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ABSTRACT

This note is concerned with a problem which occasion-
ally arises in the general area of multiconductor trans-
mission line theory. 1In the past, the method of moments has
been applied [1, 2] for the computation of transverse charge
distributions and the capacitive coefficient matrix for electro-
static systems formed by multiconductor transmission lines with
prescribed voltages on each line. But classically, there has
been an interest in the related problem of finding the trans-
verse charge distributions given the net charge on each line
[3,4]. When the net charges are prescribed, conformal mapping
techniques have been successfully employed in determining the
charge distributions for certain special cases e.g., the two
wire problem [5) and a planar grating [6]. The integral
equation formulation presented in this note for the charge
distributions, is applicable to a general system of parallel
conductors, not necessarily in the same plane, as long as
their net charges are prescribed.
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I. Introduction

A useful problem in analyzing a multiconductor

transmission line or, equivalently, an electrostatic system

of parallel cylindrical conductorsris the determination of the
transverse charge distributions as well as the capacitance
coefficient matrix, when the potential on each conductor is
assumed to be given. When the conductors are sufficiently

far apart, the charge densities become uniform around each
conductor and the elastance coefficient matrix [S] elements

are given simply by [71, ,
2
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: for i,3=1,2..N

The above is valid for an electrostatic system of (N + 1)
parallel conductors shown in Figures 1.1 and 1.2, when the
conductor spacings are large compared to the radii. 2as
indicated in Figure 1.2, ai's are the radii and cij's
are the distances between the centers of the i th and j th
conductors in a transverse plane 2z = constant. €5 is the
permitivity of the surrounding medium, assumed here to be

free space without any loss of generality. However, when the

conductors are not far apart and the proximity effects are
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not negligible, no such closed form expressions are available
(except in some special cases) for the charge distributions
and the capaclitance or elastance coefficient matrix elements.
When proximity effel.:s are present, one can identify two dif-
ferent problems, 1) the potential problem, i.e., when the given
guantities are potentials on each conductor and 2) the

charge problem, i.e., when the total per-unit-length charge
on each wire is prescribed. In both problems, it is desired
to compute the exact charge distribution around the circum-
ference of each conductor in the bundle, as well as compute
the potential and electric field in the region surrounding
the wires. We will now elaborage on each of these problems

separately in the following two sections.




I1. Notational Details and Review of the Potential Problem

For a general system of (N + 1) parallel conductors
with assigned potentials, an application of the method of
moments has been found to be efficient in determining the
coefficients of capacitance matrix elements [l1]1. With
reference to Figure 1.1, let us designate the density of
surface charge on the i th conductor by Fourier series

expansions as,

[o9]
. 2
a—— L
ci(e) = Z{ci% cos(468) + © ;g Sin (26)} (C/m™) {2.1a)
=0
= 0.4 1+ Z {:oniz cos (L9) + BiSL 51n(26)} (2.1Db)
=1
= OiO [l + ri(eﬂ = UiO ti(e) (2.1c)
where
ti(e) = dimensionless transverse charge distribution
%y = dimensionless Fourier cosine coefficients = (Gig/oio)
= 2 3 2 3 2 3 — 1
Bil = dimensionless Fourier sine coefficients = (¢ ig/010)
Y50 = "dc term" in the Fourier series expansion, which is
related to the total charge on the i th conductor.
Note that, in all of the above i =0, 1, 2,...,N and the

zeroth conductor is chosen to be the reference conductor for

assigning the potentials according as,




V., = (¢, - ¢O) for i=1, 2, ..., N. (2.2)

The t~_.al charge per unit length, Qi, of the 1 th conductor

is then given &y,
21

Ql = J( oi(e) a; de = 2'rra.l GiO (C/m) (2.3)

0

Thus, only the constant, or the dc term, in the Fourier Series
expansion contributes to the net charge, and therefore, the

charge density may be written as,

Gi(e) = (Qi/ZWai) ti(e) for i =0, 1, 2, ..., N (2.4)

We also assume the entire electrostatic system to be

electrically neutral so that
N
v - 1
QO §: Qi (2.5)
i=1

Under the above described situation, the potential at any

point (;), just off the surface of the j th conductor, due

to all of the charge distributions is given (for j = 0,1,...N)
by [81,
N 2m
0. (F) = ¢,(r,8) = = z 5. (6%) tn [r? (x,0,0%)] a s’
3 g 4rme i S i
c .
. i=0 O
(2.6)
where 6 and #' are the polar angles measured anti-clockwise

from the positive x axis along the j th and i th conductors
respectively (see Figure 1.2). From purely geometrical con-

siderations in Figure 1.2, we have



rz-(r,e,e') = [c?. - a% - 2ra, cos(6-8")
13 1] i i

—2cij {%i cos(e'—eij) - r cos (e-eijﬁ] (2.7}

By letting the point T fall on the surface of the j th
conductor, i.e., r = |r| = a;, one has the voltage

integral equation (VIE)

N
-1
byaye®) = Tme_ Z f o, (8") 2n[ ,(ay e')] a, 49" (2.8)

The conventional procedure in solving the potential problem is

to cast the above eguation into matrix form by choosing a suffi-
cient number of basis functions (typically sines and cosines like
in eguation (2.1lb)) to represent the unknown function oi(e')
and, usually, the same number of match points on each of the
conductors. This procedure results in a matrix of matrices (or

a super matrix) of the following form

T T 17 7
b4 A A A [
00 o1 *~ * ° - ON 0
¥ A A A 7
1 = 10 O N 1
\yz /120 A'21 e e e e ILZN 7'2
\yN A'Nl AN2 ANN 7‘N (2.9)

where each element in the above matrix is a matrix given by
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i3 ig
A7 e e e e e e A

{%or i=O,l,..N} :
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2p+1,1 2P+1,2P+1

—

(2P+1(2P+1)
(2.11)

We have assumed that each of the charge distributions is
expanded into P number of cosine and P number of sine
terms, soO thnac %tliere ic a total of - (2P + 1) unknown coeffi-
cients, including the dc term, associated with each of the

(N + 1) conductors. For instance, the (2P + 1) unknown



coefficients associated with the i th conductor are

T T v
["io' 9317 %52 v Tipr Ty O yp ver O iP] of
equation (2.la). Next, the linear system of equations

(2.92) have their solution given by

7)- W) - ]

Since the potentials on various conductors are prescribed,

and the }_ matrix is filled by integrals of the form
2T 2T

2 1 ] 2 ¥ 1
-['Qn [rij(aj,ek,e )] as or ,[ cos(zek)ﬁn[rij(aj,ek,e ) }de
0 0
27 .
or .[ sin (ﬁek)ﬂn[ rij(aj,ek,e'% as' ,
0

the problem is formally completed, and we have the solution
which consists of the Fourier cosine and sine coefficients

of all the charge distributions. As a by-product in the
above procedure, we also obtain the generalized capacitive
coefficient matrix [K](N+1)X(N+l)' From a knowledge of the
[K] matrix and by imposing the charge neutrality of eguation
(2.5), one gets the capacitive coefficient matrix [K}NXN ‘
after referencing all the potentials with respect to the
zeroth conductor. The [K] matrix essentially relates the
per-unit-length charge Qi of equation (2.3) on each wire

with the potentials referenced to the zeroth conductor

(Vi = ¢i - ¢0), according as

10




_ _ - L
1
Ql-[ K1 Kin Vi
]
Q) Ko1 Kon Vs
1 =
Q Ryp =~ - - o - - Ray V3 (2.13)
1
QN KNl ' ’ KNN VN

As a practical matter, it is noted that the [K] matrix
elements are easily related to the [Aglmatrix elements,

and that [K] and [K] matrices are both symmetric. Further-
more an efficient procedure for computing [K] from [K] may
be found in Ref. [7]. This completes our brief review of

the method of moments as applied to the potential problem.
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ITT. Formulation of the Charge Problem

In this section, we consider the problem of deter-
mining the transverse charge distributions on all of the
(N + 1) conductors given the total per-unit-length charges
on them. The starting point is once again the potential
¢j(;) at an observation point located just off the surface
of the j th conductor (see Figure 1.2), due to all of the
charge distributions. This was givén by equation (2.6),

for 3 =0,1, 2, ..., N

N
0, () = 0 (r,0) = £ Y

1
mE
o)

a

S
2T
fcs (6') 2nfr2.(x,8,06")] a, de’
i igrtrus i
i=0 0
(3.1)
It is recalled that in the potential problem of the
preceding section, this eguation was specialized to the J th
conductor surface (r = aj), matrisized and solved for the
Fourier coefficients of ci(e). However, for the problem at
hand, we eliminate the potentials by considering the normal

E-field on the j th conductor and equating it to the surface

charge, i.e.,

Er(aj’e) = -Efl = aj(e) (3.2)
9T r=a ., E:O
J
Using eguation (3.1) in (3.2),

N 2T
= L 2 2 ;
o 0 =& Y = f o, (8') In {rij(r,e,e )} a, 4o’
i=0

0 r=a.
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‘ Separating the singular term on the right side

27
_ 1 3 2 . .
oj(e) =77 3¢ -[ oj(e') in {rjj(r,e,e {} aj de
0
N 2m
_l_. _?_ 1 2 t 1
+ = E: 2 _[ o, (8 ){}n rfi(x 0,00 a, do
i=0 .
AT 0
113 r=a,
J

(3.4)

The singular term can be simplified as follows. The singular

kernel is

2 2 - 3 2 - - ]
5T zn(rjj) 5t ﬁn[r + a 2ra. cos (8-6")
r=a. r=a
J ]
‘ r - a. cos{(6-6")
= 2 Lim 5 5 J
r-a. r“ + at - 2ra. cos(6-96")
] J 3

The singularity appears when 6' = 6. For values of 8'.
not equal to 0, the kernel is given exactly by (l/aj).
Near the singular point (8' » 8), using

cos(86-6') ~ 1 - [(6—6')2/2], this singular kernel becomes

. 1 FoToay ]
2 Lim [ +
2a. 2 2 2
r-+a., -a, + ) 5-6"
3 J (r aj) 2y ( )

[ 1 + 27 Lim % €2 5 }
e+0 [(6-8")" + 7]

]
1+ 27 8(6-6")

3 ];{using equation (2.4)}
3

of Ref. [9].

|-

I
— o

(3.5)
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This form of the singular kernel is now Qalid for the entire
range of ©8' (0 £ ©' £ 2m). It is noted that Smith [10]
found a similar behaviour of the singular kernel in solving
for the high frequency current distributions in the context
of skin depth resistance for a system of parallel coplanar
conductors carrying equal currents in the same direction.
Some fairly standard methods of kernel investigations often
used at high frequencies are seen useful in the present
electrostatic problem.

The nonsingular part contained in the summation term

of equation (3.4), denoted here by Nij(e,e'), is given by

1 — i 2 3
Nij(e,e )y o= A in {rij(r,e,e )

r=a.

3

_ aj - ay cos;e—e‘) + cij cos(e-eij)
1
rij(aj,e,e ) (3.6)

Upon using the results of the singular and nonsingular kernels

in equation (3.4), we have

27 )
_ 1 ' —nt 1
0, (0) = 4= foj(e) [l+2’ﬂ'5(98)]d9
0
N 2T
l ] 1 T
+ = Z f o;(8") Ny (8,87) ae (3.7)
i=0 o
i3
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Using equations (2.3), (2.4) and the sifting property of

the Dirac delta function [2], we have

GjO Gj(e) L N 2m
— il 1 1 1
o 0) = 40+ L— L z aif 05 (8') Wy, (0,0') ao
i=0 0
ig3
or
N 2T
— _}__ 1 ' 1
o5(8) = 0 0+ 5= z foi(e ) G;4(68,07) ae (3.8)
i=0 0
i%3
where the dimensionless non-singular kernel Gij is given
by
1 J— ]
Gij(e,e ) = aiNij(ﬁ,B ) (3.9)
In terms of the total charges per unit length and the
dimensionless distributions of charge ti(e) defined by

equation (2.4), the charge integral equation (CIE) of

equation (3.8) becomes

N 2T
1 — v __l_ Z 1 1 Y 1
Qf t,(8) = 0ol + 5 Ql ftiw ) My (6,8") as (3.10)
1=0
i 0
for 3 =0, 1, 2, r N

This is a system of CIE which may be solved for the N unknown
transverse distributions of charges ti(e), given the N

total per-unit length charges Q; on each of the N wires
which exclude the reference conductor. It is recalled that

in the above CIE,

15



ti(e) = 11 + 2: Oy cos (%6) + 2: Bii sin(%6) (3.11a)
=1 =1

a.
t = ._j_. t _- 1]
2 _ _an _
_ aj aiaj czs(@ g}y + Cij cos (O eij)
T

rij(aj,e,e ) (3.11b)

r%.(a.,e,e') = c?. + a% + a? - 2a.a. cos(8-06")
N 1] 3 i i
- 2c, . {é. cos(8'-6,.) - a., cos (6—8..}
ij i ij 3 ij

(3.11c)

It is observed that if one were to solve the CIE of (3.10)
numerically, the upper limits of infinity in the summations
of equation (3.1la) would be replaced by a suitably chosen
and large enough integer. Also, although there are (N + 1)
conductors, only N number of charge per unit length Qi
for i =1, 2, ... N need be prescribed in view of the fact
that the entire system is neutral. That is, the zeroth con-
ductor carries a total charge per unit length equal to negative
of the sum of the net charges per unit length on the remainder
of the conductors.

At this stage, we may conclude the formulation of the
CIE and consider a simple illustrative example of a balanced

two wire transmission line (N = 1) in the following subsection.

16




A. An Illustrative Example

The transverse charge distributions on a balanced two
wire transmission line, or a l~line (see Figure 3.1) is
solved here using the CIE. It is our belief that this
approach has not been used previously for a balanced trans-
mission line, and a closed form analytical solution exists
for this case, by conformal mapping techniques or otherwise,

to verify the numerical solution. The CIE leads to a coupled

pair of integral equations for to(e) and tl(e) given by
27 ’
T '
to(e) = 1 o '[‘tl(e ) UlO(G,G') ae’ (3.12a)
0
2m
= ___:_L_ 1 1 1
tl(G) = l, o ’[ tO(B ) U01(6,6 ) dé (3.12b)
0

where the kernels for this case of unequal radii are given by

{{%i - aja, cos (B=8") + 2alc cos (69 ///rié} (3.13a)
. 2
cos(6=-6') + 2aoc cos (69 /rOJ (3.13b)

_ _ 2 2 2 At
rOl = rlO = {%c + ao + a 2a,a, cos(6~6")

UlO(G,G )

Upp (0,8 =

I
—
QO
o N
]
)]
l—-l
Q
o

1 071

- 2c {al cos (8') - a, cos (eﬂi} (3.13c)

For the present purpose of illustration, it suffices to

consider the case of equal radii a, = a; = a in which case

£0(8) = &, (1-8) (3.14)

17
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Figure 3.1 A balanced two wire transmission line or a
l1-1line
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and we need only solve one integral eguation instead of a
coupled pair and it is given by
2

=1 - & - ' . -
£, (8) = 1 - 5= f t,(T-8) E(8,8') d8 (3.15)
0

where the kernel specialized for the equal radii case
(al==a0==a) is given by
ot
sin2 (626 ) + A cos (6)

E(p,0') = . , (3.16)
sin? (6—6 ) + A cos (6) - Acos (B') + X

2

with A = (half separation/radius) = (c/a) in Figure 3.1.

Furthermore, because of the symmetry in the problem, we need
only solve for tl(e) in the range 0 £ 6 < 7, so that the

CIE of (3.15) becomes

m

S ' .
£y (8) = 1 - 5= f £, (8) S(6,8") 4o (3.17)
0

where the sum kernel S(8,6') is given by

s(e,8') = E(8,8'-1) + E(6,71-0")
c052 <8;G'>+ A cos (9) )
cos® (e;e'>+ A cos(8) + Acos(8') + X >
cosz<e;e> + A cos{8)
+
\ OSZ(@;@‘) + A cos(B8)} + Acos{6') + A2 J

(3.18)
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This is recognized as a Fredholm integral equation of the
second kind and has been solved numerically for several
values of A,

An alternate analytical procedure in solving for the
transverse charge distribution on a balanced two wire trans-
mission line consists of determining the effective separation
or the charge centroid separation 2d of Figure 3.1. This

is available, e.g., [11, 12].

a, + a.\2 a, - ay2
_ _{_0 1 _ 0 1
d =c¢ 1 <_——§E__> 1 ( 5 (3.19)
For the special case of a, = a; = a, this becomes
a = Vc? - a? (3.20)

By placing two line charges at P and P' of Figure (3.1),
one can derive the charge densities on both the wires and

they are given by

Ql

(a) Y st (a)

[ol (6) -<§W—a> t; (e)] (3.21a)
o} -Q4

b = () 0 o0 (b o)) e

where the dimensionless transverse charge distribution is seen

to be

tia)(e) =:[ 1 + A cos(8) — - 1 + B cos{8) 2:} (3.21¢)
1 + 2A cos(8) + A 1 + 2B cos(6) + B
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where A and B are geometrical constants given by

[A=A—VA2-1] ; [B=A+VA2—1] (3.214d)

and A has been defined in conjunction with equation (3.16).
The superscript (a) in the above denotes the analytical

solution. The numerical solution for tl(e) by solving

the CIE of equation (3.15) on a desk-top computer using

pulse basis functions in a method of moments is compared

(a)
1

agreement is seen to be very good except for small values

with this analytical solution t (6) 1in Figure 3.2. The
of A near 6 = 180°. This is attributed to the particular
numerical procedure used in solving eqguation (3.15). The
accuracy of the numerical solution can certainly be improved
by considering larger matrix sizes and efficient integration
routines, but this is not clearly warranted.

As may be expected, the charge densities concentrate
on the inside (i.e., 6 = 180° for wire 1 and 06 = 0 for
wire 0) as A gets smaller or the wires brought closer
together. For A > 5, the "thin wire" approximation or the

rotational symmetry holds resulting in +t,(8) = 1. But for

A < 5, the transverse or angular distribution of charge

departs significantly from the value of unity.
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Figure 3.2 Electrostatic surface charge density as a function of the
azimuthal angle on a balanced two-wire transmission line
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Furthermore, one may also determine analytically
the Fourier cosine coefficients (sine coefficients wvanish
because of symmetry) by performing a Fourier series analysis

of the analytical solution, by setting

t{a)(e) <1 4 E:Béa) cos (49) (3.22)
9=1
and
o
géa) - % J[ t{a)(e) cos (46) d4s (3.23)
0

Substituting for t{a)(e) from equation (3.21lc), we have

T

6éa) - % _[ cos (28) 1+ A cos (8) .
0 1 4+ 27 cos (8) + A

- Lt Bcos (6) S| as (3.24)
1 + 2B cos (8) + B

One can perform the integrals, using tabulated integrals [13]

{note that A <1 and B > 1), to obtain

82 = (-n* [a* + 57

0" [f - VZE—:—Z}Q w o+ Va? - 1}—£] (3.25)

It may be seen here that for large A (say A > 5} all the
coefficients become small compared with unity resulting in
t{a)(e):zl. Good agreement was also obtained between analytical
B's and numerical B8's obtained by solving equation (3.15)
using cosinusoidal basis functions in a method of moments.

These results are presented in Table 1.
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¥e

A=>5 A =2 A=1.5 A = 1.05
(analy) (numer) (analy) (numer) (analy) (numer) (analy) (numer)
B B By B By B By B
3 . 9 9
0 1 1 1 1 1 1 1 1
1} -.2020 ~.2020 ~.5358 ~.5359 ~.7639 -.7639 . 1459%107% |-, 1454x107
o | .2041x107 7 .2041><1o’1 . 1435 L1435 .2917 L2917 .1065%107F .1058><1o'1
-2 -2 -1 -1 ~ _ _
31— 2061%107% |-.2061%107° ||-.3847x10 "~ | -.3847x10 ~}| ~- 1114 L1114 .7775 L7694
- - - - - -1
o | 20saxio3 | L20sax1073 || .1030x1071 | .1031x107H|| .4257x10 L1 La257x10 .5674 .5582
- - - - - -1
s | _ot0ax1074 |- 2104107 ||-. 2762x107% | —.2762x1072 || -. 1626x10 L 1626x107F ||-. 4141 -.4038
-5 -5 -3 -3 -2 -2
6 | .2125%10 .2125%10 .7401%10 .7401x10 .6211x10 .6211x10 .3022 .2909
-6 -6 -3 i3 -2 10-2
7 1 =.2147x107° |-.2147%107° ||-.1983%1077 | ~.1983%10 " || ~.2372%10 © {-.2372% ~.2206 -.2084
o | 2160x1077 | L2174x1077 || .5314%107% | L5314x107% 9062x107> | .9062x1073 || .1610 .1483
-8 -8 -4 -4 -3 -3
o |-.2191x1078 |-.2218%107° ||-.1423x107" | . 1424x107" || ~. 3461x10 ~ |-.3461x10 " )-.1175 ~.1045
-3 -3 -1 -1
Lo | o13x1070 | 2808x107° 3a15x10~> | L3s15x1075]] 132210 .1322x10 .8576X10 .7297x10
Table 1. Comparison of analytical and numerical values of Fourier coefficients of

transverse charge densities on a balanced two wire transmission line.




In concluding this section, our example of a
balanced two wire transmission line (or a l-line) has
successfully provided a test case for the system of CIE's.

From this relatively simple example, we have shown
that the CIE provides a method for calculating the charge
distributions on a number of conductors, given the total
charge on each. Although this method has been illustrated
with only two, identical conductors which can be treated
by other techniques, it can be easily employed for three

or more conductors for which no analytical solution exists.
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v Summarizing Remarks

Kellogg [3], in his classical work on the theory of
potentials proves an existence theorem quoted below.

"Given either the constant vaiues of the potential on
the conductors Rl’ 32, e Rk’ or, given the total charge
on each of them, it is possible to determine the densities
of charges in equilibrium on the conductors, producing, in
the first case, a potential with the given constant values
on the conductors, or having, in the second case, the given
total charges, on the conductors.”

In this note, we address the second case (charge
problem) of the above guotation and formulate a system of
integral equations for the densities of charge. By way of
an interesting example, we consider a balanced two wire
transmission line for which the charge densities are
analytically known by the method of conformal mapping or
otherwise. It is true however that in the context of a
resurgence of interest in multiconductor transmission
lines due to an application in the EMP area, the first
case of Kellog's quotation above (potential problem) is
most often used, since it also can yvield the capacitive
coefficients matrix as a by-product. It is observed

however that in a realistic situation, where the
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potentials are prescribed and the elements of capacitive
coefficients matrix have been experimentally measured, CIE
provides an alternate way of determining the charge
densities.

Furthermore Smith's [10] work on the proximity effect
develops a procedure for determining the transverse high
frequency current distributions for systems of parallel and
coplanar conductors carrying equal currents. Essentially,
this note extends this work into an electrostatic application
of multiconductor transmission lines not restricted to a
coplanar situation, where the individual wires are required
to be parallei and carrying pre-assigned amounts of net
charges. It is also our belief that analytical solutions
for charge densities on general systems of conductors with
more than two conductors 4o not exisﬁréxcépt in some special
cases, e.g., planar grating [6]. Other special cases of in-
terest that have been treated in the past include computation
of charge densities on a cylindrical test body with its axis
parallel to the plates of a two-plate-transmission line type
of EMP simulator [14, 151. Also, Marin [16] has calculated
the charge distribution on a grid of rods replacing one of
the conducting plates in a parallel plate transmission line.

In conclusion, the usefulness of determining the
angular distribution of charge densities lies in the computa-
tion of the field coupling parameters when the multi-conductor

transmission line 1s illuminated by an external field.
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