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ABSTRACT

An effective method for the time domain characterization of lossless
multiconductor transmission lines with cross-sectionally inhomogeneous
dielectrics is presented. Lines of this type are characterized by multiple
propagation modes having different velocities. Time domain reflectom-
etry is used to obtain the characteristic impedance and the modal velocities
of the 1ine. A pulse or step function response of the line is used to ob-
tain the modal amplitudes which in turn determine the velocity matrix.

The anpropriate multiconductor transmission line equations are solved to
obtain the per-unit-length inductance and capacitance matrices in terms
of the measured characteristic impedance and velocity matrices. The
method is concise and complete and identifies the propagation modes in a
way that permits diract nhysical interpretation of the results. The time
domain experimental results for a four-conductor transmission line are

presented and are found to be in good agreement with independent fregquency
domain measurements.
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1. INTRODUCTION =

The problem of multiconductor transmission 1ines characterization has
been a topic of interest for many years. Previous work (Refs. 1 and 2)
provides methods of time domain characterization for multiconductor trans-
mission lines in homogeneous media where all the propagation modes have the
same velocity. 1In general, for a multiconductor line (N conductors plus a
ground reference) in cross-sectionally inhomogeneous media, there will be
N propagation modes each having a different velocity. A knowledge of the
modal velocities and the modal amplitudes is needed in order to obtain the
per-unit-iength inductance and capacitance matrices from the characteristic
impedance matrix (Ref. 3). The propagation modes for multiconductor trans-
mission lines with inhomogeneous dielectrics are discussed in reference 4.

In a recent paper (Ref. 5}, a method for the characterization of multi-
conductor transmission lines in inhomogeneous media in the frequency domain
was given. The present paper describes a method of characterizina lossless
parallel multiconductor transmission lines in cross-sectionally inhomogeneous
media using only time domain techniques. Time domain reflectrometry (TDR)
(Ref. 2) is used to determine the characteristic impedance matrix and modal -
velocities of the multiconductor line.

For a multiconductor transmission line in a homogeneous media, the
inductance and the capacitance parameters can be obtained from the knowledae
of the characteristic impedance and the velocity of propagation, which is
identical for all modes, using the relations (Ref. 2)

(7, ]

]

[z, 1= 4{Chn)"
nm

where [ZC ] is the characteristic impedance matrix of the transmission line
nm

system, [L )1 and [C' ] are the per-unit-length inductance and capacitance



matrices, and v is the velocity of propagation. Fur inhomogeneous dielectrics
there will, in general, be N distinct velocities of propagation for N modes

of propagation and v will be a NxN matrix. The above equations are not valid
in that case.

The technique described in this paper prescribes the determination of the
velocity matrix for the cross-sectionally inhomogeneous dielectric case.
This requires measuring the pulse or step function response of the line. As
the wave propagates along the line, the different modes will arrive at dif-
ferent times at the load (Ref. 4). The amplitudes of the different modes
arriving at the load are identified as the elements of the eigenvectors of
the velocity matrix. The eigenvalues of the velocity matrix (the velocities
of propagation of the modes) are obtained from the TDR. Thus, from the
eigenvalues and eigenvectors the velocity matrix can be constructed.

Finally,
the relationships for inductarce and capacitance matrices are derived to

obtain the per-unit-length parameters.
IT. DETERMINATION OF THE VELOCITY MATRIX

Consider the lossless line formed by M conductors, plus a reference
conductor (ground). The line is assumed to be uniform along its length
(z coordinate), but with arbitrary cross-section. In general, the dielec-
tric surrounding the 1ine is inhomogeneous (e.g., cable made of insulated
conductors having different geometries and dielectric materials).

In the presence of materials of different dielectric constants, the
propagation can not strictly be TEM. However, the low frequency prooagation
may be considered "quasi-TEM" (Refs. & and 7), and the analysis can proceed

from the generalized telegrapher's equations. These equations for the Toss-
less case are (Refs. & and 8),

lo)

v (z,1)] = -[L) ] 20 (1 (2,1)] (1)
& 11 (z,t)] = -[C! 12 [V (z,t)] (2)
9z n"? nm- 9t m'=?



with

1,2,---N
m=1,2,---N

Where Vm and Im represent the voltage with respect to the reference con-
ductor and current on the m th conductor, respectively, as a function of
distance z along the line at time, t. [Lﬁm] and [Cﬁm] are respectively
per-unit-length coefficients of inductance and capacitance matrices of

NxN size. The diagonal elements are self and the off-diagonal elements are
mutual quantities. Both [Lﬁm] and [Cém] are real, symmetric and dominant.
The elements of the capacitance matrix [Cém] and inductance matrix [L&m]
are further characterized by the following properties (Ref. 9):

v

an 0 for all n and m

€' >0 for al1 n
nn

c' 0 foralln#m
nm
\ (3)

c!' 0 for all n
nm

1w

m=1

N
2 Cim
n=1

[\

0 for all m

The voltage and current vectors in Eq. (1) and (2) can be written
as (Ref. 4)

[Vy(z,8)] = (V] F(z-vt) _ (4)

[1,(z,t)] = [1] f(z-vt) (5)

where [Vn] and [In] are the constant vectors. From Eqs. (1), (2), (4)
and (5) the eigenvalue equation for [Vn] can be written as
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where 1/v§ is an eigenvalue of the matrix [Lﬁm][C$m], and [Vn]i the associ-
ated voltage eigenvector. In the case of inhomogeneous dielectrics there
will in general be N distinct eigenvalues. Associated with the eigenvalues
1/v§, i=1,---N, there are also current eigenvectors [In]i' The [In]i are
the eigenvectors of the adjoint matrix [Cﬁm][Lﬁm] and have the same eigen-

values 1/v§ (Ref. 4). The eigenvalue equation for this case can be written
as

] ] _ 2
e L 3011y = A2 T (7)

2 . : 1 1 " 1 1
1/v; are the eigenvalues of the matrix [an][Cnm] oy [Cnm][an], where
Vs (i=1,---N)} are the eigenvaiues of the velocity matrix [vnm]. If the
eigenvalues 1/Vi and eigenvectors [Vn]1 are known, then using the similarity

transformations, the matrix [Lﬁm][cém] can be constructed as

-1
. CT - 2
(L d0e 1= v 0y (8)
where [Vnm] is the matrix formed by the eigenvectors [Vn]1 as its columns and
[1/v§] is a diagonal matrix whose elements are 1/v§. The matrix [Cﬁm][Lﬁm]
can be constructed in a similar fashion using the current eigenvectors
[In]i' A velocity matrix can be constructed using the eigenvalues as v.'s

and eigenvectors as either [Vn]i or [In]i' In both cases the eigenvalues

of the velocity matrix are the same, but the eigenvectors are different.

It can be shown that in order for the modes to represent unattenuated
traveling waves, the velocities must be real, i.e., the eigenvalues 1/v§
must be real and positive (Ref. 4). The vi's are the eigenvalues of the
velocity matrix and represeni the velocities of N propagating modes.

a. Determination of the Eigenvalues of the Velocity Matrix

Time domain reflectometry is employed to determine the velocities of
the propagation modes. This method is an extension of the conventional



method for a two-wire line in determining the velocity of propagation using
a time domain reflectometer. In this method, the return travel time for a
step function input signal +is measured on a Tline with an open or short cir-
cuit load. The ratio of the length of the line to one-half of the total
travel time gives the velocity of propagation on the Tine.

In the case of a multiconductor transmission line of N+1 conductors
with inhomogeneous dielectrics, there are N propagating modes traveling at
different velocities. These propagating modes are orthogonal to each other
(Ref. 4). One conductor of the multiconductor line can be excited with a
step function which in turn generates N propagating modes. These modes
become separated in time as they travel along the 1ine. If the other end
of the line is open circuited or short circuited, then the reflection
coefficient for all modes will be +1 or -1 and there will be no mode con-
version at the load. These reflected modes can then be recorded at the
driven end using the TDR. For this case, the propagation velocities for all
modes can be determined from the measured round trip travel time for each

mode and the length of the 1line. These velocities are the eigenvalues of
the velocity matrix.

b. Determination of the Eigenvectors of the Velocity Matrix

The eigenvectors of the velocity matrix are determined from the measured
propagating modal amplitudes on the conductors using the procedure described
in this section. [Vn]i is the 12th eigenvector of the matrix [Lém][cﬁm] cor-
responding to the eigenvalue ]/Vi' Since the similar matrices have the same
eigenvectors, the eicenvectors of the matrix [Lﬂm][c$m] and the velocity matrix
[vnm] (whose eigenvalues are Vis i=1,---N) are the same. Thus, the velocity

matrix [Vnm] can be obtained from the eigenvalues and eigenvectors of the
matrix [an][Cnm].
Since the modes of propagation are orthogonal to each other, the eigen-

vectors form a set of linearly independent vectors, an arbitrary vector can
be represented as a sum of voltage eigenvectors in the form (Ref. 4)

(€= v JA (9)

where [AnW is a vector.
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Let a wave traveling in the forward direction be characterized at

some point in space and time by the voltage vector [Vf (z,t)] which can
be expressed in terms of the voltage eigenvectors as

[V, (z,6)] = [V_1[A (t)] (10)
n
where the vector [Am(t)] is unknown.

Consider a line of length 2 connected to arbitrary terminal networks
at each end (Figure 1), and excited at the end z=0. The different modes
propagate at different velocities, so that the knowledge of [V (z,t)] at
one time is not sufficient to obtain the [Vf (z,t)] at other t1mes Also,
knowing [Vf (z,t)] at one point on the line (e g., driving end) is not
sufficient to obtain the [V ( t)] at any other point on the line
because of the different propagat1nc velocities of the modes. So, [Vf (z,t)]
at z=0 must be decomposed into eigenvectors n

v (0,t)] = v J[AL /)]

n
or N
(0,8) =D VA (t) ()
n m=1
506 500
500 NV
—— — NN\ —
509 509
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Figure 1. A 3-wire Line Over a Ground Plane



The forward traveling voltage vector at the load z=2, can be determined
as follows.

Define the transit time for each mode as

T; = Q/vi, i=1, 2,—i-N

The desired voltage vector [Vf (z,t)] at z=2 is obtained from [Vf (o,t)]

by adding eigenvectors at the prropriate transit time after 1eav$ng the
point z=0

N
Ve (50) = 2:1 v A (t- ) (12)
m:

where an(l,t) is the n th component of the vector [V¢ (2,t)]. The voltage
an(Q,t) will have N components due to N modes. Thus, [an(z,t)] can be
represented as NxN matrix whose rows are the components of the elements of
[an(l,t)]. This is illustrated by considering an exampie of four conduc-
tors. For this case, Eq. (12) can be written as

h"f%’“tﬂ Vg iz Vs (Ao

Vfél’t) = Va1 Yoz Vas| | Ap(t-Ty) (13)
g {tat) Y31 Va2 Vag] [A3lt-s)

vf1(2,t) = V]1-A](t-r]) + v]2~A2(t-T2) + V]3-A3(t-r3)

Similarly, the other two components can be expressed.

If we can rearrange
Eq. (13) so that

- ~ 7
{Vf§g’t) VqqeAg(t-my) VqpeAy(t-tp) VygeAg(t-T4) | ]
Vf(!L,t) = V21'A1(t-T]) VZZ-AZ(t—Tz) V23-A3(t—r3) 1(14)
e (2ot) 3y A (Em) Voo Ap(t-15) VageAg(t-t5)f | 1]
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Then note that the elements of eacﬁ column are multiplied by the same
constant. The elements in the above matrix represent the actual voltages
incident at the load at z=¢. Since an eigenvector of a matrix multiplied
by a constant is also an eigenvector of the same matrix, the above voltage

matrix respresents the voltage eigenvector matrix [Vnm] of the multiconduc-
tor system.

Thus, the voltage eigenvector matrix can be identified as the incident
voltage matrix at the load when the components of the voltages on the con-
ductors are represented as the rows of the eigenvector matrix.

To obtain the incident voltages at the load, the load voltages are
measured for all the conductors. Since the different modes arrive at the
load at different times, the mode amplitudes on each conductor can be
identified by their time of arrival. This will become clear from the
experimental results presented in the next section. The load voltages and
the incident voltages are related by the following relation

v (e,t)], =20z, Iz, +z_ 17've(e,6)] (15)

n nm nm Cnm n

where [VL(Z,t)]mis the load voltage vector for the m th mode, [Zan] and
[chm] arg the load and the characteristic impedance matrices respectively,
and [an(ﬂ,t)]m is the incident voltage vector at the load for the m th
mode. The incident load voltage vector at the load can be obtained from
Eq. (15) as

-1
1
[an(Q’t)]m = E’[Zan + chm][Zan] [Vngat)]

0 (16)

Thus, Eq. (16) gives the eigenvectors of the velocity matrix. The incident

voltage vector for a mode represents the eigenvector corresponding to that
mode.

We now will proceed in Section 3 to represent the Tine constants in
terms of experimentally measured quantities, e.g., velocity matrix and
the characteristic impedance or admittance matrix. The detailed procedure

1



for the measurement of characteristic impedance matrix is described in
reference 2 and some experimental results will be presented in Section 5.

ITT. DERIVATION OF INDUCTANCE AND CAPACITANCE MATRICES

The velocity matrix derived from the voltage eigenvectors is related
to the inductance and capacitance matrices by the following relation,

v 17 = [L 10! ] (17)

nm

The characteristic admittance matrix of any multiconductor 1ine is
related to the inductance and capacitance matrices by the following
relation (Ref. 4),

. 10 10v, 1=1Ic ] (18)

nm nm

From Eqs. (17) and (18)

| A -2
AP (SN 7N I T

or,

(L 0¥ 1= Dyl

| -1 -1
3=t 170y, 1° (19)
nm

c

nm

-1
nm - [Vnm] [Z

—
—
[N
1

substituting [Lgm] from Eq. (19) into Eq. (18), we obtain

-1

[Comd = [V, Ilv,.] (20)

nm

12



Thus, Egs. (18) and (19) relate the per-unit-length inductance and
capacitance matrices in terms of the velocity matrix and the characteristic

impedance or admittance matrix, which can be obtained from the measure-
ments using the time domain techniques.

It is important to note that the above parameters can also be obtained
in terms of the current eigenvectors instead of the voltage eigenvectors.
The current eigenvectors are the eigenvectors of the matrix product
[C;m][L;m] and the velocity matrix can be obtained using the current eigen-

. . | | | |
vectors. Note that the eigenvalues of the matrix [Lhm][cnm] and [Cnm][an]
are the same. The per-unit-length inductance and capacitance matrices are
related to the characteristic impedance matrix and the velocity matrix
(obtained from the current eigenvectors) by the following relations:

| ;-1
(Lo = (2 1Lvp] (21)

| v oq-1
LY (22)

where [th] is the velocity matrix obtained from current eigenvectors.

Iv. EXPERIMENTAL METHODS

The measurements to be described characterize a multiconductor trans-

mission 1ine in terms of the characteristic admittance, the modal velocities

and the eigenvectors of the velocity matrix. From these parameters the per-

unit-length inductance and capacitance matrices can be obtained.

The transmission line configuration studied consists of a bundle of
insulated wires near a ground reference plane. If there are large differences
in the effective dielectric constants of the insulation separating the wires
in the bundle, propagation on the cable system is in the form of discrete

13



eigenmodes. An N+1 conductor cable can support N- nondegenerate eigenmodes,

each with a discrete modal velocity. In the case of a homogeneous dielec-

tric in the space surrounding the wires, the eigenmodes are degenerate
and propagate with the same velocity.

Methods for the characterization of the degenerate case using time
domain reflectometry (TDR) have been reported (Ref. 2). The TDR measure-
ments described here are an extension of this methodology to the nondegen-
erate case. The eigenvectors are determined from measurements of the
modal amplitudes present on each wire of the bundle when a single wire is
excited with a step or impulse voltage source.

The followinc sections describe the methods for the measurement of
characteristic admittance, modal velocities and the modal amplitudes.

a. Characteristic Admittance

The TDR method used to determine the characteristic admittance matrix

of an N+1 conductor cable is given in reference 2. The cable is treated as

an N-port network with an input admittance matrix equal to the character-
istic admittance matrix of the line, since these parameters are equal for

times less than the round trip travel time on the line. Formulas for the

diagonal and off-diagonal terms of the characteristic admittance in terms
of measured impedance values are given as

ii ii (diagona])
(23)

- L mo_ mo m Y
i in 5 (1/21.J ]/Zii 1/ZJ.J ) (off-diagonal)

Y

where ZiT is the measured impedance of wire i with all other wires grounded
at the input and Zi? is the measured impedance of wires i and j connected
in parallel at the input with all other wires grounded at the input.

14



The procedures for the measurement of the modal velocities (the eigen-
values of the velocity matrix) and the modal amplitudes (the eigenvectors
of the velocity matrix) have been described in Section 2. The experimental
results will be presented in the next section.

V. EXPERIMENTAL RESULTS

For the purposes of demonstrating the validity of the methods described,
a 3-wire cable (over a ground plane) 20 meters in length was constructed
using wires insulated with solid polyethylene, neoprene, and rubber. The
wires were wrapped with a dielectric tape to insure a constant cable cross-
section over the length of the cable. The cable was supported with stryo-

foam blocks above an aluminum ground plane in the configuration shown in
Figure 2.

TDR recordings obtained by driving each wire in turn with the others
grounded at the input end and with the Toad end open, are presented in
Figure 3. Similar data (not shown) was recorded with wires 1 and 2, 2 and
3, and 1 and 3 connected in parallel at the input. The results were used
in Eq. (23) to obtain the diagonal and off-diagonal terms of the character-
istic admittance matrix. The reflected pulses shown in Figures 3a, 3b and
3c each exhibit three time delayed step functions correspondina to the
three discrete propagation modes on the line. The measured round trip
travel time of each mode corresponds to propagation velocities of 2.772~
108, 2.187x10% and 2.028x10% meters per second.

0.7cm|.72cnf936fm

.208 cm%
~

—
(o))

cm

.124 cm

1 91 cm —
h =

Figure 2. 3-Wire Cable (Over A Ground Plane) Geometry
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Waveforms measured with a time domain reflectometer to
determine the impedance ZW; and the modal velocities.

The vertical scale is 200 mp/div; horizontal scale is
6 ns/div.
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Measurement of the eigenvectors was accomplished by driving one of
the wires with a short duration pulse from a 50 ohm source and terminating
the ends of each wire in 50 ohm resistive loads. The output voltage
pulses on each wire were recorded using a high impedance voltage probe and
a 200 MHz osci]ioscope. The modal amplitudes were computed from the mea-
sured load voltages using Eq. (16).  Only one set of data is required to
determine the modal matrix of line; however, three sets were obtained by
driving each wire in turn to demonstrate the consistency of the measure-
ments. The recorded pluse data are shown in Figure 4.

The eigenvector matrix, the modal velocities and the characteristic
impedance matrix as obtained were used to compute the per-unit-length
inductance and capacitance matrices using Eqs., (19) and (20). The induc-

tance, capacitance and eigenvector matrices so obtained are:

(a) Wire #1 Driven

0.895 0.468 0.544 44.33 -18.88 -20.19

[Unm] = 10.455 0.924 0.359 uH/m;[C;m] =1-19.40 32.55 - 3.54] pF/m

0.537 0.359 1.01 -20.27 - 3.77 30.47
1 1 1 ‘}
.918 4.311 -1.14
[Vnm] -
1.006 -5.462 -0.157

(b) Wire #2 Driven

0.893 0.467 0.539 44.2) -18.89 -20.2%
[Enm] = 1 0.456 0.927 0.3591{ uH/m; [C%m] =1-19.46 32.67 - 3.50( pF/m
0.542 0.360 1.00 -19.94 - 3.85 30.41

17



Figure 4. Voltage Waveform At The Load End.
(b) Wire 2 Driven. (c) Wire 3 Driven.
is 0.2 V/div; Horizontal Scale is 5 ns/div.

(a) Wire 1 Driven,
Vertical Scale
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1 _ 1 1
0.9042 3.891 -1.246

Vol =
0.983 -4.635 -0.034

(c) Mire #3 Driven

0.888 0.469 0.547 44.35 -18.97 -20.16
[Unm] = 10.454 0.924 0.363} uH/m; [Chm] =1-19.14 32.35 - 3.58{ pF/m
0.524 0.366 1.01 -20.99 - 3.27 30.8
1 1 1
0.912 5.32 -1.004
v 1 -
' 1.005 -7.401 -0.701

Independent measurements of the per-unit-length parameters were also
carried out in the frequency domain using the technique described in
reference 5. The line parameters determined from the time domain techni-
ques presented here are compared with the frequency domain results in
Table 1. The parameters obtained from time domain method are averaged
for 3-driving conditions and then the off-diagonal terms are averaged.

The non-symmetric off-diagonal terms above result from the measurement
and data reduction errors.

VI. CONCLUDING REMARKS

A measurement technique for the characterization of parallel multi-
conductor transmission Tine in cross-sectionally inhomogeneous media
has been presented. The method uses only time domain techniques and
Teads to the physical interpretation of the measured quantities, e.o.,
modal velocities and eigenvectors. A velocity matrix has been introduced

19



Table 1. Comparison of Per-Unit-Length Parameters From Frequency
Domain and Time Domain Measurements

Parameter Frequency Domain Time Domain
0.884 0.484 0.535 0.892 0.461 0.538
[L;m](uH/m) 0.484 0.940 0.379 0.461 0.925 0.365
0.535 0.379 0.992 0.538 0.365 1.006
46.48 -20.91 -20.55 44,30 -19.12 -20.30
[c J(pF/m) |-20.91  33.83 - 4.15 -19.12  32.52 - 3.58
-20.55 - 4,15 31.10 -20.30 - 3.58 30.56
232 .4 148.4 159.8 231.4 139.2 157.2
[ZC 1(Q) 148.4 237.9 121.3 139.2 230.6 112.5
nm :
159.8 121.3 258.3 157.2 112.5 257.6
vy /s 2.829x10° 2.772x108
v, /s 2.178x108 2.187x10°
8 8
V3 m/s 2.009%10 2.028x10

The above comparison shows a close agreement between the results obtained
from two methods.

20



for this case which can be obtained from either current or voltage eigen-
vectors where the relation between the per-unit-lenath parameters and the
velocity matrix differ, depending which eigenvector is used to obtain the
velocity matrix. Thus, the velocity matrix as used here is a mathematical
tool where its physical interpretation is somewhat obscure.

The results obtained from this method are found to be in good agree-
ment with frequency domain results. Also, it is found that the results
obtained from this method self consistent with respect to differing
conditions.

It should be possible to extend the method given here to the partially
degenerate case, where several, but not all, modes have the same velocities.
This will be the subject of further investigation.
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