as given in Eq. 3.31,

then
LSZ Io
I(0) = IQR) = —5— (3.47)
(o]
so that
LSE ]Z0
i(t,2z=0) = i(t,z=2) = 27 s(t) (3.48)
‘II' o
and the induced terminal voltages are
-LSR I0
v(t,2=0) = -v(t,z=2) = ——— §(¢v) (3.49)

so that this type of shield tends to act as a "differentiator" of the

total current in producing the internal voltage and current.

If both terms in ZT are present, i.e., if ZT = ZTd + sLS, then the
total internal current response to a step function current on the cable
will consist of a term identical to that given in Eq. 3.49 plus a term

like that plotted in Fig. 3.9 with R, replaced by RO/V.

We now turn our attention to tape-wound helical shtelds. The most
important feature of helical shields, whether filamentary or tape-wound,
is that a significant azimuthal component of shield current density is
present. If the total current carried by a helical shield is Is’ then
the average azimuthal shield surface current density is

I
=S
Js¢ = 20 tany (3.50)
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This "solenoidal" component of the shield current demsity gives rise to
a large inductive contribution to ZT having the form (Ref. 3.1)
S 2]
o a 2
= —— - = 3.51
Zp e ll 7 tan“y ( )
due to solenoidal
shield current component
This contribution to ZT generally dominates that due to the aperture
coupling contribution which is due to the finite gaps between turns.

That contribution is, for a M—-filar filamentary shield (Ref. 3.14),

suosecw

)T
ZT v n {2511:1 —2] (3.52)

due to gaps
where V denotes the optical coverage of the shield. For an M~filar tape-
wound shield, the contribution to ZT due to the gaps between turns is
(Ref. 3.15)
suowgsecw
Zy = (3.53)
due to gaps 64Tb™

in which LA denotes the gap width between turns.

Electric fie;d coupling through gaps in the shield also occurs; the

coefficient I, is given by

T
2
ZCwOsecw
FT = 3 (3.54)
64Tb " M(e + ej,eff)

for an M-filar tape-wound shield.

In general, the series impedance per unit length Z of a cable consists
of terms arising from the finite impedances per unit length of the center
conductor and the shield, an inductive term of the form given in Eq. 3.45,
and ZT itself. 1In the cases of tubular shields and braided shields, the
inductive term alone is a satisfactory approximation to Z for well-shielded
cables, because the remaining contributions are generally negligible in an
engineering approximation. However, a contribution of the form given in
Eq. 3.51 may not be negligible, so that for helical shields, Z is
approximately given by

su

. __ 0O b
Z = T {2n

1 a2 2
2+5 (- ;7) tan“y] (3.55)
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while Y is given approximately by the second equation in 3.45.

The diffusion contribution to ZT is generally of little interest,
since the solenoidal~-current contribution given in Eq. 3.51 is so large
in comparison. It should also be mentioned that when a tape-wound shield
carries a large transient current, the solenoidal-current inductive
contribution to ZT can cause sufficiently large voltages to develop
between turns that arcover occurs. . Under this condition, the shielding

actually improves (Ref. 3.16).

E. Isolated Apertures

An isolated small aperture in a cable shield can be represented
in terms of a transmission-line circuit model by a series voltage source
Va, a shunt current source Ia’ series impedance Za, and a shunt admittance

Ya’ as shown in Fig. 3.16. These quantities can be expressed as follows
(Ref. 3.17):

v = z§ 1°%F
a m
_ ext
Ia = sGeQ
(3.56)
Z_=s§ L+R
a m a
Y =s§C
a e
in which I®*% and QeXt denote the induced current and charge per unit

length on the outside surface of a "perfect" shield; Z, L, and C denote
the line's series impedance, series inductance, and shunt capacitance

per unit length; Ra is a "contact resistance" usually given from
*

measurements , and

Za
§ =—Wnm
T e’z
(3.57)
Z a
5§ = w e
e 2
(27b) Zo

*
Ra is usually important when the isolated aperture is used to model a

connector.
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I(Zq-)—-> Za VQ I(Eq +) —_—

V(zq-) I, Q Yq V(zq+)

Fig. 3.16. Equivalent circuit for an isolated aperture at z = z_ .
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in which a and a denote the electric and magnetic polarizabilities of
the aperture, Zo is the characteristic impedance of the line, and

Zw = /E;TE is the intrinsic wave impedance of the internal medium. The
polarizabilities of apertures of various shapes are given in Ref. 3.17.
Modifications to e, due to the presence of inner and outer dielectrics

have already been discussed (cf. Eq. 3.44).

The currents and voltages induced in the terminations of a cable
by coupling through a single aperture can be found by means of a
straightforward transmission-line analysis. Let the line run between
z=0 and z=¢, and let the aperture be located at z=z_. The terminating
impedances are Z(0) and Z(L), as in our previous examples. We find in

general that

A ) Z(0) . -1
I(0) Z(0) [cosh vz, + Z sinh Yza] I,
(3.58)
V@) _ _ z(L) . _ -1
(%) O [cosh Y(2-2,) + z, sinh v(2-2,)] 7 I,
where
Ia Za Va Za 2
T Gt Ty Gty
I, = 2 2
1 Za a 1
(z +§—)(ze2+2 ) +§: (zel+zeo+z)
I, z, A z, G.59)
- = =) + 2 8 4 <
Y (zeo + 2 ) 2 (zeo + 2 + )
2 e a
12 ) Za a 1
(z +—2—)(z£+§—) +T(Z Z+ze0+z)
and
. -, ;{g?éosh“Tzar+ Zosinh Yz,
eo o Z(0)sinh yz_ + Z cosh vz
a o a
(3.60)

Z(2)cosh Y(&-z_) + Z sinh v(R-z )
Z =2 oo —2 2 2
e o Z(L)sinh Y(l-za) + Zocosh y(l—za)

are the impedances Z(0) and Z(L) referred to the position of the aperture,

and in which y = ¥2Y and Zo = ¥Z/Y. In the special case where the line
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is electrically short (|y&] << 1) and terminated in its characteristic

impedance at each end, we have

Ia za Va Za 2
T Gt Ty Gty oty
a a
za Za 2
(Z°+T)(ZO+~Q—+;I:)

I(0)

3.61)

Ia Za Va zé
» o =y 4+ = —_—
Y (Zo + 2 ) 2 (Zo + 2

2
+-Y—)
a a

R

I(2) z Z
a a 2
(zo + E_)(Zo + 2 + Ya)

If it is further assumed that the total current induced on the
*
cable is a constant , then Ia = 0 and
v Z8

a = m ext
=% +2z 22 2z ' (3.62)
o a o) a

I(0) =

|
]
~~
)
N

|

If Z = sL, i.e., if the series resistance per unit length is neglected,

. ext . . . .
and if I = Ito/s (i.e., the exterior induced current is a step

function of current Ito)’ and Ra = 0, then

ItO
I(0) = 1(8) = %7 (3.63)
+ —2
ST 13
m
and
—(zzo/LGm)t
i(t,z=0) = i(t,z=L) = Itoe (3.64)

is the induced current in the terminations. The terminal voltages are
-(2
(2z /18 )t

—-v(t,z=0) = v(t,z=L) = ZoItoe (3.65)

F. Experimental Procedures

In this section we shall mention briefly some of the procedures
commonly employed or proposed for the experimental determination of the

transmission-line coupling parameters. Consider first the voltage-change

*
i.e., with respect to z.
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equation in Eq. 3.1 with E(z) as given in Eq. 3.2:
av

— R 3.
iz Z1 + ZTIt (3.66)
Clearly, ZT can be expressed as
1 4dv
2, == (3.67)
T It dz =0

so that ZT may be determined experimeqtally by appropriate measurements
of V and It under open-circuit (I=0) conditions. A configuration appro-
priate to such measurements is shown in Fig. 3.17. A length of the
coaxial cable under test is mounted in a concentric conducting cylinder
and the shield is driven by a current source at one end. The current
provided by the source 1is Io' The center conductor is open at the

other end and the potential difference between the center conductor and

the shield is measured. If the measured value of this potential is

denoted V and the length of the cable sample is ES, then

Z., = I (3.6?)

It is assumed that ls is small in comparison to the wavelength over
the frequency range of interest. Measurements taken with a system of

this type are discussed in more detail in Refs. 3.18 and 3.19.

Another approach to the problem of measuring ZT has been suggested
by Lee and Baum (Ref. 3.3). Their approach is based on the same
equation 3.66,

I

ZT =27 = (3.69)

It av _ 0
dz

An experimental configuration based on this approach is shown in Fig.
3.18. A current source Io drives both the center conductor and the
shield at one end of the cable and its concentric conducting cylindrical
enclosure and the center-conductor current is measured at the other

end. If the measured value of current is I, then

ZT =12 (I/Io) (3.70)

The measurement of the electrical coupling parameters is based on

considerations similar to those given above. Writing the current—-change
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CONCENTRIC CONDUCTOR

CABLE SHIELD
-———

>

Fig. 3.17. An experimental configuration to determine ZT
(open—circuit form).
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CONCENTRIC CONDUCTOR
CABLE SHIELD

D ®

Fig. 3.18. An experimental configuration to determine Z
(short-circuit form).

T
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equation in Eq. 3.1 with K(z) = YTVt, we have
dI
£l - yv - .7
dz YTvt , G.71)
from which it is evident that
1 dI
Y, =~ 5= 3.72)
T Vt dz =0

An experimental configuration based on eq. (3.72), is shown in Fig. 3.19.
The cable sample is mounted again in a concentric conducting cylinder.
The center conductor is shorted to the shield at each end and the current
measured at one end. At the opposite end, a voltage source drives the
cable and the concentric conductor. If the source voltage is VO with

polarity as shown and the measured short-circuit current is I, then

3.73)

0”'s
where ls again denotes the length of the cable sample, which is assumed
to be short with respect to wavelength over the frequency range of

interest.

Lee and Baum (Ref. 3.3) have propésed an alternate configuration
shown in Fig. 3.20. This configuration is based on the equation
Y, = Y X_f (3.74)

t'1=0
The experimental procedure suggested is to again place the cable sample
in a concentric cylindrical conductor, drive the shield with a voltage
source, and measure the open-circuit voltage at one end of the cable.
If the driving voltage is V0 with polarity as shown in Fig. 3.20 and the
measured value of the open~circuit voltage is V, then
V/Vo

T = o (3.75)
T CO/C - V/V0

in which C0 denotes the capacitance per unit length between the outer
cylindrical conductor and an equivalent ideal (i.e., aperture-free)

shield and C is the capacitance per unit length between the center con-
ductor and the same equivalent ideal shield. 'Quadraxial" test procedures
have also been developed (Refs. 3.20, 3.21), and will be discussed in
chapter 1IV.
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Fig. 3.19. An experimental configuration to determine ¥

(short-circuit form). T
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CONCENTRIC CONDUCTOR
CABLE SHIELD r——

— — — ——— —— ——— ——— — —— — S— — — —— —— — — — —— —

Fig. 3.20. An experimental configuration to determine T

(open-circuit form). T
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G. Summary and Concluding Remarks

Coupling to the interior of a shielded cable by an external source
of electromagnetic emergy occurs via two mechanisms: diffusion of the
electromagnetic field through the imperfectly conducting shield and

penetration of apertures in the shield. When these phenomena occur over

the entire length of a cable, we speak of distributed coupling; coupling

at isolated points cam also occur. .

The analysis of the induced internal currents and voltages on an
imperfectly shielded transmission line is based on the transmission-line
equations. The source terms in these equations are related to the
total current and the total charge per unit length induced on the cable
by an external electromagnetic field. The determination of these total
quantities is a problem for which no general and relatively simple solution
exists. However, for well-shielded cables these quantities may be
calculated assuming that the shield is perfect: thus the cable may be
externally represented by a perfectly conducting cylinder whose radius

is small in comparison to wavelength over the EMP frequency range.

The central problem in the analysis of coupling from the exterior
to the interior of an imperfectly shielded cable is in determining,
either analytically or experimentally, the coupling parameters in the
transmission~line equations. Such analysis has been carried out in a
reasonably complete fashion for cables with tubular shields without
apertures, for braided-shield cables (whose shields possess a nearly
uniform distribution of apertures), and for helically shielded cables.
The analysis of ferromagnetic effects is less well developed because of

the non~linear nature of the field equations.

The analysis of multiconductor cables within a shield is in a much
more rudimentary stage than that of coaxial cables, because of the greater
complexity of the multiconductor problem. However, substantial progress
has been made in recent years, and the reader is referred to Refs. 3.22 -
3.24 for access to some of the relevant literature. The approach involves

generalizing the transmission-line equations to the form

143



g—:=-?-i+i:(z)

(3.76)
a1 _ S5 _ =
a— YV—J(Z)

in which T and V are column vectors whose elements are the currents
and voltages with respect to the shield on each of the internal conductors,

“"shunt admittance" matrices, and

Z and Y are "series impedance" and
E(z) and J(z) are vector sources which depend upon the total current and
the total charge per unit length induced on the multiconductor cable

by an external source.
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CHAPTER IV
CONNECTORS

A. Introduction

Electromagnetic energy induced on the outer shell of a connector
can be coupled into the shielded inner conductors because of the
imperfect connection between plug and receptacle connectors. Indeed,
the connector can be viewed as part of ; "cable shield" that may contain
cracks, slits or lossy contacts through which external electromagnetic
fields may penetrate into the intermal (shielded) region of the ":able".
Most analytical efforts (Refs. 4.1, 4.2) so far have been very limited
and have suffered from inadequate physical description of the apertures
in a connector. As a result, these efforts have only derived quantities
that are meaningful to determine experimentally. Recently, a simple
analytical expression has been derived for field leakage through conduit

connectors (Ref. 4.3).

Most of the available results have been the experimentally
determined shielding effectiveness of some specific types of
conmectors at either the low frequency region (for EMP evaluation) or
the RF region. However, most of these results are for coaxial connectors

and only very limited data are available for multipin connectors.

For cables and connectors, the popular definition of shielding
effectiveness S 1is the ratio of power flowing in a path including
the exterior of the shield to the power induced ina path including
the interior of the shield, expressed in dB. When performing measure-
ments, it is arranged so that the impedance associated with the interior

path and the exterior path are equal. 1In this case

outer conductor current

) (4.1
S 20 loglo (inner conductor current) B )

This definition is used throughout this chapter.
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B. Coaxial Connectors

1. Construction of coaxial cable connectors

Connectors for aircraft and missile application must be small in
physical size, of minimum weight, and carry as much electrical power as
possible. For EMP hardening purposes, they must also have high shielding
effectiveness. Frequency of mating and demating also decides the type

of connectors suitable for one particular application.

In Fig. 4.1, the constructions of a few popular connectors
(Ref. 4.4) are presented. These connectors satisfy the specification
of MIL-C-39012 (Ref. 4.5). 1In Fig. 4.2, the construction details
of the MIL-C-38999 Series II conmnector, which satisfy the requirements
for missile application, are illustrated. The magneform attachment
method (Ref. 4.6) as shown with a "Z" shaped cup to ground the tine

attachment to the plug body is superior for EMP protection over the

conventional soldering method of grounding tine attachment. However,
the soldering method is still widely used, even among MIL-C-38999

suppliers.

2. Analytical treatment

Analytical treatment of electromagnetic leakage through coaxial
cable connectors has not been very successful due to uncertainties in
the physical description of the imperfect connection between plug and
receptacle connector shells. A few theories have been developed to
understand the leakage mechanisms as well as to derive quantities that
are important to measure. A simple expression for the leakage of electro-

magnetic field through a conduit connector has recently been derived

(Ref. 4.3).
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a. Cable connectors

Modeling a leaky connector by a double concentric coaxial line
with a number of apertures on the middle conductor, and using the iris-
coupled transmission line theory for the source geometry with omne
aperture, the equivalent circuit of the connector in Fig. 4.3 is
derived (Refs. 4.1, 4.2). The admittances Ya and Yb are the input

admittances to the left and to the right, respectively, of the connector.

The transfer impedance ZT relates the leakage voltage source driving
the inner circuit to the connector shell current IO. Similarly, the
current source driving the inner circuit is related to the voltage V,
between the conmector shell and the surrounding structure by the transfer
admittance YT . The series impedance Zc and the shunt admittance YC
usually are negligible unless the load admittances are very large or
very small. Also, the transfer admittance YT is usually negligible

for good shielded cable connectors, particularly for connectors mounted

on bulkheads where the electric fields are weak. Thus, the transfer
impedance ZT is the quantity to measure for the determination of
leakage through connectors.

b. Conduit connectors

Conduits of permalloy material are used in some aircraft such as
the B-~1 to shield cables from EMP. Two conduits are jointed by a connector
which consists of a metallic ring coupler (see Fig. 4.4) being held
tightly over the conduit segments by two outer rings. An idealized model
of the connector, as shown in Fig. 4.4, is used to derive an expression

for the field leakage through the conduit connector (Ref. 4.3).

At EMP frequencies, penetrations through the connector by the
electric field and the longitudinal component of the magnetic field (along
the conduit axZs) are negligible. The magnetic field at A just inside

the conduit is given by

H Yint (4.2)
Ksc Ys + Yint + Yext
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Fig. 4.3 Equivalent circuit of a connector
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where

H = magnetic field at A
K = ghort-circuit surface current density on the conduit surface
sc
= 2
Y N 1/¢( ZO)
7 = 3770 is the intrinsic impedance of free space
o
Y =o0d
s
¢ = conductivity of gasket
d = thickness of gasket
ju;eotx 1
Y = n
ext i Ikhl
w = angular frequency
€y = permittivity of free space
h = separation between coupler and conduit
k = w/velocity of light is the wavenumber.

3. Experimental treatment
a. Measurement technique

(i) Triaxial configuration

The most popular method of measuring the leakage through
connectors is the triaxial configurations, a setup of which is shown in
Fig. 4.5 (Refs. 4.7, 4.8). The connector is incorporated in a uni-
form transmission line which is terminated in a matched load. This
coaxial system is embodied within a cylinder to form a second coaxial
system which is terminated at one end in an adjustable short-circuiting
plunger, and at the other end in a tapered transition to a matched
detector. The short-circuit position is adjusted for each measurement
to assure a low impedance associated with the equivalent leakage
generator. This setup is useful for measurements up to the frequency

where higher order modes can propagate in the outer coaxial line.

The leakage power ratio rp is defined here as the ratio of

the power detected in the matched detector at the output of the triaxial
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unit to the power flowing through the internal connector system. If the inner
and outer coaxial systems have the same characteristic impedance Zo’ this
leakage power ratio, when expressed in dB, is the shielding effectiveness. The

transfer impedance 2 of the matched system is simply the product of the

T
characteristic impedance and the square root of the leakage power ratio, i.e.,
2.=2_ vr
T o P

(ii) Quadraxial configuration

Another very useful method of measuring the leakage through
connectors is the quadraxial configuration illustrated in Fig. 4.6. Here, the
driven (signal) path and the receiver (leakage) path are matched at all
frequencies from dc up to where higher order modes propagate in the coaxial
lines. The addition of the third coaxial system (formed by the driven tube
and the guard tube) thus eliminates the need for an adjustable shorting ring,
as used in the triaxial system.

Since this frequency range can be achieved without mechanical adjust-
ment, a swept frequency source and a self-tuned detector can be used to reduce

measurement time and provide continuous data as a function of frequency.

b. Shielding effectiveness and transfer impedance
Only a limited amount of data on coaxial connector shielding effective-
ness and transfer impedance is available. Some of these data are measured for
RF evaluation and may not be directly applicable to EMP assessment. In Figs. 4.7 -
4.8 are presented the measured results of a number of coaxial connectors, some of
which are the popular commercial types (Ref, 4.7) such as Type BNC, N, GR 874-B,

GR 874-BL; some are mainly for military applications (Ref. 4.9).
C. Multipin Connectors

1. Analytical treatment

The mechanisms of electromagnetic energy leakage through
shielded multipin connectors are similar to those of coaxial connectors.
Iris-coupled transmission line theory again yields the same equivalent
circuit as that of Fig. 4.3 for each pin in the connector. In
principle, separate values of ZT , YT , etc., are required by measure-

ments; in practice, one can seldom specify a multiconductor system
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with sufficient accuracy to warrant this detail in determining the
connector properties (Ref. 4.2). Therefore, it is usually sufficient
to specify ZT , YT » etc., for a typical pin and assume that this
value applies to all pins in the comnector. Again, as in the coaxial
connector case, usually only the transfer impedance Z is important

T
and the resulting equivalent circuit is shown in Fig. 4.9.

2. Experimental results
In Fig. 4.10, the shielding effectiveness for a number of

connectors are presented
D. Other Construction Effects

Electrical, mechanical and material properties of the
connector construction can affect the leakage effect through the

connector.

1. Contact resistance

The connector often has a lumped series resistance
associated with the contact resistance of the mating surfaces. Thus, a
current through the connector produces a series IR drop as well as
a magnetic field penetrating to the internal conductors (Ref. 4.2).
The shielding effectiveness decreases with the increase in the shell-to-

shell resistance (ref. 4.9).

The contact resistance of two aluminum surfaces with various
platings and coatings is presented in Fig. 4.11 as a function of
pressure. It is clearly shown that different coatings/platings have
vastly different contact resistances. In Fig. 4.12 the shielding
effectiveness of a connector with different surface finishes is shown.
The conducting finishes all give essentially the same performance.
However, the anodized finish over aluminum, which meets most environment

requirements, decreases the shielding effectiveness.
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2. Threaded and bayonet coupling

Similar connectors using threaded coupling exhibit slightly
better shielding than those with bayonet coupling. This is illustrated
in Figure 4.10,

3. Tightening torque on threaded coupling connectors

Figure 4.1l shows that the contact resistances decrease with
increasing pressure. For threaded coupling connectors, shielding
effectiveness increases for higher tightening torque, as is evident by

test results shown in Figure 4.13 for the static case (Ref. 4.11)

The shielding effectiveness of connectors under dynamic testing
conditions to simulate vibration is presented in Figure 4.14 (Ref. 4.11),
also as a function of the tightening torque. It is evident that shielding

effectiveness is less during vibration.
4. Peripheral spring fingers

Figure 4.13c shows that connectors with peripheral spring fingers
have significantly higher shielding effectiveness than those without
fingers, In bayonet connector shells with fingers, the shielding
effectiveness is plotted in Figure 4.15 versus percentage slot width
(Ref. 4,9) which is the percentage of the slot width over the total
of the finger and slot widths. This suggests that more effective

shielding is achieved with decreasing slot width.

In Figure 4.16 the improvements of adding spring fingers are
shown for both the bayonet coupling connectors and the threaded coupling
connectors. The improvements of the threaded coupling types is not great

since it already gives adequate shielding.
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5. Shielding gaskets

Connectors using shielding gaskets between the interfaces
also increase the shielding effectiveness. The effect is illustrated
in Fig. 4.17 when a woven—wire.mesh gasket is used. Also metalistic

gaskets (woven wire and rubber) can be used.

6. Conductor position

The position of the shielded conductors causes some
difference in the electromagnetic coupling from the shell. 1In
Fig. 4.18 the shielding effectiveness of a pair of conductors near the

center is about 5dB over that of a pair of conductors near the shell.
Also, the shielding effectiveness is known to increase for a decrease

in the spacing between the two conductors.

7. Magnetic field shielding

Magnetic field shielding is important at freauencies below

10 kHz. For the particular materials shown in Fig. 4.19, ferro-
magnetic materials offer better shielding at low frequencies, whereas

above 10 kHz, aluminum offers ample protection.
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CHAPTER V
SKIN PANELS

A. Introduction

Due to the finite conductivity of the walls (or skin panels on
aircraft, missiles, etc.) of a structure, electromagnetic energy can
penetrate into the interior of the structure by the process of diffusion.
Skin panels of various shapes and vario;s materials are discussed in
this chapter; however, most of the formulas presented are restricted
to (28) low frequencies where most EMP energy is contained, and (b)
structures with thin walls. The first condition requires the charac-
teristic dimensions of the structure to be small compared with the
free space wavelength Ao . The second condition requires the wall
thickness to be small compared with the characterisitc dimensions of

the structure.

Panels of planar geometry are discussed in detail. This geometry
is relevant to many practical configurations where the wall thickness

is small in comparison with the local radii of curvature.

A popular measure of the effect of a skin panel on electromagnetic
fields is the shielding effectiveness. Define first the shielding
factor as the ratio of electric or magnetic field strengths at a point
after and before the placement of the shield in question. For most
cases of interest, the fields before the placement of the shield are
the same as the incident fields outside the shield (Ref. 5.1). Thus,

the magnetic shielding factor n% is defined by

o _ amplitude of magnetic field inside the shielded space (5.1a)
LY amplitude of magnetic field incident on the shield )

and the electric shielding factor ng is defined likewise for the
electric fields, i.e.,
o _ amplitude of electric field inside the shielded space (5.1b)

E  amplitude of electric field incident on the shield

The superscript o indicates that the shielding factors are defined with

respect to the incident field.
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0 o
Note that nM and nE

wave. The shielding effectiveness is defined as the reciprocal of the

depend on the polarization of the incident

absolute value of the corresponding shielding factor and is expressed
in dB. Hence, the magnetic shielding effectiveness S; is

(o] (s}
Sy = 20 log, [1/|ny,|] dB . © (5.2a)

and the electric shielding effectiveness S% is

o o
S; = 20 1og10[1/|nE[] dB (5.2b)
It is clear that the higher the shielding effectiveness is, the less

electromagnetic field energy can penetrate into the shielded space.

In the literature, some authors prefer to measure the effect of

a shield by the ratio of penetrated field to the total local field outside
the shield (incident field + reflected field). For instance, for a parallel-

plate cavity with a normal inecident field, -expression for the ratio: ‘
magnetic field inside the shielded space/total magnetic field just out-
side the plate is given (Ref. 5.2). This quantity has the advantage
that once the total local magnetic field (i.e., the skin current on the
panel) is known or measured, one can then estimate the  penetrated field.
However, definitions in Eqs. 5.1 to 5.2 enable one to estimate the
penetrated field once the free field is known. Usually, for a
finite-sized object, the free field can be readily measured at a
distance from the object.

Quantities similar to those in Eqs. 5.1 to 5.2 are defined
with superscript T todenote that they are associated with the total

field strength, i.e.,

T _ amplitude of magnetic field inside the shielded space (5.3a)
M amplitude of total magnetic field outside the shield ‘
nT _ amplitude of electric field inside the shield space (5.3b)
E amplitude of total electric field outside the shield )
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and

T T

5, = 20 log, [1/in,l1 a8 (5.4a)
T T

Sy = 20 log . [1/|nE|] dB ) (5.4b)

Throughout this report, formulas for both definitions (i.e.,
the one involving incident field and the one involving total field)
are given. Either the shielding factor and/or the shielding effective-
ness is presented, but it will be carefully pointed out whether the

formula invelves incident fields or total fields.

B. Panels of Planar Geometry

When the local radii of curvature are large compared with the
skin panel wall thickness, the formulas presented in this section for

ranels of planar geometry often apply.
1. Panels of conducting materials
a. Skin effect

Skin effect is a phenomenon which tends to concentrate currents
on the surfaces of conductors that are nearest to the field sources
producing them. Penetration of fields into the conductors decreases
gradually., For a good conductor (with conductivity o >> we; €
being the dielectric constant) of semi-infinite extent, the electric
field of the normal incident plane wave is attenuated according to

E(z) = E(0) e 2/8 o732/8 (5.5)

where E(0) 1is the electric field at the surface z = 0, z Dbeing

the axis normal to the surface. Magnetic field and current density
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AN
obey the same relationship as Eq. 5.5 . The quantity &§ is known

as the skin depth, or the depth of penetratiom; it is given by
§ = 1/vmfuo . (5.6)

Here u and 0 are respectively the permeability and conductivity

of the conductor, and f is the frequency of the incident wave.

The skin depth is the distance at which fields and current
densities have decreased to 1l/e (=0.368 or 8.69 dB) of their value
at the surface for plane solids, or for conductors of other shapes with
radii of curvature much larger than § . However, § as defined above
may be considered simply a material constant at frequency £, and it
is a useful parameter for other geometrical configurations when

evaluating their shielding effectiveness (Ref. 5.3).

Regardless of the plane wave's direction of incidence, the fields

within a good conductor of infinite extent are transverse (paraliel to

the plane interface), the ratio of electric field to magnetic field is
independent of position and is defined as the intrinsic impedance Zi

of the medium, given by
z, = Rs(l + 1) (5.7)

where the surface resistivity RS (or sometimes called the resistance

per square) is given by
R, = /1fufo = 1/(06) ' (5.8)

R is another material comnstant. Equation 5.8 also states that the
skin effect resistance of the semi-infinite plane conductor is the same

as the dec. resistance of a plane conductor of depth §.
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In table 1 , the skin depth and surface resistivities for

several materials are presented.

Table 1
SKIN DEPTH AND SURFACE RESISTIVITY OF METALS

. SURFACE
CONDUCTIVITY PERMEABILITY SKIN DEPTH RESISTIVITY
Mhos/meter Henrys/meter Meters Ohms
ag u 8 R
S
|
, 7 -7 * -7
Silver 6.17x10 410 0.0642/VE 2.52x10° ' Vf
7 -7 -7
Copper 5.80x10 410 0.0660/VE 2.61x10 ' VE
Aluminum 3.82x107 4mx10”7 0.0815/Vf 3.17x10" 7 VF
Brass 1.57x10’ 4mx10”’ 0.127//f 5.01x10" /F
‘ Solder 0.706x10’ 4mx10”! 0.185/VF 7.73x10" VE
6 -7 -6
Steel 6.38%10 110x47%10 0.0190/VE 8.25x10 /E

*
f is the frequency in Hz

b. Shielding of plane waves by a plane of finite thickness

For normal incidence, the ratio of the amplitudes of
transmitted and incident electric fields (the electric shielding factor
ﬁ;) due to an infinite conducting plane (medium 2) of thickness d

(see Fig. 5.1) is (Ref. 5.4 and 5.5)

t

2 z,zZ;
= E—t‘ = 2 2 M (5-9)
o 22Z Z,cosh(kd) + (27 + 27)sinh(kd)
o] 1 o] 1

o
g

where the media on both sides of the shield are air, and
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Figure 5.1 Reflection and transmission of plane

waves by a plane sheet of thickness d
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can be

where

and

E ,E = amplitudes of transmitted and incident electric fields

t ° at the boundaries
ZO = 377 @ is the intrinsic impedance of air
Zi = (1 + j)/(0262) is the intrinsic impedance of medium 2

k= (1+ j)/G2 is the propagation constant of medium 2

8, = 1//hfu202 is the skin depth of medium 2
Hy s 0y = permeability and conductivity of medium 2

d = thickness of the panel

The electric shielding effectiveness s®

g defined by Eq. 5.2b

written as

‘o
SE = A+ R, + R, dB (5.10)

A = 8.68 d/8 dB is the attenuation loss due to the shield

R, = 20 1og10[]1 + zo/zi|2/(4[zo/zi|)] dB is the reflection

loss. due to the initial reflections at both interfaces

of the shield

-23kd

R, = 20 log,y |1 - ((z /2, - 1)2/(zo/zi + D27 e dB

is a correction term to account for all reflections not

contained in Rl

The decomposition of the shielding effectivenss into the three components

is useful in dealing with more complicated problems (Ref. 5.6). This
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method is attributed to Schelkunoff (Ref. 5.7) who called it the

"transmission theory of shielding".

It is observed that the attenuation loss A is inversely propor~
tional to the skin depth and, hence, is proportional to the square
root of frequency. The reflection loss Rl becomes larger for lower
frequencies. Thus, at low frequencies, usua%ly the reflection loss

R_. is more important. The correction term R2 is usually small

compared with A, and for A 2 15 dB, R2 is neglected.

Equation 5.10 states that the attenuation loss A is pro-
portional to Vuc . The higher permeability of a ferromagnetic material
is often offset by the lower conductivity so that the attenuation loss

is not substantially higher than a conductor at low frequencies.

However, the reflection loss R1 depends strongly on the ratio
Zi/Zo --the closer the ratio to one, the smaller R, 1is. As
Zi < vu/o, ferromagnetic materials have higher intrinsic impedance

and, hence, usually lower reflection loss.

In Fig. 5.2 are preseﬁted the shielding effectiveness of a
few panels of thickness 1.5 mm. The cases of good conductors (copper,
aluminum and titanium) show increasing effectiveness for higher
conductivity. However, steel (with u_ =110, o0 =0.11 0 )
T copper
has lower shielding effectivepess at low frequencies but exhibits better

shielding properties at higher frequencies.

The ratio of the amplitudes of transmitted and total electric

fields is given by (Ref. 5.5)

3]

T _ "t _ 1
g = E, cosh(kd) + (Zi/ZO) sinh(kd) (3.11)

where Ee is the total external tangential electric field (incident +
reflected) in the unshielded space. Other quantities are defined in

Eq. 5.9 .
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Figure 5.2 Shielding factor of a plane panel of thickness

1.5 mm of various materials.
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The expressions for magnetic fields are given in the following
o . .
equations. The magnetic shielding factor ny which involves the

incident field with amplitude Ho , 1s

= (5.12)

o—
Ny = E

_t
M Ho
n; is given in Eq. (5.19).

The ratio of amplitudes of transmitted and total magnetic fields is

(Ref. 5.8)

o

_ ot _ 1
M T H (5.13)

e cosh(kd) + (Zo/Zi)sinh(kd)

where H is the amplitude of the total external magnetic field (incident
e

+ reflected).

c. Shielding of a loop

For a circular loop carrying current near a conducting metal
wall or chasis, as shown in Fig. 5.3, voltage will be induced in
circuits on the other side of the wall. The loop may be wires in
circular form, or objects conveniently represented by small magnetic
dipoles. This configuration (Fig. 5.3) is also widely used to measure
the magnetic shielding effectiveness and is known as the "flat-plate
magnetic shielding effectiveness technique'’- In that case, the shielding
effectiveness is defined as the ratio of the flux density (voltage)
without the plate to that with the plate, as picked up by a second
coaxial circular loop (Ref. 5.9). The results are presented in various
ranges of parazmeter values due to different avproximations in evaluating

an integral (Ref. 5.6).

r' r' (r| 3
5, = 8.686 d/8 + 20 log, 5785 7.5 54 T) B

10 § < ' < 10 Xo d>26 (5.14)

’
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Figure 5.3 Shielding of a loop by a planar conductor
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uré r'(r' + D-4d)
S, = 8.686 d/8 + 20 log [ ] dB
M 10 5.657 ro
106<r'<10)\0, d>26, r'<0.1yus (5.15)
where

thickness of the conducting plate

[« 9
n

distance between the two loops
r = Vaz + D2

radius of the source loop

r' = Va2 + (D—d)2

[w
]

M)
]

p,. = relative permeability of the panel

§ = skin depth of the conductor

1/vmfuc

U ,0 = permeability and conductivity of the metal

Ao = wavelength in air.

For the special case that the loop separation is large compared

with the conductor thickness d and the source loop radius a, then

0.354 p 6
a r 0.118 D
Sy = 8.686 d/8 + 20 log, = + “rd + 0.408] aB
r'<10Ai, ,d>28, D>a , D> (5.16)

Note that the above expressicns are in the form of Schelkunoff's trans-
mission theory that the shielding effectiveness is the sum of an

attenuation term and a combined reflection term.
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For a thin plate, i.e., the condition d > 26 (as required in
Egs. 5.14 to 5.15 ) is no longer required, the shielding effective-
ness becomes (Ref. 5.10)

R R EOICIONS

r>10 ¢ . (5.17)

In Fig. 5.4 are presented the results of shielding
effectiveness of three metals with approximately 1/16" (1.59 mm)
thickness: Copper, aluminum and steel. Clearly, the shielding effec-
tiveness so defined is much less than that for the plane wave case. The

calculated values agree with the measured ones to within 1 dB (Ref. 5.6,
5.10).

2. Panels of ferromagnetic materials

The magnetic shielding factor of a normally incident plane wave
by a panel of ferromagnetic material is given by Eq. 5.12 provided the

panel is assumed to have a constant permeability u, given by

o= Ur Uo
where
Moo= relative permeability
b, = 4ﬂX10-7 H/m is the permeability of free space.

The case of constant u occurs if the incident energy is not too
large. The level of field energy necessary to drive the ferromagnetic
shield into a nonlinear u region or even into saturation depends on

the material.

When the shield operates in the linear region, the shielding
effectiveness depends strongly on the skin depth & , which is defined

in Eq. 5.6 , i.e.,
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Figure 5.4 Shielding effectiveness of a loop by

planar conductors (for configuratiom,

see Fig. 5.3)
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§ « 1/Vou

The depth of penetration is decreased by an increase in permeability, but
this is usually offset by the poor conductivity of many high permeability

materials. Figures 5.2 and 5.4 show that steel has poorer shielding

effectiveness at low frequencies than copper or aluminum because of
less reflection losses, but it is better at high frequencies due to

higher attenuation loss.

For panels with saturable ferromagnetic materials, usually it is dif-
ficult to specify the B-H curve precisely. One.technique of solving this
nonlinear problem is to use numerical methods (finite-difference technique)
to solve the nonlinear differential equations as derived from Maxwell's

equations (Ref. 5.11).

The shielding effectiveness as measured of a few practical

ferromagnetic materials is shown in Fig. 5.5 (Ref. 5.12).

3. Shielding by wire mesh

For a plane wire mesh made up of two planar arrays of perpendicular
wires (see Fig. 5.6), the application of the so-called averaged boundary
conditions (Ref. 5.13) yields the following equivalent sheet admittance
Ys for the square wire mesh at low frequencies such that the wire grid
spacings are small compared with wavelengths

e, d

Y= ——21‘:— [2n(d/a) - 2n(2m)] (5.18)

where

[s%
1]

grid spacing of a square mesh

wire radius

[
(]

In the above equation, the junctions are assumed to be bonded.
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Figure 5.5 Measured shielding effectiveness of
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Fig. 5.6 Penetration through wire screen
(a) normal to the plane of incidence
() T in the plane of incidence
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a. Incident electric field normal to the plane of incidence (Ref. 5.14)

The electric shielding factors (referred to the incident fields)

are given by

o 2 coseo
g =2 9 +Z2 Y (5.19)
E cosf | o Is .
and
o _ _ o
My = cose0 g
where
8, = angle of incidence
Zo = intrinsic impedance of free space
b. Incident electric field in the plane of incidence
The shielding factors are
o o 2 sech
2 (5.20)

"8~ W~ 2secd +2Z ¥
o o s
The above equation assumes &, is not too close to 90°.

For the more general case of unbonded wire mesh and wire mesh
with rectangular geometry, the articles listed in the Bibliography should

be consulted.
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4, Shielding by advanced composites

Panels of advanced composite materials have found increasing
usage in aircraft design, etc. A panel is made up of several laminae
(or thin sheets) bonded together, each of which consists of a one-
dimensional array of fibers embedded in epoxy. The fibers are
graphite (which is a fair conductor) in graphite composites, or boron in
boron-~epoxy composites. Also available are Kevlar 49 and sapphire
fibers; however, these are not viable competitors for graphite and

boron fibers (Ref. 5.15).

Due to the one-dimensional array configuration of fibers in
each lamina, the electrical property is essentially anisotropic. By
making practical assumptions it is possible to reduce the final

shielding results to rather simple forms.
a. Graphite composites

Usually the fibers in alternate laiminae are oriented at
different directions. In Fig. 5.7, the fibers are oriented at right
angles, and the configuration is referred to as a 0° - 90° layup. The
graphite itself is a fair conductor, but the fibers are insulated from
each other by the epoxy. 1In the following, only the 0° - 90° layup

configurationsis considered.
(i) Incident electric field normal to the plane of incidence
In this case, the electric field is parallel to the laminae.

The graphite laminate behaves as an isotropic conducting slab of effective

conductivity O _. The shielding factors (referred to the incident fields)

t

are

o _ ) 1

"E 7 cosh(kd) + [2,0,/(Zk)] secB,sinh(kd) (5.21a)
and

o _ _ o

Ny = cose0 Ng (5.21b)

where

k=(1L+ 3j)/S

§ = l//nfuoct is the effective skin depth of the graphite

composite
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Figure 5.7 0°-90° layup graphite composite panel
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O, = % q cg is the effective conductivity of the graphite composite
Gg = conductivity of the graphite fiber
q = ratio of the volume occupied by graphite fibers to the
volume of the lamina
d = thickness of the whole panel
60 = angle of incidence

This is the generalized form (for arbitrary incidence) of Eq. (5.9),
assuming the intrinsic impedance of the graphite composite is considerably

less than the intrinsic impedance of free space Z,
(ii) Incident electric field parallel to the plane of incidence
In this case, the magnetic field is parallel to the

laminae. For 90 not too close to 90° (i.e., not the glazing

incident case), the shielding factors are given by

o _ o _ 1
"E = ™ T Cosh(kgd) + z 0./ (2kg) cosB sinh(kgd)

(5.22)

where

. 2
g = \/l - sin eOEQ/Eo
1+ 2q(1 + WdQ/Gb)
m 1+gq ndl/3b

€, = € is the effective permittivity

normal to the panel

permittivity of the surrounding medium (epoxy)

[y
i

i

dl thickness of one lamina
b = distance between two graphite fibers

Other symbols are defined in Eq. 5.21
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b. Screened boron-epoxy composites

Since the boron-epoxy composites are poor conductors, a metal
wire mesh screen is sometimes embedded in one surface of the laminate
before it is cured in order to improve its shielding effectiveness.
Such a screened laminate is shown in Fig. 5.8 with the screen in the

very outside surface of the panel.
(i) Incident electric field normal to the plane of incidence

The shielding factors referred to the incident fields are

o 2 cose0
= 5.23a
g 2 cosb_+ 2 Y! ( )
o o “se
and
o _ _ o
nM = coseo Ng (5.23b)
where
Zo = 377 ! is the intrinsic impedance of free space
60 = angle of incidence
Y' =Y + jwd (¢_ - € ) 1is the equivalent sheet admittance
se s t o
of the screened laminate
€, = permittivity of the composites in the direction
parallel to the panel surface
Ys = {jw U, hL/(Zﬂ)]_l is the sheet admittance of the wire-
mesh screen
L= —fn [1 - & 27 2/}
h = distance between two adjacent wires
a = radius of the wires
d = thickness of the whole panel
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mesh is square and junctions are

assumed to be bonded.
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(ii) 1Incident electric field in the plane of incidence

For the incident angle not too near 90°, the

shielding factors are

where

2 secH
o

n° = n° = (5.24)
E M 2 secb_ +2Z YV )
o o "se

"o yn s -
YU =YD+ jud (5, =€)

sinze
Y"=Y 1___*0_
s —
1+ /élst/eo

1 + 2qp(1 + nd2/6b)
€ = €

1 +qp ndl/3b
d2= thickness of one lamina

b = distance between two adjacent boron fibers

€n = permittivity of epoxy

bt ‘m
f + €n

€ = permittivity of boron

q = ratio of the volume occupied by boron fibers to volume
of the lamina

Other symbols are given in Eq. 5.23 .
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C. Cavities Enclosed by Panels

EMP penetrations into cavities enclosed by skin panels are con-
sidered in this section. These include cavities formed by two parallel
panels, hollow cylinders and hollow spheres. Only the practical con-
figurations of thin-walled structures are considered.

1. Parallel-plate cavities

For a cavity formed by two parallel plates of infinite extent
and thickness d, separation 2b, immersed in an incident field with
symmetric magnetic fields which are oriented parallel to the plate
surfaces (see Fig. 5.9), the magnetic shielding factor ﬁ& (with
respect to the incident field) at low frequencies (Ao >> b) is
(Ref. 5.16)

H

o _ _i _ 2

" " H_ " cosh(kd)* (u_/w) Kb sinh(kd) (5.25)
where

Ho = amplitude of the incident magnetic field

Hi = amplitude of the magnetic field inside the cavity

d = thickness of each plate

k= (1+3)/8

§ = 1//nfuc 1is the skin depth of the plate

u = permeability of the plate

0 = conductivity of the plate

half distance between the inner surfaces of the parallel plates.

o
]

When referred to the total external magnetic field He at low

frequencies, the magnetic shielding factor n; is (Refs. 5.2, 5.16)
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o]

S 1 (5.26)
M H, cosh(kd) + (uolu) kb sinh(kd)

Expressing this ratio in dB, i.e., let-

T _
Sy = -20 log,, L dB

then, for a desired value of S; (which measures the shielding
effectiveness of the parallel-plate cavity with respect to the total
external magnetic field), the thickness d of the plates is given

by the following formulas in two different frequency ranges:

( 2 0.1 st L
o 8- M _
u 5 [10 1] d <§
d = ¢ (5.27)
U b
L §T%§€ Si - 20 1og10 = d > 8§

V2 u $

The first condition (d < §) corresponds to the region of low
frequencies in which the current is distributed practically uniformly
over the thickness of the plate. The second condition (d > J§)
corresponds to the region of high frequencies in which the current

is distributed outward to the plate surfaces.

2. Thin-walled cylindrical cavities

Two cases are distinguished here (Refs. 5.2, 5.17). One is
when the disturbing magnetic field is oriented parallel to the cylinder
axis (Fig. 5.10a) and the other when the magnetic field is perpen-~
dicular to the cylinder axis (Fig. 5.10b). For both cases, the
cylinder shell thickness d is assumed to be thin, i.e., d << a where

a 1is the inner radius of the cylinder.
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Figure 5.10 Hollow cylinder with

Longitudinal excitation field
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(v)

Transverse excitation field
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a. Longitudinal magnetic field

For an external magnetic field with total strength He
parallel to the cylinder axis (see Fig. 5.10a) the internal magnetic
field is also parallel to the cylinder axis. For low frequencies
so that Xo >> a >> d, the magnetic shielding factor n; (with

respect to the total external magnetic field) is

23]

nT=—i—= l
M He cosh(kd) + (k/2) sinh(kd)

(5.28)
where

d = wall thickness

k= (L+ 3j)/8

8§ = 1//mfuc  is the skin depth of the shell material

U = permeability of the shell material

0 = conductivity of the shell material

K = (u /W) ka

a = inner radius of the cylinder

b. Transverse magnetic field

For an external incident magnetic field Ho perpendicular to
the cylinder axis, as in Fig. 5.10b, the magnetic shielding factor for

the low frequency case (Ao'>> a > d) is

-

H_i - - 1 (5.29)
o cosh(kd)+ 5 (k+1/k) sinh(kd)

[s]
LY

where all symbols have been defined in Eq. 5.28 . The reactive factor

W, which is useful for multilayer shielding problems, is given by
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-% (k-1/x) sinh(kd)

W =
cosh(kd)+-% (x+1/k) sinh(kd)

(5.30)

Note that the external reactive factor (for external interference field)
and the internal reactive factor (for internal interference field) are

the same and they are given by Eq. 5.30

3. Thin-walled spherical cavities

Although shielding envelopes are in practice only rarely
designed as hollow spheres, the latter are of importance to assess
the shielding effects of objects which have approximately the same

dimensions for all three coordinates (Ref. 5.2).

For a thin-walled sphere (see Fig. 5.11), the inner radius

a 1is much larger than the wall thickness d. 1In the case of an

incident external magnetic field with strength Ho , the intermal

magnetic field Hi is also parallel to the external field, and

o

o= = - (5.31)
o cosh(kd)+-§ («+2/x) sinh(kd)

where

d = thickness of the shell

k=(+3)/8

§ = 1//mfuc is the skin depth of the shell material
u = permeability of the shell material

0 = conductivity of the shell material

kK= (u /) ka

a = inner radius of the sphere
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Figure 5.11 Hollow sphere
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The above equation is valid at low frequencies such that Ao >> a >> d.

The reactive factors, which are useful for multilayer shielding problems

are given in the following:

The external reactive factor (for external interference field) is

.

L («/2-2/k) sinh (kd)
Wa = 3 (5.32a)
cosh(kd)+ % (k+2/x) sinh (kd)

The internal reactive factor (for internal interference field) is

% (k-1/) sinh(kd)
W, = T (5.32b)
cosh(kd) + 3 (x+2/x) sinh (kd)

4. Cavities with laminated shields

The overall shielding factor n of a laminated (or multilayer)
shield is given by (Ref. 5.2)

n,n
172
N=y_—wv v _ (5.33)
L wiZ wel

where ﬂl, nz = shielding factors of layers 1 and 2 (referred to the

incident field), layer 3 is the outside layer.

Wel’ We2 = external reactive factors of layers 1 and 2
Wil ’wiZ = internal reactive factors of layers 1 and 2

The resulting external reactive factor due to a field incident on

layer 2 is
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n

. 2

we we2 + wel 1 -W,, W ’ (5.34)
i2 el

The above two equations are not valid for very low frequencies when

|n1! and |n2| are not small compared with 4.

For more than two layers, one evaluates the resultant n ang
We of the first two layers at a time, and reapplies Egqs. 5.33 and
5.34 using these new values and those of the third layer. The

process is repeated until the overall n 1s obtained.
a. Multilayer cylindrical shield

Consider a double layer shield with the inner layer (layer 1)
being of high conductivity metal, and the outer layer (layer 2) of
ferromagnetic material. For frequencies not too low, wl =1,

W, = -1, and with transverse magnetic field

1 2
n=snon = =

2 c's K  sinh(k d )sinh(k d )
c c ¢ s s

where the subscripts ¢ and s denote quantities in layers 1 (conductive)

and 2 (ferromagnetic), respectively. The quantity x is defined in

Eq. 5.28 . The overall shielding effectiveness is

Sy = —20 log,y In|

-20 log,y (vf pg o, d d) dB (5.35)
for dc<(5c, d < §

For constant total wall thickness d (d = dc+ds)’ maximum shielding
effectiveness is when q: = ds =d/2. It is noteworthy that the
shielding effectiveness is independent of the shield radius.
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b. Multilayer spherical shield

For a double-layer spherical shield, there are two different
cases: ferromagnetic layer on the outside and ferromagnetic layer on
the inside. The reactive factors for the two cases are different. They

are given by Egs. 5.32a and 5.32b.

(i) TFerromagnetic layer on the outside

In the outer layer (layer 2), u >> T Here W L= 0.5
e
and W,, = -1, and
i2
n=2, = s
=3 Ng « sinh(k d )sinh(k d )
c c c s s

and the shielding effectiveness is

S, = =20 log; [(2/3) £mu o, d.d.] dB (5.36)

(ii) Ferromagnetic layer on the inside

In the inner layer (layer 1), u >> u, - Here Wel = -1

and W,, = 2, and
i

2

K
s

21 _3
N=3Ns "% 2% sinh(k d )sinh(k d )
C S S c c

and

SM = =20 1og10 [(4/3) wf Mg O, dcds] dB (5.37)
Comparing Eqs. 5.35 , 5.36 and 5.37 , the shielding

effectiveness of a double layer cylinder is greater thanm that of the

sphere with the ferromagnetic layer on the outside by 8.1 dB, but less

than that of the sphere with the ferromagnetic layer in the inside by

5.8 dB. It is advisable to arrange the conductive layer on the

outside since it offers higher reflection loss.
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D. Skin-Panel Joints and Seams

The boundary between two skin panels forms a slit (seam, or
slot) that enables coupling of electromagnetic fields into the other~-
wise enclosed region. Often the skin panels are riveted together to
form a stringer joint or a lap joint. Sometimes conductive gaskets
are installed around the slits or joints to reduce electromagnetic field

penetration.

Only a limited amount of useful formulas are available for these
types of problems. An infinitely long slot between two conductive
planes is one that has a useful engineering formula for frequencies

such that the slot width is small compared with the wavelength (Ref. 5.2).

Some preliminary work (Ref. 5.18) has been done on the subject of
penetration through skin panel joints. Very little analytical work

has been performed on the shielding by gaskets.

Seams between two conducting planes

The seam or slot is considered to be long (i.e., the length is
much larger than the width b). The surrounding panels are considered
to be plane and with conductivity o and thickness d. The configura-
tion is illustrated in a two-dimensional drawing in Fig. 5.12. At
low frequencies (Ao >> b, Ao >> d), for a disturbing magnetic
field with strength HO parailel to the surface and perpen-
dicular to the slot (see Fig. 5.12), the magnetic shielding factor

n; (with respect to the incident magnetic field Ho) is given by

(Ref. 5.2)
U pg? 2 {d
o_ _1L1_ = g 5.38
T H 2 [1+kb‘1’(b) (5.38)
o r
where
r = distance from the center of the bottom of the slot (see
Fig. 5.12)
b = slot width
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Figure 5.12 Two-dimensional illustration of a slot formed by

two joining panels
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a
]

panel thickness

k = (1 + j)/§ 1is the propagation comstant in the panel
§ = 1//nfuc  is the skin depth of the panel

u = permeability of the panel

0 = conductivity of the panel

P and g are two parameters given in graphical form in Fig. 5.13a

p(d/b) is given in Fig. 5.13b

For certain ranges of d/b values, the following approximations

for pgz and { are valid

(b/4)2 ford = 0
g’ = {. (539)
(2b/TT)2 exp(-Td/b - 2) for d 20.4 b
and
(d/b)y =2+ 1w+ 4d/b for d 20.5 b (5.40)

From Eq. 5.38 it is noted that the penetrating magnetic
field is composed of two parts: one due to the penetration through
the gap (the first term), and the other due to diffusion through the
panels (the second term). Indeed, for perfectly conducting panels
(0 > »©), the second term in Eq. 5.38 | corresponding to the diffusion
process, vanishes. Equation 5.38 also indicates that the penetrating
magnetic field is proportional directly to the square of the slot

width, and inversely to the square of the distance from the gap.
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Figure 5.13 Parameters p,g and Y versus d/b

for slot case
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SUBJECT INDEX

Apertures, 7,11,154
cavity-backed, 83
circular cylinders, 83,87
rectangular cavity, 84
spherical cavity, 91

circular, 17, 23, 36,79,91
cross, 25,27
diamond, 28, 132

elliptie, 17,22,23,24,26,28
hatch, 33,35
large, 78
parallel plates, 50
elliptic aperture in front

plate, 50
slot in front plate, 59

rectangular, 25,26,33
rounded~off rectangular, 23,25

26,27
slit, 22
slot, 46,48,87
small, 13

square, 79
wire behind, 63

Bayonet coupling, 172
Boron-epoxy composites, 203

Cable shield,
apertures, 130,140
braided, 130
helical, 130,138
leaky, 130
tubular, 120

nonferromagnetic,
ferromagnetic, 125

Cavities, 206
cylindrical 208
parallel-plate, 206
spherical, 215

Charge coupling coefficients. 115

Connectors, 154
coaxial, 154, 155
conduit, 154,160
multipin, 154,163
plug, 154
receptacle, 154
shielding effectiveness, 154,163
transfer impedances, 160,163

120

Contact resistance, 167
Curvature, 11,13,182

Diffusion, 7,182
Diffusion time constant,123

Electromagnetic pulse (EMP), 7,11

Equivalent dipole moment, 12,14,36
37,38

Equivalent electric and magnetic
dipoles, 13,14,18,55,130

Equivalent magnetic quadrupole, 13
18,91 :

Fourier transform, 8,12,40,43

Gasket, 177
Graphite composites, 200

Intrinsic impedance, 185
Iris-coupled transmission line
theory, 160

Kirchoff approximation, 779,91

Laminated shields, 213
Laplace transform, 116,126
Leakage power ratio, 161

Polarizability, 14,17,18,19,28,
29,31,32 i

Quadraxial configuration, 163
Reactive factor, 213,214

Shield coupling admittance per unit
length, 115
Shield transfer impedance per unit
length, 115
Shield transfer admittance per unit
length, L15
Shielding,
advanced composite, 200
ferromagnetic materials, 194
loop, 201
plane of finite thickness,
wire mesh, 196
Shielding factor,182,183
Shielding effectiveness, 154,183
Skin effect, 184
Skin depth, 185
Skin panel, 181
joints and seams, 216

18¢
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Spring fingers, 172

Surface charge demsity, 14
Surface current density, 17
Surface resistance, 185

Threaded coupling, 171

Torque, tightening, 171

Transmission~line equations,l12
Transmission~line theory of shielding, 189
Transfer admittance, 160

Transfer impedance, 160, 163

Triaxial configuration,161
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