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Abstract

We present an analysis of the electromagnetic coupling from an external
illuminating field to an infinitely long thin cable placed behind the con-
ducting screen that is perforated by a narrow slot. By using a Fourier
transform representation for the unknown electric current on the cable, we
obtain an integro-differential equation for the distribution of the electric
field in the slot that accounts completely for the coupling. The transfer
admittance function so obtained, is in a form very convenient to estimate
the electric current on the infinite cable. Results of the slot electric
field distribution and the current induced on the infinite cable are
given for a few typical cases. ©Not surprisingly, the axial distribution
of induced voltage on the slot is markedly affected by the presence of the

cable.

1. INTRODUCTION .

In electromagnetic interference studies, one often needs to asses; the
response of protected objects behind perforated metallic screens. Also, in
related scattering problems, the distribution of the electric field in the
aperture determines the radiation mechanism which has a direct bearing on

the electromagnetic coupling to nearby objects. As shown by Butler and

Umashankar [1], the fields in the aperture are affected by the presence of
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nearby scatterers. They considered the boundary value problem of a finite

thin wire behind a slotted conducting screen and derived a coupled set of }
integro-differential equations where the distribution of the electric field

in the narrow slot and the induced current on the finite thin wire were un-~

known. Such formulations [1,2,3] are only tractable at relatively low fre-
quencies because of the excessive computing needed. Also, this method would
not be viable when dealing with very long cables or bundles of cables located
behind such aperture perforated screens. However, as we shall show, one may
formulate the basic integro-differential equations for such situations in a
form more convenient for calculation.

In this paper, an integro-differential equation is given for the case of
an infinitely long cable placed behind a narrow finite rectangular slot im a
conducting screen and an efficient approach to calculate the current response

of the cable with complete account of slot coupling is indicated. The method

is similar to that used by Hill and Wait [4] who were concerned with the

response of coaxial cables to dipolar fields.

IT. FORMULATION

The geometry of the problem discussed is shown in Fig. l. The infinitely
long cable is oriented along the z-axis and is placed at a distance =x=h and
y=d in the upper half space v>0. The xz- plane of the coordinate system
contains the perfectly conducting ground plane which has an x-directed narrow
slot of length & and width w whose center coincides with the origin. The
illuminating field (Ei,ﬁi) is incident from the lower half space y<0, and

the narrow slot, in turn, radiates and has a direct coupling to the infinite
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Figure 1. Thin dimfinitely long cable behind a narrow_rectangular slot
perforated conducting screen. ‘




In the following, an integro-differential equation is formulated in

terms of an induced current ﬁzlz(z) on the thin infinite cable, and a
, . . =A . . .
tangential slot electric field Et or an equivalent magnetic current dis-
. . ~ ' ' =A 1 f ~ ~ ~ ~
tribution UM (x ,z2 ) = E (x ,2z ) x 4_ where { , G4 and @ are the
X X t v X b 4
direction vectors of the coordinate system. The fields in the two half
spaces can be calculated once the distributions Ié' and MX are known.
It is assumed that I2 has no significant rotational variation and that

MX(X‘,Z') can be written as
t 1 1 ]
M (x,z) =nkx)t(z) (1a)

for the narrow slot distribution. Here m(x) is the yet to be determined,
variation of the longitudinal field in the slot and Z(z‘) accounts for
the transverse variation in the slot field which is assumed to have the

static distribution [1]:

') =2 [w/2)? - (227" (1)

(i) Determination of Electric Current Distribution Iz(z)
In Fig. 2c is shown an equivalent of the original problem valid for
y>0. Here the primary magnetic Hertz potential ﬁi due to magnetic current
distribution —ZMX is given by [5]:
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ﬂi(x,y,z) = dx', for >0 (2a)

where the propagation constant, applicable to both sides of the sheet, is

L
v = [jouo+rjue)y]™ (2b)
and
1.2 2 2%
R=[(x-x )" + v* + 22] (2¢)
In writing the above and in what follows, we have adopted an exp(jwt) time factor. .
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Figure 2. Upper half-space equivalent problem, valid for y>0.
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We now utilize the identity [6],

[ee}

R 2
B % -/.Ko(ur)coskz dx (3a)

0
where KO is the modified Bessel function of the second kind of zero order

where

[ad
|

= (WD) ? (3b)
and
[ (x-x)% + y2]° (30)
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Then the expression (2a) reduces to the form

+2/2 -
Tr*(x,y,z) = fm(x')[ f K (ur)cosiz d}\]dx' (4)
* JWUT 0/2 o ©

Now, because of symmetry, the z- component of the primary electric field of

the magnetic current distribution is given by [5]:

oo
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EZ(X,Y,Z) = =Juwl 5;‘ = (;;)

[ 8 (x,y, 1) coshz d) (5)
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where Es _by definition is the Fourier cosine transform of Ez. Then it

follows that

+2/2
2 1

(E) %20\) = = m(x ) E}Kl(ur)dx‘ (6)

T
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where K1 is the modified Bessel function of the second kind of first order.
In a similar fashion, we may deduce the z~ component of the secondary
electric Hertz potential due to the infinitely long cable and its image.

This must have the form

ﬂi(x,y,z) = £ F(A)[Ko(url) - Ko(urz)]coskz ar , v>0, (7a)
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and

[x-n)2 + (gra)2T? (7¢)
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In fact, the secondary electric Hertz potential has the right boundary con-

dition, i.e.

Trs(X’y’ Z) 0.

y=0 "
Actually, the term F(A) is directly proportional to the transformed current

EZ(A) of the electric current distribution Iz(z) on the infinitely long

cable. This is seen from (7a) where we may write

oo 2m s
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Z m zZ ap'

t
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(8)
where p' and ¢' are the local cylindrical coordinates about the cable

axis and ¢ 1is the radius of the cable wire. Then it follows from (7a)

that

L
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Furthermore, the z- component of the secondary electric field is obtained

from
2

s _ [ d
EZ(X,Y: Z) = <

Y X,y,z 1 a
dZ

and the corresponding transform is then

'I/ZA
(2) By

- —uZEKO(url) - Ko(urz)]F(x) (10b)




Now we are in a position to enforce the cable wire boundary condition
[4]:

/\p ~ - N )
[ED 00 + BSO0T iy = 20T, 00| g (1)

where Z(A) is the impedance of the cable per unit length. For example, for

the bare cable conductor [ 7], with !waz >> 22,
z(}\) = E%gi%;z%§1€7 (12a)
w 1 'w
in which
v, = [30_p]? (12b)
where Ow being the conductivity of the cable material, and IO, I are

1

the modified Bessel functions of first kind, zero and first oders, respec-
tively. More complicated A-dependent forms arise in other cable types.

By substituting expressions (6), (9), and (l0b) into the cable boundary
condition (11), the term F(A) proportional to the transform of the electric

current distribution on the infinitely long cable reduces to,

+2/2

-JZ fz/z (') K (ur )dx'
F(A) = : = < (13a)
u[KO(uc) - KO(Zud)] + 2ﬂc(6+jm€)[Kl(uc) - Kl(ZudTJZ(K)
where . : :
r, = [(h-x')2 + 42]°? (13b)

Hence the distribution of the actual electric current on the infinitely long
cable can be obtained by the expressions (8b), (9), and (13a). Thus
+2/2

I (z) = f m(x’)T(z,x')dx' (14a)
z ~2/2




where

T(z,x') = TO,x Yeoshz dA (14b)

08

and

(o+jwe)u <§L> Kl(urc)[Kl(uc) - Kl(Zud)]

fa 1 _ 27C . . o _
TO,x7) = == u[KO<uc>-Ko(2ud)]+2vc(o+jwe)[Kl(uc)-Kl(zudyIZ(x) (14e)

For the special case of a perfect cable conductor Z{A) = 0, placed at least
few radii above the slot, the expression (l4c) reduces to a simpler form

Kl(urc)Kl(uc)

Ko(uc) (144)

AA ! =&:_ 1 i

T(A,x ) - (o+iwe) -
c

The expression (léa) is an expression for the current Iz(z) in terms of

the slot distribution m(x') and would be an explicit if the slot were

electrically small.

(ii) Determination of the Magnetic Current Distribution m(x")

We now derive an integro-differential equation that will be used to
determine the unknown function m(x'). We first write down the corresponding
expressions for the total magnetic field " and H in the half space
regions y>0 and y<O0 respectively. Then we enforce the remaining boundary
condition [1,2] that the components of the total magnetic field transverse
to v should be continuous in the sglot i.e.,

. =+ " . = ~
X = X
lim H+ Uy lim H— Uy (15)
y>0 y>0
Referring to Fig. 2c, the total magnetic field valid for the region

v>0, is

=t - _ O * _ 2A * . ~ s
H [v(v uxﬂx) v uXWX] + (oHjue)V x am (16a)
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Similarly with reference to Fig. 2c, the total magnetic field valid for the
region y<0, 1is

= oS Ry 420 o =Sc
H [V(v am) =y uXﬂX] + 8 (16b)
where H°C being the. short circuit magnetic field in the region y<0.
On substituting (16a) and (16b) into the slot boundary condition (15),

we have an integro-differential equation

92 2 | % (o+jwe) D s _ i
{___Y}ﬂx____z 2 w0l (17)

where ﬂ: and Wi are given by the expressions (2a) and (7a) respectively,
and -Hi is the x~- component of the incident magnetic field excitation on
the slot. A plane wave with its direction of propagation making an angle 6
with the slot axis is now assumed to excite the slot. Then the Hi compon-—
ent of the magnetic field in the above expression (17) is given by

-yxcosf .

i, .
Hx(x) = HXO51nSe (18)

where on is a specified amplitude factor.

L

. . . . s
On substituting the Hertz potential expressions for ﬂ; and n, as

given by (2a) and (7a), the integro-differential equation (17) takes the

form ,
+4/2
2
[EL;._ yz}./ﬁ m(X,)K(X,X')dX'
. ~2/2 (192)
fﬁ/z
+ m(x')G(x,x‘)dx' = —32mTwu H;(x), on the slot =xe(- &-, %—)
-2/2
where &
1 e_YRS
K(x,x ) = = (19b)
s
and
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u[KO(uc) - Ko(2ud)] + 2Wc(0+jw€)[Kl(uc) - Kl(ZudYIZ(K)
where
r, = [(x—h)2 + dZ:[l/2 (19e)

For the special case of a perfect electric conductor Z(A) = 0, and

assuming the cable is placed at least a few radii above the slot,

oo

G(x,x) = _fZY2 (i) (%) Ky tor %y (urg) dr (19£)

s Ko(uc)

(0]

The final form of the integro-differential equation (192) for the un-
known magnetic current distribution m(x'), is in a convenient form for
numerical analysis. The first term can be recognized as an integral ex-
pression for an isolated narrow slot, while the presence of the second term,
which has inherently built in Fourier transform of the current distribution
on the infinite cable, accounts for the transfer coupling between slot and
the infinite cable. The expression (19a) may now be converted into a matrix
equation [8] by expanding the m(x‘) distribution in terms of a piecewise

pulse function

N
n(x ) = ) Mop (x) (20)
n=1

and testing it by piecewise limnear functions. This numerically oriented
matrix method enables one to determine the magnetic current distribution

m(x'). After substituting back the expression (20) into (l4a), the electric

12




current response Iz(z) on the infinite cable can be evaluated.
Finally, we note that in the expression (l4a), T(z,x') is a transfer
admittance function that can be quite useful for circuit modelling of the

coupled region between slot and the infinite cable.

ITI. NUMERICAL EXAMPLES

The integro-differential equation (19a) is now solved numerically based
on matrix methods as outlined in [8] for a few cases of interest. In Fig. &
we show the resulting distribution of the slot axial magnetic current m(x)
along the slot axis for a typical case of 0.5 meter narrow resonant slot with
total length to width ratio of 10. Here the illuminating plane wave is
assumed to be incident normally on the slot from the region y<0. The
infinitely long cable is located at a distance h=0 and 0.5 meter, and d=0.25 meter
from the center of the slot. As indicated in Fig. 4, the results for isolated
slots are completely altered both in magnitude and in the distribution accord-
ing to the location of the infinite cable.

The slot magnetic current distribution as obtained in Fig. 4 is further
used in the expression (lé4a) to estimate the distribution of the induced
electric current on the infinite cable. Fig. 5 shows the real and imaginary
parts of the total axial current 1I(z) as a function of lz]. Away from
the axis 2z=0, the current on the infinite cable does exhibit a small damping
behavior and oscillates approximately at the wave length of the incident

plane wave field. Here we have assumed U = uo, £ = Eo and 0 = 0.

IV. CONCLUDING REMARKS

For the problem of an infinite cable placed behind a narrow slot per-

forated conducting screen, we have obtained an integro-differential equation

13
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Figure 4.

Distribution of the axial slot magnetic current
along the center line, 2z=0, for freq. = 300 MHz,
8= 0.5, Z{(X) = 0, w = 0.05, and ¢ = 0.0035 meter. .
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Figure 5, Distribution of the electric current on the
infinitely long cable for freq. = 300 MHz,
9 = 0.5, Z(x) = 0, w = 0.05, and ¢ = 0.005 meter.
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Figure 6.

Distribution of the axial slot magnetic current
along the centey line, 2z=0, for freq. = 300 MHz,
i=0,5, Z(x») = 0, w = 0.05, and ¢ = 0.005 meter.

16




Figure 7.

Distribution of the electric current on the
infinitely long cable for freq. = 300 MHz,
£ = 0,5, Z(A) = 0, w= 0.05, and ¢ = 0.005 meter.
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Distribution of the axial slot magnetic eurrent
along the center line,

£ = 1.0, Z(A) 0, w =
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Figure 9. Distribution of the electric current on the
infinitely long cable for freq. = 300 MHz, )
¢ = 1,0, Z(x) = 0, w = 0.05, and ¢ = 0.005 meter.
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Figure 10. Distribubion of the axial slot magnetic current
along the center line, z=0, for freq. = 300 MHz, .
. = 1.0, Z(») = 0, w = 0.05, and ¢ = 0.005 meter.
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Figure 11.
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in an uncoupled, but in a modified form to determine the unknown electric
field in the slot. Also, an expression has been given for the current in-
duced on the infinite cable in terms of the slot magnetic current distribu~
tion and the transfer admittance function. In this approach, the complete
coupling between the slot and infinite cable was taken into account. Only
the usual thin wire and narrow slot approximations were introduced.

One could extend the formulation to a more general rectangular aperture,
but then we would encounter a set of coupled integro-differential equations
with semi-infinite integral-kernels, for the field distribution in the aper-

ture. This would be a worthwhile task for the future.
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