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ABSTRACT

An introduction is given to the problem of determining the
distributions of surface current and charge on crossed metal
structures, particularly tubular cylinders. Pertinent knowledge
about distributions of current and charge induced in thin wires, -
crossed thin wires, and cross-sectionally large tubes is pre-
sented as a foundation for acquiring an understanding for currents
and charges induced in crossed electrically thick cylinders. It
is shown that a representation of the distribution of current along
a conductor excited by an E-polarized plane wave in terms of the
transverse Fourier components and suitable combinations of forced
and resonant components offers an attractive, relat%vely simple
approximation. Preliminary experimental investigation of crossed
cylinders with ka = 1 indicates that the original standing-wave
distributions of charge and current density are not greatly-
altered by the addition of the horizontal cylinder except in the
vicinity of that,member. Outside this wvicinity the general nature
of the standing waves is not changed significantly with respect
to their location but large changes in the relative distributions

of amplitude can occur.
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SECTION 1
INTRODUCTION

The currents and charges that are induced on the surfaces of rockets,
aircraft, shielded transmission lines and other metal-clad, three-dimensional
structures by an electromagnetic field in the form of a standing or traveling
wave or a pulse are of interest for several reasons. One is the de;ermina—
tion of the scattered far field from which is derived the radar cross section.
Another is to understand the near field, specifically in its relationship to
the imperfect shielding properties of the metal walls either when interrupted
by small apertures [1], [2] or because of their finite conductivity [31.
Closely related and also involving the near field is the coupling between the
exterior and interior regions by exposed conductors thaf pass through the
walls [4]. 1In all of these examples the field and the associated currents
and charges on conductors in the interior of the metal structure are directly
related to the currents and charges induced on its outside surfaces. The
currents induced in circuits within a cylindrical sheath that simulates a
rocket or missile due either to fields that penetrate the imperfectly con-
ducting walls or that enter through slots, holes or other apertures have been
studied [1]-[4]. However, the scope of the investigations has been limited
to cylinders (with radius a and half-length h) that are electrically very

thin (ka << 1) and relatively short (kh < 2w). This range of study is




inadequate at frequencies for which the cylinder is electrically thick or
long or when the exciting field is a pulse.

To determine surface currents and charges on metal structures like air-
craft is more difficult owing to the awkward geometry of the boundaries and
the presence of a junction region with intersecting surfaces. Numerical
methods have been used [5]-[9] to determine the currents on electrically very
thin crossed wires when the arms were quite short, ranging between 0.1 and
0.3 wavelength. Unfortunately, the critical problem of the junction was not
treated completely since only the continuity of the confluent currents but
not of their slopes was enforced at the junction. The results obtained are
adequate for calculating far fields but not near electric fields since spuri-
ous concentratlons of charge occur where the slopes of the currents are dis-
continuous, This difficulty was overcome in an analysis of the distributions
of both current and charge per unit length on mutually perpendicular, elec-
trically thin, crossed wires that are not restricted in length but are as-~
sumed to have equal radii [10]. Conditions were imposed that assured the
continuity of both current and charge per unit length at the junction. The
generalization of these to intersecting electrically thin wires with differ-
ent radii has been formulated [11]. Unfortunately, the quasi~one~dimensional
theory of electrically thin crossed conductors is not adequate to describe
the distributions of current and charge on structures with members that have
electrically large cross sections. This is a consequence of one of the basic
assumptions characteristic of electrical thinness, namely, that transverse
currents be negligiﬁle. As soon as the cross section 1s large enough to sup-
port significant transverse currents on any of the conductors, thin-wire
theory is inadequate. Nevertheless, computations have been made to determine

currents on electriﬁally thick structures by applyving electrically thin
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theory and junction conditions [12] to crossed electrically thick cylinders!
The distribution of current on an electrically thick cylinder in an in-
cident plane-wave field is well known for any polarization when the cylinder
is infinitely long [13]. But this is quite different from the current on a
similarlcylinder that is finite in length, as is evident from the analysis of
the electrically thick tubular cylinder of finite length by C. C. Kao [14]-
[17] and the associated extensive computations of the distributions of the
surface densities of current and charge by King et al. {18]. Since no theory
is available for the distributions of current and charge on the surfaces of
two crossed electrically thick cylinders, recourse must be taken to the di-
rect measurement of these quantities., Since this involves the use of movable
calibrated electric and magnetic field probes traveling in slots and the gen-
eration of a plane electromagnetic wave, a thorough study of the accuiacy of
such measurements is essential. These have been carried out for electrically
thin wires and crossed wires by RBurton and King [19], [20] and for thick tub~
ularAcylinders by Kao [21] and Burton et al. [22]. They reveal both the pos-
sibilities and the difficulties assoclated with the experimental simulation
of a plane electromagnetic wave and the measurement of the currents and
charges induced by it on extended conducting surfaces., Only after a complete
validation of the apparatus and techniques of measurement on structures for
which theoretical results are available has been achieved, can the experi-
mental methods be applied with confidence to the measurement of the currents
and charges on crossed metal structures including especially those with cross
sections that are electrically large. From a study of the measured currents
and charges onrthe crossed thick éylinderé - especially in and near the junc-
tion region - and the knowledge of forced and resonant distributions on iso-

lated thin and thick cylinders and on crossed thin cylinders, an understanding
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can be sought of the basic phenomena that determine the distributions of cur-
rents and charges on crossed thick cylinders.

It is the purpose of the following sections to lay the foundations for
such an understanding by reviewing the induced currents and charges on circu~-
lar highly conducting cylinders in an incident plane-wave field in the fol-
lowing sequence: 1) Infinitely long cylinders with unrestricted radii;

2) Electrically thin cylinders of finite length; 3) Electrically thin
crossed cylinders; 4) Tubular cylinders with unrestricted radili and finite

length; 5) Crossed electrically thick cylinders.
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SECTION II
THE INFINITELY LONG CYLINDER IN A PLANE-WAVE FIELD

A section of an infinitely long, perfectly conducting cylinder with rad-~
ius a is shown at the top énd center of Fig, 1. It is illuminated by a nor-
mally incident plane electromagnetic wave traveling in the direction of the
positive y axis. The electric and magnetic vectors are mutually perpendicu-
lar and lie in the xz-plane., It is well known that Maxwell's equations (with
the time dependence e—iwt), vV xE= iwﬁ, V.x B = -i(kz/w)g, are separable
- into two independent groups when EE/BZ = 0, a%/az = 0 as 1s true when the

scattering cylinder is infinitely long. In the one group, the induced cur~

in

. ¢ (E-polarization). In

rents are entirely axial and are derivable from E
the second group, the induced currents are exclusively transverse and depend
only on Binc (H-polarization). With the cylindrical coordinates (p,6,z), the
induced surface density of axial current, Kz(e), with E-polarization satis-
fies the integral equation
1 ika cos © 2m
E e + touga g K, (8')G(a,6;a}6") d8' = 0 (2.1)

The induced surface density of transverse current with H-polarizatiocn satis-

fies the equation

27 2
) i _ika cos 6, _ ; rat 3 Dt oAt -
35 (B8 1 - up2 é Ko(8') [ 55557 6(0,030",8)] _ v, @0 0(2.2)

In (2.1) and (2.2), G(p,63p",68") = (i//})Hél) (kR) with R = [p2 + p'?

- 2pp"' cos(B - 6')]1/2. When ka is not too large, the eigenfunction expan-—

sions [13], [22] are convenient solutions. They are

Kz(e) 2 o m cos mb
inc  7¢ ka el T (2.3)
E, S0%8 p=o ™ B (ka)

and
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-1l cos md
= e 1T —me— (2.4)
B "o m0 ™ B ()

= = ) . = 1/2 2 (1)
where e = 1 form=0, 2 for m # O3 20 (uO/eo) £ 120w ohms. Hm Fka)

4
is the Hankel function, H;l) (ka) its derivative with respect to the argument,

inc/C

Note -that in (2.4), Ex = Binc/ = pine

0o~ Pz Yo z °
In subsequent discussions interest centers on conductors that are elec-
trically thin with ka = 0.04 and electrically thick with ka = 1. In the for-

mer, the first rotationally symmetric term with m = 0 dominates for both E-

and H~-polarizations. With Hél)(ka) = 1 - (21/7)[4n(2/ka) + C] and H(l)'(ka)

0
|
& (21/7ka), Hil)(ka) = ~(2i/7ka) and Hil) (ka) = (Zi/ﬂkzaz). It follows that
K (8)
Zz _ 2 1 )
pinc - mgoka | 1 - (2i/m)[tn(2/ka) + C] + 2ka cos © (2.5)
Jz 7 V ] V

The leading rotationally symmetric part can be expressed in terms of the to-

tal axial current, I, = 2maK, , in the normalized form:

kak, T, 2 )1+ @i/mim@/ka) +c] 2.6
B apite "o |1+ 4/mPlne/ka) + o)

For the H~polarization

Ko (8 1
: = = — (1 + 2ika cos 8) 2.7
JAnc 4
E 0
X
where the leading rotationally symmetric term is simply Ke(e) = —E;PC/QO =

_Hinc = -Binc/uo, which is independent of ka so long as this is sufficiently
small.
With ka = 0,04,

kaKz/Einc = xz/xginc = 0.184 + 10.526 mA/V (2.8)
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When ka = 1, the densities of surface current in (2.3) and (2.4) can be

exprassed as follows: .
E~polarization:
K_(6)
= A+ Bcos 68+ C cos 28 +D cos 36 + E cos 46 + F cos 58 + ... 2.9
Ez
H-polarization: -
K, (6)
“inc = AH-i-BH cos 84-CH cos 26+-DH cos 364—EH cos 464—FH cos 58+ ... (2.10)
x

where the complex Fourier coefficients A = AR + iAI through F = FR + iFI
(with and without the subscript H) are given in Table 1. It is seen that in
each case only the first four coefficients are significant. The transverse
distributions of KZ(G) and Ks(e) are shown graphically in Fig. 2. Note that ‘
Ke(e) decays much less rapidly than Kz(e) from the center of the 1lluminated
side at 6 = 180° to the center of the shadow side at 6 = 0°, The real and
imaginary parts are of interest since they are contained individually in
(2.3) or (2.4) and IKI and 6 are determined from them.

The surface density of charge n(6) on the infinite cylinder is, for E~
pelarization,

BKZ(S)

L =z
n{e) = T 0 (2.11)

For H-polarization with (2.4),

BKO(G) 2ie

n(e) ' i 0 ¢ m=-1 m sin m@
= = e . € i —_—TTTT i (2'12)
Einc wEinc a 39 wkzaz m=0 Hél) (ka)

With ka = 1, cn(e)/Ei“C = ~1[By sin @ + 2C; sin 26 3D, sin 36 + 4 sin 40 +...]‘

1
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—

TABLE 1

FOURIER COEFFICIENTS IN mA/V FOR INFINITELY LONG CYLINDER; ka = 1

A B C ) E F

K (0) | 2.18 - 30.25 | -3.28 + 11.85 | -0.14 - 12.04 | 0.58 + i0.00 | 0.00 + 0.10 | 0.01 + 30.00
Ay By Cy Dy By Fy

-1.64 + 10.93 | 1.27 - i3.41 | 1.33 + 10.11 | 0.00 + i0.21 | 0.03 + i0.00 | 0.00 + 10.00
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Fig. 2. Surface densities of current on infinitely long cylinder in normally incldent, plane-wave field,



This quantity is shown in Fig. 3 in its magnitude and phase on the left, its
real .and imaginary parts on the right,

Since the problem of generating a plane wave in the laboratory for pur-
poses of testing is formidable, a knowledge of the distributions of current
and charge density induced by an incident cylindrical wave is of interest.
With a liue source at p = Pos 6 = 180° (Fig. 1, bottom), the appropriate

.

eigenfunction expansion for E-polarization is [23]:

e, e ey
inc = (l) L Em (l)' cos mb (2.13)
Ez ﬂkacOHO (kpo) m=0 Hm (ka)

When koO is sufficiently large so that the asymptotic formula

i(kpo -\%/4 - mn/2) i(kpo - w/4)

H;l)(kpo) & 2/ﬂkp0 e = (-l)m 2/wkpo e (2.14)
is a satisfactory approximation, (2.13) reduces to (2.3). For ka = 1, only
four or five terms in (2.13) are needed and (2.14) is an adequate approxima-
tion when kpo > 10, The current density in (2.13) has been evaluated accur=~
ately for ka = 1 apd kpo = 10 and shown graphically in dotted lines in Fig. 2
along with the corresponding components of the current excited by an incident
plane wave., The calculations assume that the line source at Py = (10/2m)x =
1.59X maintain the same electric field, viz., 1 volt/m, along the axis of the
cylinder with ka = 1 as the plane wave. It 1s seen that the currents with
the plane~ and cylindrical-wave excitations are quite similar even when the
line'source is only 1.59X from the axis of the cylinder. The largest rela-
tive differences are in the shadow region. Evidently with a thin-wire source

at distances of Py = 4), 7.5x and 10) (used in actual measurements) or kpo =

25.1, 47.1 and 62.8, the slight curvature of the wave front in each transverse
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N=Np+ing=tqiedn

C7]I

180°

s R
0 ! l |
0 60° 9 120° 120°
Fig. 3. Surface density of charge on infinitely long cylinder in normally incident, plane-wave fileld.
i
H-polarization; Exnc = cBinc = 1 volt/m; ¢ = 3 x 108 n/sec.
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plane cannot significantly alter the induced currents and charges. The spher-

‘ ical curvature in the vertical plane is a different matter.
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SECTION III
DISTRIBUTIONS OF CURRENT AND CHARGE PER UNIT LENGTH INDUCED
~ IN THIN WIRES BY A PLANE-WAVE FIELD

The original interest in the current distribution along electrically

thin conductors excited by an electromagnetic wave was in connection with

their reradiating or scattering properties. In early work [24]-[26] approxi-

mate expressions for the current were derived or postulated as trial func-

tions iIn variational methods for calculating the backscattering cross section.

This is an average quantity not very sensitive to the detailed distribution

of current. For the determination of the near fields, especially in: small .

apertures on the cylindrical surface, more accurate formulas are needed.

These have been obtained for the currents in both shorter and longer thin

wires in the ranges of half-lengths h given by O < h/x < 0.625 [27], [28] and

0.25 < h/XA < = [29], [30]. For present purposes the formulation for the

longer lengths is required. .
When the clectric field is normally incident and parallel to the axis of

the wire, the induced current I(z) and charge per unit length q(z) are given

in normalized form by [29]:

2 o c
M) o £ AL 2T fn 4 o) 4 NGk - )] 4 =2 (U 2) + U - 2)]
AElnc Lt 1 4 2
Z 0 .
x cos kz + CS[S(h + 2z) - S(h - z)lsin kz (3.1)
q(z) € |2 C
— = - -t? [1+ C_ cos kh}[M(h + z) + M(h ~ 2)] +-§i'[s(h + 2)
AEZ 8
CS
- S(h - z)]cos kz + > [UCh + 2) + UCh - z)]sin kz (3.2)

1/2 . Y172

where Ly = (uo/eo) 1207 ohms, k = w(uoeo = p/c = 2n/) and

4n2/91 ~ (2ni/K)M(2h)
s~ T(Zhycos kh + S(2)sin kh

(3.3)
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. 21 . 1
Also, Ql = QO + in/2; QO = n(2/ka) - 0.5772; M(X) = X exp(lkX)['§;T§T -
L 13 2. (%) = 2[2a(l/ka) - 0.5772] + 2n(2kX) + 0.5772 - in/2; and 2,(X) =
QS(X) 2 3
QZ(X) + 27,
5(X)/2 -1, 2 -2
= = nf[l + iﬂ(QO - %n 2) 7]- (x /lZ)[(Q0 - 2 fn 2) - (QO -2 fn 2
T(X) /2wi
-+ iﬂ)-zl + zn{QB(x)/Qz(x)} + 0.825[952(x) - QSZ(X)] - M(X)/4k
(3.4)
SUQR) f4rd = Inl0g (0 /9, (X)] + 0.825[8;° (X) = 37 (X)) + M(X)/4k (3.5)
These formulas were derived with the time dependence e—th. They are not

good approximations within a quarter wavelength of the ends where the current
is known to vanish so that a simple extrapolation is possible., Their deriva;
tion assumes the conditions: ka << 1 and kh > 7/2, The approximation im-
proves with increasing length of the wire.

The distributions of current and charge in the forms

i6 ié

() = Ip + 45 = [Tle © 5 (o) = ap + dqp = lale © (3.6)

as calculated from (3.1) and (3.2) are shown graphically in TFigs. 4 through 6
for three thin and moderately long wires with electrical half-lengths kh =
3.5m, 3w and 2.5m., The first and third are near fesonance, the second near
antiresonance, TFor all three, the electrical radius is ka = ¢.04., Extensive
comparisons with measurements have been reported [19] with generally good
agreement with theory. An example is in Fig. 7 for comparison with Fig, 6.

A glance at Figs. 3 ghrough 7 reveals that the distributions of charge
per unit length are very simple in form with q{z) ~ sin kz an excellent ap-
proximation. The more complicated form of the2 currents can be understood

from the components in phase and in phase quadrature with the incident fileld
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shown in Fig. 8 for six lengths., They are seen to be essentially vertically .
displaced cosine curves. The constant value corresponding to the shift is

the forced current, the superimposed oscillation is the resonant current. .

For the resonant lengths (kh = 5%/2 and 7v/2 in Fig. 8) a useful, very simple

representation is

inc

I(z)/AEy = Ae(kz) + Ar cos kz (3.7)_

where A = AR + iAI is approximately the complex amplitude of the current in-

duced in the wire when infinitely long, and Ar = A__ + iAr is the complex

rR I

amplitude of the resonant part of the current. The function e(kz) is shown
graphically in Fig. 9. It is equal to one for all values of kz to within a
quarter wavelength of each end where it decreases smoothly to zero.. When

multiplied by the appropriate complex amplitude, e(kz) represents the forced

currents, An analytical representation is

[

e(kz) Ulkz + kh - 71/2)[{1 - U(kz - kh + #/2)] + U(kz - kh + w/2)

X sin k(h = z) + [1 = U(kz + kh = 7/2))sin k(h + z) (3.8)

ft

where U(t) 1 when t > 0, U(t) = 0 when t < O,

With ka = 0,04 and kh = 51/2, the currents computed from (3.1) combined

ine

with the simple form (3.7) have the values: I(O)/AEZ = 1,69 + 11.39 =

.inc

A+ Ay, i(w)/mz = =(1.10 + 10.09) = A = Ay, T(2m)/AE."® = 1.80 + 11.35 =

A+ AR. With the average values of I(0) and I(2%), it follows that A = 0.32
+ 10.64 (which differs somewhat from the value A = 0,18 4 10.53 given in
(2.8) for the infinitely long wire) and Ar = 1.42 + 10,72, Accordingly, for

kh = 57/2,

ine .

7 (0.32 + 10.64)e(kz) + €(1.42 + 10,72)cos kz mA/V (3.9)

I(z)/XE
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The corresponding value for kh = 7%/2 is

I(z)/KEinc L (0.33 + 10.64)e(kz) - (1.36 + 10.67)cos kz  mA/V (3.10)

inc
z

The normalized associated charges per unit length are cq(z)/)E
~10(0.32 + 10.64)e" (kz) + (L.42 + 10.72)sin k] for kh = 57/2 and eq(z)/AE"
2 -1{(0.33 + i0.64)e' (kz) + (1.36 + 10.67)sin kz] for kh = 7w/2. In these
formulas, ¢ = 3 x lO8 m/sec.,

The simple approximate representation (3.7) for resonant lengths is

readily generalized to other lengths. The appropriate formula is
I(z)/AEinc = (A + Ar cos kh)e(kz) + Ar(cos kz - cos kh) (3.11)

Thus, for the antiresonant length kh = 37 with ka = 0.04, the currents cal-
culated from (3.1) at kz = 0, w, and 27 give: A = 0,31 + 10.65, A = -0,10

+ 10.56 so that
I(2) /AES"S £ (0.21 + 10.09)e(kz) + (0.10 + 10.56) (cos kz + 1) mA/V  (3.12)

Similarly for the general length kh = 10.696 with.ka = 0.04, A = 0.32 + 10.61,

Ar = =1,70 + 10.83 so that with cos kh = -0.295,

1(z)/xgjnc 2 (0,82 + 10.36)e(kz) = (L.70 = 10.83)(cos kz + 0.295) mA/V  (3.13)

The simple approximate representations in the Fform (3.11) in terms of a
shifted forced component (ﬂ + Ar cos kh)e(kz) and a shifted resonant compon-—
ent Ar(cos kz ~ cos kh) are quite accurate and satisfactory for many purposes.

If the scattering wire lies in the plane of the incident plane electro-
magnetic wave but has its axis rotated through an angle y from the direction
of thé clectric vecteor, the entire formulation in this section is valid if

inc inc

Ez cos ¢ is substituted for E2 . On the other hand, when the wave normal
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is at an arbitrary angle 6 with respect to the axis of the wire (instead of

at 6 = 90° for normal incidence), the phase of the incident wave is not con~
stant along the wire, This more difficult problem has been analyzed for
shorter lengths by King [27] and King et al. [28] and for long wires by Chen
[30}. Graphs showing the real and imaginary parts of the induced current
with 6 as the parameter are in Figs. 10 and 11 for kh = 0.757 and 1.97, re-
spectively; the magnitude of the current induced in a long wire with kh = 4w
ig dn Tig. 12, It is seen that the distribution is very sensitive to the
angle of incidence even in antennas that are not very long. A departure from .
normal incidence of as little as 2° is sufficient to change the current

greatly when the wire 1s four wavelengths long.
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SECTION 1V
CURRENTS AND CHARGES ON CROSSED THIN WIRES IN A PLANE~WAVE FIELD

A pair of crossed mutually perpendicular wires In a normally ineident
plane-wave field is shown in Fig, 13 when the incident electric field is
parallel to one of the conductors., The solution when the electric vector is
parallel to the other wire is obtained b§ a simple change in the notation., A
superposition of the solutions for the two polarizations gives the soluticn
for an arbitarily polarized, normally incident wave. The wires have equal
radii a and extend from x = —Rl to x = 22 and from z = -hl to z = h2 with the

center of theilr junction at x =y = z = 0, The incident field is E;nc(y) =

ince-Jky where Einc is the value at y = 0 and the time dependence is ejwt.

E
Under the action of the incident field, standing-wave distributions of

charge and current are induced on the vertical conductor and these; in turn,

induce distributions on the horizontal arms. Subject to the condition

ka << 1, all transverse currents are negligible so that on the vertical con-

ductor E = QKZ, on the horizontal conductor ¥ = §KX Since the excitation 1s

not rotationally symmetric, the induced axlal surface currents and associated

‘surface charges also depart from rotational symmetry. However, when ka << 1,

the asymmetry is negligible and total currents and charges per unit length

defined by Ix(x) = ZﬂaKX(x), Iz(z) = 2waKz(z), q(x) = 2man(x), and q(z) =

21an{z) are good approximations, The\currents and the charges per unit

length are related by the equations of continuity: BIX(x)/ax + juwq(x) =0 .
and BIz(z)/az + jwq(z) = 0, The four sets of currents and charges per unit

length are: Ilz(z), ql(z) in the range —hl <z < -aj; Izz(z), qz(z) in the

range a < z < hz; I3X(x), q3(x) in the range -2, < x < -a; and Iéx(x),

1

q4(x) in the range a < x < & The following conditions defining electrical

2.

thinness are assumed:

ka << 1 hi/a >>1 zi/a >> 1 i=1, 2 (4.1)
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At the open ends of the tubular conductors, the total currents vanish so

that : ‘

Ilz(-hl) = Izz(hz) = 13X(-zl) = 14x(£2) = (4.2)

If the boundary condition n x E = 0 could be enforced accurately on the B}

surfaces of the conductors including the junction region and the surface den-~

. > -1a -+
sities of current and charge determined from the conditions K = “Hy m X B,

~

=
n ==, * E, no additional conditions would have to be imposed. The cross

0
would be treated as a single structure with mutual interactions correctly .
treateds In the approximations implicit in thin-wire theory, the condition
AxE=01s enforced only on the parts of the conductors that have rotation-

ally symmetric surfaces and in a manner that assumes rotationally symmetric

currents and charges. In effect, the cross is treated as four separate con-

fluent conductors, each with two ends. The junction with its irregular sur-—

face 1s replaced by fictitious, rotationally symmetric extensions of the four
conduct;rs from [x[ = [zl =a to [x[ = fz[ = 0. These are physically un-
available since they necessarily overlap. However, the surface area of the
junction region defined by ~-a SxZa, -a<z<ais of the order a2 and
hence, with (4.1), electrically negligible as a chargeable surface. Thus,

the substitution of the idealized extensions each of length a and with charge-
able surface 21ra2 for the actual junction surface involves a negligible error
and the ranges of the four conductors may be taken as -hl $2<0,0<zx h2,
—21 $x<0, 0<x< £2 in which approximately rotationally symmetric total
currents and charges per unit length are defined. Thus, in conductor 1 are
the current Il(z) and charge per unit length ql(z) = (j/w)[aIl(z)/az] with

the condition Il(—hl) = ., An additional condition on Il(z) as z + U is re-

quired in order to bound Il(z). Similar conditions obtain for Iz(z), I’S(X)’ .

40




and Iq(x). The required four conditions are:

1,0 -1, (0) +1I,(0) -1, (0) =0 (4.3)
and

[BIlz(z)/Sz]Z=O= [8122(2)/az]z=0= [BIBX(X)/BX]X=O= [BIAX(X)/BX]x=O (4.4)

With the equations of continuity, (4.4) is equivalent to:
13 (0) = q,(0) = q,(0) = q,(0) | 4.5

Condition (4.3) is Kirchhoff's current law. Since the junction contains no
chargé-separating generator and has a surface too small to permit the accumu-
lation of significant charges, the charges per unit length on the four con=-
fluent conductors must be equal where they join. This is true when the four
conductors have equal radii. The generalization of (4.5) to conductors with
different radii is considered later.

Integral equations for the currents in the four conductors can be de~
rived in the manner familiar in thin-wire theory by the imposition of the

: -
boundary conditions in terms of the scalar and vector potentials ¢ and A,

viz,,
: - pinc _ 39(z) _ = . o
Ez(z) Ez 9z ijz(z) =0 > hl <z £ h2 (4.6)
1 = - 3 <X) - == . -
Ex(x) —%;:— ijX(x) 0 3 £l <x< 22 (4.7

on the surfaces of the crossed conductors. UWhen the explicit integrals [10]
are inserted in (4.6) and (4.7), the following simultaneous integral equa-

tions are obtained for the currents [10]:

b, hy %y

f I(z")K(z,z")dz" = J%~§%-[ f q(z'")K(z,z")dz" + f q(x")K(z,x")dx"]
—hl k —hl ~£1

[continued]
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4™ Jine (4.8)

wy 2
LZ 22 h2
f I(x')K(x,x')dx’-—ég—gi[ f q(x"IKR(x,x")dx"+ f q(z")R(x,z")dz"'] =0
-£l k —ﬁl -hl (4.9)

1/2

where K(z,z') = exp(wijz)/Rz with Rz = [(z - z')2 + a2] and K(z,x') =

exp(-ijcz)/Rcz with Rcz ='[z2 + x'z + 32]1/2. These equations have been
solved by iteration for the four currents subject to the conditions (4.3) and
(4.4) and the four distributions of charge per unit length have been obtained
with the equations of continuity. FExplicit formulas are available [10} in
zero—- and first-order approximations. Graphs of first-order currents and
charges per uni; length have been computed for numerous special cases [10].
In the simplest special case, the junction is at the center of the ver-

tical element so that h, = h, = h/2, the horizonéal element is in the neutral

1 2

plane, and no currents or charges are induced in it. The currents and

charges on the vertical conductor are the same as in the absence of the hori-
zontal member. The theoretically determined currents are illustrated in TFig.
14 for the antiresonant length hl + h2 = h = A, They have the typical apti-
resonant form with the resonant components only slightly greater than the
forced ones. A comparison with the top graph in Fig. 8 shows agreement be-
tween the twb quite different mathematical formulations.

In order to understand the distributions of current and charge per unit
length on crossed thin wires with different lengths and locations of the
Junction, it is useful to take note of the forces acting on the charges in
the several members., The primary exciting force is the incident electric

field which acts uniformly along the vertical conducter to excite the forced

part of Iz(z). Since the conductor is finite in length, the alternating in-

duced current locates periodically reversing charges near the ends which, in
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turn, excite resonant currents in varying proportions that depend on the
length of the several possible circuits. Since the horizontal members are
perpendicuiar to the vertical ones, there is no inductive coupling between
them. On the other hand, there is capacitive coupling among the confluent
conductors near the junction and this is greatest when the standing-wave pat-
terns on the vertical and horizontal wires locate charge maxima at the junc—
tion. It is smallest when there is a charge minimum at the junction. A
standing-wave pattern in the vertical conductor that locates a maximum of
q(z) near the junctilon excites a corresponding q(x) in the horizontal members.,
Note that, whereas Einc acts equally and instantaneously unidirectionally
along the vertical conductor, the electric fields due to a positive charge
near the junction are directed outward along all four conductors. Thus, the
currents induced in the two horizontal members must always be oppositely di~
rected, There are six distinct circuits with possibly different resonant
frequencies. These have the following, generally different lengths: hl'+ h2’
hl + zl, hl + 22, zl + £2, zl + h2 and 22 + h2. The degree in which a res—~
onant current is excited in any one of these circuits depends on the ampli-
tude of the exciting field and the tuning of the circuit. Forced currents
are excited by the incident field only in the vertical members. Possible,
theoretically evaluated distributions are shown in Figs. 15 through 17.

Other examples are in the literature [11].

In Fig. 15 are shown the currents and charges per unit length on the
four arms of a cross in which the six possible circuits have the following
lengths: hy + h, = h1 + 8, =hy + Ly = 3x/2, 8y + 2, = 24+ hy = h, L, =
A/2. In the E-polarized, normally incident field all the circuits except 21
+ %, are resonant. This last is not excited because of symmetry - the currents

2

in 21 and £2 must be equal and opposite. Furthermore, the junction is located

44




=Ty 0 x 772 575 .
~ T i kh, =Y/ kho= kP, = kP, = '/2
2 ar \\“\-__ o (x) ] ' 2 ! 2
5 T ! ka = 0.04
S O -
o 2- _/
r [1(x)] M o & mp
/ X | s }
/ . %)
f; // Lo :5 QX(/"V\\\
:}O“ m"?' = *>; > 0O a Z
IxR(x) /‘/ 3 _5 qR(*_" .....
// IXI(X) .
-] .
L "
2 \\
kz A
or Sty
I
b
_TL [
2
6;(z) II :
N
-+ 7 QR(Z)
"::/ (2)
q.(z
_3T|. — o
2 ‘\
\
-2 | '
N\ \ "
\
<k TR B 1 I NEEA
2 -5 -2 0 2 -5 0 5 10
I,{z) in mA/Volt Radians wqlz)in mA/Vol

Fig., 15. Theoretical distributions of current and charge per unit length

on crossed antenna in normally incident, plane-wave field;

khl = 5u/2, khz = kzl = k£2 = 7/2.

45



at a current maximum and charge minimum in each of the five possible standing-
L}
wave patterns., The calculated current in the vertical sections is secen to be

similar to the current in the absence of the horizontal arms (see Fig. 1 in

[19}), i.e., a forced component of the type shown in Fig. 14 with a superim-

posed resonant current with approximately equal amplitude. In thils case

there is a discontinuity at the junction where the current from the lower

member entering the upper member is reduced by an amount equal to the sum of .
the currents entering the horizontal arms., However, these last aré relative-

ly small since there is no inductive coupling between the mutually perpendi~-

cular elements and capacitive coupling among the four ends at and near the

junction is small with a charge minimum in all of the standing-wave patterns

located at the junction.

In Fig., 16 the six circuits have the following lengths: hl + h2 =

A. The circuit h

hy + &y = hy + L, = 2%, & + &, = 2+ hy = hy + 8,

is antiresonant in the normally incident field with a maximum of current and

1ty

a minimum of the associated charge per unit length at the junction. The cir-

cuits 21 + 22, h2 + 22, hl + El and hl + 22

ant with equal and opposite currents in £1 and £2. These have minima at the

junctien, The associated charges per unit length have maxima at the junction.

El -+ h2, are individually reson-

In Fig. 17 the lengths of the cilrcuits are: hl + h2 = 32, hl + Rl = hl + 22 =

5x/2, £1 + 22 = Rl + h2 = hz + 22 = X, The length hl + h2 is again antires- -

conant but this time with a minimum of current at the junction. Nevertheless,
the associated charge per unit length also has a minimum at the junction,

The circult &, + 2, is again resonant with equal and opposite currents in £

1 2 1
and £2 and a maximum of associated charge per unit lenpgth at the junction.
The circuits ﬁl + hz, h2 + QZ, hl + ﬁl and hl + 22 combine antiresonant prop-

ertles in the vertical member with respect to the normally incident field and
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resonant properties in the horizontal members with respect to the capacitive
coupling near the junction. The currents in the horizontal members are rela-
tively small because the primary oscillation in the vertical conductors (with
the typical antiresonant current with nearly equal forced and resonant com=
ponents) has a minimum of charge at the junction with a correspondingly small
excitation of all modes that are related to the equal and opposite currents
in the horizontal members.

In Fig. 18 the circuits have the lengths: hl + h2 = hl + 21 = hl + 22 =
5)/2, 21 + 22 = 21 + h2 = hz + 22 = X. The circuit hl + h2 is resomant in

the normally incident field. The current consists of a resonant part approx-

imately equal to the forced component in amplitude. It has a minimum at the

'junction while the associated charge per unit length has a maximum there.

The circuit 21 + 22 is resconant with equal and opposite currents in 21 and 22
and a maximum of the associated charges per unit length at the junction, The
clrcuits 21 + h2’ h2 + 22, hl + 21 and hl + RZ combine antiresonant proper-
ties in the vertical conductors with respect to the normally incident field
and resonant, properties in the horizontal members w%th‘respect to the capaci-
tive coupling near the junction. Since the oscillations in both hl + h2 and
zl + 22 locate maxima of charges per unit length at the junction, the two
modes are closely coupled and the currents in the horizontal arms are compar-
able in magnitude with those in the vertical sections. The currents in the
vertical members are superpositions of comparable resomant and antiresonant
distributions. The real parts have relatively large resonant components, the
imaginary parts only small resonant components superimposed on the forced
currents.

It is seen from these relatively simple crossed wires that the distribu-

tions of current and charge are qulte complicated. This complication in-~
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creases when the lengths of the four arms are all different and not simple
multiples of a quarter wavelength., An example is in Fig. 7 of [19].

Direct experimental confirmation of the theoretically evaluated currents
and charges on the thin-wire cross has not been carried out because intricate
movéble probes without external cables are required. However, closely re-
lated measurements have been made on crnssed wires erected on a metal ground
plane [20] with a probe system controlled from below through the lower verti-
cal member. With the associated image these crossed wires correspond to an
isolated structure with a vertical section of double length, Z(hl + hz), and
two identical horizontal sections each with arms of length zl and £2 located
at equal distances h2 from the ends of the vertical conductor. This is a
more complicated structure than the single cross since it involves two junc-
tions and the coupling between the two horizontal members. It provides nine
possible resonant circuits instead of six and correspondingly more intricate
superpositions of currents, These circuits have the following, generally

different lengths: h, +'2¢ h2 + 22, hy + 2hy + 2., h, + 2h, + 2 2(h2 + hl),

2 1 2 1 12 1 2°

2(2,l + hl)’ 2(22 + hl), 21 + 2hl + 22 and £l + £2¢ However, under special

conditions the currents in the upper half of the symmetrical double cross can
be made to resemble those in the single cross. Specifically, with Z(h1 + hz)
1+ % =h, +2n, +2, =3)/2, By ¥ 8y = 8yt hy = hy 2, = 2/2,

conditions resembling those in Fig. 15 are obtained. Except for the presence

= hz + 2h

of the lower (image) cross, the circuits are the same. The measured currents
and charges per unit length on the half above the ground plane are shown in
Fig. 19. They are seen to agree quite well with the currents and charges on
the section of Fig., 15 above the center of the vertical conductor. Similarly
with 2(hl + hz) = h2 + 2hl + 21 = h2 + 2hl + 22 = 5\/2, 21 + 22 = 21 + h2 =

h2 + 22 = A, the measured currents and charges per unit length above the
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ground plane are these shown in Fig. 20. These are in good general agreement
with those in Fig. 18 above the center of the vertical conductor. :Note that
the measured charges on the four cenductors in Figs. 19 and 20 approach the
same values at the common junction in agreement with the boundary condition
(4.5) and the theoretical graphs. The condition (4.2) on the currents is
also satisfied,

The extension of the theory to crossed electrically thin conductors when
thgse lie in the same plane but the angles at the junction are not all 90° is
straightforward but has not been carried out. In general, there is both in~
ductive and capacitive coupling between each pair of confluent elements and
the simultaneous integral equations involve more complicated kernels. The
condition at the junction remains the same so long as the angle § between any
pair of elements is not too small; the condition ka << 1 must be generalized
to |ka sin(8/2)] << 1.

When the conductors do not have a common radius a, the condition (4.3) at

the junction must be replaced with {11]

a3 (O] = 4,00, = a5(0)0, = a, (O), (4.10)
where

wi = 2[£n(2/kai) - c] s sy 2 A4 (4.11)

wi =2 Qn(Zsi/ai) , sy < PR (4.12)

and where s stands for hor 2, 1 = 1, 2, 3 or 4, and ¢ = n vy = 0.577 is
Euler's constant. The integral equations also become more involved since
different values of a occur in the different ranges of integration. Specifi~

cally, a = 3y in the range from z = 0 to z = —hl, etc.,
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SECTION V
THEORY OF THE TUBVULAR CYLINDER OF FINITE LENGTH

When the circular cylinder shown in Fig., 1 is finite in length and unre-
stricted in radius, the analytical determinatlon of the distributions of cur-
rent and chafge induced on its surface by an incident plane wave is three-
dimensional. In order to simplify the analysis the cylinder is idealized to
be an infinitely thin-walled, perfectly conducting tube extending from z = =h

to z = h with the inside radius a_ and the outside radius a,, both sensibly

42
equal to a. The induced currents and charges are, therefore, in a single
thin layer at p = a. When the field is normally incident and E-polarized,
the forced currents are axially directed as when the cylinder is infinitely
long, 1In reversing their direction periodically they must satisfy the condi—

tion Kz(e,z) = 0 at z = th, This requires the presence of concentrations of

surface charge n(8,z) with periodically reversing sign at and near the edges

at Izl h. The sign of the charge density near z = h is opposite to that

near z =h. These charges act to excite standing-wave distributions of cur-
rent and charge between them. Since the induced forced current and the as-
sociated charge concentrations near the ends are not Fotationally symmetric,
the currents they excite must have both axial and transverse components. Un-
like the infinite cylinder which has only z-directed currents and remains un=-
charged in an E~polarized field, the finite cylinder supports surface densi-
ties of both charge and transverse current in addition to the axial current;
Similarly, in an H-polarized field the axial distribution of charge associ-
ated with the forced transverse currents isnot uniform near the ends of the
tube so that axially directed currents are generated and combined with the
transverse currents induced by the incident field., Thus, on a finite cylin-

der there are distributions of Kz(e,z), Ke(e,z) and n(6,z) with either E- or

H-polarization,
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The determination of these currents and charges by Kao [14]-[17] in-

volves the solution of integral equations obtained from the boundary condi-

tion E
tang

= ( on the surface of the cylinder.

The first step in the fornu-

lation is the expansion of the incident field in a Tourier series of the form

3

E
P n=o P

inc(p’e) = ) Einc(pln)cos né

(5.1)

where p = z for the E-polarization, and p = 8 for the li-polarization. The

nth—order Fourier coefficients in (5.1) are

Einc

s (eln) = e 15 (ko)

]

inc - . 4=l
Ee (p[n) e i Jn(kp)

where en =1 for n = 0 and e = 2 for n > 0 Jn(kp) is the Bessel function

and J;(kp) its derivative with respect to the argument. Further steps in the

analysis include the expansion of all functions of 8 in Fourier series and

the separate treatment of each Fourier component as due to an incident wave

in6

of the form e « The formation of Fourier transforms with respect to the

axial variable z permits the expression of hoth the p and 8 components of the

electromagnetic fleld in terms of the axlally directed components E, and ﬁz'

These,;in turn, satisfy the Bessel equation in the radial variable p, viz.,

where 52 =

transform of the axial components of the scattered field Ez(p,cfn) or

[0%730%) + 0™2ar50) = %/p2) + £21F(o,c]n) = O

2 2

(5.3)

k™ = 7, ¢ is the transform variable, and f(p,c[n) is the Fourier

ﬁ:(p,cln). In order to express them in terms of the current on the tube, use

is made of the following boundary conditions which require the continuity of

the tangential electric field and the discontinuity of the tangential magne-

tic field:

= =S
Fo(a,,tln) = B (a_szln)
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(5.4a)




B (astln) - B(a_,zln) = sy (zfn) (5.4b)

where p = z with the upper sign and p = 6 with the lower sign. ﬁp(cln) is

Inc and Einc are
z Z

the transform of the current density in the tube. Since E
both continuous at p = a, it is correct to impose the boundary conditions
(5.4a,b) on the scattered field. The expressions for Ez(p,c|n)‘and §2(p,§[n)
can be used to obtain formulas for‘Ez(a,c!n) and EZ(a,c]n) on the surface of
the cylinder, p = a, (z[ < h. With g = 13/92z, the inverse Fourier transforms
of ﬁ;(agc[n) and gi(a,gin) lead to two differential equations with respect to
z. With the help of a common factor, the solutions of these equations can be
combined and used to satiéfy the boundary coundition requiring.the vanishing
of the tangential component of the total electric field on the surface of the
cvlinder. This results in two integral equations for the Fourier components
Ke(z[n) and Kz(z[n) of the transverse and axial currents. For normal inci-
dence with E-polarization they are:
kh
2 é Ge(u,u'[n)Ke(u‘{n)du' = iink_la—lc sin u + Ce(n) (5.5)

kh kh
2 f Gz(u,u'ln)Kz(u'ln)du' + 2nk_la_l f Gze(u,u'[n)Ke(u'[n)du'

0 0

= C cos u + C7(n) (5.6)

(The equations for H-polarization are the same but with sin u replaced by

- cos u and cos u replaced by sin u.) The constant C is determined from the

condition Kz(u‘n) = 0 at u = kh, Tor E-polarization, Cz(n) = -4€nin(coka)—l
_ . n~1 -1

X Jn(ka),‘CO(n) = 03 for H-polarization Cz(n) = 0, Cg(n) = -ésni (;Oka)

X Jg(ka). The kernels are Ge(u,u'!n) = Z(QOkza)ﬁl[Me(u - u'{n) ¥ He(u4-u'[n),i

Gz(u,u'ln) = 2(§Oa)—l[Mz(u - u'ln) * Mz(u + u'ln)], Gze(u,u'ln) 2k(n§0)"l %
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M (u=-u'ln) s M (u + u'{n)] where the upper signs are for E-polarization,
z6 z6 .

the lower signs for H-polarization. The M's are the inverse Fourier trans-

forms of ﬁe(cln) = -(ﬂwuoa/z)Jin[(ag)H?i?'(ag), ﬁz(cln) = -(wa/Zmeo)Jlnl(ag)
2 2

« 18D gy, B (c]n) = (nme/2ue 50) <aa>‘1|(rlx)| (ag) with £ = k% = z2. The

|n] [n]

nth-order Fourier component of the total current was calculated by first de-
termining Ke(u[n) from (5.5) and using this value in (5.6) to obtain Kz(u[n).

The total currents for E-polarization are:

K (8,z) = Z C (n)X (z!n)cos nbd (5.7a)
z z z
n=0
Ke(e,z) = iE Cz(n)Ke(zIn)sin né (5.7b)
n=0
For H-polarization:
K (6,z) =1 ] C.(m)K_(z|n)sin nb (5.8a)
z n=l 6 z
Ke(e,z) = X Ce(n)Ke(z[n)cos no (5.8b)
n=1

These series have been summed using numerically obtained solutions of (5.5)

and (5.6) for the Fourier coefficients Ks(uln) and Kz(u[n). Graphs and

tables were constructed by Kao [14], [15] for ka = 1, 2 and 3, kh = 0.5m, m, -
and 1.57. KXao's computer program.for Kz(e,z) and Ke(e,z) has been expanded

by B. Sanaler to include the surface density of charge defined by

QKZ(G,Z) 1 3K8(9,Z)

i
R R P " Tl (5.9)

vhere ¢ = 3 x 108 m/sec.
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With ka = 1 only a small number of terms in (5.7a,b) need be retained.

Specifically, for E-polarizationm,

»

KZ(G,z) = A(kz) + B(kz)cos 6 + C(kz)cos 26 + D(kz)cos 36
+ F(kz)cos 48 + F(kz)cos 58 (5.10)
Ke(e,z) £ i[B'(kz)sin 6 + C'(kz)sin 26 + D'(kz)sin 38] (5.11)

wvhere the coefficients are given in Tables 2 and 3 for kh = 1.57 and in
Tables 4 and 5 for kh = 37, Comparison with the corresponding ccefficients
for the infinitely long cylinder reveals that C(kz) through F(Rz) are sen-
sibly constant at the values C through F given in Table 1 except within a
quarter wavelength of the end where they decrease smoothly to zero at z = h.
It is seen that E(kz), F(kz) and D'(kz) are small.

In practice, infinitely thin-walled, perfectly conducting cylinders are
not available. The walls of metal tubes useful in.an experiment are much
thicker than the skin depth and separate currents can be identified on the
outer and inner sﬁrfaces of the tube. Measurements made with probes travel-
ing along the outside surface measure only this part of the current which
does not vanish at the open ends of the tube but continues over the edge to
become the entering inside current. This decays rapidly as the tube is en-
tered if the cross-sectional size is small enough to cut off wave-guide modes
as when ka = 1. Although the current density K(O,z) and charge density
n(6,z) on an infinitely thin-walled, perfectly conducting tube are not physi-
cally separable into inside and outside parts, 1t is possible to associate
parts of the currents and charges with the fields outside and inside the
walls., Specifically,

K(6,z) = -ualﬁ x [§<a+,e,z) - B(a_,0,2)] = §+(e,z> + K (8,2)  (5.12a)
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TABLE 3

. FOURIER COEFFICIENTS IN mA/V FOR K, (6,2z) FOR TUBULAR CYLINDER,
E-POLARIZATION, kh = 1.5m, ka = 1

kz B' (kz) c'(kz) D' (kz)

0 0.00 + i06.00 0.00 + 10.00 0.00 + 10.00

257 0.18 - 10,15 0.00 + 10.00 0.00 + 10.00

50w 0.24 - i0.30 0.01 + 1i0.00 0.00 + 10.00

757 0.06 - 10.45 0.02 -~ 16.02 0.00 + 10,00
1.007 -0.56 ~ 10.61 0.02 - 10.08 0.00 + 10,00
1,257 -2.32 - 10,81 0.02 -~ 10.33 0.03 + i0.00
1.30m ~3.04 - 10.88 0.01 - 10,47 0.05 + 10,01
1.407 -5.57 -~ 11.09 0.01 - 11.18 0.16 + 10.05

. 1.50m o oo oo
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TABLE 4

FOURIER COEFFICIENTS IN mA/V FOR Kz(B,z) FOR TUBULAR CYLINDER,
E~POLARIZATION, kh = 3w, ka = 1

kz Alkz) B{kz) C(kz) b(kz) T(kz)

0 2.89 + 10.93 | -3.26 + 12,66 | -0.14 ~ 12,03 | 0.58 + 10.00 | 0.00 + 10,10
«25m | 2470 + 10,57 | =3.22 + i2.44 | -0,14 - 12,03 | 0.58 + 10.60 | 0.00 + 10.10
50w | 2.21 - 40,30 | -3.15 + 41.88 | ~0.14 - 12,03 | 0.58 + 10.00 | 0.00 + 10,10
o757 | 1,70 - 11.14 | -3.14 + 11,28 | -0.14 - 12,04 | 0.58 + 10.00 | 0.00 + 10.10

1,00 | 1.44 - 11.45 | -3.26 + 10.96 | -0.14 -~ 12,05 | 0.58 + 10.00 | 0.00 + 10.10
1.257 | 1,58 = 11.01 | ~-3.49 + 11,12 | -0.15 ~ 12,05 | 0.58 + 10.00 | 0.00 4+ 10.10
1.50% | 2.06 - 10.09 | =3.71 + 11.70 | -0.15 - i2.04 | 0.58 + 10.00 | 0.00 + 10,10

1.75% | 2,65 + 10,76 | =3.75 + 12,45 | -0,16 ~ 12,03 { 0.58 + i0.00 | 0,00 + 10.10

2.00m | 3.03 + 10.99 | -3,48 + 13.00 | -0.16 - 12,01 | 0,58 + 10.00 | 0.00 + i0.10
2,25w | 2,96 + 10,40 | -2.90 + 13.03 | -0,15 - 11,99 | 0.58 + 10.00 | 0.00 + 10.10
2,50 | 2.38 - 10.68 | -2.15 + 12.44 | -0.12 - 11,94 | 0.57 + 10.00 | 0.00 + 10.10
2.75m | L.42 - 11,45 | -1.32 + 11.39 | -0.08 - 41.75 | 0.53 + 10.00 | 0.00 + 10.09

3.00m 0 0 0 0 0
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TABLE 5

FOURIER COEFFICIENTS IN mA/V ¥OR K,(6,2) FOR TUBULAR CYLINDER,
E-POLARIZATION, kh = 3w, ka = 1

kz B (kz) C' (kz)

0 0.00 + 10,00 0.00 + 10.00
<257 | -0.03 + 10.07 0.00 + 10.00
.50r | -0.04 + 10,11 0.00 + 10.00
o757 | =0.00 + 10,11. 0.00 + 10.00

1.00mw 0.06 + 10.05 0.00 + 10.00
1.257 0.11 - 10.04 0.00 + 10.00
1.507 0.11 - 10.14 0.00 + 10,00
1.757 0.03 -~ 10.21 0.00 + 10,00
2.00m | -0.14 - i0.20 0.00 - 10,01
2,257 | -0,37 - 10.01 | ~0.02 ~ 10,02
2,50 { -0.65 + 10.54 | -0.08 -~ 10.02

2.757m | ~1.04 + 12,10 | -0.33 - 10.03

+

3.00W (& o) (= o)
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n(0,2) = ~eg'F + [H(a,,0,2) - E(a_,0,2)] = n,(8,2) + n_(8,2) (5.120)

|

where the identity on the right defines the outside and inside surface densi-
ties of current and charge with subscripts + and -, respectively. The cur-
rents and charges measured on the outside surface of a metal tube with walls
that are many skin depths thick must be identified with the fields outside
the tube and compared with ﬁ;(e,z) and n+(e,z) near the open ends where they
differ significantly from E(@,z) and n(6,z).

The numerical evaluation of the outside and inside currents was carried .
out by first calculating the difference current E;(e,z) - ﬁ;(e,z). From this
and E(e,z) = E+(8,z) + E_(e,z), the outside and inside currents §+(6,z) and

ﬁ_(e,z) were obtained.
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SECTION VI
THEORETICAL CURRENTS AND CHARGES ON A TUBULAR CYLINDER

Extensive computations and graphical representations of Kz(e,z), Ke(e,z)
and n(8,z) have been carried out by King et al. [18] in order to gain insight
into the physical phenomena and provide a foundation for measurements designed
to develop and test experimental procedures and techniques. For this purpose
tubular cylinders with ka = 1 were selected since a circumference of one wave-
length is large enough to involve most of the characteristics of electricslly ®
thick tubes and small enough to avoid the complications of higher-order trans-—
verse resonances. Later studies will include ka = 2 and ka = 3., The initial
computations and measurements were made with kh = 1l.57. Later, In anticipa—~
tion of crossed cylinders, kh = 37 and 3.57 were also studied.

Consider first a cylinder with ka = 1 and kh = 1.57. The axial distri-
bution of KZ(S,z) = IKZ(O,Z)‘exp GZ = KZR(S,z) + iKZI(e,z) is shown in Figs.
2la,b,c as a fqpction of kz. At 6 = 0° (shadow), IKZ(G,z)E and 82 have
strongly rescnant forms with a high standing-wave ratio and a 180° phase
change; whereas at 6 = 180° (illuminated region) they have the nearly con-
stant values characteristic of predominantly forced distributions. At inter-
mediate angles a gradual transition takes place. In Figs. 22a,b,c are shown
graphs of the transverse distributions of KZ(G,z) whicﬁ are seen to be quite
different from one ancther at various values of kz. They are reasonably like
those along an infinitely long cylinder with the same radius (shown by
crosses in Fig. 22c) only when kz is near 0.57 where resonant currents have a
minimum. This is easily understood if it is recalled that there are no res-
onant currents on the infinitely long cylinder. It is evident from Figs,
2la,b,c and 22a,b,c as well as TFig, 1 in [19] that the distribution of
Kz(e,z) on an electrically thick cylinder canﬁot be constructed as a simple

combination of the axial distribution along an electrically thin cylinder of
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Fig. 2la. Theoxetlical amplitude of surface density of total axial current on tubular cylinder;
E-polarization, normal incidence.
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the same length with the transverse distribution around an infinitely long

cylinder with the same radius.

On an electrically thick cylinder of finite length a very significant
transverse component of current Ke(e,z) = [Ke(e,z)[exp Gt = KeR(S,z)+-iKeI(6,z)
is excited by the periodically varying, non-rotationally symmetric charge dis-

tributions at the ends. ]Ke(e,z)! is shown in Fig, 23a, 6, in Fig, 23b, and

t
KeR(G,z) and KeI(e,z) in Fig. 23c. Note that [Ke(e,z)l vanishes at 8 = 0°

and 180° and has a maximum near 6 = 90° for all values of kz, Ke(e,z) 1s very
small compared with KZ(G,z) except near the open ends where 1t rises steeply -

to very large values - infinity for the idealized infinitely thin-walled tube.

Both Ke(e,z) and Kz(e,z) are complex so that at each point (a,8,z) on

i}

- - -+ > ~ ~

the cylinder K(8,z) = KR(G,z) + iLI(G,z) where KR(G,z) GKGR(G,Z)+ zLZR(e,z)
-> Iy a - ->

and KI(e,z) = GKeI(e,z) + szI(e,z). The real vectors KR(S,z) and KI(G,z) at

uniformly spaced points on the surface of the cylinder are shown drawn to

scale in Fig. 24, At each point the length of the vector i1s proportional to
fﬁk(e,z)[ on the left, [EI(B,z)[ on the right; the direction of the vector
gives the direction of KR(B,Z) or EI(G,Z). The general direction of flow and
the standing-wave pattern in the shadow are evident.

The real Instantaneous current ﬁ(e,z;t) = aKe(e,z;t) + QKZ(S,z;t) has
the components Ke(e,z;t) = KGR(G,z)cos wt + KGI(G,z)sin wt and Kz(e,z;t) =
KZR(G,z)cos wt + KZI(G,z)sin wt. It is easily shown that ﬁ(e,z;t) is ellip-
tically polarized as shown in Fig. 25,

An important aspect of a standing wave of current on a condﬁcting sur-
face consists of the associated standing-wave concentrations of charge. The
surface density of charge n(8,z) = |n(8,2)|exp Gn is related to the rates of

change oy both Kz(e,z) and Ke(e,z) as given by (5.9). Graphs of ]n(6,z)[ and

en are shown in Figs. 26a,b., The charge density 1s seen to have a simple '
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E-polarization, normal incidence.
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fl

standing-wave pattern with zero amplitude at kz 0, a maximum near kz = /2,

a minimum near kz = 7, and a high maximum at kz = kh = 3n/2. The standing-
wave ratio is much lower in the illuminated region than in the shadow. A
clear picture of the overall distribution of charge density is obtainable
from Figs. 27a,b which show contours of constant [n(e,z)[ and en, respective-
ly. The important characteristics in Fig. 27a are the very high maximum at
the open end, the secondary maximum in the shadow near kz = 0.5%, 6 = 0°, and

a deep valley between the contours marked 1.5. Fig. 27b suggests a phase

0, 8 = 0°.

front diverging from kz = 1.5, 6 = 180° and converging toward kz

The distributions of axial current on cylinders with ka = 1 and lengths
other than kh = 1.5 are shown in Fig., 28 for a range of electrical half-
lengths extending from kh = l.4w to 37 in steps of 0.2n. The graphs reveal
the significant fact that the distributions are virtually identical when kh =
+ nw.

khl and kh = khl + nm in the ranges 0 < kz < kh, and n7 < kz < kh

1 1
Specifically, allicurves for kh = 27 virtually coincide with those for kh =
37 in the range ™ 5 kz f 27. The same is true for the lengths kh = 1.8w and
2.8, 1.67 and 2.67, etc.

In view of this periodic behavior of the currents, it is sufficient to
examine the associated distributions of charge density for only selected
lengths, The most interesting are the resonant lengths like kh = 1.5w (Figs.
26a,b and 27a,b) an& kh = 3,57 (Figs. 38 and 40) aﬁd the anﬁiresonant lengths
like kh = 3w, The axial distributions of [n(8,z)| for kh = 37 are shown in
Fige 29 for 6 = 0° to 180° in steps of 20°, The associated contour diagram
is in Fig. 30. The corresponding representations when kh = 3,57 are in Figs.
38 and 40, They are seen to be substantially the same in the range 0 < kz <

2n. The graphs in the range 27 < kz < 3.57 in Figs. 38 and 40 are squeezed

together axially into the range 2w < kz < 3w in Figs. 29 and 30. The boundary
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condition n(0,0) =.0 dominates and the distribution is substantially like

n(6,z) ~ sin kz for all lengths - resonant, antiresonant, and in between -~
with suitagle modifications within a half wavelength of the open end. Thus,
the contour diagrams in Figs. 30 and 40 have three maxima in the shadow re-
gion near kz = (2n + 1)7/2. When kh = 3w, the charge maximum is superimposed
on the steeper rise in charge density at a quarter wavelength from the open

end instead of on the slower increase at a half wavelength from the end when

kh = 3,5w.
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SECTION VII
EXPERIMENTAL VERIFICATION; CYLINDER WITH ka = 1, kh = 3,57

In order to develop and test apparatus and techniques for measuring dis-
tributions of surface charges and elliptically polarized surface currents,
extensive measurements were made on cylinders with ka = 1 and kh = 1.57 [22].
The apparatus and movable probes are shown schematically in Fig. 31. Two
ground planes of very different size (6.3 x 4.2 and 30.5 x 15.25 wavelengths)
and distances (po = 4) and 10X) from the axis of the 6 in. diameter cylinder
to the monopole source in a corner reflector were used successively. Gener-
ally very good agreement with theory was obtained with both ground planes.
Differences were observed in the phases of the transverse currents where
these were very small and accurate measurements difficult and in the ampli-
tudes of the charge densities in parts of the illuminated region. These lat-
ter changed in a systematic manner as the distance between the cylinder and
the source was increased from Pg = 4) to Pg = 10X to Pg = (theory), and
were presumed due to the progressive change from an incident spherical wave
to an incident plane wave. Since the distance P = 42\ from the axis of the
cylinder to the dipole source is greater than required for a line source to
induce currents like those of a plane wave [as discussed following eq. (2.16)],
it is likely that it is the spherical curvature of the wave front in the ver-
tical plane along the length of the cylinder that 1s responsible for the ob-
served, relatively small differences.

In anticipation of measurements on the surfaces of crossed cylinders and
as a final check on the accuracy of the apparatus, distributions of outside
surface current and charge density were computed and measured for a cylinder
with ka = 1, kh = 3,57 with the dipole source 7.5 from the axis of the cyl~
inder. The theoretical wvalues of ‘Kz(e,z)l and ez are shown in Fig. 32, the

corresponding measured ones in Fig, 33. The agreement 1s seen to be good.
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VF;ig. 32, Theoretical maginitude and phase of surface density of outside axial

current on tubular cylinder; E-polarization, normal incidence;

kh = 3,57, ka = 1.
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The transverse outside currents are very small except near the ends of the
cyiinder. The theoretical graphs are in Fig. 34. The current vectors for
the ﬁR(e,z) and El(e,z) are shown in Fig. 35, and the associated polarization
ellipses in Fig. 36. The corresponding measured ellipses are shown in Fig.
37. The evident departure from linear polarization along the lines 6 = 0°
and 6 = 180° in the measurements was found to be due to a very small mis-
alignment of the two mutually perpendicular loop probes. This was corrected
but the original results are shown in order to emphasize the sensitivity of
the measurements, The theoretical and measured distributions of charge den-
sity are in Figs. 38 and 39. 1In the shadow region the agreement is excellent.
As the illuminated region is approached, the middle one of the three measured
naxima begins to shrink until it disappears when 6 = 0°, This does not occur
in the theoretical graphs where the relative magnitudes of the three charge
maxima are maintained for all values of 6, The same effect is shown in a
different manner in the theoretical and measured contour diagrams in Tigs. 40
and 41, A reduced version of this effect was observed [18] for the cylinder
with ka = 1 and kh = 1.57 and, as discussed earlier in thils section, was at~-
tributed to the spherical shape of the incident wave front. This effect can
be expected to increase with the length of the cylinder and become more and
more significant as the diameter of the cylinder is reduced. A verification
with the use of an incident cylindrical wave is planned.

It may be concluded that the probes and techniques developed for ﬁeasur-
ing surface densities of charge and vector current are accurate and appropri-

ate for use with crossed cylinders for which no theoretical results are avail-

able.
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Fig. 34. Theoretical amplitude and phase of surface density of outside trans-
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kh = 3.5m,

ka = 1.
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SECTION VIII
FOURIER COMPONENTS OF THE TOTAL CURRENT

In the interpretation of the distributions of current and charge on a

conducting tube, the properties of the individual transverse Fourier compon=-

ents are useful since they are individually one-dimensional. Graphs of the

coefficients A(kz) = AR(kz) + iAI(kz) through D(kz) = DR(kz) + iDI(kz) of

KZ(O,Z) as given by (5.10) are shown in Fig. 42 for three resonant lengths,

viz., kh = 1,57, 2.57 and 3.57, and in Fig. 43 for lengths between kh = 27

and 37 in steps of 0.2n. The coefficients E(kz) and F(kz) are negligibly

small. The constant coefficients A = AR + iAI through D = DR + iDI for the

infinitely long tube with the same radius are shown on the right in the fig-

ures. It is seen that both the real and imaginary parts of C(kz) and D(kz)

differ negligibly from C and D, respectively, except within about a quarter

wavelength of the end where they decrease smoothly to zero. This type of

distribution has already been encountered in See. IIT and approximated by the

function e(kz) defined in (3.8) and shown iIn Fig. 9. With it

C(kz) = ce(kz)

D(kz) = De(kz) (8.1)

The first two coefficients include both forced and resonant components in the

manner of (3.7). Thus, for resonant lengths

Alkz) = Af(kz) + Ar(kz)cos kz

B(kz) = Bf(kz) + Br(kz)cos kz

iis

Ae(kz) + Ar(kz)cos kz (8.2)

Be(kz) + Br(kz)cos kz (8.3)

The amplitudes Ar(kz) and Br(kz) can be determined in each case by noting

that ArR(kz), ArI(kz), BrR(kz) and BrI(kz) must each vanish at kz = n/2,

Graphs of these resonant components and of the forced components AfR\kz)ié

Ape(kz), Az (kz) * Ae(kz),

BfR

(kz) = BRe(kz) and Bfl(kz) = BIe(kz) are in
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normal incidence; ka = 1.
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102




Fig. 44. The constants AR’ A B and BI are also shown., It is seen that

I,
approximations of the type AfR(kz) = ARe(kz) are moderately good but that the
decreases to zero near the open end are all somewhat different.

When the length of the tube is not resonant, the generalized form (3.11)

may be used. Thus,
Kz(e,z) = [(A+ Ar cos kh) + (B + Br cos kh)cos 6+ C cos 26+ D cos 36]
x e(kz) + (Ar + Brrcos 8) (cos kz ~ éos kh) (8.4)

An application of this formula to a tube with ka = 1 and kh = 37 follows:

KZ(G,z) [(A - Ar) + (B - Br)cos 8 4+ C cos 26 + D cos 38]e(kz)

+ (A, + B cos 8) (cos kz + 1) (8.5)

From Table 1 for ka = 1, A = 2,18 - 10,25, B = -3.,28 + i1.85. rThe evaluation
of Ar and Br can be carried out as follows. Consider first AR(kz) = (AR - ArR)
x e(kz) + ArR(COS kz +1). With ArR = (1/2)[AR(O) - AR(ﬂ)] = (1/2)[AR(2ﬂ) -
AR(ﬂ)] and the above numerical values, ArR = 0,78, Similarily, ArI £ 3,20,

It follows that

A(kz) 2= (1.40 - 1l.45)e(kz) + (0.78 + 11.20)(cos kz + 1) (8.6a)
Similarly,

B(kz) = (~2.98 + 10.92)e(kz) + (~0.30 + 10.93)(cos kz + 1) ' (8.6b)

C(kz) & Ce(kz) = —(0.14 + 12.04)e(kz) (8.6¢)

D(kz) = De(kz) * 0.58e(kz) (8.6d)

E(kz) & Ee(kz) * 10.10e(kz) (8.6e)
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Fig. 44.

Fouriler

coefficients A(kz) and B(kz) of Kz(e,z) resolved into resonant and forced components.




Graphs of these caefficients as given in Table 3 are in Fig. 45 on the left,
and as computed from the approximate formulas (8.6a-e) in Fig. 45 on the
right. The correspondence is seen to be quite good with differences primari-
ly in the rates of decrease near the open end due to the use of a single
function e(kz) to represent all components. Graphs of the individual compon-
ents of the first two modes are shown In Fig. 46.

The transverse currents on all cylinders are given by
Ke(e,z) £ i[B'"(kz)sin 6 + C'(kz)sin 26] (8.7)

where B'(kz) and C'(kz) are in Table 3 for kh = 1l.57 and Table 5 for kh = 3m.
They decay rapidly with increasing distance from the open end.

With the distributions of the vector surface density of current E(B,z)
and of the surface density of charge n(8,z) available on cylinders with
ka = 1 over a range of lengths‘together with representations in terms of
their transverse Fourier components, the information needed for a summarizing
explanation of the underlying phenomena with E-polarization is at hand. For
reference, note first that on the infinitely long cylinder the surface den-
éity of current E(e,z) reduces to éxz(e) whiéh is independent of z and en-
tirely forced; Ke(e) = 0 and n(8) = 0, The real and imaginary parts of KZ(G)

are well approximated by

HEd

KzR(e) AR + BR cos O + D_ cos 36

R

e

2.18 = 3,28 cos 6 + 0.58 cos 38 wmwA/V  (8.8a)

KZI(e) AI + BI cos 6 + CI cos 286

tie

~0.25 + 1.85 cos 6§ - 2.04 cos 26 mwA/V (8.8b)

These distributions are shown in Fig. 22c¢ in curves of crosses.

When the cylinder extends only from z = ~h to z = h, the condition
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Fig. 45. Theoretical (left) and approximate (right) Fourier coefficients of surface density of axial current

Kz(e,z) on tubular cylinder; E-polarization, normal incidence.
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Fig. 46, Components in the approximate representation shown on right in Fig. 45:
Alkz) = (A - Ar)e(kz) + Ar(cos kz + 1), B(kz) = (B - Br)e(kz)
+ Br(cos kz + 1),

107




Kz(e,z) = 0 at |z] = h is satisfied for each Fourier coefficient. This in-

volves high concentrations of suitably distributed charges near the ends and
associated reflected currents that cancel the forced currents of the infi-
nitely long tube within a distance of the order of a quarter wavelength of
the end. Although the manner in which these reflected currents decrease
varies someihat with each Fourier component, an approximation for all of them
is 1 ~ e(kz) where e(kz) is defined in (3.8) and illustrated in Fig. 9. The:
forced part of the current on a finite cylinder is approximately like that on
an infinite one in its transverse distribution and in its axially constant -
value except within about a quarter wavelength of the open ends where the

total current decreases smoothly to zero. (On a metal tube where separate

outside and inside currentg exist, the outside current continues over the

edges at the ends into the interior where it becomes the inside current that

decays within about a quarter wavelength when ka = 1,)

The concentrations of charges at the ends associated with each Fourier
comgonent of forced current excite axially resonant currents., For example,
when kh = 1.5, the rotationally symmetric part of the charges excites cur-
rents of the form Ar(kz) = Ar cos kz with an associated charge proportional
to (i/c)Ar sin kz. Similarly, the charges at the ends with the transverse
distribution Bf(kz)cos 8 excite axially resonant currents Br(kz) = Br cos kz
with the transverse distribution cos 6. Evidently, the rescnant currents
Br(kz)cos 8 on the illuminated side of the cylinder where cos 8 is negative
are equal and opposite to the currents at the corresponding points on the
shadow side where cos 8 is positive. 1In effect, the halves of the cylinder
are equivalent to a two-conductor transmission line for the currents with the

Fourler coefficient Br(kz). The associated charges vary axially as sin kz,

and transversely as cos 8. Since with ka = 1 the distance half-way around
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the cylinder is a half wavelength, near resonant transverse currents are ex-
cited near the ends. Thus, the two-conductor transmission line formed by the
halves of the cylinder with axial currents Br(kz)cos 6 is, in effect, short-
circuited at the ends which carry transverse currents B'(kz)sin 6 around the
cylinder. The resonant part Br(kz) of the Fourier component B(kz) of the
axial current combines with the component B'(kz) of the transverse current to
form a two-dimensional standing-wave pattern on the surface of the tube.
There is, of course, an associated standing-wave pattern of surface charge.
The superposition of the forced currents (which are axially constant with no
associated charge except near the ends) and the resonant components associ-
ated with the rotationally symmetric Ar(kz} and with the non-rotationally
symnetric Br(kz)cos 6 and B'(kz)sin 6 (significant only near the ends) in a
generalized two-conductor~line type of distribution, serves to characterize
the distributions of current on a cylinder of resonant length. The higher
Fourier modes contribute relatively little., The current on the surface of a
cylinder of resonant length but not within a quarter wavelength of the ends
consists primarily of the axial forced éurrent, A 4 B cos 6 + C cos 26 +

D cos 30+ ..., like that on an infinitely long tube and the superimposed
axial resonant current, (Ar + Br cos B)cos kz, In the quarter wavelength at
each end, the axial forced current decreases to zero ig a complicated manner
approximated by the function e(kz) and transverse currents with large ampli-
tudes are generated. These play the role of currents in the terminations for

the non-rotationally symmetric parts of the axial currents.
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SECTION IX
CROSSED ELECTRICALLY THICK TUBES; ka = 1

When two tubular cylinders with electrically large cross sections (ka =
1) intersect at right angles (as shown in Fig. 47 for a cross on a ground
plane) and the entire structure is i1lluminated by an incident plane wave, the
induced currents and charges are distributed in highly complicated patterns
over the conducting surfaces even when the wave is normally incident and the
electric vector is parallel to the axis of the vertical tube. The investiga-
tion of these distributions for various lengths of the four members and loca-
tions of their junction necessarily involves extensive experimental work
which is far from completed. A few samples of the results obtained so far
and attempts at their interpretation follow. 7

When the crossed cylinders shown in Fig. 47 are isolated (i.e., with the
indicated ground plane removed) and the origin of coordinates is at their
junction, they correspond exactly to the cross shown in Fig. 13. The verti-
cal cylinder extends between the open ends at z = —hl and z = h2’ the hori-
zontal one between the open ends at x = -21 and x = 22. However, the fre-
quency of the incident wave in Fig. 13 was assumed to be low enough to satis-
fy the inequality ka << 1 so that transverse currents could be neglected, ap-
proximate lecal rotational symmetry assumed for each conductor, and total
axial currents and charges per unit length defined. Furthermore, the junc-
tion region was eiectrically so small that the actual distributions of the
charges on its entire surface could be ignored and, hence, the geometry of
that surface treated as irrelevant. When ka = 1, none of these greatly sim-
plifying approximations can be made. The incident field is E-polarized for
the vertical tube, H-polarized for the horizontal one. In terms of the local

cylindrical coordinates for each tube (i.e., p,8,z for the vertical vne and

p,0,x for the horizontal one with 6 = 0° the shadow center, 6 = 180° the
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Diagram of crossed electricelly thick cylinders illuminated by

normally incident, plane-wave field.
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illuminated center for each tube) the primary induced current densities are
Kz(B,z) of the type defined in (5.7a) on the vertical tube, Ke(e,x) of the .
type in (5.8b) on the horizontal one. Due to reflections at the ends and the
junction and coupling between the tubes, transverse currents with the density
Ke(e,z) of the type in (5.7b) are generated on the vertical member and axial
currents with the density KX(S,X) of the type in (5.8a) on the horizontal
member. These last excite further transverse currents of the type (5.7bh)
that become a part of Ke(e,x). Note that the component of Ke(e,x) induced by
the incident field is an even function of 6, that generated by the reflection
of KX(G,X) at the ends is an odd function of 6.

The boundary conditions which determine the distributions of current and
charge on the crossed tubular cylinders are: E = 0 at all points on the

tang

outside and inside surfaces of the crossed tubes, Kz(e,z) = 0 at the open

1

ends at z = -hl and z = h?_’ and Kx(e,x) = 0 at the open ends at x = -%. and ‘
[Note that Kz(e,z) and Kx(e,x) are total densities, i.e., inside

X = 22.
plus outside currents.]

The complicated geometry of the crossed tubes makes the formulation of
integral equations to determine ﬁ(e,z) and E(e,x) excessively difficult.
However, it can be anticipéted that at points not too close to the junction
section the surface currents will be distributed in a manner that can be ap-
proximated by a superposition of the leading components in (5.7a,b) and
(5.8a,b). This requires experimental verification with the probes and tech-
nlques tested on the uncrossed cylinder. The distributions of current and
charge density on the surfaces of the cylinders near and in the junction re-
gion are both more complicated and more difficult to determine experimentally

since probes cannot be moved over them conveniently. The junction region it-

self consists of sections of cylinders that meet in junction lines at angles .

112




that range from 90° at the top and bottom (8 = 90°, 270°) to 180° on the back
and front (6 = 0°, 180°), These lines are effectively the bottoms of grooves
that wind diagonally around the junction. Although the metal surface is con-
tinuous across a junction line, its slope is not except when the angle is 180°.
As a consequence, the component of the electric field normal to the surface has
different directions as the junction line is approached from each side and must,
therefore, reduce to zero in magnitude if it is to be continuous across that
line, This means that the surface density of charge=- which is proportional to
the normal component of the electric field on a metal surface- must be zero
along the entire junction line, (If the bottom of the junction iIs rounded in-
stead of sharp, the zero becomes a minimum,) Thus, ideally in a contour diagram
the junction line is a contour of constant (zero) charge density. Since the cur=-
rent along the groove must vanish, the current density crosses the groove at
right angles and has a maximum or minimum there,

The fact that the charge density must be zero along the junction line
does not meaun that the sign of the charge is opposite on opposite sides or
that tﬁe overall distribution in a standing-wave pattern determined by the
boundaries of the structure as a whole 1s greatly modified. The charge den-
sity has substantially the same value and sign at short distances on each
side of the junction line and may rise quite rapidiy from zero in directions
along the surfaces perpendicular to it, A standing-wave pattern of the
charge density (determined by the overall lengths and circumferences of the
tubes) can be expected to experience a locally sharp dip across the junction
line and a spreading-out of the pattern in both directions from it due to the
repulsion of charges with the same sign brought closer together on the sides
of the groove than on a plane. But there should be no major change in the
general shape of the pattern at a distance from the junction line. The zero

in charge density occurs along the entire junction line except in a small
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area on the front .and back where the two junction lines cross and the angle

of intersection of the surfaces of the horizontal and vertical cylinders is
180°. Monopole probes to measure the charge density can be moved axially
along the entire lengths of both horizontal and vertical cylinders on both
the front and the back (8 = 0°, 180°). However, since such a probe has a
small but finite length, it measures the average charge demsity over a small
area around its base., It is, therefore, insensitive to sharp dips and nulls
in the charge demnsity that occur over distances comparable with its own
length (unless the sign of the charge reverses). .
The nature of the standing-wave pattern on the crossed cylinders is de-
termined not only by the length of the four arms of the cylinders but also by
the location of their junction. It is seen, for example, from Figs. 40 and
41 that if the horizontal cylinder is centered at kz = 2,57, it will be lo-

cated more or less symmetrically with respect to the charge maximum near 6 = .

0°, kz = 2,573 if centered at kz = 27, it will be located symmetrically with

respect to the charge minimum near 6 = 0°, kz = 27, Distributions of induced
current and charge densities for both of these lacations must be studied for

a range of lengths of the horizontal cylinder.

Measurements of surface current and charge densities have been made on
crossed cylinders with kh = 3.57 when the junction is centered near a charge
maximum in the standing-wave pattern along the vertical member without cross,
i.e., when khl = 2,57, khz = kzl = kzz = m as shown in Figs., 38 and 39.
Graphs of n(@,z) with € = 0° and 180° are in Fig., 48, It is seen that the
presence of the horizontal cylinder alters tn(0°,z)! and In(180°,z)l primari-
ly in the adjacent region where the third maximum disappears in [n(0°,z)| and
is greatly reduced in In(180°,z)|. The overall standing-wave pattern includ-

ing the first two maxima agree well with the theoretical graphs in Fig. 38 .
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for the cylinder without cross. The anomalous disappearance of the second

maximum of [n(lBO",z)t in the measured data in Fig. 39 does not occur when '
the cross is present. The graphs of Kz(0°,z) and Kz(l80°,z) in Fig. 49 when
compared with the corresponding curves in Fig. 32 for the same cylinder with-
out cross also show the effect of the horizontal member to be confined pri-
marily teo the sections adjacent to the cross with no major changes in the
standing-wave pattern at greater distances.

When the horizontal member is lowered and lengthened so that khl = 27,
kh2 = kll = kkz = 1,57, it becomes centered near a charge minimum in the un-
perturbed distributions in Fig. 38, The measured distributions of n(0°,2z)
and n(180°,z), shown in Fig., 50, again differ significantly from the corre-
sponding theoretical distributions without cross (Fig. 38) only near the
horizontal cylinder. The original standing-wave pattern as represented by
the first and third maxima is not greatly changed. It is seen from Fig. 51 .
that Kz(0°,z) and Kz(180°,z) differ from the corresponding graphs in Fig. 32
primarily in the region at and near the horizontal cylinder.

The graphs in Figs. 48 through 51 are for the densities of surface cur-
rent and charge only along the back and front (6 = 0°, 180°) where the probes
can move continuously from the ground plame at kz = 0 to the open end at kz =
3.51. Currents and charges on the surfaces below and above the horizontal
cylinder were also measured to within a few centimeters of the junction lines.

Graphs of the measured In(e,z)[ with kh, = 2, kh2 = kzl = kzz = 1l.57% are

1
shown in Fig. 52. The measured curves for values of 6 other than 0° and 180°
are shown extrapolated somewhat arbitrarily to the junction lines where
n(6,z) = 0. The curves for 0° and 180° are the same as those in Fig. 50.
Contours of constant {n(e,z)i obtained from Fig. 52 are shown in Fig. 53 with

the junction lines taken as surfaces of zero charge except near 0 = 0° and .
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180°. A comparison of Fig. 52 with Figs. 38 and 39 and Fig. 53 with Figs. 40

and 41 confirms that the horizontal member has a significant effect on the
general shape of the standing-wave pattern of n(6,z) primarily at and near
the cylinder. However, it is seen from both Figs. 52 and 53 that a relative-
ly small charge maximum near 6 = 180°, kz = 0.5x on the cylinder without
cross becomes a very significant, much greater maximum with the horizontal
cylinder present, The axial surface currents are in Fig. 54.

Distributions of surface current and charge on the back and front (6 =
0°, 180°) of the horizontal member of the cross are included at the top in -
Figs. 48 through 51. The charge distributions on the entire horizontal cyl-

inder when kh, = 2m, kh2 = k&, = k&, = 1.57 are shown in Fig, 55 with 6 as a

1 1 2
parameter at the bottom and as a contour diagram at the top. Since there is

no angular symmetry,the graphs are shown for the full 360°. As for the ver-

tical cylinder, the measured graphs have heen extrapolated to ln(e,x)l = § at

the junction lines. The extrapolated sections are necessarily somewhat arbi-
trary but they yield reasonable contours. It is seen that there are maxima
of charge at the open ends (kx = 1.57) at 6 = 90°% and 270°, i.e., the top and
bottom. This transverse distribution is also shown in Fig. 56 at the top.

On the same figure are the transverse distributions of both KX(6,x) and
Ke(e,x). It is seen that Kx(e,x), 1ike n(8,x), has its maximum near 6 = 90°
and 270°. Ke(e,x) includes induced currents excited by the H-polarized inci-
dent field and currents generated by the charges maintained near the ends by
the axial current KX(B,X). These latter are large only near the open ends
and account for much of the oscillation in the curve for x = 32 cm. At x =
23 ecm the current is due primarily to the H~polarized incident field. Com~

plete graphs of both KX(B,X) and Ke(e,x) on the horizontal cylinder are in

Fig. 57. ‘
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Measured magnitudes of surface demsities of current on horizontal member of crossed cylinders;

E-polarization for vertical cylinder, normal incidence.
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SECTION X
CONCLUSIONS

An iIntroduction has been given to the problem of determining the distri-~
butions of surface current and charge on crossed metal structures, in parti-
cular, tubular cylinders. Pertinent knowledge about distributions of current
and charge induced in thin wires, crossed thin wires, and cross~sectioﬁally
large tubes is presented as a foundation for acquiring an understanding for
currents and charges induced in crossed electrically thick cylinders. It is
shown that a representation of the distribution of current along a conductor
excited by an E-polarized plane wave in terms of the transverse Fourler com-
ponents and suitable combinations of forced and resonant components offers an
attractive relatively simple approximation. Preliminary experimental inves-
tigation of crossed cylinders with ka = 1 indicates that the original stand-
ing~wave distributions of charge and current density are not greatly altered
by the addition of the horizontal cylinder except in the vicinity of that
member, Outside this vicinity the general nature of the standing waves is
not changed significantly with respect to their location but large changes in
the relative distributions of amplitude can occurs No data are yet available
on crossed cylinders with other than normal incidence with the E-vector par-

allel to the vertical member,
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